The present invention relates to MOS transistors for high power devices.
As illustrated in
For high-voltage applications, the implant energy and dose for forming LD regions 18 in a MOS transistor may not be the same as those for low-voltage logic MOS transistors formed on the same wafer. The implant energy should be relatively high to achieve sufficient high gated-drain junction breakdown voltage. Usually, the implant not only goes into the substrate for forming the transistor LD region 18, but it also goes into the transistor's gate poly 4. As semiconductor technologies migrate to a 65 nm geometry, a 45 nm geometry and beyond, the logic MOS gate poly thickness becomes thinner. A typical logic poly gate thickness is about 1000 Å for a 65 nm geometry, and 800 Å for a 45 nm geometry. Since high-voltage MOS transistors share the same poly as the low-voltage logic MOS transistors, the implant energy has to be reduced to prevent the penetration of the implant dopants, such as boron, phosphorus, or arsenic, into the MOS channel 16 under the gate poly 4. However, reducing the implant energy will result in a lower gated-drain junction breakdown voltage, and a high-voltage MOS transistor may fail to deliver a sufficiently high gated-drain junction breakdown voltage.
It is known to use extended drain MOS transistors to increase the gated drain junction breakdown voltage.
The extended drain MOS transistor is not a symmetric device because the source is not extended. This means that the source 10 is aligned with (i.e. reaches) the spacer 14, and is connected to the channel region 16 by LD region 18a which itself is disposed underneath the spacer 14. In contrast, the drain 12 is positioned away from the spacer 14, and is connected to the channel region 16 by LD region 18b which is only partially disposed underneath spacer 14. When source and drain 10/12 of a MOS transistor is swapped by layout error, the device becomes an extended source MOS transistor. As a result, a high gated drain breakdown voltage may not be achieved.
In the current industry practice when the extended source and drain MOS transistor is used as a symmetric device, the poly gate material and part of source and drain are blocked from source/drain N+ or P+ implant. A special masking step is often needed to conduct implant doping of the gate material (polysilicon). Without doping, the gate poly material will have a depletion effect and the transistor threshold voltage will be shifted. In-situ doped poly material can replace implanted poly, but that solution would only work for one MOS (such as NMOS) but not for the other MOS (such as PMOS) unless a low-performance buried channel transistor is used.
There is a need for a MOS device, and method of making the same, that addresses the above identified issues.
The aforementioned problems and needs are addressed by a transistor having a substrate, a conductive gate disposed over and insulated from the substrate wherein a channel region in the substrate is disposed under the conductive gate, a first spacer of insulating material over the substrate and laterally adjacent to a first side of the conductive gate, a second spacer of insulating material over the substrate and laterally adjacent to a second side of the conductive gate that is opposite to the first side, a source region formed in the substrate and adjacent to but laterally spaced apart from the first side of the conductive gate and the first spacer, a drain region formed in the substrate and adjacent to but laterally spaced apart from the second side of the conductive gate and the second spacer, a first LD region formed in the substrate and laterally extending between the channel region and the source region wherein the first LD region has a first portion disposed under the first spacer and a second portion that is not disposed under the first and second spacers and not disposed under the conductive gate and wherein a dopant concentration of the first LD region is less than that of the source region, and a second LD region formed in the substrate and laterally extending between the channel region and the drain region wherein the second LD region has a first portion disposed under the second spacer and a second portion that is not disposed under the first and second spacers and not disposed under the conductive gate and wherein a dopant concentration of the second LD region is less than that of the drain region.
A method of forming a transistor, includes forming a conductive gate over and insulated from a substrate wherein a channel region in the substrate is disposed under the conductive gate, performing a first implant of dopant into portions of the substrate adjacent to opposing first and second sides of the conductive gate to form first and second LD regions respectively in the substrate, forming a first spacer of insulating material over the first LD region in the substrate and laterally adjacent to the first side of the conductive gate, forming a second spacer of insulating material over the second LD region in the substrate and laterally adjacent to the second side of the conductive gate, forming masking material that extends at least over portions of the substrate directly laterally adjacent to the first and second spacers but leaves exposed at least portions of the substrate laterally spaced apart from the first and second spacers, performing a second implant of dopant into the exposed portions of the substrate to form a source region in the substrate which is adjacent to but laterally spaced apart from the first side of the conductive gate and the first spacer and to form a drain region in the substrate which is adjacent to but laterally spaced apart from the second side of the conductive gate and the second spacer, wherein the first LD region laterally extends between the channel region and the source region and has a first portion disposed under the first spacer and a second portion that is not disposed under the first and second spacers and not disposed under the conductive gate and wherein a dopant concentration of the first LD region is less than that of the source region, and wherein the second LD region laterally extending between the channel region and the drain region and has a first portion disposed under the second spacer and a second portion that is not disposed under the first and second spacers and not disposed under the conductive gate and wherein a dopant concentration of the second LD region is less than that of the drain region.
Other objects and features of the present invention will become apparent by a review of the specification, claims and appended figures.
The present invention is a symmetric extended source/drain MOS transistor, as illustrated in
An anisotropic poly etch is used to remove the exposed portions of poly layer 32, exposing portions of the oxide layer 36. The remaining portion of the poly layer 32 constitutes the gate. A first dopant implant process is used to form LD regions 44a and 44b in the portions of substrate 34 adjacent to gate 32.
Spacers of insulation material 42 are formed adjacent the gate 32. Formation of spacers is well known in the art, and involves the deposition of an insulating material or multiple materials over the contour of a structure, followed by an anisotropic etch process, whereby the material is removed from horizontal surfaces of the structure, while the material remains largely intact on vertically oriented surfaces of the 30 structure (with a rounded upper surface). Preferably, spacers 42 are formed of oxide and nitride, where a layer of oxide and another layer of nitride are deposited over the structure, followed by an anisotropic etch that removes the nitride and oxide except for those portions abutting the vertical sides of the gate 32. A masking photo resist 52 is coated over the structure, followed by a photolithography process for selectively removing portions of the photo resist 52 exposing the gate 32 and target locations of the substrate 34 that are spaced away from the gate 32 and away from the spacers 42.
A second implant process is used to implant dopant into the gate 32 as well as the exposed portions of the substrate 34 to form the source and drain regions 38/40 (which are separated away from the gate 32 and spacers 44), as illustrated in
With this design, an error-free layout can be achieved. It allows simultaneous doping to the poly gate 32 in the same implant step as the source/drain implant, thus eliminating an additional masking step. A thin poly layer can be used for the gate 32, and still achieve the desired doping in both the gate 32 and the substrate 34 (for source/drain regions 38/40). LD regions 44a/44b are more lightly doped than source drain regions 38/40 (i.e. dopant concentration per volume is less). By extending the more heavily doped source/drain junctions away from the gate edges, the junction profile under the gate 32 becomes gradual and less heavily doped, which results in 1) a reduction in the peak electric field, and 2) improved gate diode breakdown (by moving the high e-field away from the gate 32). Higher breakdown voltages can be achieved for both extended source/drain PMOS transistors and extended source/drain NMOS transistors.
It is to be understood that the present invention is not limited to the embodiment(s) described above and illustrated herein, but encompasses any and all variations falling within the scope of the appended claims. For example, references to the present invention herein are not intended to limit the scope of any claim or claim term, but instead merely make reference to one or more features that may be covered by one or more of the claims. Materials, processes and numerical examples described above are exemplary only, and should not be deemed to limit the claims. Further, as is apparent from the claims and specification, not all method steps need be performed in the exact order illustrated or claimed, but rather in any order that allows the proper formation of the MOS transistor of the present invention. Single layers of material could be formed as multiple layers of such or similar materials, and vice versa. Lastly,
It should be noted that, as used herein, the terms “over” and “on” both inclusively include “directly on” (no intermediate materials, elements or space disposed therebetween) and “indirectly on” (intermediate materials, elements or space disposed therebetween). Likewise, the term “adjacent” includes “directly adjacent” (no intermediate materials, elements or space disposed therebetween) and “indirectly adjacent” (intermediate materials, elements or space disposed there between). For example, forming an element “over a substrate” can include forming the element directly on the substrate with no intermediate materials/elements therebetween, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements therebetween.
This application claims the benefit of U.S. Provisional Application No. 61/706,587, filed Sep. 27, 2012, and which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61706587 | Sep 2012 | US |