The present application references U.S. patent application Ser. No. 15/824,665, which was filed Nov. 28, 2017, and titled “FABRICATING TRANSISTORS WITH A DIELECTRIC FORMED ON A SIDEWALL OF A GATE MATERIAL AND A GATE OXIDE BEFORE FORMING SILICIDE,” and is hereby incorporated herein by reference in its entirety.
Bipolar junction transistors are often used in many high performance analog applications to amplify or buffer analog signals. In such applications, it is desirable for bipolar junction transistors to exhibit a relatively high transistor beta, β, and in particular, a relatively high beta Early voltage product, βVA. It is also desirable for bipolar junction transistors to exhibit relatively low 1/f noise and popcorn noise, and yet have a relatively high beta or a relatively high beta Early voltage product.
In accordance with a first set of embodiments, a method to fabricate a transistor, the method comprising: implanting dopants in a semiconductor to form a collector region having majority carriers of a first type; implanting dopants with a first dosage and implanting dopants with a second dosage in the collector region to form a base region having majority carriers of a second type, wherein the second dosage is at a lower energy than the first dosage; forming a gate oxide on the base region; forming a gate material on the gate oxide; forming the gate material and the gate oxide to leave uncovered an emitter area of the base region; and implanting dopants in the emitter area to form an emitter region having majority carriers of the first type.
In accordance with the first set of embodiments, the method further comprises: forming a dielectric to cover a first area of the emitter region and a first sidewall of the gate material and the gate oxide, and to leave uncovered a second area of the emitter region; depositing a metal over the dielectric and the second area of the emitter region; and annealing the semiconductor to form silicide in the second area of the emitter region, wherein forming the dielectric to cover the first area of the emitter region and the first sidewall of the gate material and the gate oxide is performed before annealing the semiconductor to form silicide.
In accordance with the first set of embodiments, the method further comprises: forming the gate material and the gate oxide to leave uncovered a base contact drain area of the base region; and implanting dopants in the base contact area of the base region to form a base contact region having majority carriers of the second type.
In accordance with the first set of embodiments, the method further comprises: forming the dielectric to cover a first area of the base contact region and a second sidewall of the gate material and the gate oxide, and to leave uncovered a second area of the base contact region; depositing the metal over the second area of the base contact region; and when annealing the semiconductor, forming silicide in the second area of the base contact region, wherein forming the dielectric to cover the first area of the base contact region and the second sidewall of the gate material and the gate oxide is performed before annealing the semiconductor to form silicide.
In accordance with the first set of embodiments, in the method, the dielectric comprises silicon dioxide.
In accordance with the first set of embodiments, in the method, the gate material comprises polysilicon.
In accordance with the first set of embodiments, in the method, the metal comprises tungsten.
In accordance with the first set of embodiments, the method further comprises removing the metal that has not formed the silicide.
In accordance with the first set of embodiments, in the method, the majority carriers of the first type are holes and the majority carriers of the second type are electrons.
In accordance with the first set of embodiments, the method further comprises: implanting dopants in the collector region to form a well having majority carriers of the first type; implanting dopants in the well to form a collector contact region having majority carriers of the first type; depositing the metal over the collector contact region; and when annealing the semiconductor, forming silicide in the collector contact region.
In accordance with a second set of embodiments, a method to fabricate a transistor, the method comprising: implanting dopants in a semiconductor to form a collector region having majority carriers of a first type; implanting dopants with a first dosage and implanting dopants with a second dosage in the collector region to form a base region having majority carriers of a second type, wherein the second dosage is at a lower energy than the first dosage; growing a gate oxide on the semiconductor; depositing a gate material on the gate oxide; etching the gate material and the gate oxide to expose an emitter area of the base region surrounded by a first sidewall of the gate material and the gate oxide, and to expose a base contact area of the base region, the base contact area surrounding a second sidewall of the gate material and the gate oxide; implanting dopants in the emitter area to form an emitter region having majority carriers of the first type; implanting dopants in the base contact area of the base region to form a base contact region having majority carriers of the second type; depositing a dielectric over the semiconductor; etching the dielectric to cover the first sidewall of the gate material and the gate oxide, the dielectric after etching exposing a portion of the semiconductor; depositing metal over the dielectric and the exposed portion of the semiconductor; and annealing the semiconductor to form silicide in the exposed portion of the semiconductor.
In accordance with the second set of embodiments, the method further comprises etching the dielectric to cover the second sidewall of the gate material and the gate oxide.
In accordance with the second set of embodiments, in the method, the dielectric comprises silicon dioxide, the method further comprising removing the metal from the dielectric.
In accordance with the second set of embodiments, in the method, the majority carriers of the first type are holes and the majority carriers of the second type are electrons.
In accordance with a third set of embodiments, a transistor comprises: a collector region having majority carriers of a first type; a base region having majority carriers of a second type, the base region having a dopant concentration greater than 1.0 * 1016 cm−3 at a depth of 0.2 microns; an emitter region having majority carriers of the first type, the emitter region having a first area and a second area; silicide, wherein the silicide is formed in the second area of the emitter region; a gate oxide over the base region; and a gate material on the gate oxide, the gate material and the gate oxide having a first sidewall, wherein the silicide formed in the second area of the emitter region is separated from the first sidewall by a distance of at least 0.1 microns.
In accordance with the third set of embodiments, in the transistor, the first area of the emitter region surrounds the second area of the emitter region, and the first sidewall surrounds the first area of the emitter region.
In accordance with a third set of embodiments, the transistor further comprises: a base contact region in the base region having majority carriers of the second type; wherein the base contact region has a first area and a second area; and wherein the silicide is formed in the second area of the base contact region.
In accordance with the third set of embodiments, in the transistor, the gate material and the gate oxide have a second sidewall, the second area of the base contact region surrounds the first area of the base contact region, and the first area of the base contact region surrounds the second sidewall.
In accordance with a third set of embodiments, the transistor further comprises a silicide block formed on the first sidewall and on the first area of the emitter region.
In accordance with the third set of embodiments, in the transistor, the majority carriers of the first type are holes and the majority carriers of the second type are electrons.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
In many high performance analog applications, a bipolar junction transistor (BJT) is often used to amplify, buffer, or condition an analog signal. In such applications, it is desirable for a transistor to have a relatively high beta Early voltage product, with relatively low 1/f noise and popcorn noise. In current fabrication process technology, it can be difficult to achieve both of these design objectives. A silicide block separating the emitter contact from the base contact in a transistor can be used to maintain a relatively high beta, but this design does not mitigate the noise. To mitigate the noise, a gate oxide, protected by a polysilicon gate, can be disposed between the emitter contact and the base contact, but in current fabrication process technology the polysilicon gate defines the emitter contact area and the base contact area, so that silicide formation on these areas may lead to a relatively low beta. It is desirable for a fabrication process and transistor design to maintain a relatively high beta Early voltage product with relatively low 1/f noise and popcorn noise.
In accordance with the disclosed embodiments, a transistor is fabricated in which a first implantation of dopants is performed to form a base region, followed by a second implantation of dopants into the base region. The first implantation of dopants provides a relatively deep implantation to form the base region. The second implantation of dopants provides a relatively shallow implantation. The second implantation of dopants increases the dopant concentration at a surface between an emitter region and a base contact region.
In accordance with the disclosed embodiments, in addition to fabricating the transistor with the first and second implantation of donors, the transistor comprises a gate material on a gate oxide, disposed between an emitter region and a base contact region, where a dielectric is formed on a first sidewall of the gate material and the gate oxide before forming silicide. The dielectric formed on the first sidewall serves as a silicide block, preventing silicide from forming on the first sidewall, so that the silicide does not form on the entire area of the emitter region and is at a distance from the first sidewall. In some embodiments, the silicide formed on the emitter region is separated from the first sidewall by a distance of 0.1 microns to 1 microns. As discussed below, the silicide block on the first sidewall helps reduce 1/f noise and popcorn noise while maintaining a relatively high transistor beta. In accordance with the disclosed embodiments, the dielectric is formed on a second sidewall of the gate material and the gate oxide before forming silicide.
In some embodiments, the illustrative transistor 100 is an NPN transistor, where the collector region 102 and the emitter region 106 are N-type semiconductors, and the base region 104 is a P-type semiconductor. For an NPN transistor, the collector region 102 and the emitter region 106 can be fabricated by implanting donor dopants into a silicon semiconductor, and the base region 104 can be fabricated by implanting acceptor dopants into a silicon semiconductor.
More generally, the collector region 102 and the emitter region 106 may be described as having majority carriers of a first type, and the base region 104 may be described as having majority carriers of a second type. For some embodiments, holes can be the first type of majority carriers and electrons can be the second type of majority carriers.
A coordinate system 101 shown in
In
Referring to
In some embodiments, the first area 108 surrounds the second area 110.
Referring to
Referring to
A gate oxide 114 is formed over the base region 104, illustrated in
Formed over the gate oxide 114 is a gate material 116, illustrated in
The combination of the gate oxide 114 and the gate material 116 may be described as being disposed between the emitter region 106 and the base contact region 112. Isolating the emitter region 106 from the base contact region 112 with a high quality oxide provided by the gate oxide 114 helps with the 1/f noise and popcorn noise of the illustrative transistor 100 during operation in a circuit, such as an analog amplifier.
Because of diffusion, the previous statement regarding the boundaries of the emitter region 106 and the base region 112 is only approximate, and there is no precise definition to these boundaries, nor are these boundaries exactly aligned with the sidewalls. Nevertheless, for purposes of illustrating the embodiments,
Referring to
The silicide block 118 comprises a dielectric, where metal deposited on the silicide block 118 is prevented from forming a silicide with the silicon directly beneath the silicide block 118. For some embodiments, the silicide block 118 comprises silicon dioxide, and is formed by depositing silicon dioxide onto the surface of the semiconductor upon which the illustrative transistor 100 is fabricated. For some embodiments, the silicide block 118 is deposited over the entire surface of the semiconductor upon which the illustrative transistor 100 is fabricated, and is selectively etched away to cover the first sidewall 402 (and other components if desired). For example, anisotropic etching may be performed so that some silicon dioxide remains on the first sidewall 402.
The silicide block 118 restricts formation of the silicide 202 to the second area 110 rather than to the entire area of the emitter region 106, if the silicide block 118 were not present. With the silicide block 118 present before forming the silicide 202, formation of the silicide 202 is kept at a distance from the first sidewall 402, where, for some embodiments, this distance may be from 0.1 microns to 1 microns. Referring to
For a PNP transistor, some of the electrons injected vertically from the base region 104 into the emitter region 106 may encounter the silicide block 118, and are expected to be reflected back into the base region 104, thereby further reducing base current and contributing to an increase in transistor beta.
Referring to
The silicide block 502 covers a first area 504 of the base contact region 112, leaving uncovered (exposed) a second area 506 of the base contact region 112. Depositing metal followed by annealing forms a silicide 508 in the second area 506 of the base contact region 112. (
Referring to
To form the base region 104, dopants are implanted with a first dosage into the collector region 102 to form a base region (not yet the final base region 104), followed by a second implantation of dopants with a second dosage to form the base region 104. The first and second dosages are such that the first implantation is deeper than the second implantation.
In some embodiments, the illustrative transistor 100 is an NPN transistor, where implanting dopants with the first dosage (for a deep implantation) comprises implanting boron at a dose of 5.0 * 1013 cm−2 with an energy of 140 keV, and implanting dopants with the second dosage (for a shallow implantation) comprises implanting boron at a dose of 4.0 * 1013 cm−2 with an energy of 20 keV.
Adding the shallow implantation in addition to the deep implantation brings about a higher concentration of dopants (e.g., acceptors for an NPN transistor and donors for a PNP transistor) at the surface between the emitter region 106 and the base contact region 112. As an example of the higher concentration of boron due to the shallow implant, in some embodiments, the concentration of boron at a depth of 0.2 microns is greater than 1.0 * 1016 cm−3.
The added concentration of dopants near the surface of the emitter region 106 presents a potential barrier to minority carriers in the base region 104, thereby contributing to the beta. For example, for an NPN transistor, electrons injected laterally from the emitter region 106 experience a higher potential barrier because of the shallow implant. Consequently, there are less electrons being absorbed by the base contact region 112, thereby reducing base current and resulting in a higher beta.
In step 610, the gate material and the gate oxide are etched to expose an emitter area of the base region, and to expose a base contact area in the base region. The etching of the gate material and the gate oxide forms a first sidewall and a second sidewall. For some embodiments, the first sidewall of the gate material and the gate oxide surround the emitter area. (Other embodiments could be directed to fabricating lateral transistors.) For some embodiments, the base contact area surrounds the second sidewall of the gate material and the gate oxide.
The gate material and the gate oxide after etching can serve as a hard mask for defining the emitter area, as well as defining other areas for implanting dopants. In step 612, dopants are implanted in the emitter area to form an emitter region having majority carriers of the first type. In step 614, dopants are implanted in the base contact area to form a base contact region having majority carriers of the second type.
Steps 616 and 618 form the collector region of the transistor, where in step 616 dopants are implanted in the collector region to form a well having majority carriers of the first type, and in step 618 dopants are implanted in the well to form a collector contact drain region having majority carriers of the first type to make contact with the collector region.
Before implanting dopants, a photoresist film is deposited and exposed with radiation by one or more lithography masks, followed by baking and etching of the photoresist film to define a pattern on the semiconductor for the dopant implantation. However, such steps are not included in
In step 620, a dielectric is deposited over the semiconductor. For example, silicon dioxide may be deposited by chemical vapor deposition (CVD). This dielectric serves as a silicide block. In step 622, the dielectric is etched to cover the first sidewall of the gate material and the gate oxide. In step 624, metal is deposited over the surface of the semiconductor and the dielectric, followed by annealing in step 626 so that the metal in contact with silicon forms silicide. In step 628, for some embodiments, the dielectric deposited in step 624 may be etched so as to cover the second sidewall of the gate material and the gate oxide.
The listing of steps in
Furthermore, some embodiments may not include all steps listed in
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
4118250 | Horng | Oct 1978 | A |
4160991 | Anantha | Jul 1979 | A |
4507848 | Smith | Apr 1985 | A |
4559696 | Anand | Dec 1985 | A |
4868631 | Hollingsworth | Sep 1989 | A |
5045916 | Vor | Sep 1991 | A |
5100824 | Vora | Mar 1992 | A |
5338694 | Ilderem | Aug 1994 | A |
5338696 | Ilderem | Aug 1994 | A |
5369042 | Morris | Nov 1994 | A |
5441903 | Eklund | Aug 1995 | A |
5661046 | Llderem | Aug 1997 | A |
6489665 | Prall | Dec 2002 | B2 |
6989557 | Chen | Jan 2006 | B2 |
7846805 | Zhang | Dec 2010 | B2 |
9041096 | Nakajima | May 2015 | B2 |
9419117 | Aketa | Aug 2016 | B2 |
9461046 | Edwards | Oct 2016 | B1 |
20050202664 | Jawarani | Sep 2005 | A1 |
20070207585 | El-Kareh | Sep 2007 | A1 |
20080217690 | Mandelman | Sep 2008 | A1 |
20090108346 | Cai | Apr 2009 | A1 |
20100213507 | Ko | Aug 2010 | A1 |
20100252860 | Yang | Oct 2010 | A1 |
20110049678 | Benaissa | Mar 2011 | A1 |
20130228868 | Stribley | Sep 2013 | A1 |
20140225126 | Aketa | Aug 2014 | A1 |
20160260829 | Aichinger | Sep 2016 | A1 |
20170148873 | Kim | May 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190207017 A1 | Jul 2019 | US |