1. Field of the Invention
The embodiments disclosed herein are related to metal oxide semiconductor field effect transistors (MOSFETs) and, more particularly, to a MOSFET structure having phase transition material incorporated into one or more components in order to minimize leakage current, such as Gate-Induced Drain Leakage (GIDL), when the MOSFET is in its OFF state.
2. Description of the Related Art
In metal oxide semiconductor field effect transistors (MOSFETs), Gate-Induced Drain Leakage (GIDL) often places a lower bound on leakage and/or gate dielectric thickness for low-power designs. GIDL refers to the high electric field and, particularly, the band-to-hand tunneling that occurs at the channel region to drain region interface overlapped by the gate structure, when the MOSFET is in an OFF state and when the drain region is close to the power-supply voltage such that the voltage difference between the drain region and the source region (VDS) is relatively high. To minimize GIDL, MOSFETs are often designed such that the gate structure does not or only minimally overlaps the interface and/or with a relatively thick gate dielectric layer. However, both solutions tend to lower drive current, thereby result in reduced circuit speed when the MOSFET is in the ON state. Therefore, there is a need in the art for a MOSFET structure and method of forming the structure that avoids or at least minimizes leakage current, such as GIDL, when the MOSFET is in the OFF state, without compromising the drive current required to maintain a desired circuit speed, when the MOSFET is in the ON state.
In view of the foregoing, disclosed herein are embodiments of a metal oxide semiconductor field effect transistor (MOSFET) having phase transition material incorporated into one or more components (e.g., an asymmetric gate structure and/or into source and drain contact landing pads) in order to minimize leakage current, such as Gate-Induced Drain Leakage (GIDL), when the MOSFET is in its OFF state, without compromising the drive current required to maintain a desired circuit speed, when the MOSFET is in its ON state. Specifically, the MOSFET can comprise an asymmetric gate structure with a gate electrode having a first section above the source-side of the channel region and a second section above the drain-side of the channel region. The second section can comprise a phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)). Additionally or alternatively, the MOSFET can comprise a source and drain contact landing pads comprising different phase transition materials (e.g., un-doped vanadium dioxide (VO2) and doped vanadium dioxide (VO2), respectively). In any case, the phase transition material(s) can be pre-selected so as to be insulative particularly when the MOSFET is in the OFF state and the voltage difference between the drain region and the source region (VDS) is high in order to minimize GIDL and so as to be conductive particularly when the MOSFET is in the ON state and VDS is high in order to maintain drive current. Also disclosed herein are method embodiments for forming the above-described MOSFET embodiments.
More particularly, disclosed herein is an embodiment of a metal oxide semiconductor field effect transistor (MOSFET) with an asymmetric gate structure having a gate electrode with a phase transition material section designed to minimize leakage current, such as Gate-Induced Drain Leakage (GIDL), when the MOSFET is in its OFF state, without compromising the drive current, when the MOSFET is in its ON state. Specifically, the MOSFET can comprise a semiconductor body and the semiconductor body can comprise at least a channel region, a source region adjacent to a first side of the channel region, and a drain region adjacent to a second side of the channel region opposite the first side. The MOSFET can further comprise an asymmetric gate structure on the semiconductor body adjacent to the channel region. This asymmetric gate structure can comprise a gate electrode having a first section above the first side of the channel region (i.e., above the source-side of the channel region) and a second section above the second side of the channel region (i.e., above the drain-side of the channel region). The first section can comprise a conventional gate conductor material (e.g., a doped polysilicon or metal gate conductor material). The second section can be different from the first section and specifically can comprise a phase transition material (e.g., doped vanadium oxide). The phase transition material can be pre-selected in order to ensure that it is insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and in order to ensure that it is conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state. Optionally, this MOSFET can further comprise contact landing pads, which are on the source region and the drain region and which comprise different phase transition materials (e.g., un-doped vanadium dioxide (VO2) and doped vanadium dioxide (VO2), respectively) such that they are similarly insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state.
Also disclosed herein is an embodiment of a method of forming the above-described MOSFET. Specifically, the method can comprise providing a semiconductor body. The method can further comprise forming an asymmetric gate structure on the semiconductor body adjacent to a channel region. Specifically, the asymmetric gate structure can be formed such that it comprises a gate electrode with a first section above a first side of the channel region adjacent to a source region (i.e., above a source-side of the channel region) and a second section above a second side of the channel region adjacent to a drain region (i.e., above a drain-side of the channel region). The first section can be formed so that it comprises a conventional gate conductor material (e.g., a doped polysilicon or metal gate conductor material). The second section can be formed so that it is different from the first section and specifically so that it comprises a phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)). The phase transition material can be pre-selected in order to ensure that it is insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and in order to ensure that it is conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state. Optionally, this method can further comprise forming contact landing pads on the semiconductor body adjacent to the source region and drain region such that the contact landing pads comprise different phase transition materials (e.g., un-doped vanadium oxide and doped vanadium dioxide (VO2), respectively), thereby making them similarly insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state.
Also disclosed herein is an embodiment of a metal oxide semiconductor field effect transistor (MOSFET) with source and drain contact landing pads that comprise different phase transition materials and that are designed to minimize current leakage, such as Gate-Induced Drain Leakage (GIDL), when the MOSFET is in its OFF state, without compromising the drive current, when the MOSFET is in its ON state. Specifically, the MOSFET can comprise a semiconductor body and the semiconductor body can comprise at least a channel region, a source region adjacent to a first side of the channel region, and a drain region adjacent to a second side of the channel region opposite the first side. The MOSFET can further comprise a gate structure on the semiconductor body adjacent to the channel region. Optionally, the gate structure can comprise an asymmetric gate structure, as described above. Additionally, the MOSFET can comprise a first contact landing pad on the semiconductor body adjacent to the source region and a second contact landing pad on the semiconductor body adjacent to the drain region. The first contact landing pad can comprise a first phase transition material (e.g., un-doped vanadium dioxide (VO2)) and the second contact landing pad can comprise a second phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)) different from the first phase transition material. The first and second phase transition materials can be pre-selected in order to ensure that they are both insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and in order to ensure that they are both conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state.
Also disclosed herein is an embodiment of a method of forming the above-described MOSFET. Specifically, the method can comprise providing a semiconductor body. The method can further comprise forming a gate structure on the semiconductor body adjacent to a channel region. Optionally, the gate structure can be formed such that it is asymmetric, as described above. Additionally, the method can comprise forming contact landing pads, which comprise a phase transition material, on the semiconductor body adjacent to a source region and to a drain region. Specifically, a first contact landing pad comprising a first phase transition material (e.g., un-doped vanadium dioxide (VO2)) can be formed on the semiconductor body adjacent to the source region and a second contact landing pad comprising a second phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)) that is different from the first phase transition material can be formed on the semiconductor body adjacent to the drain region. The first and second phase transition materials can be pre-selected in order to ensure that they are both insulative when a voltage difference between the drain region and the source region is above a threshold difference and when the field effect transistor is in an OFF state and in order to ensure that they are both conductive when the voltage difference between the drain region and the source region is above the threshold difference and when the field effect transistor is in an ON state.
The embodiments herein will be better understood from the following detailed description with reference to the drawings, which are not necessarily drawn to scale and in which:
As discussed above, with metal oxide semiconductor field effect transistors (MOSFETs), Gate-Induced Drain Leakage (GIDL) often places a lower bound on leakage and/or gate dielectric thickness for low-power designs. GIDL refers to the high electric field and, particularly, the band-to-band tunneling that occurs at the channel region to drain region interface overlapped by the gate structure, when the MOSFET is in an OFF state and when the drain region is close to the power-supply voltage such that the voltage difference between the drain region and the source region (VDS) is relatively high. To minimize GIDL, MOSFETs are often designed such that the gate structure does not or only minimally overlaps the interface and/or with a relatively thick gate dielectric layer. However, both solutions tend to lower drive current, thereby result in reduced circuit speed when the MOSFET is in the ON state.
In view of the foregoing, disclosed herein are embodiments of a metal oxide semiconductor field effect transistor (MOSFET) having phase transition material incorporated into one or more components (e.g., an asymmetric gate structure and/or into source and drain contact landing pads) in order to minimize leakage current, such as Gate-Induced Drain Leakage (GIDL), when the MOSFET is in its OFF state, without compromising the drive current required to maintain a desired circuit speed, when the MOSFET is in its ON state. Specifically, the MOSFET can comprise an asymmetric gate structure with a gate electrode having a first section above the source-side of the channel region and a second section above the drain-side of the channel region. The second section can comprise a phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)). Additionally or alternatively, the MOSFET can comprise source and drain contact landing pads comprising different phase transition materials (e.g., un-doped vanadium dioxide (VO2) and doped vanadium dioxide (VO2), respectively). In any case, the phase transition material(s) can be pre-selected so as to be insulative particularly when the MOSFET is in the OFF state and the voltage difference between the drain region and the source region (VDS) is high in order to minimize GIDL and so as to be conductive particularly when the MOSFET is in the ON state and VDS is high in order to maintain drive current. Also disclosed herein are method embodiments for forming the above-described MOSFET embodiments.
More particularly, referring to
Specifically, in each of the embodiments, the MOSFET 100A, 100B, 100C can comprise a semiconductor body 106 (e.g., an essentially rectangular shaped semiconductor body). As illustrated, this semiconductor body 106 can comprise a portion of a semiconductor layer of a semiconductor-on-insulator (SOI) wafer. Such an SOI wafer can comprise a semiconductor substrate 102 (e.g., a silicon substrate or other semiconductor substrate), an insulator layer 103 (e.g., a silicon oxide layer or other suitable insulator layer) on the substrate 102 and a semiconductor layer 104 (e.g., a single crystalline silicon layer, a single crystalline gallium nitride layer or other suitable semiconductor layer) on the insulator layer 103. The portion of the semiconductor layer that makes up the semiconductor body 106 can be defined, for example, by a trench isolation region 105. This trench isolation region 105 can, for example, comprise a conventional shallow trench isolation (STI) structure comprising a trench extending vertically through the semiconductor layer to the insulator layer 103 and filled with one or more isolation materials (e.g., a silicon oxide, silicon nitride, silicon oxynitride, etc.). Alternatively, the semiconductor body 106 can comprise a portion, as defined by a trench isolation region 105, of a bulk semiconductor wafer (e.g., a bulk single crystalline silicon wafer) or any other suitable wafer (e.g., a hybrid orientation (HOT) wafer) (not shown). Alternatively, the semiconductor body 106 can comprise a fin-shaped semiconductor body for a non-planar, multi-gate, MOSFET (e.g., a dual-gate MOSFET or a tri-gate MOSFET) (not shown).
In each of the embodiments, the semiconductor body 106 can comprise at least a channel region 110, a source region 121 adjacent to a first side 111 of the channel region 110, and a drain region 122 adjacent to a second side 112 of the channel region 110 opposite the first side 111.
Those skilled in the art will recognize that the conductivity types of the channel region 110, the source region 121 and the drain region 122 may vary depending upon the conductivity type of the MOSFET 100A, 100B, 100C and the type of semiconductor material used. For example, for an N-type MOSFET, the source region 121 and the drain region 122 can have an N-type conductivity and the channel region 110 can have either a P-type conductivity or an N-type conductivity at a lower conductivity level. However, for a PFET the reverse can be true. That is, for a PFET, the source region 121 and the drain region 122 can have a P-type conductivity and the channel region 110 can have either an N-type conductivity or a P-type conductivity at a lower conductivity level. Additionally, those skilled in the art will recognize that the different dopants can be used to achieve different conductivity types in different semiconductor materials. For example, P-type conductivity can be achieved in silicon or polysilicon through the use of a Group III dopant, such as boron (B) or indium (In) and N-type conductivity can be achieved in silicon or polysilicon through the use of a Group V dopant, such as arsenic (As), phosphorous (P) or antimony (Sb). However, P-type conductivity can be achieved in gallium nitride (GaN) through the use of, for example, magnesium (MG) and N-type conductivity can be achieved in gallium nitride (GaN) through the use of, for example, silicon (Si). Those skilled in the art will recognize that different conductivity levels can be achieved using different dopant concentrations.
In each of the embodiments, the source region 121 can comprise a relatively deep source region 121b and, optionally, a shallow source extension region 121a that is positioned laterally between the deep source region 121b and the channel region 110. Similarly, the drain region 122 can comprise a relatively deep drain region 122b and, optionally, a shallow drain extension region 122a that is positioned laterally between the deep drain region 122b and the channel region 110. The shallow source and drain extension regions 121a, 122a can, optionally, have the same conductivity type but at a lower conductivity level than the deep source and drain regions 121b, 122b. The shallow source and drain extension regions 121a, 122a can be symmetrical, as illustrated, or, alternatively, can be asymmetrical (e.g., the shallow drain extension region may be relatively long as compared to the source extension region).
In each of the embodiments, the MOSFET 100A, 100C, 100B can further comprise a gate structure (see gate structure 130a of
In each of the embodiments, the MOSFET 100A, 100C, 100B can further comprise gate sidewall spacers 140 positioned on opposing sides of the gate structure (e.g., above the shallow source and drain extension regions 121a and 122a). The gate sidewall spacers 140 can comprise, for example, nitride sidewall spacers, oxide sidewall spacers, oxynitride sidewall spacers or other suitable dielectric spacers.
Referring to
The first section 131 of the gate electrode 134 can comprise a conventional gate conductor material. For example, the first section 131 can comprise a doped polysilicon material (e.g., an N-type polysilicon in the case of an N-type MOSFET or a P-type polysilicon in the case of a P-type MOSFET). Alternatively, the first section 131 can comprise a metal or metal alloy material (e.g., an N-type metal or N-type metal alloy in the case of an N-type MOSFET or a P-type metal or P-type metal alloy in the case of a P-type MOSFET).
It should be noted that, for the purposes of this disclosure, N-type metals or metal alloys are defined as near conduction band metals or metal alloys. Exemplary N-type metals or metal alloys include, but are not limited to, titanium nitride, titanium silicon nitride, tantalum nitride, tantalum silicon nitride, aluminum, silver, hafnium, etc. Contrarily, P-type metals or metal alloys are defined as near valence band metals or metal alloys. Exemplary P-type metals or metal alloys include, but are not limited to, rhenium, rhenium oxide, platinum, ruthenium, ruthenium oxide, nickel, palladium, iridium, etc.
The second section 132 of the gate electrode 134 can be different from the first section 131 and, specifically, can comprise a phase transition material.
For purposes of this disclosure, a phase transition material (also referred to herein as a phase change material or smart material) is a material that undergoes a phase transition as a function of a change in a local environmental condition (e.g., a change in an electric field, a change in temperature, or a change in some other environmental condition) and, thus, undergoes a corresponding local environmental condition-dependent change in an electrical property, such as resistance. For example, some phase transition materials (e.g., doped vanadium dioxide (VO2), such as titanium or chromium-doped vanadium dioxide (VO2)) may exhibit a significant increase in resistance (i.e., such as a change from being conductive to insulative) when a critical electric field is present and/or when a predetermined temperature is reached, whereas other phase transition materials (e.g., un-doped vanadium dioxide (VO2)) may exhibit a significant decrease in resistance (i.e., such as a change from being insulative to conductive) when a critical electric field is present and/or when a predetermined temperature is reached. Since the local environmental conditions (i.e., electric fields and/or temperature) will vary as a function of the voltages applied to the various MOSFET terminals, the environmental condition-dependent nature of a phase transition material in the second section 132 of the gate electrode 134 can be exploited (i.e., capitalized upon) in order to block the creation of a GIDL-causing electric field, when the MOSFET 100A is in the OFF state, without compromising drive current, when the MOSFET 100B is in the ON state.
Specifically, the phase transition material for the second section 132 of the gate electrode 134 can be pre-selected in order to ensure that it is insulative at a time during operation of the MOSFET 100A when the voltage difference between the drain region 122 and the source region 121 (i.e., the VDS) is at or above a threshold difference (e.g., at or above 1 volt) and when the MOSFET 100A is in the OFF state. Being insulative at this time prevents the creation of the electric field and, particularly, the band-to-band tunneling that causes GIDL. For example, the phase transition material can be pre-selected in order to ensure that it is insulative when a first voltage on the source region 121 is 0 volts and when a second voltage on the drain region 122 is 1 volt such that the VDS is 1 volt and further when a third voltage on the gate structure 130a is 0 volts (i.e., when the MOSFET 100A is in the OFF state). Additionally, the phase transition material can be pre-selected in order to ensure that it conductive at a time during operation of the MOSFET 100A when the VDS is at or above the threshold difference (e.g., at or above 1 volt) and when the MOSFET 100A is in the ON state. Being conductive at this time ensures that the drive current of the MOSFET 100A is high. For example, the phase transition material can be pre-selected in order to ensure that it is conductive when the first voltage on the source region 121 is 0 volts and when the second voltage on the drain region 122 is 1 volt such that the VDS is 1 volt and further when the third voltage on the gate structure 130a is 1 volt (i.e., when the MOSFET 100A is in the ON state).
One exemplary phase transition material that can be insulative and conductive during MOSFET operation as described above and, thus, can be pre-selected for incorporation into the second section 132 of the gate electrode 134 is doped vanadium dioxide (VO2) and, particularly, vanadium dioxide (VO2) doped with a dopant such as titanium, chromium or any other suitable dopant which causes the doped vanadium dioxide (VO2) to exhibit a significant increase in resistance (i.e., such as a change from being conductive to insulative) when a critical electrical field is present and/or when a predetermined temperature is reached. For example, the second section 132 can comprise titanium or chromium-doped vanadium dioxide (VO2), where the atomic percentage of titanium or chromium is 0.1-1%.
It should be noted that when the phase transition material for the second section 132 of the gate electrode 134 is pre-selected in order to ensure that it is insulative and conductive during MOSFET operation as described above, it will also necessarily be conductive, when the VDS is below the threshold difference (e.g., below 1 volt, such as when the voltage applied to both the source and drain regions is 0) and when the MOSFET 100A is in the OFF state. However, there would be no need to have the second section 132 of the gate electrode 134 be insulative at this time, since the creation of the electric field and, particularly, the band-to-band tunneling that causes GIDL only occurs when the VDS is at or above the threshold difference. It should also be noted that when the phase transition material for the second section 132 of the gate electrode 134 is pre-selected in order to ensure that it is insulative and conductive during MOSFET operation as described above, it will also necessarily be insulative, when the VDS is below the threshold difference (e.g., below 1 volt, such as when the voltage applied to both the source and drain regions is 0) and when the MOSFET 100A is in the ON state resulting in a lower drive current. However, such a trade-off with drive current under such conditions can be acceptable depending upon usage in order to avoid GIDL (e.g., such a trade-off with drive current under such conditions can be acceptable in radio frequency (RF) applications, which do not require linear operation).
Additional features of the MOSFET 100A can include, but are not limited to, the following: metal silicide layers (not shown) positioned on the surface of the source and drain regions 121-122 and gate structure 130a; one or more interlayer dielectrics (not shown) 170 covering the MOSFET 100A; and contacts extending vertically through the interlayer dielectrics 170 to the source and drain regions 121-122 (see contacts 161-162), to the gate structure 130a and to the substrate 102 below.
Referring to
Specifically, in this embodiment, the gate electrode 134 of the gate structure 130b can comprise a conventional gate conductor layer. For example, the gate electrode 134 can comprise a doped polysilicon material (e.g., an N-type polysilicon in the case of an N-type MOSFET or a P-type polysilicon in the case of a P-type MOSFET). Alternatively, the gate electrode 134 can comprise a metal or metal alloy material (e.g., an N-type metal or N-type metal alloy in the case of an N-type MOSFET or a P-type metal or P-type metal alloy in the case of a P-type MOSFET).
Additionally, the MOSFET 100B can comprise a source contact landing pad 151 (i.e., a first contact landing pad) on the top surface of the semiconductor body 106 adjacent to the source region 121 (e.g., immediately adjacent to the deep source region 121b) and a drain contact landing pad 152 (i.e., a second contact landing pad) on the top surface of the semiconductor body adjacent to the drain region 122 (e.g., immediately adjacent to the deep drain region 122b). These contact landing pads 151, 152 can each comprise a relatively thin layer of phase transition material. However, the phase transition materials should be different. That is, the first contact landing pad 151 can comprise a relatively thin layer of a first phase transition material and the second contact landing pad 152 can comprise a relatively thin layer of a second phase transition material different from the first phase transition material. Since the local environmental conditions (i.e., electric fields and/or temperature) at these contact landing pads 151, 152 will vary as a function of the voltages applied to the various MOSFET terminals, the environmental condition-dependent nature of the phase transition materials of these contact landing pads 151, 152 can be exploited (i.e., capitalized upon) in order to block the creation of a GIDL-causing electric field, when the MOSFET 100B is in the OFF state, without compromising drive current, when the MOSFET 100B is in the ON state.
Specifically, the first and second phase transition materials can be pre-selected in order to ensure that they are both insulative at a time during operation of the MOSFET 100B when the voltage difference between the drain region 122 and the source region 121 (i.e., the VDS) is at or above a threshold difference (e.g., at or above 1 volt) and when the MOSFET 100B is in the OFF state. Being insulative at this time prevents the creation of the electric field and, particularly, the band-to-hand tunneling that causes GIDL. For example, the first and second phase transition materials can be pre-selected in order to ensure that they are both insulative when a first voltage on the source region 121 is 0 volts and when a second voltage on the drain region 122 is 1 volt such that the VDS is 1 volt and further when a third voltage on the gate structure 130b is 0 volts (i.e., when the MOSFET 100A is in the OFF state). Additionally, the first and second phase transition materials can be pre-selected in order to ensure that they are both conductive at a time during operation of the MOSFET 100B when the VDS is at or above the threshold difference (e.g., at or above 1 volt) and when the MOSFET 100B is in the ON state. Being conductive at this time ensures that the drive current of the MOSFET 100B is high. For example, the first and second phase transition materials can be pre-selected in order to ensure that they are both conductive when the first voltage on the source region 121 is 0 volts and when the second voltage on the drain region 122 is 1 volt such that the VDS is 1 volt and further when the third voltage on the gate structure 130b is 1 volt (i.e., when the MOSFET 100B is in the ON state).
It should be noted that for this to be the case, the first phase transition material must be a phase transition material that changes from a high resistance material (i.e., an insulative material) to a low resistance material (i.e., a conductive material) beyond a critical field. One exemplary phase transition material that can be insulative and conductive as required for the first phase transition material of the source contact landing pad 151 (i.e., the first contact landing pad) is un-doped vanadium dioxide (VO2). Contrarily, the second phase transition material must be a phase transition material that changes from a low resistance material (i.e., a conductive material) to a high resistance material (i.e., an insulative material) beyond a critical field. One exemplary phase transition material that can be insulative and conductive as required for the second phase transition material for the drain contact landing pad 152 (i.e., the second contact landing pad) is doped vanadium dioxide (VO2) and, particularly, vanadium dioxide (VO2) doped with a dopant such as titanium, chromium or any other suitable dopant which causes the doped vanadium dioxide (VO2) to exhibit a significant increase in resistance (i.e., such as a change from being conductive to insulative) when a critical electric field is present and/or when a predetermined temperature is reached. For example, the drain contact landing pad 152 can comprise a relatively thin layer of titanium or chromium-doped vanadium dioxide (VO2) where the atomic percentage of titanium or chromium is 0.1-1%.
It should also be noted that when the first and second phase transition materials for the source and drain contact landing pads 151, 152 are pre-selected in order to ensure that they are insulative and conductive during MOSFET operation as described above, the drain contact landing pad 152 will also necessarily be conductive, when the VDS is below the threshold difference (e.g., below 1 volt, such as when the voltage applied to both the source and drain regions is 0) and when the MOSFET 100B is in the OFF state. However, there would be no need to have the drain contact landing pad 152 be insulative at this time, since the creation of the electric field and, particularly, the band-to-band tunneling that causes GIDL occurs only when the VDS is at or above the threshold difference. It should also be noted that when the first and second phase transition materials for the source and drain contact landing pads 151, 152 are pre-selected in order to ensure that they are insulative and conductive during MOSFET operation as described above, the drain contact landing pad 152 will also necessarily be insulative, when the VDS is below the threshold difference (e.g., below 1 volt, such as when the voltage applied to both the source and drain regions is 0) and when the MOSFET 100B is in the ON state resulting in a lower drive current. However, such a trade-off with drive current under such conditions can be acceptable depending upon usage in order to avoid GIDL (e.g., such a trade-off with drive current under such conditions can be acceptable in radio frequency (RF) applications, which do not require linear operation).
Additional features of the MOSFET 100B can include, but are not limited to, the following: metal silicide layers (not shown) positioned, for example, on the top surface of the gate structure 130b and/or between the source and drain regions 121, 122 and the contact landing pads 151-152; one or more interlayer dielectrics (not shown) 170 covering the MOSFET 100B; and contacts extending vertically through the interlayer dielectrics 170 to the source and drain contact landing pads 151 and 152 (see contacts 161 and 162), to the gate structure 130b and to the substrate 102 below.
Referring to
Referring to the flow diagram of
Specifically, the method can comprise providing a semiconductor body 106 (402, see
The method can further comprise forming an asymmetric gate structure 130a on the semiconductor body 106 adjacent to a channel region 110 contained therein and, optionally, overlapping source and drain regions 121, 122 and, particularly, shallow source and drain extension regions 121a, 122a in the semiconductor body 106 on opposing sides of the channel region 110 (404, see
The phase transition material used to form the asymmetric gate structure 130a with the phase transition material section 132 at process 404 of
One exemplary phase transition material that can be insulative and conductive during MOSFET operation as described above and, thus, can be pre-selected for incorporation into the second section 132 of the gate electrode 134 at process 404 is doped vanadium dioxide (VO2), such as vanadium dioxide (VO2) doped with a dopant, such as chromium, titanium or any other suitable dopant which causes the doped vanadium dioxide (VO2) to exhibit a significant increase in resistance (i.e., such as a change from being conductive to insulative) when a critical electric field is present and/or when a predetermined temperature is reached.
Any suitable technique for forming such an asymmetric gate structure 130a at process 404 could be used. For example, as illustrated in
That is, an initial gate structure 701 can be formed on the semiconductor body 106 adjacent to a designated channel region 110 (602, see
Once the initial gate structure 701 is formed conventional intermediate field effect transistor (FET) processing can be performed (604, see
If the initial gate structure 701 comprises a conventional gate structure, then after it is exposed at process 606 it can be lithographically patterned and etched to form a recess 702 that is aligned with the second side 112 (i.e., aligned with the drain-side) of the channel region 110 and between the gate sidewall spacers 140 (608, see
Alternatively, once the initial gate structure 701 is exposed, it can be selectively etched such that it is removed in its entirety, thereby forming a recess 703 between the gate sidewall spacers 140 (614, see
It should be noted that the processes 602-604 of
After the gate structure 130a is formed at process 404, additional conventional field effect transistor (FET) processing can be performed in order to complete the MOSFET 100A structure of
Referring to the flow diagram of
Specifically, the method can comprise providing a semiconductor body 106 (1602, see
The method can further comprise forming a gate structure 130b on the semiconductor body 106 adjacent to a designated channel region 110 contained therein (1604, see
Once the gate structure 130b is formed at process 1604, conventional intermediate field effect transistor (FET) processing can be performed (1606, see
Next, the method can comprise forming contact landing pads on the semiconductor body 106 adjacent to a source region 121 and a drain region 122, respectively, (1608, see
In one exemplary embodiment, the process 1608 of forming the contact landing pads 151, 152 can comprise forming (e.g., depositing) a relatively thin layer of un-doped vanadium dioxide 150 (VO2) and then patterning (e.g., lithographically) the un-doped vanadium dioxide (VO2) into pads above the source and drain regions 121-122 (1609-1610, see
After the source and drain contact landing pads 151, 152 are formed at process 1608, additional conventional field effect transistor (FET) processing can be performed in order to complete the MOSFET 100B structure of
It should be understood that the above described method embodiments could also be combined in order to form the metal oxide semiconductor field effect transistor (MOSFET) 100C of
It should further be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It should further be understood that the terms “comprises” “comprising”, “includes” and/or “including”, as used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Additionally, it should be understood that the corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Therefore, disclosed above are embodiments of a metal oxide semiconductor field effect transistor (MOSFET) having phase transition material incorporated into one or more components (e.g., an asymmetric gate structure and/or into source and drain contact landing pads) in order to minimize the electric field between the gate structure and drain region when the MOSFET is in its OFF state and, thereby avoid or at least minimize leakage current, such as Gate-Induced Drain Leakage (GIDL), without compromising the drive current required to maintain a desired circuit speed, when the MOSFET is in its ON state. Specifically, the MOSFET can comprise an asymmetric gate structure with a gate electrode having a first section above the source-side of the channel region and a second section above the drain-side of the channel region. The second section can comprise a phase transition material (e.g., doped vanadium dioxide (VO2), such as chromium or titanium-doped vanadium dioxide (VO2)). Additionally or alternatively, the MOSFET can comprise a source contact landing pad and a drain contact landing pads comprising different phase transition materials (e.g., un-doped vanadium dioxide (VO2) and doped vanadium dioxide (VO2), respectively). In any case, the phase transition materials can be pre-selected so as to be insulative particularly when the MOSFET is in the OFF state and the voltage difference between the drain region and the source region (VDS) is high in order to minimize GIDL and so as to be conductive particularly when the MOSFET is in the ON state and VDS is high in order to maintain drive current. Also disclosed herein are method embodiments for forming the above-described MOSFET embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6610576 | Nowak | Aug 2003 | B2 |
6630720 | Maszara et al. | Oct 2003 | B1 |
7005665 | Furkay et al. | Feb 2006 | B2 |
7247919 | Mouli et al. | Jul 2007 | B1 |
7408217 | Yoon et al. | Aug 2008 | B2 |
7824986 | Gurtej et al. | Nov 2010 | B2 |
8110465 | Zhu et al. | Feb 2012 | B2 |
20040137689 | Dokumaci et al. | Jul 2004 | A1 |
20050208699 | Furkay et al. | Sep 2005 | A1 |
20070166832 | Tilak et al. | Jul 2007 | A1 |
20080308870 | Faul et al. | Dec 2008 | A1 |
20090032889 | Zhu et al. | Feb 2009 | A1 |
20110254613 | Kim et al. | Oct 2011 | A1 |
20120286743 | Soltani et al. | Nov 2012 | A1 |
Entry |
---|
Changhyun Ko, Zheng Yang, and Shriram Ramanathan; “Work Function of Vanadium Dioxide Thin Films Across the Metal-Insulator Transition and the Role of Surface Nonstoichiometry”; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Published: Aug. 9, 2011. |
Yang, et al., “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Reviews in Advances, MR41CH08-Ramanathan, ARI, Mar. 30, 2011, pp. 337-367. |
Chudnovskiy, et al., “Switching Device Based on First-Order Metal-Insulator Transistion Induced by External Electric Field,” Future Trends in Microelectronics: The Nano Millennium, 2002, pp. 148-155. |
Ha, et al., “Electrically-Driven Metal-Insulator Transition With Tunable Threshold Voltage in a VO2-SmNiO3 Heterostructure on Silicon,” Journal of Applied Physics 110, 2011, 4 pages. |
Ruzmetov, et al., “Three-Terminal Field Effect Devices Utilizing Thin Film Vanadium Oxide As the Channel Layer,” Journal of Applied Physics 107, 2010, 8 pages. |
Sengupta, et al., “Field-Effect Modulation of Conductance in VO2 Nanobeam Transistors With HfO2 As the Gate Dielectric,” Applied Physics, Letters 99, 2011, 3 pages. |
Golan, et al., “Investigation of Phase Transistion Mechanism in Vanadium Oxide Thin Films,” Journal of Optoelectronics and Advance Materials, vol. 6, No. 1, Mar. 2004, pp. 189-195. |
Number | Date | Country | |
---|---|---|---|
20140110765 A1 | Apr 2014 | US |