This invention relates generally to semiconductor memory devices, and more particularly the invention relates to field effect transistors having a charge storage layer between a channel region and a control gate for programming the threshold voltage for current conduction in the channel.
Memory is a key component of any electronic system such as a personal computer, cellular phone, digital camera, network router, handheld personal digital assistant, etc. Demand for increased memory capacity and lower cost drives the miniaturization of semiconductor memory cells and also dictates low-power cell designs for use in future portable electronic systems.
There are mainly three kinds of semiconductor memory in the market: DRAM, SRAM and flash (non-volatile) memory. Although DRAM dominates the memory market, flash memory is rapidly gaining market share.
Dynamic-Random-Access Memory (DRAM) is the primary type of memory used in computers for core memory. A binary digit (“bit”) of information is stored in the form of electronic charge on a capacitor in each cell of a DRAM. It is difficult to scale down the DRAM cell size due to need for a sizable cell capacitance, however. The data retention capability of DRAM is limited by charge leakage through p-n junctions and sub-threshold conduction in transistors; therefore DRAM needs frequent refreshing with attendant power consumption.
In contrast with DRAM, flash memory does not require refreshing at all. Performance requirements for flash memory technology include: scalability, fast programming speed at low programming voltage, and 10-year retention time at 85° C. (for commercial electronic devices). A typical flash memory cell design consists of a single transistor with a double-poly-Si gate stack structure to achieve high density; see
Recently, the SONOS (poly-Si-oxide-nitride-oxide-silicon) flash memory device, shown in
However, SONOS memory technology faces challenges for further improvement. For example, the tunnel oxide thickness cannot be reduced to below 25 Å (2.5 nm) to improve the programming speed, if 10 years retention time must be guaranteed. As shown in the energy-band diagrams of
In accordance with the invention, a gate-stack structure is provided for a flash memory device which includes a tunnel dielectric layer on a surface of a semiconductor body over a channel region of the device. An electron-trapping dielectric layer having a permittivity higher than the permittivity of silicon nitride (Si3N4) overlies the tunnel dielectric layer and has electron trapping sites (“traps”) therein. As used herein “high permittivity” means high when compared to the permittivity of Si3N4.
A control dielectric overlies the high permittivity dielectric layer, and a control gate is on the control dielectric layer and overlying the high permittivity dielectric layer and channel region.
In preferred embodiments, the electron trapping dielectric layer comprises TiO2, HfO2, or other high-permittivity dielectric material.
The invention and other objects and features thereof will be more readily apparent from the following detailed description and appended claims when taken with the drawings.
a and 3b are electron energy-band diagrams illustrating that during programming, electrons tunnel through a portion of the nitride-trapping layer and that a large barrier height φ0 will block electron leakage effectively and improve retention time.
a-10c illustrate electron energy-band diagrams for flash memory devices with either poly-Si (floating gate) or TiO2 (trapping layer) for charge storage, and a section view of a poly-Si floating-gate device having a defect chain in the tunnel oxide by which the stored charge leaks away, respectively.
In order to improve the programming speed and/or lower the programming voltage of a SONOS-type memory device, it is desirable to use an electron-trapping material with a lower conduction band edge (higher electron affinity) to achieve a larger offset φ0, as well as to provide for programming by direct tunneling at low voltages. In accordance with the invention, a high-permittivity (“high-k”) dielectric material such as HfO2 or ZrO2 replace silicon nitride as the electron trapping material. Such materials have a lower conduction band edge than does silicon nitride. A comparison of dielectric material properties is given in Table 3. If HfO2 were to be used as the trapping layer, φ0 would be 1.65 eV, which is much better than the 1.03 eV barrier associated with a nitride-trapping layer. Thus, it is advantageous to use a high-k material as the trapping layer in a SONOS-type memory device, provided that it contains a sufficient density of deep trap states. In principle, the trap density and trap energy level in a high-k trapping layer can be tuned by adjusting the deposition process parameters.
*Relative to the silicon conduction band.
Device Modeling—During programming, the total charge injected into the trapping layer is
where J(t) is the density of current injected from the channel inversion-layer into the conduction band of the trapping layer. The resultant threshold voltage (VT) shift can be calculated in the same way as described in [8].
During retention, the electron leakage rate can be modeled as:
dQt/dt=−(edt+eth)Qt (2)
Where ehd and eth are the direct tunneling leakage rate and thermal de-trapping leakage rate, respectively. The simulated retention characteristics are shown in
Device Fabrication and Characterization: N+ poly-Si gated capacitors with tunnel-oxide/trapping-layer/control-oxide dielectric stacks were fabricated on n-type Si substrates. Devices with HfO2 or Si3N4 as the trapping layer are designated “device H” or “device N”, respectively. Both types of devices have the same areal gate capacitance. Details of the gate stack fabrication process are given in Table 4. HfO2 was deposited in a RTCVD system at 500° C. with Hf-Butoxide precursor. The devices were UV-erased before measurement. The measured intrinsic flat-band voltage (VFB) for “device H” was 0.3V, whereas that for “device N” was −0.41V. Since the theoretical VFB value is −0.21V, the HfO2 and Si3N4 trapping layers contain negative and positive fixed charge Qf, respectively.
Note:
In both devices, a thin layer of 2 nm nitride was deposited at 680° C. with
DCS:NH3 = 1:3 before trapping layer formation to prevent interfacial layer growth during the high temperature anneal.
Programming characteristics for both devices are shown in
If the figure of merit is defined as the ratio of programming speed to retention time, “device H” exhibits ˜7× better performance even with significant negative fixed charge.
As noted above, there are mainly two types of flash memories: the floating gate flash memory and the SONOS-type flash memory. The advantage of using low barrier material such as HfO2 and TiO2 to replace conventional silicon nitride trapping layer in the SONOS-type flash memory has been demonstrated in our work. Further, these new materials can make the floating gate flash memory more scalable. TiO2 as the trapping-layer dielectric material is discussed below.
The conduction band edge of TiO2 relative to the silicon conduction band edge is nearly 0 eV; that is, TiO2 has a conduction-band-edge energy level comparable to that of a poly-Si floating gate electrode. The energy-band diagrams during retention are compared in FIGS. 10(a) and 10(b) and a section view of the floating-gate flash memory device structure is shown in
The above disadvantages can be eliminated by using TiO2 as the electron-storage material rather than poly-Si. Electrons are stored in trap states within the TiO2 layer as shown in
Although HfO2 and TiO2 electron-trapping materials are described above, other trapping materials can be used in the flash memory device. A good electron-trapping material should possess the following material properties. First, it should be an electrical insulator or semi-insulator so that electrons cannot move freely within it. Second, it should contain deep-energy-level traps of sufficient areal density. Third, the conduction-band-edge energy should be low relative to that of the semiconductor channel, to favor both carrier injection into the trapping layer and long retention time. Fourth, the energy band gap of the trapping material should not be too small. A small band gap will limit the depth of the trap energy level. If the band gap is too small, valence-band electrons in the trapping layer may be thermally injected into the conduction band and then leak back to the channel.
Herein has been described a novel flash memory device using a large electron affinity dielectric material such as HfO2 and TiO2 for charge trapping. Experimental results have confirmed that a HfO2-trap based memory device has much better performance than a conventional silicon-nitride (Si3N4) based flash memory device. Theoretical considerations show that a TiO2 based memory device can achieve much longer retention time than a conventional floating-gate flash memory device while maintaining comparable programming speed. New trapping materials can be used in flash memory devices to enhance performance.
While the invention has been described with reference to specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those skilled in the art without departing from the true scope and spirit of the invention as defined by the appended claims.
This application claims priority under 35 USC 120 from Provisional patent application Ser. No. 60/537,928, filed Jan. 20, 2004 which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
60537928 | Jan 2004 | US |