Formation of boride barrier layers using chemisorption techniques

Information

  • Patent Grant
  • 7501343
  • Patent Number
    7,501,343
  • Date Filed
    Tuesday, April 24, 2007
    17 years ago
  • Date Issued
    Tuesday, March 10, 2009
    15 years ago
Abstract
In one embodiment, a method for depositing a boride-containing barrier layer on a substrate is provided which includes exposing the substrate sequentially to a boron-containing compound and a metal precursor to form a first boride-containing layer during a first sequential chemisorption process and exposing the substrate to the boron-containing compound, the metal precursor, and a second precursor to form a second boride-containing layer on the first boride-containing layer during a second sequential chemisorption process. In one example, the metal precursor contains tungsten hexafluoride and the boron-containing compound contains diborane. In another embodiment, a contact layer is deposited over the second boride-containing layer. The contact layer may contain tungsten and be deposited by a chemical vapor deposition process. Alternatively, the contact layer may contain copper and be deposited by a physical vapor deposition process. In other examples, boride-containing layers may be formed at a temperature of less than about 500° C.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the formation of boride barrier layers and, more particularly to boride barrier layers formed using chemisorption techniques.


2. Description of the Related Art


In the manufacture of integrated circuits, barrier layers are often used to inhibit the diffusion of metals and other impurities into regions underlying such barrier layers. These underlying regions may include transistor gates, capacitor dielectric, semiconductor substrates, metal lines, as well as many other structures that appear in integrated circuits.


For the current sub-micron (0.5 μm) generation of semiconductor devices, any microscopic reaction at an interface between interconnection layers can cause degradation of the resulting integrated circuits (e.g., increase the resistivity of the interconnection layers). Consequently, barrier layers have become a critical component for improving the reliability of interconnect metallization schemes.


Compounds of refractory metals such as, for example, nitrides, borides, and carbides have been suggested as diffusion barriers because of their chemical inertness and low resistivity (e.g., resistivity typically less than about 200 μΩ-cm). In particular, borides such as, for example, titanium diboride (TiB2) have been suggested for use as a barrier material since layers formed thereof generally have low resistivity (e.g., resistivity less than about 150 μΩ-cm).


Boride barrier layers are typically formed using chemical vapor deposition (CVD) techniques. For example, titanium tetrachloride (TiCl4) may be reacted with diborane (B2H6) to form titanium diboride using CVD. However, when Cl-based chemistries are used to form boride barrier layers, reliability problems can occur. In particular, boride layers formed using CVD chlorine-based chemistries typically have a high chlorine content (e.g., chlorine content greater than about 3%). A high chlorine content is undesirable because the chlorine may migrate from the boride barrier layer into adjacent interconnection layers, which can increase the contact resistance of such interconnection layers and potentially change the characteristics of integrated circuits made therefrom.


Therefore, a need exists in the art for reliable boride barrier layers for integrated circuit fabrication. Particularly desirable would be reliable boride barrier layers useful for interconnect structures.


SUMMARY OF THE INVENTION

Boride barrier layers for integrated circuit fabrication are provided. In one embodiment, the boride barrier layer comprises one refractory metal. The boride barrier layer may be formed by sequentially chemisorbing alternating monolayers of a boron compound and a refractory metal compound onto a substrate.


In an alternate embodiment, a composite boride barrier layer is formed. The composite boride barrier layer comprises two or more refractory metals. The composite boride barrier layer may be formed by sequentially chemisorbing monolayers of a boron compound and two or more refractory metal compounds onto a substrate.


The boride barrier layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the boride barrier layer comprises one refractory metal. The boride barrier layer is formed by sequentially chemisorbing alternating monolayers of a boron compound and one refractory metal compound on a substrate. Thereafter, one or more metal layers are deposited on the boride barrier layer to form an interconnect structure.


In another integrated circuit fabrication process, the boride barrier layer has a composite structure. The composite boride barrier layer comprises two or more refractory metals. The composite boride barrier layer is formed by sequentially chemisorbing monolayers of a boron compound and two or more refractory metal compounds on a substrate. Thereafter, one or more metal layers are deposited on the composite boride barrier layer to form an interconnect structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:



FIG. 1 depicts a schematic illustration of an apparatus that can be used for the practice of embodiments described herein;



FIGS. 2A-2C depict cross-sectional views of a substrate structure at different stages of integrated circuit fabrication incorporating a boride barrier layer;



FIGS. 3A-3C depict cross-sectional views of a substrate undergoing a first sequential chemisorption process of a boron compound and one refractory metal compound to form a boride barrier layer;



FIGS. 4A-4D depict cross-sectional views of a substrate undergoing a second sequential chemisorption process of a boron compound and two refractory metal compounds to form a composite boride barrier layer;



FIGS. 5A-5D depict cross-sectional views of a substrate undergoing a third sequential chemisorption of a boron compound and two refractory metal compounds to form a composite boride barrier layer; and



FIGS. 6A-6C depict cross-sectional views of a substrate structure at different stages of integrated circuit fabrication incorporating more than one boride barrier layer.





DETAILED DESCRIPTION


FIG. 1 depicts a schematic illustration of a wafer processing system 10 that can be used to form boride barrier layers in accordance with embodiments described herein. The system 10 comprises a process chamber 100, a gas panel 130, a control unit 110, along with other hardware components such as power supplies 106 and vacuum pumps 102. The salient features of process chamber 100 are briefly described below.


Chamber 100


The process chamber 100 generally houses a support pedestal 150, which is used to support a substrate such as a semiconductor wafer 190 within the process chamber 100. Depending on the specific process, the semiconductor wafer 190 can be heated to some desired temperature prior to layer formation.


In chamber 100, the wafer support pedestal 150 is heated by an embedded heater 170. For example, the pedestal 150 may be resistively heated by applying an electric current from an AC power supply 106 to the heater element 170. The wafer 190 is, in turn, heated by the pedestal 150, and can be maintained within a desired process temperature range of, for example, about 20° C. to about 500° C.


A temperature sensor 172, such as a thermocouple, is also embedded in the wafer support pedestal 150 to monitor the temperature of the pedestal 150 in a conventional manner. For example, the measured temperature may be used in a feedback loop to control the electric current applied to the heater element 170 by the power supply 106, such that the wafer temperature can be maintained or controlled at a desired temperature that is suitable for the particular process application. The pedestal 150 is optionally heated using radiant heat (not shown).


A vacuum pump 102 is used to evacuate process gases from the process chamber 100 and to help maintain the desired pressure inside the chamber 100. An orifice 120 is used to introduce process gases into the process chamber 100. The dimensions of the orifice 120 are variable and typically depend on the size of the process chamber 100.


The orifice 120 is coupled to a gas panel 130 via a valve 125. The gas panel 130 provides process gases from two or more gas sources 135, 136 to the process chamber 100 through orifice 120 and valve 125. The gas panel 130 also provides a purge gas from a purge gas source 138 to the process chamber 100 through orifice 120 and valve 125.


A control unit 110, such as a computer, controls the flow of various process gases through the gas panel 130 as well as valve 125 during the different steps of a wafer process sequence. Illustratively, the control unit 110 comprises a central processing unit (CPU) 112, support circuitry 114, and memories containing associated control software 116. In addition to the control of process gases through the gas panel 130, the control unit 110 is also responsible for automated control of the numerous steps required for wafer processing—such as wafer transport, temperature control, chamber evacuation, among other steps.


The control unit 110 may be one of any form of general purpose computer processor that can be used in an industrial setting for controlling various chambers and sub-processors. The computer processor may use any suitable memory, such as random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote. Various support circuits may be coupled to the computer processor for supporting the processor in a conventional manner. Software routines as required may be stored in the memory or executed by a second processor that is remotely located. Bi-directional communications between the control unit 110 and the various components of the wafer processing system 10 are handled through numerous signal cables collectively referred to as signal buses 118, some of which are illustrated in FIG. 1.


Boride Barrier Layer Formation



FIGS. 2A-2C illustrate one preferred embodiment of boride layer formation for integrated circuit fabrication of an interconnect structure. In general, the substrate 200 refers to any workpiece upon which film processing is performed, and a substrate structure 250 is used to generally denote the substrate 200 as well as other material layers formed on the substrate 200. Depending on the specific stage of processing, the substrate 200 may be a silicon semiconductor wafer, or other material layer, which has been formed on the wafer. FIG. 2A, for example, shows a cross-sectional view of a substrate structure 250, having a material layer 202 thereon. In this particular illustration, the material layer 202 may be an oxide (e.g., silicon dioxide). The material layer 202 has been conventionally formed and patterned to provide a contact hole 202H extending to the top surface 200T of the substrate 200.



FIG. 2B shows a boride layer 204 conformably formed on the substrate structure 250. The boride layer 204 is formed by chemisorbing monolayers of a boron-containing compound and a refractory metal compound on the substrate structure 250.


The monolayers are chemisorbed by sequentially providing a boron-containing compound and one or more refractory metal compounds to a process chamber. In a first sequential chemisorption process, the monolayers of the boron-containing compound and one refractory metal compound are alternately chemisorbed on a substrate 300 as shown in FIGS. 3A-3C.



FIG. 3A depicts a cross-sectional view of a substrate 300, which may be in a stage of integrated circuit fabrication. A monolayer of a boron-containing compound 305 is chemisorbed on the substrate 300 by introducing a pulse of a boron-containing gas into a process chamber similar to that shown in FIG. 1. The boron-containing compound typically combines boron atoms 310 with one or more reactive species b 315. During boride layer formation, the reactive species b 315 form byproducts that are transported from the surface of substrate 300 by the vacuum system.


The chemisorbed monolayer of the boron-containing compound 305 is self-limiting in that only one monolayer may be chemisorbed onto the surface of substrate 300 during a given pulse. Only one monolayer of the boron-containing compound is chemisorbed on the substrate because the substrate has a limited surface area. This limited surface area provides a finite number of sites for chemisorbing the boron-containing compound. Once the finite number of sites is occupied by the boron-containing compound, further chemisorption of the boron-containing compound will be blocked.


The boron-containing compound may be for example a borane compound having the general formula BxHy, where x has a range between 1 and 10, and y has a range between 3 and 30. For example, borane (BH3), diborane (B2H6), triborane, tetraborane, pentaborane, hexaborane, heptaborane, octaborane, nonaborane, and decaborane, may be used as the boron-containing compound.


After the monolayer of the boron compound is chemisorbed onto the substrate 300, excess boron-containing compound is removed from the process chamber by introducing a pulse of a purge gas thereto. Purge gases such as, for example, helium, argon, nitrogen (N2), ammonia (NH3), and hydrogen (H2), among others may be used.


After the process chamber has been purged, a pulse of one refractory metal compound is introduced into the process chamber. Referring to FIG. 3B, a layer of the refractory metal compound 307 is chemisorbed on the boron monolayer 305. The refractory metal compound typically combines refractory metal atoms 320 with one or more reactive species a 325.


The chemisorbed monolayer of the refractory metal compound 307 reacts with the boron-containing monolayer 305 to form a boride layer 309. The reactive species a 325 and b 315 form byproducts ab 330 that are transported from the substrate 300 surface by the vacuum system. The reaction of the refractory metal compound 307 with the boron monolayer 305 is self-limited, since only one monolayer of the boron compound was chemisorbed onto the substrate 300 surface.


The refractory metal compound may include refractory metals such as for example titanium, tungsten, tantalum, zirconium, hafnium, molybdenum, niobium, vanadium, and chromium, among others combined with reactive species such as, for example chlorine and fluorine. For example, titanium tetrachloride (TiCl4), tungsten hexafluoride (WF6), tantalum pentachloride (TaCl5), zirconium tetrachloride (ZrCl4), hafnium tetrachloride (HfCl4), molybdenum pentachloride (MOCl5), niobium pentachloride (NbCl5), vanadium pentachloride (VCl5), chromium tetrachloride (CrCl4) may be used as the refractory metal compound.


After the monolayer of the refractory metal compound is chemisorbed onto the substrate 300, any excess refractory metal compound is removed from the process chamber by introducing another pulse of the purge gas therein. Thereafter, as shown in FIG. 3C, the boride layer deposition sequence of alternating monolayers of the boron-containing compound and the refractory metal compound are repeated until a desired boride layer thickness is achieved. The boride layer may, for example, have a thickness in a range of about 200 Å to about 5,000 Å, and more preferably, about 2,500 Å.


In FIGS. 3A-3C, boride layer formation is depicted as starting with the chemisorption of a boron-containing monolayer on the substrate followed by a monolayer of a refractory metal compound. Alternatively, the boride layer formation may start with the chemisorption of a monolayer of a refractory metal compound on the substrate followed by a monolayer of the boron-containing compound.


The pulse time for each pulse of the boron-containing compound, the one or more refractory metal compounds, and the purge gas is variable and depends on the volume capacity of the deposition chamber as well as the vacuum system coupled thereto. Similarly, the time between each pulse is also variable and depends on the volume capacity of the process chamber as well as the vacuum system coupled thereto.


In general, the alternating monolayers may be chemisorbed at a substrate temperature less than about 500° C., and a chamber pressure less than about 100 Torr. A pulse time of less than about 1 second for the boron-containing compound, and a pulse time of less than about 1 second for the refractory metal compounds are typically sufficient to chemisorb the alternating monolayers that comprise the boride layer on the substrate. A pulse time of less than about 1 second for the purge gas is typically sufficient to remove the reaction byproducts as well as any residual materials remaining in the process chamber.


In a second chemisorption process, the boron-containing monolayers and two or more refractory metal compounds are alternately chemisorbed on the substrate to form a composite boride layer. FIG. 4A depicts a cross-sectional view of a substrate 400, which may be in a stage of integrated circuit fabrication. A self-limiting monolayer of a boron-containing compound 405 is chemisorbed on the substrate 400 by introducing a pulse of a boron-containing compound into a process chamber similar to that shown in FIG. 1 according to the process conditions described above with reference to FIGS. 2A-2C. The boron-containing compound combines boron atoms 410 with one or more reactive species b 415.


After the monolayer of the boron compound 405 is chemisorbed onto the substrate 400, excess boron-containing compound is removed from the process chamber by introducing a pulse of a purge gas thereto.


Referring to FIG. 4B, after the process chamber has been purged, a pulse of a first refractory metal compound M1a1 is introduced into the process chamber. A layer of the first refractory metal compound 407 is chemisorbed on the boron monolayer 405. The first refractory metal compound typically combines first refractory metal atoms M1 420 with one or more reactive species a1 425.


The chemisorbed monolayer of the first refractory metal compound 407 reacts with the boron-containing monolayer 405 to form a boride monolayer 409. The reactive species a1 425 and b 415 form byproducts a1b 430 that are transported from the substrate 400 surface by the vacuum system.


After the monolayer of the first refractory metal compound 407 is chemisorbed onto the substrate 400, the excess first refractory metal compound M1a1 is removed from the process chamber by introducing another pulse of the purge gas therein.


Another pulse of the boron-containing compound is than introduced into the process chamber. A monolayer of the boron-containing compound 405 is chemisorbed on the first refractory metal monolayer 407, as shown in FIG. 4C. The chemisorbed monolayer of the boron-containing compound 405 reacts with the first refractory metal monolayer 407 to form a boride layer 409. The reactive species a1 425 and b 415 form byproducts a1b 430 that are transported from the substrate 400 surface by the vacuum system.


After the monolayer of the boron compound 405 is chemisorbed onto the first refractive metal monolayer 407, excess boron-containing compound is removed from the process chamber by introducing a pulse of a purge gas thereto.


Referring to FIG. 4D, after the process chamber has been purged, a pulse of a second refractory metal compound M2a1 is introduced into the process chamber. A layer of the second refractory metal compound is chemisorbed on the boron monolayer 405. The second refractory metal compound typically combines second refractory metal atoms M2 440 with one or more reactive species a1 425.


The chemisorbed monolayer of the second refractory metal compound reacts with the boron-containing monolayer 405 to form the composite boride layer 409. The reactive species a1 425 and b 415 form byproducts a1b 430 that are transported from the substrate 400 surface by the vacuum system.


After the monolayer of the second refractory metal compound is chemisorbed onto the substrate 400, the excess second refractory metal compound M2a1 is removed from the process chamber by introducing another pulse of the purge gas therein.


Thereafter, the boride layer deposition sequence of alternating monolayers of the boron-containing compound and the two refractory metal compounds M1a1 and M2a1 are repeated until a desired boride layer thickness is achieved.


In FIGS. 4A-4D, boride layer formation is depicted as starting with the chemisorption of the boron-containing monolayer on the substrate followed by monolayers of the two refractory metal compounds. Alternatively, the boride layer formation may start with the chemisorption of monolayers of either of the two refractory metal compounds on the substrate followed by monolayers of the boron-containing compound. Optionally, monolayers of more than two refractory metal compounds may be chemisorbed on the substrate 400.


In a third chemisorption process, the boron-containing monolayers and two or more refractory metal compounds are alternately chemisorbed on the substrate to form a composite boride layer, as illustrated in FIGS. 5A-5D.



FIG. 5A depicts a cross-sectional view of a substrate 500, which may be in a stage of integrated circuit fabrication. A self-limiting monolayer of a first refractory metal compound 507 is chemisorbed on the substrate 500 by introducing a pulse of a first refractory metal compound M1a1 into a process chamber similar to that shown in FIG. 1 according to the process conditions described above with reference to FIGS. 2A-2C.


After the monolayer of the first refractory metal compound 507 is chemisorbed onto the substrate 500, excess first refractory metal compound is removed from the process chamber by introducing a pulse of a purge gas thereto.


Referring to FIG. 5B, after the process chamber has been purged, a pulse of a second refractory metal compound M2a1 is introduced into the process chamber. A layer of the second refractory metal compound 511 is chemisorbed on the first refractory metal monolayer 507.


After the monolayer of the second refractory metal compound 511 is chemisorbed onto the substrate 500, the excess second refractory metal compound M2a1 is removed from the process chamber by introducing another pulse of the purge gas therein.


A pulse of a boron-containing compound 510 is than introduced into the process chamber. A monolayer of the boron-containing compound 505 is chemisorbed on the second refractory metal monolayer 511, as shown in FIG. 5C. The chemisorbed monolayer of the boron-containing compound 505 reacts with the second refractory metal monolayer 511 to form a composite boride layer 509. The reactive species a1 525 and b 515 form byproducts a1b 530 that are transported from the substrate 500 surface by the vacuum system.


After the monolayer of the boron compound 505 is chemisorbed onto the second refractory metal monolayer 511, excess boron-containing compound is removed from the process chamber by introducing a pulse of a purge gas thereto.


Referring to FIG. 5D, after the process chamber has been purged, a pulse of the first refractory metal compound 520 M1a1 is introduced into the process chamber. A monolayer of the first refractory metal compound 507 is chemisorbed on the boron monolayer 505.


The chemisorbed monolayer of the first refractory metal compound 507 reacts with the boron-containing monolayer 505 to form the boride monolayer 509. The reactive species a1 525 and b 515 form byproducts a1b 530 that are transported from the substrate 500 surface by the vacuum system.


After the monolayer of the first refractory metal compound 507 is chemisorbed onto the substrate 500, the excess first refractory metal compound M1a1 is removed from the process chamber by introducing another pulse of the purge gas therein.


Thereafter, the boride layer deposition sequence of alternating monolayers of the boron-containing compound and the two refractory metal compounds M1a1 (520) and M2a1 (540) are repeated until a desired boride layer thickness is achieved.


In FIGS. 5A-5D, boride layer formation is depicted as starting with the chemisorption of the first refractory metal monolayer on the substrate followed by monolayers of the second refractory metal compound and the boron-containing compound. Alternatively, the boride layer formation may start with the chemisorption of the monolayer of the boron-containing compound on the substrate followed by the monolayers of the two refractory metal compounds. Optionally, monolayers of more than two refractory metal compounds may be chemisorbed on the substrate 500.


The sequential deposition processes described above advantageously provide good step coverage for the boride layer, due to the monolayer chemisorption mechanism used for forming the boride layer. In particular, boride layer formation using the monolayer chemisorption mechanism is believed to contribute to a near perfect step coverage over complex substrate topographies.


Furthermore, in chemisorption processes, since only one monolayer may be absorbed on the topographic surface, the size of the deposition area is largely independent of the amount of precursor gas remaining in the reaction chamber once a monolayer has been formed.


Referring to FIG. 2C, after the formation of the boride layer 204, a contact layer 206 may be formed thereon to complete the interconnect structure. The contact layer 206 is preferably selected from the group of aluminum, copper, tungsten, and combinations thereof.


The contact layer 206 may be formed, for example, using chemical vapor deposition (CVD), physical vapor deposition (PVD), or a combination of both CVD and PVD. For example, an aluminum layer may be deposited from a reaction of a gas mixture containing dimethyl aluminum hydride (DMAH) and hydrogen (H2) or argon or other DMAH containing compounds, a CVD copper layer may be deposited from a gas mixture containing Cu+2(hfac)2 (copper hexafluoro acetylacetonate), Cu+2(fod)2(copper heptafluoro dimethyl octanediene), Cu+1(hfac)TMVS (copper hexafluoro acetylacetonate trimethylvinylsilane), or combinations thereof, and a CVD tungsten layer may be deposited from a gas mixture containing tungsten hexafluoride. A PVD layer is deposited from a copper target, an aluminum target, or a tungsten target.



FIGS. 6A-6C illustrate an alternate embodiment of boride layer formation for integrated circuit fabrication of the interconnect structure. In general, the substrate 600 refers to any workpiece upon which film processing is performed, and a substrate structure 650 is used to generally denote the substrate 600 as well as other material layers formed on the substrate 600. Depending on the specific stage of processing, the substrate 600 may be a silicon semiconductor wafer, or other material layer, which has been formed on the wafer. FIG. 6A, for example, shows a cross-sectional view of a substrate structure 650, having a material layer 602 thereon. In this particular illustration, the material layer 602 may be an oxide (e.g., silicon dioxide). The material layer 602 has been conventionally formed and patterned to provide a contact hole 602H extending to the top surface 600T of the substrate 600.



FIG. 6B shows two boride layers 604, 606 conformably formed on the substrate structure 650. The boride layers 604, 606 are formed by chemisorbing monolayers of a boron-containing compound and one or more refractory metal compounds on the substrate structure 650 as described above with reference to FIGS. 3a-5d. The two boride layers 604, 606 may each comprise one or more refractory metals. The thicknesses of the two or more boride layers 604, 606 may be variable depending on the specific stage of processing. Each boride layer 604, 606 may, for example, have a thickness in a range of about 200 Å to about 5,000 Å.


Referring to FIG. 6C, after the formation of the boride layers 604, 606, a contact layer 608 may be formed thereon to complete the interconnect structure. The contact layer 608 is preferably selected from the group of aluminum, copper, tungsten, and combinations thereof.


The specific process conditions disclosed in the above discussion are meant for illustrative purposes only. Other combinations of process parameters such as precursor and inert gases, flow ranges, pressure and temperature may also be used in forming the boride layer of the present invention.


Although several preferred embodiments, which incorporate the teachings of the present invention, have been shown and described in detail, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.

Claims
  • 1. A method for depositing a barrier layer on a substrate, comprising: exposing a substrate sequentially and cyclically to a boron-containing compound, a purge gas, and a metal precursor to form a first boride-containing layer during a first sequential chemisorption process; andexposing the substrate sequentially and cyclically to the boron-containing compound, an ammonia purge gas, and the metal precursor to form a second boride-containing layer over the first boride-containing layer during a second sequential chemisorption process.
  • 2. The method of claim 1, wherein the second sequential chemisorption process comprises: exposing the substrate to the boron-containing compound;exposing the substrate to the ammonia purge gas;exposing the substrate to the metal precursor;exposing the substrate to the ammonia purge gas;exposing the substrate to the boron-containing compound; andexposing the substrate to the ammonia purge gas.
  • 3. The method of claim 1, wherein the second sequential chemisorption process comprises: exposing the substrate to the boron-containing compound;exposing the substrate to the ammonia purge gas;exposing the substrate to the metal precursor; andexposing the substrate to the ammonia purge gas.
  • 4. The method of claim 1, wherein the metal precursor comprises tungsten hexafluoride and the boron-containing compound comprises diborane.
  • 5. The method of claim 1, wherein a contact layer is deposited over the second boride-containing layer.
  • 6. The method of claim 5, wherein the contact layer comprises tungsten and the contact layer is deposited by a chemical vapor deposition process.
  • 7. The method of claim 5, wherein the contact layer comprises copper and the contact layer is deposited by a physical vapor deposition process.
  • 8. The method of claim 1, wherein the first boride-containing layer or the second boride-containing layer is formed at a temperature of less than about 500° C.
  • 9. The method of claim 8, wherein the temperature is about 400° C. or less.
  • 10. The method of claim 9, wherein the temperature is about 300° C. or less.
  • 11. A method for depositing a barrier layer on a substrate, comprising: exposing a substrate sequentially and cyclically to a boron-containing compound, an ammonia purge gas, and a metal precursor to form a first boride-containing layer during a first sequential chemisorption process; andexposing the substrate sequentially and cyclically to the boron-containing compound, a purge gas, and the metal precursor to form a second boride-containing layer over the first boride-containing layer during a second sequential chemisorption process.
  • 12. The method of claim 11, wherein the first sequential chemisorption process comprises: exposing the substrate to the boron-containing compound;exposing the substrate to the ammonia purge gas;exposing the substrate to the metal precursor;exposing the substrate to the ammonia purge gas;exposing the substrate to the boron-containing compound; andexposing the substrate to the ammonia purge gas.
  • 13. The method of claim 11, wherein the first sequential chemisorption process comprises: exposing the substrate to the boron-containing compound;exposing the substrate to the ammonia purge gas;exposing the substrate to the metal precursor; andexposing the substrate to the ammonia purge gas.
  • 14. The method of claim 11, wherein the metal precursor comprises tungsten hexafluoride and the boron-containing compound comprises diborane.
  • 15. The method of claim 11, wherein a contact layer is deposited over the second boride-containing layer.
  • 16. The method of claim 15, wherein the contact layer comprises tungsten and the contact layer is deposited by a chemical vapor deposition process.
  • 17. The method of claim 15, wherein the contact layer comprises copper and the contact layer is deposited by a physical vapor deposition process.
  • 18. The method of claim 11, wherein the first boride-containing layer or the second boride-containing layer is formed at a temperature of less than about 500° C.
  • 19. The method of claim 18, wherein the temperature is about 400° C. or less.
  • 20. The method of claim 19, wherein the temperature is about 300° C. or less.
  • 21. A method for depositing a boride-containing barrier layer on a substrate, comprising: exposing a substrate sequentially and cyclically to a boron-containing compound, a purge gas comprising helium, argon, and hydrogen, and a tungsten precursor to form a first boride layer comprising tungsten and boron during a first sequential chemisorption process;exposing the substrate sequentially and cyclically to the boron-containing compound, an ammonia purge gas, and the tungsten precursor to form a second boride-containing layer over the first boride layer during a second sequential chemisorption process; anddepositing a tungsten layer on the second boride-containing layer.
  • 22. The method of claim 21, wherein the boron-containing compound comprises diborane.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 10/993,925, filed Nov. 19, 2004, and issued as U.S. Pat. No. 7,208,413, which is a continuation of U.S. Ser. No. 10/387,990, filed Mar. 13, 2003, issued as U.S. Pat. No. 6,831,004, which is a continuation of U.S. Ser. No. 09/604,943, filed Jun. 27, 2000, issued as U.S. Pat. No. 6,620,723, which are all herein incorporated in their entirety by reference.

US Referenced Citations (554)
Number Name Date Kind
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4693208 Sakai Sep 1987 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859307 Nishizawa et al. Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4976839 Inoue Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290609 Horike et al. Mar 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi et al. Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5526244 Bishop Jun 1996 A
5527733 Nishizawa et al. Jun 1996 A
5529953 Shoda Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5804488 Shih et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5834372 Lee Nov 1998 A
5835677 Li et al. Nov 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5942799 Danek et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6001669 Gaines et al. Dec 1999 A
6013553 Wallace et al. Jan 2000 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6020243 Wallace et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6060755 Ma et al. May 2000 A
6062798 Muka May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099904 Mak et al. Aug 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6156382 Rajagopalan et al. Dec 2000 A
6158446 Mohindra et al. Dec 2000 A
6162715 Mak et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6218298 Hoinkis Apr 2001 B1
6238734 Senzaki et al. May 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6251190 Mak et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6274484 Tsai et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291283 Wilk Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6299294 Regan Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6309713 Mak et al. Oct 2001 B1
6316098 Yitchaik et al. Nov 2001 B1
6326297 Vijayendran Dec 2001 B1
6333260 Kwon et al. Dec 2001 B1
6335280 van der Jeugd Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348376 Lim et al. Feb 2002 B2
6348386 Gilmer Feb 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6372598 Kang et al. Apr 2002 B2
6379748 Bhandari et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6399208 Baum et al. Jun 2002 B1
6399491 Jeon et al. Jun 2002 B2
6416577 Suntoloa et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6452229 Krivokapic Sep 2002 B1
6458701 Chae et al. Oct 2002 B1
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6482740 Soininen et al. Nov 2002 B2
6511539 Raaijmakers Jan 2003 B1
6524952 Srinivas et al. Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6534404 Danek et al. Mar 2003 B1
6548424 Putkonen Apr 2003 B2
6551929 Kori et al. Apr 2003 B1
6569501 Chiang et al. May 2003 B2
6585823 Van Wijck Jul 2003 B1
6593484 Yasuhara et al. Jul 2003 B2
6596602 Iizuka et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607973 Jeon Aug 2003 B1
6607976 Chen et al. Aug 2003 B2
6607977 Rozbicki et al. Aug 2003 B1
6620723 Byun et al. Sep 2003 B1
6627268 Fair et al. Sep 2003 B1
6630201 Chiang et al. Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6635965 Lee et al. Oct 2003 B1
6647138 Sakaguchi Nov 2003 B1
6660126 Nguyen et al. Dec 2003 B2
6686271 Raaijmakers et al. Feb 2004 B2
6713373 Omstead Mar 2004 B1
6713846 Senzaki Mar 2004 B1
6718126 Lei Apr 2004 B2
6720260 Fair et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6764940 Rozbicki et al. Jul 2004 B1
6772072 Ganguli et al. Aug 2004 B2
6777352 Tepman et al. Aug 2004 B2
6784096 Chen et al. Aug 2004 B2
6790773 Drewery et al. Sep 2004 B1
6797340 Fang et al. Sep 2004 B2
6797642 Chu et al. Sep 2004 B1
6800173 Chiang et al. Oct 2004 B2
6803272 Halliyal et al. Oct 2004 B1
6809026 Yoon et al. Oct 2004 B2
6815285 Choi et al. Nov 2004 B2
6821563 Yudovsky Nov 2004 B2
6821889 Elers et al. Nov 2004 B2
6827978 Yoon et al. Dec 2004 B2
6831004 Byun et al. Dec 2004 B2
6833161 Wang et al. Dec 2004 B2
6838125 Chung et al. Jan 2005 B2
6846516 Yang et al. Jan 2005 B2
6855368 Kori et al. Feb 2005 B1
6875271 Glenn et al. Apr 2005 B2
6878402 Chiang et al. Apr 2005 B2
6893915 Park et al. May 2005 B2
6905541 Chen et al. Jun 2005 B2
6915592 Guenther Jul 2005 B2
6932871 Chang et al. Aug 2005 B2
6936538 Byun Aug 2005 B2
6939804 Lai et al. Sep 2005 B2
6951804 Seutter et al. Oct 2005 B2
6955211 Ku et al. Oct 2005 B2
6958174 Klaus et al. Oct 2005 B1
6969539 Gordon et al. Nov 2005 B2
6998014 Chen et al. Feb 2006 B2
7005372 Levy et al. Feb 2006 B2
7026238 Xi et al. Apr 2006 B2
7033922 Kori et al. Apr 2006 B2
7094680 Seutter et al. Aug 2006 B2
7101795 Xi et al. Sep 2006 B1
7115494 Sinha et al. Oct 2006 B2
7115499 Wang et al. Oct 2006 B2
7141494 Lee et al. Nov 2006 B2
7186385 Ganguli et al. Mar 2007 B2
7208413 Byun et al. Apr 2007 B2
7211144 Lu et al. May 2007 B2
7211508 Chung et al. May 2007 B2
7220673 Xi et al. May 2007 B2
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010021589 Wilk Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029092 Park et al. Oct 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010050039 Park et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000598 Kang et al. Jan 2002 A1
20020004293 Soininen et al. Jan 2002 A1
20020005556 Cartier et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020008297 Park et al. Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020014647 Seidl et al. Feb 2002 A1
20020015790 Baum et al. Feb 2002 A1
20020019121 Pyo Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020029092 Gass Mar 2002 A1
20020031618 Sherman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020043666 Parsons et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020048880 Lee Apr 2002 A1
20020052097 Park May 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020060363 Xi et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020064970 Chooi et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081826 Rotondaro et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020093046 Moriya et al. Jul 2002 A1
20020093781 Bachhofer et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Nguyen et al. Sep 2002 A1
20020121697 Marsh Sep 2002 A1
20020135071 Kang et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020146895 Ramdani et al. Oct 2002 A1
20020151152 Simamoto et al. Oct 2002 A1
20020153579 Yamamoto et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020175393 Baum et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020177399 Brown Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020195643 Harada Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20020197863 Mak et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030013300 Byun Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030038369 Layadi et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030054631 Raaijmakers et al. Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030068437 Nakamura et al. Apr 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082300 Todd et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030089308 Raaijmakers et al. May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030096473 Shih et al. May 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030104710 Visokay et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030109114 Niwa Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030123216 Yoon et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030127043 Lu et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030133861 Bowen et al. Jul 2003 A1
20030134508 Raaijamakers et al. Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030153177 Tepman et al. Aug 2003 A1
20030153181 Yoon et al. Aug 2003 A1
20030157760 Xi et al. Aug 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030161952 Wang et al. Aug 2003 A1
20030165615 Aaltonen et al. Sep 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030181035 Yoon et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030188682 Tois et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030194825 Law et al. Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030194858 Lee et al. Oct 2003 A1
20030203616 Chang et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030232497 Xi et al. Dec 2003 A1
20030232501 Kher et al. Dec 2003 A1
20030232506 Metzner et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030234417 Raaijmakers et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040007747 Visokay et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009675 Eissa et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040014315 Lai et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016973 Rotondaro et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023462 Rotondaro et al. Feb 2004 A1
20040025370 Guenther Feb 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040029321 Ang et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040036111 Nishikawa et al. Feb 2004 A1
20040038554 Ahn et al. Feb 2004 A1
20040040501 Vaartstra Mar 2004 A1
20040041320 Hodumi Mar 2004 A1
20040043149 Gordon et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040043630 Vaarstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040065255 Yang et al. Apr 2004 A1
20040067641 Yudovsky Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040077183 Chung et al. Apr 2004 A1
20040078723 Gross et al. Apr 2004 A1
20040170403 Lei Sep 2004 A1
20040187304 Chen et al. Sep 2004 A1
20040202786 Wongsenakhum et al. Oct 2004 A1
20040203254 Conley, Jr. et al. Oct 2004 A1
20040209460 Xi et al. Oct 2004 A1
20040209465 Xi et al. Oct 2004 A1
20040211665 Yoon et al. Oct 2004 A1
20040214354 Conley, Jr. et al. Oct 2004 A1
20040216670 Gutsche et al. Nov 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Choi et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20040247788 Fang et al. Dec 2004 A1
20040256351 Chung et al. Dec 2004 A1
20050006799 Brock et al. Jan 2005 A1
20050008779 Yang et al. Jan 2005 A1
20050009325 Chung et al. Jan 2005 A1
20050031786 Lee et al. Feb 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050059241 Kori et al. Mar 2005 A1
20050064098 Elers et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050104142 Narayanan et al. May 2005 A1
20050118804 Byun et al. Jun 2005 A1
20050153571 Senzaki Jul 2005 A1
20050164487 Seutter et al. Jul 2005 A1
20050176240 Wang et al. Aug 2005 A1
20050189072 Chen et al. Sep 2005 A1
20050208763 Byun Sep 2005 A1
20050233156 Senzaki et al. Oct 2005 A1
20050255243 Senzaki Nov 2005 A1
20050257735 Guenther Nov 2005 A1
20050271814 Chang et al. Dec 2005 A1
20050287807 Lai et al. Dec 2005 A1
20060009034 Lai et al. Jan 2006 A1
20060030148 Seutter et al. Feb 2006 A1
20060040052 Fang et al. Feb 2006 A1
20060075966 Chen et al. Apr 2006 A1
20060128132 Sinha et al. Jun 2006 A1
20060128150 Gandikota et al. Jun 2006 A1
20060156979 Thakur et al. Jul 2006 A1
20060199372 Chung et al. Sep 2006 A1
20060257295 Chen et al. Nov 2006 A1
20060264031 Xi et al. Nov 2006 A1
20060276020 Yoon et al. Dec 2006 A1
20060292874 Kori et al. Dec 2006 A1
20070003698 Chen et al. Jan 2007 A1
20070009658 Yoo et al. Jan 2007 A1
20070020890 Thakur et al. Jan 2007 A1
20070020924 Wang et al. Jan 2007 A1
20070026147 Chen et al. Feb 2007 A1
20070067609 Chen et al. Mar 2007 A1
20070099415 Chen et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070128862 Ma et al. Jun 2007 A1
20070128863 Ma et al. Jun 2007 A1
20070128864 Ma et al. Jun 2007 A1
Foreign Referenced Citations (228)
Number Date Country
2 203 776 Aug 1973 DE
196 27 017 Jul 1995 DE
198 20 147 Dec 1997 DE
0 344 352 Dec 1989 EP
0 429 270 May 1991 EP
0 442 290 Aug 1991 EP
0 442 490 Aug 1991 EP
0 464 515 Jan 1992 EP
0 799 641 Oct 1997 EP
0 973 189 Jan 2000 EP
0 973 191 Jan 2000 EP
1 146 141 Oct 2001 EP
1 167 569 Jan 2002 EP
1 170 804 Jan 2002 EP
1 321 973 Jun 2003 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64 009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
01-62244 Mar 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01 103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-236657 Sep 1989 JP
2001-245512 Sep 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
2001-303251 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Oct 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
01-132681 May 1992 JP
04-132214 May 1992 JP
04-151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-285167 Oct 1992 JP
04-291916 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-132236 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
07-300649 Nov 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-188840 Jul 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-138094 May 2000 JP
00-178735 Jun 2000 JP
2000-218445 Aug 2000 JP
2000-319772 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-020075 Jan 2001 JP
2001-111000 Apr 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-189312 Jul 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
01-254181 Sep 2001 JP
2001-240972 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-328900 Nov 2001 JP
2002-060944 Feb 2002 JP
2002-69641 Mar 2002 JP
2002-93804 Mar 2002 JP
2002-167672 Jun 2002 JP
2002-172767 Jun 2002 JP
WO 9002216 Mar 1990 WO
WO 9110510 Jul 1991 WO
WO 9302111 Feb 1993 WO
WO 9617107 Jun 1996 WO
WO 9618756 Jun 1996 WO
WO 9806889 Feb 1998 WO
WO 9851838 Nov 1998 WO
WO 9901595 Jan 1999 WO
WO 9913504 Mar 1999 WO
WO 9929924 Jun 1999 WO
WO 9941423 Aug 1999 WO
WO 9965064 Dec 1999 WO
WO 0011721 Mar 2000 WO
WO 0013235 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 0015881 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0063957 Oct 2000 WO
WO 0070674 Nov 2000 WO
WO 0079019 Dec 2000 WO
WO 0079576 Dec 2000 WO
WO 0115220 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 0125502 Apr 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0182390 Nov 2001 WO
WO 0199166 Dec 2001 WO
WO 0201628 Jan 2002 WO
WO 0208485 Jan 2002 WO
WO 0209167 Jan 2002 WO
WO 0227063 Apr 2002 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 0245871 Jun 2002 WO
WO 0246489 Jun 2002 WO
WO 02067319 Aug 2002 WO
WO 2004106584 Dec 2004 WO
WO 2005027211 Mar 2005 WO
Related Publications (1)
Number Date Country
20070197027 A1 Aug 2007 US
Continuations (3)
Number Date Country
Parent 10993925 Nov 2004 US
Child 11739545 US
Parent 10387990 Mar 2003 US
Child 10993925 US
Parent 09604943 Jun 2000 US
Child 10387990 US