The present invention relates to the art of molds, and more particularly, to a method of forming a protective layer on a mold.
Electronic devices such as semiconductors, processors, logic chips and the like employ solder balls as an interconnection to other components. That is, the solder balls provide a communication path to and from the electronic device. In addition, the solder balls may serve as an attachment element for securing the electronic device to another component. The solder balls are formed in molds and then attached to the electronic device. Over time, and through multiple uses and associated handling, the molds become scratched either from blading of the metal into cavities formed in the mold or from normal handling. Small scratches often lead to false defects that cause confusion during inspection. Moreover, over time, small scratches develop into cracks that may lead to catastrophic mold failure. In addition, some large scratches or gouges can behave like a pathway that captures and transferring solder between mold cavities.
According to one exemplary embodiment, a method of forming a mold having a protective layer includes forming a mold substrate having at least one substantially planar surface, depositing a layer of mold protection material onto the at least one substantially planar surface, and etching a plurality of cavities into the at least one substantially planar surface through the mold protection layer.
According to another aspect of the exemplary embodiment, a method of protecting a mold having at least one substantially planar surface provided with a plurality of mold cavities includes inserting a plurality of mandrels into respective ones of the plurality of mold cavities, depositing a layer of mold protection material onto the at least one substantially planar surface and the plurality of mandrels, and removing the plurality of mandrels from the mold substrate.
According to another aspect of the exemplary embodiment, a mold for forming solder balls includes a substrate having a main body including a first substantially planar surface and an opposing second substantially planar surface with the substrate being formed from borosilicate glass (BSG). The mold further includes a plurality of cavities formed in the first substantially planar surface. The plurality of cavities extend into the main body portion and stop short of the second substantially planar surface. A protective layer is formed on the first substantially planar surface. The protective layer is configured and disposed to prevent damage to the substrate.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and the features, refer to the description and to the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The forgoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Mold substrates, particularly those used in connection with the formation of solder balls, get scratched either from blading of metal into mold cavities or from normal handling. Small scratches may be a nuisance or lead to false defects that create confusion during inspection. Overtime, scratches develop into cracks, which may become catastrophic failures that lead to mold breakage. In addition, large scratches or gouges can behave like a cavity, capturing and transferring solder between adjacent mold cavities. Towards that end, it is desirable to form a mold having a surface that is resistant to scratches, cracking, damage and other defects.
As best shown in
Reference will now be made to
Reference will now be made to
Prior to applying a protective layer, each cavity 80-82 is filled with a corresponding sacrificial mandrel 87-89 deposited therein in
As best shown in
In addition to applying a protective layer to pre-existing molds, the present exemplary embodiments can also be employed to refurbish molds have a pre-existing protective layer. That is, over time, a protective layer on a particular mold may become worn. In such a case, the protective layer is removed and a new protective layer is applied using the method described above. That is, after removing the old protective layer and prior to applying the new protective layer, mandrels, are deposited into each of the plurality of mold cavities in a manner similar to that described above. The protective layer is then applied over the mandrels. At this point, the mandrels are polished and removed so as to form a new protective layer on a pre-existing mold.
At this point, it should be understood that the exemplary embodiments of the present invention provide a method for enhancing operational life of mold, particularly those used in connection with forming solder balls. The protective coating ensures that the borosilicate glass substrate remain substantially free of defects and/or cracks that may affect quality of the particles, solder balls, formed within mold cavities. At this point, it should be understood that in addition to being employed in connection with molds for creating solder balls, the present exemplary embodiments can be employed in connection with other molding operations that employ mold substrates that are prone to damage with the damage having a negative impact on a final mold product.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
The diagrams depicted herein are just one example. There may be many variations to these diagrams or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.
While the preferred embodiment to the invention had been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.