This invention relates generally to semiconductor fabrication technology and, particularly, to forming planarized conductive structures.
In semiconductor manufacturing operations, it may be desirable to form a generally or substantially planar structure. Particularly, it may be desirable to form plugs that are metallic conductors that extend through holes in dielectrics. Conventionally this is done by simply filling the hole with a metal conductor in a step called tungsten plug. However, filling the hole with a metal conductor may make substantial planarity difficult to achieve because of the different characteristics of the filler material, which may be a metal or other conductive material, and the surrounding material, which may be a dielectric. Chemical mechanical polishing may not be suitable because the ability to polish the metal may be substantially reduced relative to the polishing effect on the surrounding dielectric.
One place where planarized structures may be useful is in connection with phase change memories. Phase change memory devices use phase change materials, i.e., materials that may be electrically switched between a generally amorphous and a generally crystalline state, as an electronic memory. One type of memory element utilizes a phase change material that may be, in one application, electrically switched between generally amorphous and generally crystalline local orders or between different detectable states of local order across the entire spectrum between completely amorphous and completely crystalline states.
Typical materials suitable for such an application include various chalcogenide elements. The state of the phase change materials is also non-volatile. When the memory is set in either a crystalline, semi-crystalline, amorphous, or semi-amorphous state representing a resistance value, that value is retained until reprogrammed, even if power is removed. This is because the programmed value represents a phase or physical state of the material (e.g., crystalline or amorphous).
Thus, there is a need for better ways to form substantially planar structures.
Referring to
A substrate may include a lower substrate region 18, that in one embodiment may be highly doped p-type silicon, a middle substrate region 20, which in one embodiment may be p-type epitaxial material, and an upper substrate region 22, which may be n-type silicon in one embodiment of the present invention. Above the region 22 may be more heavily doped p-type silicon region 28 in one embodiment.
A lower electrode 30 over the region 28 may, for example, be formed of silicide such as cobalt silicide. Thus, in one embodiment, the region 22 may act as an address line that provides signals to the electrode 30 through the interface provided by the p-type silicon region 28.
A tubular, cup-shaped conductor 38 may be formed within an opening in a dielectric 34 to electrically couple the lower electrode 30. The cup-shaped conductor 38 may also be filled with a thermal barrier material 39, in one embodiment of the present invention. The upper edges of the cup-shaped conductor 38 electrically contact an electrode 36. The electrode 36 is in turn positioned under a memory material 16 positioned in a pore defined by sidewall spacers 18 in one embodiment. Above the memory material 16 is an upper electrode 14 that may be, for example, titanium or titanium nitride. Above the material 16 may be a conventional address line, such as an aluminum or copper conductor 12 in one embodiment.
The electrode 36 may, for example, be titanium aluminum nitride, titanium nitride, or titanium silicon nitride, to mention a few examples. The conductor 38 may be tungsten, titanium, titanium silicide, tantalum nitride, or titanium nitride, to mention a few examples. In one embodiment, the conductor 38 may be formed by chemical vapor deposition over a glue layer (not shown) such as titanium or titanium nitride, for example. Advantageously, the conductor 38 is formed of a material, such as tungsten, with good chemical mechanical planarization selectivity relative to the surrounding insulator 34.
The insulator 34 and material 39 may include an oxide, nitride, or a low K dielectric material, although the scope of the present invention is not limited in this respect. In other embodiments, the insulator 34 and material 39 may be an organic polymer material, a non-switching chalcogenide alloy, a sol-gel material, or any insulating material having lower thermal conductivity than an oxide material, such as high density plasma (HDP) oxide and atomic layer deposition (ALD) oxide. In general it is advantageous that the material 39 be an effective thermal insulator. In one embodiment the material 39 is less thermally conductive than a thermally grown oxide. The layer 32 may, in one embodiment, be silicon nitride.
In some embodiments of the present invention, the memory 10 has good thermal insulating characteristics in that the memory material 16 is thermally isolated by the thermal barrier material 39. In other words, heat loss downwardly is reduced by the imposition, below the memory material 16, of the thermal barrier material 39. At the same time, electrical continuity can be obtained from the electrode 30 to the electrode 36 through the conductor 38.
In one embodiment, the memory material 16 may be a non-volatile, phase change material. In this embodiment, the memory 10 may be referred to as a phase change memory. A phase change material may be a material having electrical properties (e.g. resistance) that may be changed through the application of energy such as, for example, heat, light, voltage potential, or electrical current. Examples of a phase change material may include a chalcogenide material or an ovonic material.
An ovonic material may be a material that undergoes electronic or structural changes and acts as a semiconductor when subjected to application of a voltage potential, an electrical current, light, heat, etc. A chalcogenide material may be a material that includes at least one element from column VI of the periodic table or may be a material that includes one or more of the chalcogen elements, e.g., any of the elements of tellurium, sulfur, or selenium. Ovonic and chalcogenide materials may be non-volatile memory materials that may be used to store information.
In one embodiment, the memory material 16 may be a chalcogenide element composition of the class of tellurium-germanium-antimony (TexGeySbz) material or a GeSbTe alloy, although the scope of the present invention is not limited to just these.
In one embodiment, if the memory material 16 is a non-volatile, phase change material, then memory material 16 may be programmed into one of at least two memory states by applying an electrical signal to memory material 16. The electrical signal may alter the phase of memory material 16 between a substantially crystalline state and a substantially amorphous state, wherein the electrical resistance of memory material 16 in the substantially amorphous state is greater than the resistance of memory material 16 in the substantially crystalline state. Accordingly, in this embodiment, memory material 16 may be adapted to be altered to one of at least two resistance values within a range of resistance values to provide single bit or multi-bit storage of information.
Programming of the memory material 16 to alter the state or phase of the material may be accomplished by applying voltage potentials to electrodes 36 and 14, thereby generating a voltage potential across memory material 16. An electrical current may flow through a portion of memory material 16 in response to the applied voltage potentials, and may result in heating of memory material 16.
This heating and subsequent cooling may alter the memory state or phase of memory material 16. Altering the phase or state of memory material 16 may alter an electrical characteristic of memory material 16. For example, the resistance of the material may be altered by altering the phase of the memory material 16. Memory material 16 may also be referred to as a programmable resistive material or simply a programmable material.
In one embodiment, a voltage potential difference of about three volts may be applied across a portion of memory material 16 by applying about three volts to electrode 14 and about zero volts to electrode 36. A current flowing through memory material 16 in response to the applied voltage potentials may result in heating of memory material 16. This heating and subsequent cooling may alter the memory state or phase of memory material 16.
In a “reset” state, the memory material 16 may be in an amorphous or semi-amorphous state and in a “set” state, the memory material 16 may be in a crystalline or semi-crystalline state. The resistance of memory material 16 in the amorphous or semi-amorphous state may be greater than the resistance of memory material 16 in the crystalline or semi-crystalline state. The association of reset and set with amorphous and crystalline states, respectively, is a convention. Other conventions may be adopted.
Due to electrical current, the memory material 16 may be heated to a relatively higher temperature to amorphisize memory material 16 and “reset” memory material 16 (e.g., program memory material 16 to a logic “0” value). Heating the volume of memory material 16 to a relatively lower crystallization temperature may crystallize memory material 16 and “set” memory material 16 (e.g., program memory material 16 to a logic “1” value). Various resistances of memory material 16 may be achieved to store information by varying the amount of current flow and duration through the volume of memory material 16.
The information stored in memory material 16 may be read by measuring the resistance of memory material 16. As an example, a read current may be provided to memory material 16 using electrodes 30 and 14, and a resulting read voltage across memory material 16 may be compared against a reference voltage using, for example, a sense amplifier (not shown). The read voltage may be proportional to the resistance exhibited by the memory cell. Thus, a higher voltage may indicate that memory material 16 is in a relatively higher resistance state, e.g., a “reset” state; and a lower voltage may indicate that the memory material 16 is in a relatively lower resistance state, e.g., a “set” state.
Embodiments of the present invention may be applicable to forming substantially planar structures in memory applications, as well as in a variety of other semiconductor applications. Thus, while
Referring to
Referring to
Referring to
Next, the region 38b is removed, for example, by chemical mechanical planarization to form the substantially planar surface 54 as shown in
Thus, referring to
In some embodiments of the present invention, by covering the opening 48 in
Turning to
System 500 may include a controller 510, an input/output (I/O) device 520 (e.g. a keypad, display), a memory 530, and a wireless interface 540 coupled to each other via a bus 550. It should be noted that the scope of the present invention is not limited to embodiments having any or all of these components.
Controller 510 may comprise, for example, one or more microprocessors, digital signal processors, microcontrollers, or the like. Memory 530 may be used to store messages transmitted to or by system 500. Memory 530 may also optionally be used to store instructions that are executed by controller 510 during the operation of system 500, and may be used to store user data. Memory 530 may be provided by one or more different types of memory. For example, memory 530 may comprise a volatile memory (any type of random access memory), a non-volatile memory such as a flash memory, and/or phase change memory that includes a memory element such as, for example, memory element 16 illustrated in
The I/O device 520 may be used to generate a message. The system 500 may use the wireless interface 540 to transmit and receive messages to and from a wireless communication network with a radio frequency (RF) signal. Examples of the wireless interface 540 may include an antenna, or a wireless transceiver, such as a dipole antenna, although the scope of the present invention is not limited in this respect.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
What is claimed is: