The present disclosure is directed generally to prober chips for semiconductor device and thin film material testing and characterization.
Complementary metal-oxide-semiconductor (CMOS) circuits consist of various functional blocks such as SRAM cells, DRAM cells, and memory cells, among many others. Transistors form the basis of these functional blocks, and one or more faults in a transistor can render parts of an integrated circuit (IC), or even entire IC chips, useless. Accordingly, the ability to identify faults during the early stages of IC fabrication can save semiconductor companies millions of dollars every year, and can accelerate the time-to-market of new technologies.
Precision probes/tips are required to make contact with transistors in order to perform electrical characterization. At the nanoscale, navigation of the individual tips becomes incredibly difficult; positioning is often restricted by limited access to test features, drift can throw positioned tips off alignment before the test is complete, and multiple probe tips (as shown in
Several OEMs have coupled independent scanning probe microscopes (SPM) to enable imaging and electrical characterization by translating multiple probes onto features of interest. Individual SPMs are complex platforms, based on supporting each tip with a stack of capabilities, lasers for alignment and sensing, nano-positioners for actuation, and electronics to improve quality and strength of the signal. By coupling multiple SPMs, the composite system is a complex, prohibitively expensive platform that is difficult to operate. In addition, lasers used to track the tips can energetically excite the sample, obscuring test results. Complicating the issue further is the fact that at the nanoscale, navigation of the individual tips becomes much more difficult. At least six probe tips are required to perform functional testing of SRAMs or DRAMs, and tips moving within nanometers of each other can crash into each other or the sample causing damage.
In contrast to current SPM systems with multiple stacks, there is an alternative technology known as the Multiple Integrated Tips (MiT) technology which is based on building one or multiple tips along with supporting sensing components, actuation components, and electronics onto a single prober chip. Such “probe platforms-on-a-chip” are designed and fabricated using advanced NanoElectroMechanical Systems (NEMS) technologies, enabling simple miniaturization to the nanoscale. An example of MiT technology is shown in
Accordingly, there is a continued need in the art for cost-effective, easily manufactured and functionalized prober chips for semiconductor device and thin film material testing and characterization.
The present disclosure is directed generally to prober chips for semiconductor device and thin film material characterization. The prober chips are realized from standard CMOS IC chips or by using advanced NEMS processing to realize the functional probers. According to an embodiment, the prober chips described or otherwise envisioned herein allow for parallel characterization of multiple devices and circuits instantaneously. The technology is based on using an IC chip (functional prober chip) to characterize another IC chip (sample). If both IC chips have the same contact point layouts, then by aligning and contacting the chips together, multiple devices or circuits on the sample IC chip could be simultaneously characterized without the need to move the prober chip from one device or circuit to the other. This form of characterization drastically reduces measurement cycle times, mitigates the crashing of probe tips into each other and addresses accessibility challenges.
According to an aspect is a CMOS prober chip. The CMOS prober chip includes: a plurality of probe tips; a plurality of interlayer metals; a plurality of interlayer dielectrics; and a plurality of bonding pads; where the plurality of interlayer metals are in conductive communication with the plurality of probe tips, and are further in conductive communication with one of the plurality of bonding pads.
According to an embodiment, each of the plurality of probe tips comprises an apex at the end of that probe tip, and wherein the probe tips comprise a conductive material. According to an embodiment, the conductive material is a cushion-like material configured to reversibly deform when pushed against a sample. According to an embodiment, the conductive material comprises a thin film material selected from the group consisting of graphene and molybdenum disulphide. According to an embodiment, the conductive material comprises a metal or metal-alloy.
According to an embodiment, each of the plurality of probe tips comprises a metal contact plug. According to an embodiment, the metal contact plug comprises tungsten, platinum, gold, cobalt, nickel, an alloy, and/or silicide.
According to an embodiment, at least one of the plurality of probe tips is freely suspended along at least a portion of its length. According to an embodiment, at least one of the plurality of probe tips is spring-loaded.
According to an aspect is a method for manufacturing a CMOS prober chip. The method includes the steps of: providing a CMOS chip comprising back-end-of-line components and a plurality of metal contact plugs; and delayering a portion of the CMOS chip, the delayered portion of the CMOS chip comprising the front-end-of-line components but not including the metal contact plugs.
According to an embodiment, the step of delayering comprises chemical mechanical polishing, reactive ion etching, deep reactive ion etching, ion milling, wet chemical etching, and/or a combination thereof.
According to an embodiment, each of the metal contact plugs is configured to operate as a probe tip.
According to an embodiment, the method further includes the step of recessing an interlayer dielectric around the plurality of metal contact plugs. According to an embodiment, the step of recessing an interlayer dielectric around the plurality of metal contact plugs comprises wet chemical etching, reactive ion etching, deep reactive ion etching and/or a combination thereof.
According to an aspect is a method for manufacturing a CMOS prober chip. The method includes the step of selectively depositing a conductive material at an apex of each of the plurality of probe tips of the CMOS prober chip.
According to an embodiment, the step of selectively depositing a conductive material comprises electroplating, evaporation, sputtering, plasma enhanced chemical vapor deposition, and/or atomic layer deposition.
According to an aspect is a prober chip. The prober chip includes: a plurality of probe tips; a plurality of interlayer metals; a plurality of interlayer dielectrics; a plurality of through-substrate-vias; a plurality of bonding pads; and a substrate; where the plurality of interlayer metals are in conductive communication with the plurality of probe tips, and are further in conductive communication with the plurality of bonding pads.
According to an embodiment, at least some of the plurality of probe tips are freely suspended along at least a portion of their length.
According to an embodiment, each of the plurality of through-substrate-vias is filled with a conductive material configured to conductively connect the bonding pads to the interlayer metal layers.
According to an embodiment, the substrate comprises silicon, silicon carbide, germanium, glass, pyrex, fused silica and/or quartz.
According to an embodiment, the chip further comprises an etched through-hole configured to allow for simultaneous viewing of the plurality of probe tips and a sample.
According to an aspect is a prober chip. The prober chip includes: a set of probe tips; a set of probe electrodes; a set of interlayer dielectrics; and a substrate comprising a through-hole configured to allow for viewing of the plurality of probe tips.
According to an embodiment, at least some of the plurality of probe tips are freely suspended along at least a portion of their length
According to an embodiment, the substrate comprises silicon, silicon carbide, germanium, glass, pyrex, fused silica, and/or quartz.
According to an aspect is a method for aligning a prober chip to a sample. The method includes the steps of: (i) placing a prober chip comprising at least one conductive alignment mark above or below a sample comprising at least one conductive alignment mark; (ii) contacting the at least one conductive alignment mark of the prober chip to the at least one conductive alignment mark of the sample; (iii) applying a potential difference between the at least one alignment mark of the prober chip and the at least one alignment mark of the sample; and (iv) moving at least one of the prober chip and the sample until current flows between the at least one alignment mark of the prober chip and the at least one alignment mark of the sample.
According to an aspect is a method for aligning a prober chip to a sample. The method includes the steps of: (i) placing a prober chip comprising at least one etched alignment mark above or below a sample comprising at least one alignment mark; (ii) using a microscope to view the at least one alignment mark of the sample through the at least one etched alignment mark of the prober chip; and (iii) moving at least one of the prober chip and the sample until the at least one etched alignment mark of the prober chip is aligned to the at least one alignment mark of the sample.
According to an aspect is a method for aligning a prober chip to a sample. The method includes the steps of: (i) placing a prober chip comprising at least one alignment mark with a plurality of edges above or below a sample comprising at least one alignment mark with a plurality of edges; (ii) scanning, using an infrared laser, the at least one alignment mark of the prober chip and the at least one alignment mark of the sample; and (iii) moving at least one of the prober chip and the sample until the edges of the at least one alignment mark of the prober chip are aligned with the edges of the at least one alignment mark of the sample.
These and other aspects of the invention will be apparent from the embodiments described below.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
The present disclosure describes various embodiments of functional prober chips for the characterization of thin films and devices. The functional prober chip enables nanoscale electrical probing of trans-conductance, in both ambient air and vacuum environments. The device provides for detailed studies of transport mechanisms in thin film materials and devices.
Referring to
Referring to
Referring to
According to an embodiment, given two identical IC chips 300 from the same wafer, the BEOL components of the first chip can be delayered to realize the sample IC chip 400. Delayering involves using various polishing/etching techniques such as Chemical Mechanical Polishing (CMP), Deed Reactive Ion Etching (DRIE), ion milling or wet etching to remove metals, dielectrics, polymers etc. Similarly, by delayering the FEOL components of the second IC chip 300, the CMOS prober chip 500 is realized. Thus, the CMOS prober chip 500 is complementary to the sample IC chip 400.
According to an embodiment, a single CMOS prober chip 500 can be aligned and used to characterize numerous complementary sample IC chips 400 as demonstrated in
According to an embodiment, to characterize a sample IC chip 400, electrical signals/instructions are sent from the top metal bonding pads 330 of the CMOS prober chip 500 to the tungsten probe tips 314. Understandably, some of the signal paths to the probe tips might be faulty due to a host of reasons not limited to opens in interlayer metal, non-contact of a via to a metal line, etc. To check the integrity of the probes, the CMOS prober chip is horizontally aligned with respect to a gold calibration substrate. The prober and calibration substrate are brought into contact and I-V measurements between probe tips and through the bulk of the biased gold sample can predict the integrity of the probe tips. All faulty probe tips are identified and documented.
According to an embodiment, the use of the CMOS prober chip 500 is not limited to testing delayered chips, but can also be used inline to monitor device and circuit performance during manufacturing of the FEOL components of a CMOS IC chip, among many other uses.
According to an embodiment, any CMOS chip from any semiconductor foundry or company can be post-processed or delayered to realize the CMOS prober chip as described in the embodiment.
Referring to
Referring to
A functional prober chip can also be realized by fabricating only the BEOL components including the probe tips 314 on a substrate 904, as shown in
Alignment of Functional Prober Chip to Sample IC Chip
According to an embodiment, the CMOS prober chip 500 is aligned with and used to characterize a complementary sample IC chip 400. This requires the proper alignment of the two components for accurate assessment of the IC chip. Described below are multiple embodiments of methods for aligning a CMOS prober chip 500 and an IC chip 400, including: (1) through-chip alignment; (2) optical alignment; and (3) infrared light interferometry.
1. Through-Chip-Alignment
Referring to
Next, alignment of the CMOS prober chip 500 and sample IC chip 400 is tested using the filled conductive mark(s) 332 of the prober chip and the filled conductive mark(s) of the IC chip 400. During alignment, voltage signals are applied to the alignment marks of the CMOS prober while the alignment marks of the sample IC chip 400 are grounded. Alignment is achieved when current flows from the alignment mark 332 of the prober chip to the alignment mark 402 of the sample IC chip 400.
If the CMOS prober chip 500 and sample IC chip 400 are not properly aligned, the prober chip and/or the sample can be rotated, translated, or otherwise moved or adjusted in order to achieve alignment. The system 600 can then be tested again for alignment.
2. Optical Alignment
The CMOS prober chip 500 and sample IC chip 400 can also and/or alternatively be aligned using an optical alignment method. According to this method, the CMOS prober chip 500 comprises one or more alignment marks 332 that are etched through the prober chip, but the sample IC chip only has a patterned alignment mark on its top side. This patterned alignment mark could comprise metal or a variety of other compounds.
To align the CMOS prober chip 500 and sample IC chip 400, the prober's alignment mark(s) 332 (which may or may not be filled with a conductive material as described herein) and the IC chip's patterned alignment mark(s) are optically scanned to determine whether the two chips are aligned.
If the CMOS prober chip 500 and sample IC chip 400 are not properly aligned, the prober chip and/or the sample can be rotated, translated, or otherwise moved or adjusted in order to achieve alignment. The system 600 can then be tested again for alignment.
3. Infrared Light Interferometry
The CMOS prober chip 500 and sample IC chip 400 can also and/or alternatively be aligned using an infrared light interferometry method. According to an embodiment, metal alignment marks are patterned on the top sides of both the CMOS prober chip 500 and the sample IC chip 400. To align the chips, an infrared light is incident on the alignment marks on the CMOS prober. Since an infrared laser is transparent to silicon and silicon dioxide, the laser will reflect off the top metal marks but penetrate through the surrounding interlayer dielectrics, assuming there are no interlayer metals in the beams path to the alignment marks on the sample IC chip. Machine learning, image recognition, and edge detection algorithms are applied to the IR acquired image of the alignment marks.
If the CMOS prober chip 500 and sample IC chip 400 are not properly aligned, the prober chip and/or the sample can be rotated, translated, or otherwise moved or adjusted in order to achieve alignment. The system 600 can then be tested again for alignment.
Functional Transparent Prober Chip
According to an embodiment, arrays of multiple probe tips can be fabricated on a transparent substrate. According to an embodiment, the probe tips layout can be designed specifically for a particular CMOS chip or sample. Various probe layout configurations can be implemented on the transparent substrate. For example, layouts for transistors and SRAM functional testing can be designed and fabricated.
The transparent substrate makes it easy to visually align the prober chip to a sample using optical or electron beam microscope. Transparent wafers comprising materials such as glass, pyrex, quartz, and/or fused silica, among other compounds, can be used. It should be noted that the standard CMOS fabrication steps used to manufacture IC chip 300 could be implemented on a transparent substrate to realize a functional prober.
Referring to
Referring to
Functional Through-Hole Prober Chip
According to an embodiment, there can be limitation(s) on the use of a functional transparent prober chip 1000 in an SEM. For example, the electron beam in the SEM might not be able to penetrate the transparent substrate to allow for optical viewing and alignment of the probe tips to the underlying sample. Thus, to allow for optical viewing and alignment of a functional prober chip to an underlying sample in an SEM or optical microscope, a through-hole could be etched in the prober chip. The through-hole is then utilized to align the prober chip and the underlying sample.
Referring to
In
In
In
Referring to
Referring to
According to an embodiment, the alignment marks of the prober chip are conductive, and the alignment marks of the sample are conductive. At step 1720a of the method, the alignment marks of the prober chip are contacted—or attempted to be contacted—with the conductive alignment marks of the sample.
At step 1730a of the method, to test the alignment, a potential difference is applied between the alignment marks of the prober chip and the conductive alignment marks of the sample.
At step 1740a of the method, if the prober chip and the sample are not properly aligned, then the prober chip and/or the sample are moved—such as translating and rotating the prober chip and/or the sample—until current flows between the alignment mark of the prober chip and the alignment mark of the sample.
According to another embodiment, an alignment mark of the prober chip is etched. At step 1720 of the method, the alignment marks of the prober are attempted to be aligned with the conductive alignment marks of the sample.
At step 1730b of the method, to test the alignment, a microscope is utilized to view—or attempt to view—the alignment mark of the sample through the etched alignment mark of the prober chip.
At step 1740 of the method, if the prober chip and the sample are not properly aligned, then the prober chip and/or the sample are moved—such as translating and rotating the prober chip and/or the sample—until the etched alignment mark of the prober chip is aligned to the alignment mark of the sample.
According to another embodiment, the alignment marks of the prober chip and the sample each comprise a plurality of edges. At step 1720 of the method, the alignment marks of the prober are attempted to be aligned with the conductive alignment marks of the sample.
At step 1730c of the method, to test the alignment, an infrared laser scans the alignment mark of the prober chip and the alignment mark of the sample.
At step 1740 of the method, if the prober chip and the sample are not properly aligned, then the prober chip and/or the sample are moved—such as translating and rotating the prober chip and/or the sample—until the edges of the alignment mark of the prober chip are aligned with the edges of the alignment mark of the sample.
Image Recognition Alignment
According to an embodiment, if the layout of the probe tips is the same as the features on the sample, then with the help of an optical microscope or a scanning electron microscope, an image recognition algorithm can be implemented to navigate the nanopositioners until the position of the probe tips are matched to the location of features on the sample.
While various embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, embodiments may be practiced otherwise than as specifically described and claimed. Embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
The above-described embodiments of the described subject matter can be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single device or computer or distributed among multiple devices/computers.
This application is a Continuation Application of U.S. patent application Ser. No. 15/454,268 filed on Mar. 9, 2017, which application claims priority to U.S. Provisional Patent Application Ser. No. 62/305,754, filed on Mar. 9, 2016, and titled “Functional Prober Chip,” which applications are incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4992660 | Kobayashi | Feb 1991 | A |
5148103 | Pasiecznik, Jr. | Sep 1992 | A |
5426302 | Marchman et al. | Jun 1995 | A |
5436448 | Hosaka et al. | Jul 1995 | A |
5666190 | Quate et al. | Sep 1997 | A |
5994698 | Kawade et al. | Nov 1999 | A |
6078186 | Hembree et al. | Jun 2000 | A |
7349223 | Haemer et al. | Mar 2008 | B2 |
7397087 | Chinthakindi et al. | Jul 2008 | B2 |
7872482 | Chong et al. | Jan 2011 | B2 |
8056402 | Hecker et al. | Nov 2011 | B2 |
8440523 | Guillorn et al. | May 2013 | B1 |
8575954 | Chong et al. | Nov 2013 | B2 |
10048289 | Lal et al. | Aug 2018 | B2 |
20020153583 | Frazier et al. | Oct 2002 | A1 |
20030020500 | Altmann et al. | Jan 2003 | A1 |
20030189439 | Kohno et al. | Oct 2003 | A1 |
20040004182 | Kranz et al. | Jan 2004 | A1 |
20040157350 | McQuade et al. | Aug 2004 | A1 |
20040223309 | Haemer et al. | Nov 2004 | A1 |
20050026476 | Mok et al. | Feb 2005 | A1 |
20060027878 | Chinthakindi et al. | Feb 2006 | A1 |
20060257286 | Adams | Nov 2006 | A1 |
20070234786 | Moon | Oct 2007 | A1 |
20080153187 | Luo | Jun 2008 | A1 |
20080246500 | Chong et al. | Oct 2008 | A1 |
20080258059 | Saito et al. | Oct 2008 | A1 |
20090001488 | Magana et al. | Jan 2009 | A1 |
20090114000 | Hecker et al. | May 2009 | A1 |
20100071098 | Mirkin et al. | Mar 2010 | A1 |
20100115671 | Pryadkin et al. | May 2010 | A1 |
20100154085 | Maruyama et al. | Jun 2010 | A1 |
20100205698 | Faucher et al. | Aug 2010 | A1 |
20100229265 | Jin et al. | Sep 2010 | A1 |
20100244867 | Chong et al. | Sep 2010 | A1 |
20100257643 | Reifenberger et al. | Oct 2010 | A1 |
20100263098 | Müller et al. | Oct 2010 | A1 |
20110055982 | Watanabe et al. | Mar 2011 | A1 |
20110089572 | Tezcan et al. | Apr 2011 | A1 |
20110126329 | Despont et al. | May 2011 | A1 |
20130249584 | Lou et al. | Sep 2013 | A1 |
20130252416 | Takeda | Sep 2013 | A1 |
20140151898 | Barwicz | Jun 2014 | A1 |
20140331367 | Lal et al. | Nov 2014 | A1 |
20160252545 | Amponsah | Sep 2016 | A1 |
20160252546 | Amponsah | Sep 2016 | A1 |
20170213792 | Nag et al. | Jul 2017 | A1 |
20180149673 | Huo et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1159001 | Sep 1997 | CN |
1160193 | Sep 1997 | CN |
2465175 | Dec 2001 | CN |
2488061 | Apr 2002 | CN |
1416523 | May 2003 | CN |
101920338 | Dec 2010 | CN |
103235158 | Aug 2013 | CN |
104087505 | Oct 2014 | CN |
104105655 | Oct 2014 | CN |
1085327 | Mar 2001 | EP |
H07120482 | May 1995 | JP |
2005507175 | Mar 2005 | JP |
2005300177 | Oct 2005 | JP |
2010526284 | Jul 2010 | JP |
1685309 | May 2011 | JP |
20090128186 | Dec 2009 | KR |
20170030137 | Mar 2017 | KR |
0120347 | Mar 2001 | WO |
03019238 | Mar 2003 | WO |
2011159351 | Dec 2011 | WO |
2013090887 | Jun 2013 | WO |
2014041677 | Mar 2014 | WO |
2014114860 | Jul 2014 | WO |
Entry |
---|
Yoomin, Ahn et al., “Si multiprobes integrated with lateral actuators for independent scanning probe applications; AFM Si multiprobes with lateral actuators,” Journal of Micromechanics & Microengineering, Institute of Physics Publishing, Bristol, GB, vol. 15, No. 6, Jun. 1, 2005, pp. 1224-1229; doi: 10.1088/0960-1317/15//6/012. |
Koester, S. J. et al., “Wafer-level 3D integration technology,” IBM Journal of Research and Development, International Business Machines Corporation, New York, NY, US, vol. 52, No. 6, Nov. 1, 2008 (Nov. 1, 2008), KP002676160, ISSN: 0018-8646, DOI: 10.1147/JRD.2008.5388565, pp. 583-597. |
Song, Z.G. et al., “Front-end processing defect localization by contact-level passive voltage contrast technique and root cause analysis,” Physical and Failure Analysis of Integrated Circuits, 2002, IPFA 2002, proceedings of the 9th International Symposium on the Jul. 8-12, 2002, Piscataway, NJ, USA, IEEE, Jul. 8, 2002 (Jul. 8, 2002), KP010597768, ISBM: 978-0-7803-7416-4, pp. 97-100. |
Ming-Dou Ker et al., “Fully Process-Compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transaction on Components and Packaging Technologies, IEEE Service Center, Piscataway, NJ, US, Vo. 25, No. 2, Jun. 1, 2002 (Jun. 1, 2002), pp. 309-316, XP011070771, ISSN: 1521-3331; figures 1-7. |
International Search Report and the Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/021538, pp. 1-18, dated Aug. 9, 2017. |
International Preliminary Reporton Patentability, International Patent Application No. PCT/US2017/021538, pp. 1-12, dated Sep. 11, 2018. |
Invitation to Pay Additional Fees, International Patent Application No. PCT/US2017/021538, pp. 1-17, dated Jun. 17, 2017. |
Number | Date | Country | |
---|---|---|---|
20210063470 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62305754 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15454268 | Mar 2017 | US |
Child | 17095862 | US |