The invention relates to the field of heat treatments for materials, particular thin film materials, and more specifically the heat treatments known as Rapid Thermal Processing. These methods are typically able to achieve increases of at least 700° C. over a period of about a minute.
This technique is particularly advantageous for annealing semiconductors which have thin films deposited on substrates.
The inertia of the furnace in which the heat treatment is applied is a continual problem in this type of technique. It is difficult to control temperature increases (and also cooling, particularly but not exclusively for quenching effects).
In addition, temperature sensors are conventionally and by necessity positioned close to the heating elements and close to the substrate in order to determine the temperature as accurately as possible. An industrial adaptation of this type of method to substrates of large dimensions therefore incurs significant costs.
Rapid thermal processing methods based on several types of technologies are currently known:
The first type of method has certain disadvantages, however:
The second type of method has the disadvantage of using a hot chamber which therefore remains at a fixed temperature. The chamber must have dimensions adapted to the surface area of the substrate, which increases energy consumption and hence the costs of an industrial application.
The distinct advantage of the third type of method is the speed of the temperature increase (several hundred degrees per second). However, in certain applications, the substrate is made of glass and thus heats much more quickly on its lower face (in contact with the substrate holder) that on its upper face, which creates temperature gradients across the thickness of the glass. The resulting heat stresses often cause the glass to break.
In all the methods presented above, it is difficult or even impossible to measure the actual temperature of the sample. The temperature measurement is always indirect (on the substrate holder, on a wall of the furnace, or other placement).
The invention aims to improve the situation.
To this end it proposes a method for the heat treatment of a precursor that reacts with temperature, comprising the steps of:
Heat treatment by injection of a hot gas allows setting the temperature of the substrate and of the thin film that it supports. A gas with a high heat-storage capacity is preferably chosen.
For example, argon is a good candidate, already because it is an inert gas (and therefore will not react in an unwanted manner with the thin film), but also because of its heat-storage capacity. The temperature of the gas therefore climbs very quickly and thus provides heat directly to the surface of the substrate.
It is no longer necessary to position a temperature sensor near the substrate. The gas injection can be continuous. Control of the temperature during heating (and cooling) is advantageously achieved using techniques that are very inexpensive to implement. A tool for managing temperature increases and decreases then allows coupling the controls for both heating and cooling the substrate. Injection of gas at the surface of the substrate allows controlling the actual temperature that is applied.
In addition to the temperature of the heat-transfer gas, the flow rate of the gas when it is injected over the precursor is also controlled. As will be seen in reference to
In addition to the temperature of the heat-transfer gas, a distance between the precursor and an outlet for the gas injection over the precursor is also controlled. As will again be seen in reference to
The heat-transfer gas may contain at least one element from among hydrogen, argon, and nitrogen, these gases being advantageous because of their heat transport capacities.
The preheating of the gas comprises, in a concrete embodiment described below, an increase in the gas temperature on the order of 1000° C.
Under these conditions, injection of the gas produces a temperature increase on the order of tens of degrees per second at the surface of the precursor receiving the gas, for a flow rate of injected gas on the order of several liters per minute (for example between 3 and 6 liters per minute).
The temperature increase of the precursor at its surface can reach at least 400° C. in several tens of seconds, with a distance between the precursor and an outlet for injecting gas over the precursor of less than five centimeters.
For cooling, the method may additionally comprise an injection of cold gas, for example after annealing to produce a quenching effect. Advantageously, the surface of the precursor receiving the cold gas can be cooled at a rate of around 100° C. in a few seconds.
Such an embodiment as described above is advantageous, particularly but not exclusively for a precursor containing atomic species from columns I and III, and possibly VI, of the periodic classification of the elements, in order to obtain on the substrate, after the heat treatment, a thin film of I-III-VI2 alloy having photovoltaic properties. It can also be considered for elements from columns I, II, IV, VI (preferably Cu, Zn, Sn, S, or Se) for forming a I2-II-IV-VI4 alloy. Elements from column V can also be considered, such as phosphorus, particularly for the creation of II-IV-V alloys (for example ZnSnP).
The invention also concerns a heat treatment installation for carrying out the above method, and comprising:
In an example embodiment described in detail below, the injector may simply be in the form of a mouth (labeled with the reference 5 in
In one possible embodiment, the heating means comprise a thermal resistor able to release heat due to current flowing in the resistor. The heating means may therefore additionally comprise a circuit for controlling the intensity of this current in order to regulate the heating temperature of the resistor, and hence the temperature of the gas to be injected.
The cooling means may comprise a Peltier effect module and/or a cooling circuit, as well as a control circuit for regulating the cooling temperature of the gas.
It is advantageous to provide in the gas distribution circuit at least one gas shutoff valve (for an injection having a binary operation as will be seen in the description below). This valve may also be used for regulating the flow rate of the injected gas.
The installation advantageously comprises means for moving the injector relative to the precursor, at least in height (possibly in a vertical configuration), in order to adjust the distance between the injector and the precursor (and hence the temperature at the surface of the precursor as described below in reference to
The installation may also comprise means for moving the precursor, relative to the injector, on a belt traveling in a direction perpendicular to an axis of injection of the gas issuing from the injector. One example of this type of installation for implementing a “batch” type of method will be described below in reference to
In cases where the precursor is a thin film deposited on a flexible substrate, the installation can be designed to operate according to a “roll to roll” type of method. For this purpose, the installation comprises two motorized rollers which the substrate is wound around, and the action of the rollers winds the substrate around one roller and unwinds it from the other roller, causing the precursor to advance, relative to the injector, in a direction perpendicular to an axis of injection of the gas issuing from the injector (
Of course, other features and advantages of the invention will be apparent from the detailed description of some possible example embodiments, presented below, and the accompanying drawings in which:
a) and 4(b) illustrate the changes over time of the reaction temperature Tr as a function of gas injection parameters such as the flow rate D of the gas in an injection pipe and the distance x between the outlet mouth of this pipe and the precursor, for a flow rate of D=3 liters per minute (a) and D=6 liters per minute (b) respectively;
a) and 8(b) schematically represent an example where the installation is integrated with an industrial-scale production line, respectively a batch type (a) and a roll-to-roll type (b) implementation.
Below is a non-limiting description of an application of the method of the invention to the production of I-III-VI2 alloys having a chalcopyrite crystal structure with photovoltaic properties. The intent is to cause a precursor (in thin film format) to react at a controlled pressure in a reactive atmosphere. The “I” (and “III” and “VI”) denotes the elements from column I (respectively III and VI) of the periodic classification of the elements, such as copper (respectively indium and/or gallium and/or aluminum, and selenium and/or sulfur). In a conventional embodiment, the precursor contains group I and III elements, and is obtained in the form of a I-III alloy after a first annealing (“reductive annealing”, defined below). Once the group I and III elements have been combined as the alloy obtained after this first annealing, a reactive annealing is performed in the presence of VI element(s), in order to incorporate them into the I-III alloy and to achieve crystallization of the final chalcopyrite I-III-VI2 alloy. This reaction is referred to as “selenization” and/or “sulfuration” in this context.
Of course, in another embodiment, the group VI element may also be initially present in the precursor layer and the method of the invention injects a hot gas to anneal the precursor and obtain its crystallization in a I-III-VI2 stoichiometry.
The description given below uses the following terms:
With reference to
As illustrated in
This property is advantageous, particularly when the substrate is mechanically fragile under conditions involving thermal variations. For example, such is the case with the glass substrates conventionally used in the manufacture of solar panels, on which I-III-VI2 photovoltaic layers are deposited, often with intermediate molybdenum layers.
Thus, a first advantage of such localized annealing on the surface of the precursor is to avoid breakage of the glass substrate.
Measurements of the temperature of a stream of argon exiting the chamber, as a function of:
In this example embodiment, the gas used is argon at a pressure P of 1 bar at the entry 1 to the installation and is at room temperature (about 20° C.).
The components of a device for measuring the temperature of the gas at the outlet 5 are represented in
The change in the temperature Tr over time, for different measured distances x, is shown in
One can thus observe that:
A second advantage of the invention therefore consists of the ability to very closely control the temperature Tr of the gas injected over the precursor, by controlling the flow rate of the gas D and the position x of the substrate relative to the outlet 5.
An installation is represented in
When the power supplies 12 and 22 are controllable, it is not necessary to provide two separate pipes (one hot and one cold) and, in reference to
Tf of the cooling element 24 is controlled by its supply voltage 22, and the same is true for the heating element 14 with its supply voltage 12. In addition, one can make use of the cooling of the cooling element 24 in order to have a cold gas pass through the heating element 14 to accelerate its cooling.
The temperature of the gas is brought from room temperature (for example 25° C.) to 600° C. in one minute. The temperature of the heating element increases. It is stabilized to maintain a plateau at 600° C. for one minute. Then the cooling element is engaged, in this case cooling the gas to 400° C. within a minute. The supply voltages of the two heating and cooling elements are stabilized and the gas flow rate is kept steady to maintain a plateau for one minute at 400° C. Lastly, the gas is cooled from 400° C. to −10° C. in 2 minutes to produce a quenching effect for example. The heating element is shut off and the cooling element is active during this period.
It is thus understood that the method of the invention can advantageously comprise:
In some cases these steps may be exchanged so that successive periods are defined of heating, holding at temperature, or cooling, as represented in
In particular, these steps of heating, holding at temperature, or cooling come one after another in a predetermined succession defining a profile for the variation over time of the temperature applied to the surface of the precursor receiving the gas, such as the example profile represented in
Below is an example of a possible choice of equipment for controlling the temperature of the injected gas.
For example, resistance heaters (in the form of a strip or wire) composed of an alloy of iron, chrome, nickel and aluminum, capable of rising to 1400° C., may be used for the heating elements 14. These are commercially available (for example those offered by the Swedish company Kanthal®).
For the cooling elements, Peltier effect modules or a circuit of cold gas passing through a pipe coil may be used. Peltier effect modules are thermoelectric cooling systems which function as follows: a difference in potential applied to a module can cool to 18° C. below the room temperature. For a further drop in temperature, there are known vapor compressor systems which allow reaching values below 0° C. There are commercially available gas coolers; some of these products can be found on the site www.directindustry.fr.
By applying the invention, it is possible using hot gas propulsion to achieve ultra-rapid temperature changes, on the order of 500° C. in less than half a minute on the surface of a sample, and to do so without thermal inertia. Integrating the method of the invention into an industrial-scale solar panel production line is particularly advantageous, with rapid annealing requiring very short temperature hold times (from 1 to 5 minutes for void annealing of element VI in the precursor for example).
In reference to
We will now describe, in reference to
In a manner similar to the previous embodiment (
The invention can be implemented in a completely automated manner, because a simple solenoid valve at the inlet to the pipe 3 (and/or upstream from the pipe 3) allows a hot (or cold) gas to pass through. An on-off design in the function of such a solenoid valve(s) allows determining the advancement time for the precursor in an exact relation to its processing time.
It is then possible to synchronize the advancement of a precursor and its heat treatment. In particular, one can consider two binary states (injection or non-injection of hot gas) in applying the treatment to the precursor and advancing the precursor. State “1” then corresponds to applying the heat treatment to the precursor, and state “0” corresponds to no heat treatment. Even so, it should be kept in mind that the temperature on the precursor can be closely regulated as a function of:
One will note that it is possible to vary the height of the outlet mouth of the pipe 3, to regulate the desired temperature of the precursor by moving the mouth vertically.
It is also possible to closely regulate the lateral movement of the mouth (in a direction perpendicular to the advancement of the substrate) in order to conduct a succession of localized heat treatments and therefore anneal the entire substrate surface by movement along the two axes perpendicular to the pipe 3. In this manner one can anneal the entire surface of the substrate, or can apply a localized heat treatment.
It is possible to anneal precursors originating from a prior production step and obtained through various techniques (electrolysis, sputtering, screen printing), possibly in the presence of reactive agents.
An ultra-rapid heat treatment can then be applied to the surface of a substrate, within a very wide range of temperatures (from −50° C. to 1000° C.), while closely controlling the speed of the temperature increases and decreases (via the gas flow rate, the gas temperature, and the position of the substrate).
In another advantage of the invention, the injection of gas over the precursor can be conducted under atmospheric pressure and it is therefore unnecessary to perform the injection within an enclosed chamber under vacuum or at low pressure. The injection can be conducted in the open air.
Number | Date | Country | Kind |
---|---|---|---|
11 54015 | May 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2012/050994 | 5/3/2012 | WO | 00 | 11/5/2013 |