Aspects of the present disclosure relate generally to semiconductor structures and, more particularly, to hybrid conductors and methods of making the same.
Copper (Cu) is a commonly used material for metallization layers. Copper has high electrical conductivity providing for relatively low resistance and good integrated chip performance. Copper metallization layers (e.g., metal wires and vias) are often formed using a damascene process in which copper is deposited into a patterned dielectric material. For example, in a dual damascene process a dielectric material is deposited over a semiconductor substrate. The dielectric material is etched to form openings for a via (e.g., through a via hole) and a metal wire (e.g., through a metal trench). The openings are then filled with copper and a planarization process is performed to remove excess copper from the substrate. As technology nodes continue to advance down to 7 nm and beyond, the size of integrated chip components and metalation layers continue to decrease. Less scaled copper barrier and liner reduce copper portion in conductor and increase effective copper resistivity and hence copper conductor resistance. Similarly, the dimensions of vias and metal wires become smaller making it increasingly difficult for damascene processes to fill the via holes and/or metal trenches with copper. As a result, voids may be formed that may lead to electrical opens, and/or high electrical resistance in a metallization layer. Ruthenium (Ru) may be used as a conductor material with superior filling capability, thin adhesion layer requirement, and moderate resistivity. However, chemical mechanical planarization (CMP) is very challenging for ruthenium. Thus, there is a need for an improved or integrated hybrid material for metallization layers for advanced process nodes.
The following presents a simplified summary of one or more embodiments to provide a basic understanding of such embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later.
A method of forming a metallization layer for advanced process nodes according to one embodiment is described. The method of forming a metallization layer may comprise selectively etching an interlayer dielectric (ILD) layer to form a first metal opening, partially filling the first metal opening from the bottom-up with a first conductive material such as ruthenium (Ru), filling the partially filled first metal opening with a sacrificial dielectric, selectively etching the interlayer dielectric (ILD) layer to form a second metal opening, removing the sacrificial dielectric from the first metal opening, partially filling ruthenium (Ru) to both the first and the second metal openings, filling top portions of the first and the second metal openings with cobalt (Co), and removing excess from the first and the second metal openings thereby forming the first and the second interconnect structures.
An integrated circuit according to one embodiment is described. The integrated circuit may include a metal contact comprising a first hybrid interconnect structure disposed within a metallization layer, and a metal comprising a second hybrid interconnect structure disposed within the metallization layer, wherein each of the first and the second hybrid interconnect structures has a top portion and a bottom portion, and wherein the top portion of each of the first and the second hybrid interconnect structures comprises a metal element that is suitable for chemical mechanical planarization (CMP) and the bottom portion of each of the first and the second hybrid interconnect structures comprises ruthenium (Ru). The metal element may comprise cobalt (Co).
These and other embodiments of the invention will become more fully understood upon a review of the detailed description, which follows. Other embodiments of the invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the invention in conjunction with the accompanying figures.
The detailed description set forth below, in connection with the appended drawings, is intended as a description of exemplary embodiments and is not intended to represent the only embodiments in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
In one embodiment, contact (MD) to source/drain 204 may be a hybrid interconnect structure having a top portion comprising cobalt (Co) or copper (Cu), and a bottom portion comprising ruthenium (Ru) as illustrated in
The hybrid interconnect structures of the invention (e.g., contact (MD) to source/drain 204, contact (MP) to gate 206, metal wire 210a, via 212a, and metal/via 210b/212b) may be formed by depositing cobalt (Co) on a top portion and ruthenium (Ru) on a bottom portion of each of the hybrid interconnect structures by chemical vapor deposition (CVD) as further described below. Together, the bilayer of Co and Ru improve metal fills, avoid Ru CMP process difficulties, and lower electrical resistance for advanced process nodes. For example, benefits of ruthenium (Ru) as a contact metal include a very thin adhesion layer of approximately 0.5 nm, no barrier seed layer, superior metal fill capability, and superior reliability as compared to cobalt and/or copper alone. In another embodiment as described above, each of the hybrid interconnect structures, e.g., contact (MD) to source/drain 204, contact (MP) to gate 206, metal wire 210a, via 212a, and metal/via 210b/212b, may include a thin barrier seed layer 205, 207, 214a, 216a, and 218b, respectively, comprising, titanium nitride (TiN), tantalum (Ta), or tantalum nitride (TaN). The metallization layer including the hybrid metal interconnect structures of the invention may have a width of approximately 10-20 nm.
In
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration.” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another—even if they do not directly physically touch each other. For instance, a first die may be coupled to a second die in a package even though the first die is never directly physically in contact with the second die.
One or more of the components, steps, features and/or functions illustrated in the figures may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in the figures may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”