The present invention relates to a thermal infrared solid-state imaging element that converts incident infrared ray into heat and detects the heat, and more particularly to a thermal infrared solid-state imaging element that integrates an electrical signal from a semiconductor sensor by a signal processing circuit to output the electrical signal. The present invention also relates to a method for manufacturing an infrared imaging element.
In a general thermal infrared solid-state imaging element, pixels having a heat insulation structure are two-dimensionally arranged, and an infrared image is captured by using a change in temperature of the pixels due to incident infrared ray. In the case of a thermal infrared solid-state imaging element, for example, a semiconductor element such as a diode is used as a temperature sensor constituting a pixel. In the case of using a semiconductor element, the variation in the electric characteristics and the temperature dependence between elements is very small, so that the characteristic of each pixel can be made uniform.
In a thermal infrared solid-state imaging element using a diode as a temperature sensor, pixels are two-dimensionally arrayed, connected to drive lines for each row, and connected to signal lines for each column. The drive lines are selected in order by the vertical scanning circuit and the switch, and power is supplied from the power source to the pixels through the selected drive lines. The output of the pixel is transmitted to an integration circuit through a signal line, integrated and amplified by the integration circuit, and sequentially output to an output terminal by a horizontal scanning circuit and a switch (for example, see Non-Patent Document 1).
Non-Patent Document 1: Ishikawa et al., “Low cost 320×240 uncooled IRFPA using conventional silicon IC process”, Part of the SPIE Conference on infrared Technology and Applications XXV, published in April 1999, Vol. 3698, p. 556 to 564
The conventional thermal infrared solid-state imaging element adopts a hollow heat insulation structure in which a temperature detection part including a temperature sensor such as a diode is held on a hollow portion by a supporting leg. Therefore, it is necessary to remove a substrate below the temperature detection part, and the temperature detection part, the supporting legs, and the wiring are arranged in the same plane, thus causing problems, such as 1) an area of the region where the temperature detection part, the supporting legs, and the wiring are arranged is limited, 2) a complicated correction circuit cannot be provided for each pixel, and 3) a chip area is increased because a readout circuit is formed outside a pixel array region.
Therefore, an object of the present invention is to provide an infrared imaging element and an infrared imaging array capable of solving the problems 1) to 3) and achieving high performance and miniaturization.
The present invention is an infrared imaging element including: a substrate having a front surface and a back surface and provided with a circuit part; a supporting leg wiring disposed above the front surface of the substrate; and an infrared detection part held on the supporting leg wiring and provided with a diode electrically connected to the circuit part through the supporting leg wiring, the infrared imaging element detecting a temperature change of the infrared detection part as a change of an electrical signal of the diode by the circuit part, wherein the substrate, the supporting leg wiring, and the infrared detection part are stacked in a direction perpendicular to the front surface of the substrate at an interval therebetween.
The present invention is also an infrared imaging array in which the infrared imaging elements are arranged in an array.
As described above, in the infrared imaging element according to the present invention, since a circuit region, a supporting leg region, and an infrared detection region can be stacked as different layers, the number of diodes is increased in the infrared detection region to increase detection sensitivity. In the supporting leg region, the supporting leg wiring can be lengthened to increase the thermal time constant. Therefore, it is possible to provide an infrared imaging element with high infrared detection sensitivity. In addition, a readout circuit and a correction circuit can be provided in the circuit region, and high performance and miniaturization can be achieved.
Further, in the infrared imaging array according to the present invention, the circuit region can be formed in the infrared imaging element constituting each pixel and need not be formed around the pixel array, and therefore, the infrared detection array can be miniaturized.
The infrared imaging element 100 includes a substrate 31 having a front surface and a back surface and provided with a circuit part 32, a supporting leg wiring 4 disposed above the front surface of the substrate 31, and an infrared detection part 13 held on the supporting leg wiring 4 and provided with a diode 2 electrically connected to the circuit part 32 through the supporting leg wiring 4. A temperature change of the infrared detection part 13 is detected by the circuit part 32 as a change of the electrical signal of the diode 2. The substrate 31, the supporting leg wiring 4, and the infrared detection part 13 are stacked in a direction Z perpendicular to the front surface of the substrate 31 at an interval therebetween.
One end of the supporting leg wiring 4 is connected to a metal layer 20 provided on the front surface of the substrate 31, and the other end is connected to a metal wiring 15 provided in the infrared detection part 13.
More specifically, the infrared imaging element 100 includes a first substrate 50 and a second substrate 51. The second substrate 51 has the substrate 31 made of, for example, silicon. The circuit part 32 is provided on the substrate 31. The circuit part 32 includes, for example, an amplification circuit that amplifies an incident signal, and a correction circuit that performs analog and digital correction, and outputs the processed signal as an output signal. The top of the circuit part 32 is covered with an insulating film 33 made of, for example, silicon oxide. The insulating film 33 is provided with a wiring portion 34 electrically connected to the circuit part 32. On the insulating film 33, a metal layer 35 electrically connected to the wiring portion 34 is provided.
The metal layer 20 of the first substrate 50 is connected on the metal layer 35. On the metal layer 20, the supporting leg wiring 4 is provided. The supporting leg wiring 4 has a structure in which the periphery of a conductive film 17 of metal or the like is covered with an insulating film 18 of silicon oxide or the like. However, if the conductive film 17 is a material that does not deteriorate in an atmosphere such as oxygen and can sufficiently maintain strength, the entire conductive film 17 does not need to be covered with the insulating film 18 but, for example, only the upper surface or the lower surface may be covered.
The infrared imaging element 100 is provided with two supporting leg wirings 4, and one end of each supporting leg wiring 4 is electrically connected to the metal layer 20, and the other end is connected to the diode 2 of the infrared detection part 13 through the metal wiring 15. The diode 2 is provided in an insulating film 7 such as an oxide film or a nitride film, and a BOX oxide film 3 is formed thereon. Instead of the diode 2, an element whose electrical characteristics change due to temperature change may be used.
In the infrared imaging element 100, the diode 2, the insulating film 7, and the BOX oxide film 3 form an infrared detection region 41 (which also serves as an infrared absorption region 43). Further, the supporting leg wiring 4 forms a supporting leg region 42 for holding the infrared detection region 41 in the air. The circuit part 32 formed on the substrate 31 and connected to the diode 2 by the supporting leg wiring 4 forms a circuit region 44.
As can be seen from
Here, in the infrared imaging element 100, the infrared ray incident from the Z-axis direction in
1) proportional to the area of the XY plane of the infrared detection part 13 which is the light receiving area, and
2) inversely proportional to the ease of heat dissipation from the infrared detection part 13 (hereinafter referred to as “heat conductance”).
Since the ease of heat dissipation from the infrared detection part 13 is substantially determined by the ease of heat dissipation from the supporting leg wiring 4, extending the supporting leg wiring 4 increases the heat conductance and increases the temperature rise. Further, the temperature rise can be similarly increased by enlarging the area of the infrared detection part 13.
The temperature rise of the infrared detection part 13 is detected as a change of the electrical signal of the diode 2. For example, when a plurality of diodes 2 are connected in series and operated at a constant current, the change in forward voltage of the diodes 2 with the temperature rise is proportional to the number of diodes 2. That is, the number of diodes 2 connected in series can be increased with the expansion of the infrared detection part 13, and as a result, the detection sensitivity can be improved. That is, expanding the infrared detection region 41 and the supporting leg region 42 makes it possible to improve the infrared detection sensitivity.
On the other hand,
As apparent from
On the other hand, as described above, in the infrared imaging element 100 according to the first embodiment of the present invention, the infrared detection region 41 and the supporting leg region 42 can be expanded to the entire width of one pixel, and the detection sensitivity can be improved and the size of the pixel can be reduced.
That is, in the infrared imaging array according to the first embodiment of the present invention, the circuit region 44 is provided below the infrared detection region 41 and the supporting leg region 42, in other words, can be formed inside the infrared imaging element 100 constituting each pixel, and therefore it does not have to be formed around the pixel array. On the other hand, in the conventional infrared imaging element 900 having a hollow structure on the substrate 31, no circuit part can be provided in the substrate 31, and therefore, as shown in
Thus, in the infrared imaging array (chip) in which the infrared imaging elements 100 according to the first embodiment of the present invention are arranged in an array, there is no need to form a scanning circuit or readout circuit outside the pixel array region, and the chip area can be reduced.
Furthermore, in the infrared imaging element 100, a correction circuit can be provided in the circuit part 32 of each element, and correction can be performed by analog processing or digital processing for each pixel.
In the circuit of
In the circuit of
In the circuit of
In the circuit of
Next, a method for manufacturing the infrared imaging element 100 according to the first embodiment of the present invention will be described with reference to
Step 1: As shown in
Step 2: As shown in
Step 3: As shown in
Step 4: As shown in
Step 5: As shown in
Step 6: As shown in
Step 7: As shown in
Step 8: As shown in
Step 9: As shown in
Through the above steps, the infrared imaging element 100 according to the first embodiment of the present invention as shown in
In the infrared imaging element 200, the metal wiring is also provided immediately above the supporting leg wiring 4 connected to the metal layer 20, and a micro bump bonding strength reinforcing beam 23 formed by separating a portion of the infrared detection part 13 is provided thereon.
That is, in the infrared imaging element 200, in the first substrate 50, one end of the supporting leg wiring 4 is connected, by the metal wiring 15, also to the micro bump bonding strength reinforcing beam 23 formed of the BOX oxide film 3 and the insulating film 7 as in the infrared detection part 13.
In the infrared imaging element 200, since the micro bump bonding strength reinforcing beam 23 is supported on the second substrate 51 using the metal wiring 15 or the like, even if the sacrificial layer 10 is formed of an organic material or the like, in the step of bonding the first substrate 50 and the second substrate 51 (step 8 (
In the infrared imaging elements 300, 310, and 320 according to the third embodiment of the present invention, the surface of the infrared detection part 13 opposite to the substrate 31 includes an electromagnetic wave absorbing structure.
The electromagnetic wave absorbing structure is selected from the group consisting of a protrusion 60 of a periodic structure formed on the infrared detection part 13, a BOX oxide film 63 of a texture structure provided on the surface of the infrared detection part 13, and an infrared absorbing film 65 provided on the infrared detection part 13.
Specifically, in the infrared imaging element 300 shown in
In the infrared imaging element 310 shown in
Further, in the infrared imaging element 320 shown in
The wavelength of the electromagnetic wave to be absorbed is changed by changing the structure or material of the protrusion 60, the BOX oxide film 63 of the texture structure, or the infrared absorbing film 65 constituting the electromagnetic wave absorption structure. This makes it possible to detect not only infrared ray but also visible light, near infrared light, electromagnetic waves having a longer wavelength, and the like.
As described above, in the infrared imaging elements 300, 310, and 320 according to the third embodiment of the present invention, it is possible to change the absorption wavelength, narrow or broaden the band, and improve the absorptivity.
In the infrared imaging element 400, the infrared detection part 13 has a region 30 in which the film thickness in the direction perpendicular to the front surface of the substrate 31 is partially thin.
That is, in the infrared imaging element 400, the portion where the diode 2 is not disposed is partially removed in the infrared detection part 13, the infrared detection part removal region 30 is provided, and the infrared detection part 13 becomes thinner.
In general, the response speed of the infrared imaging element, that is, the thermal time constant can be represented by the ratio of the heat capacity of the infrared detection part 13 to the ease of heat dissipation (heat conductance) from the infrared detection part 13. That is, by reducing the heat capacity of the infrared detection part 13, it is also possible to detect high-speed changes in subject temperature.
In the infrared imaging element 400 according to the fourth embodiment of the present invention, the heat capacity of the infrared detection part 13 is reduced and the detection response speed is improved by providing the infrared detection part removal region 30 without reducing the light receiving area of the infrared detection part 13.
Although in the infrared imaging element 400, the portion in which the diode 2 is not disposed in the infrared detection part 13 is partially removed and thinned, in the infrared imaging element 410, all the portions in which the diodes 2 are not disposed are removed and a plate-shaped infrared absorbing umbrella 24 is separately provided. The infrared absorbing umbrella 24 is made of, for example, silicon nitride, and is formed so as to cover substantially the entire infrared imaging element 410.
The infrared imaging element 410 improves the detection response speed while maintaining the infrared sensitivity of the subject by reducing the heat capacity while maintaining the light receiving area of the infrared detection part.
The subsequent process of
In the infrared imaging element 500 according to the fifth embodiment of the present invention, an infrared reflection film 40 is provided on the front surface of the substrate 31, specifically, on the insulating film 33 between the first substrate 50 and the second substrate 51.
As shown in
Therefore, in the infrared imaging element 500 according to the fifth embodiment, the infrared reflection film 40 is provided on the insulating film 33 of the second substrate 51 to reflect infrared rays having penetrated through the BOX oxide film 3 and having entered from the gap between the adjacent infrared detection parts 13 and allow the BOX oxide film 3 to re-absorb the infrared rays. Furthermore, the incidence of infrared rays on the circuit part 32 is prevented.
As described above, in the infrared imaging element 500 according to the fifth embodiment, the infrared reflection film 40 is provided to reflect and re-absorb the infrared rays, thereby improving the infrared detection sensitivity and simultaneously preventing the incidence of infrared rays on the circuit part 32 to achieve low noise.
The infrared reflection film 40 may be formed simultaneously with a metal layer 35 of the second substrate 51 or may be formed of another material in order to further improve the reflectance.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-100723 | May 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/002640 | 1/29/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/216265 | 11/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5627112 | Tennant et al. | May 1997 | A |
6034374 | Kimura et al. | Mar 2000 | A |
6094127 | Yong | Jul 2000 | A |
7442599 | Maa | Oct 2008 | B2 |
8980671 | Hongo | Mar 2015 | B2 |
20060054823 | Yon et al. | Mar 2006 | A1 |
20090152467 | Cheon et al. | Jun 2009 | A1 |
20160153837 | Kakimoto et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
9-210769 | Aug 1997 | JP |
10-185681 | Jul 1998 | JP |
11-211558 | Aug 1999 | JP |
2002-531860 | Sep 2002 | JP |
2006-86535 | Mar 2006 | JP |
WO 0034751 | Jun 2000 | WO |
WO 2014199583 | Dec 2014 | WO |
Entry |
---|
International Search Report dated Apr. 10, 2018 in PCT/JP2018/002640 filed Jan. 29, 2018. |
Ishikawa, T. et al., “Low-cost 320 × 240 uncooled IRFPA using conventional silicon IC process,” Part of the SPIE Conference on infrared Technology and Applications XXV, vol. 3698, Apr. 1999, pp. 556-564. |
Number | Date | Country | |
---|---|---|---|
20200271527 A1 | Aug 2020 | US |