Integrated circuit package having a low profile

Information

  • Patent Grant
  • 10991644
  • Patent Number
    10,991,644
  • Date Filed
    Thursday, August 22, 2019
    5 years ago
  • Date Issued
    Tuesday, April 27, 2021
    3 years ago
Abstract
A method of providing a sensor IC package can include applying a film to a leadframe having first and second surfaces, mounting at least one component to the film, and applying a pre-mold material to cover at least a portion of the leadframe and the passive component while leaving a first side of the leadframe exposed. The film can be removed and a die attached to the first side of the leadframe. At least one electrical connection can be formed between the die and the leadframe. The assembly of the die, the leadframe, and the pre-mold material can be encapsulated with a final mold material to provide a low profile IC package.
Description
BACKGROUND OF THE INVENTION

Techniques for semiconductor packaging are well known in the art. In general, a semiconductor die is cut from a wafer, processed, and attached to a die attach pad of a lead frame. The subassembly may then be overmolded with a plastic or other insulative and protective material to form an integrated circuit (IC) package.


After packaging, the IC may then be placed on a circuit board with other ICs and components, including passive components such as capacitors, resistors, and inductors, which can be used for filtering and other functionality. For example, in the case of a magnetic field sensor integrated circuit containing a magnetic field sensing element, components such as capacitors are often required to reduce noise and enhance EMC (electromagnetic compatibility).


Magnetic field sensors including a magnetic field sensing element, or transducer, such as a Hall Effect element or a magnetoresistive element, are used in a variety of applications to detect aspects of movement of a ferromagnetic article, or target, such as proximity, speed, and direction. Illustrative applications include, but are not limited to, a magnetic switch or “proximity detector” that senses the proximity of a ferromagnetic article, a proximity detector that senses passing ferromagnetic articles (for example, magnetic domains of a ring magnet or gear teeth), a magnetic field sensor that senses a magnetic field density of a magnetic field, and a current sensor that senses a magnetic field generated by a current flowing in a current conductor. Magnetic field sensors are widely used in automobile control systems, for example, to detect ignition timing from a position of an engine crankshaft and/or camshaft, and to detect a position and/or rotation of an automobile wheel for anti-lock braking systems.


In some applications it is desirable to provide a back bias magnet with magnetic poles on the magnet surface adjacent to the magnetic field transducer. For example, as described in a U.S. Pat. No. 5,781,005 entitled “Hall-Effect Ferromagnetic-Article-Proximity Sensor,” which is incorporated by reference, the near presence of opposite poles serves to short out the lines of flux when no ferromagnetic article is present, thereby presenting a significant and easily recognizable difference between an article present (e.g., gear tooth present) condition and an article absent (e.g., gear valley present) condition and maintaining a low magnetic flux density baseline regardless of airgap. Because of the easily recognizable difference in the magnetic field signal, these types of arrangements are advantageous for use in sensors in which it is necessary to detect the presence/absence of a magnetic article, such sensors sometimes being referred to as True Power On Sensors, or TPOS sensors.


Generally, back bias magnets and concentrators are held in place relative to the magnetic field sensing element by mechanical means, such as an adhesive as shown in a U.S. Pat. No. 6,265,865 entitled “Single Unitary Plastic Package for a Magnetic Field Sensing Device,” which is incorporated by reference. Other sensors are manufactured so that the sensor and the back bias magnet or concentrator are integrally formed. A magnetic field sensor of this type is described in a U.S. Patent Application Publication No. 2010/0141249 entitled “Magnetic Field Sensors and Methods for Fabricating the Magnetic Field Sensors,” which is incorporated by reference, in which a concentrator or magnet may be formed by a liquid encapsulant or a combination of a liquid encapsulant and permanent magnet in a cavity on the side of the sensor opposite the target.


There are many package types and fabrication techniques in use for providing integrated circuit magnetic field sensors. For example, the semiconductor die in which the magnetic field sensing element is formed may be attached to a lead frame by various techniques, such as with an adhesive tape or epoxy, and may be electrically coupled to the lead frame by various techniques, such as with solder bumps or wire bonding. Also, the lead frame may take various forms and the semiconductor die may be attached to the lead frame in an orientation with the active semiconductor surface (i.e., the surface in which the magnetic field sensing element is formed) being adjacent to the lead frame in a so called “flip-chip” arrangement, with the active semiconductor surface opposite the lead frame surface in a so called “die up” arrangement, or with the semiconductor die positioned below the lead frame in a so called “lead on chip” arrangement.


Molding is often used in fabricating integrated circuit magnetic field sensors to provide the protective and electrically insulative overmold to the semiconductor die. Transfer molding has also been used to form two different molded portions for various reasons. For example, in a U.S. Pat. No. 7,816,772 entitled “Methods and Apparatus for Multi-Stage Molding of Integrated Circuit Package” which is incorporated by reference, a first molded structure is formed over the semiconductor die to protect wire bonds and the device is overmolded with a second molded structure formed over the first molded structure. In a U.S. Patent Application Publication No. 2009/0140725 entitled “Integrated Circuit Including Sensor having Injection Molded Magnetic Material,” which is incorporated by reference, an injection molded magnetic material encloses at least a portion of a magnetic field sensor.


SUMMARY OF THE INVENTION

Embodiments of the invention may include the use of a film assist process to build a multi-part package with passive components to provide an IC package having a lower profile package than for conventional IC packages. An initial package assembly may or may not have a Silicon die and includes one or more passive components referenced on the same mounting plane as the leadframe.


In embodiments, a leadframe and components may be mounted on tape with a film assist process that keeps certain surfaces exposed for further processing. For example, wire-bonds can be used to make desired electrical connections from a die to the leadframe. Further processing can include molding to enclose the wire bonds, leadframe and additional components to create the final package.


In one aspect, a method comprises: applying a film to a leadframe having first and second surfaces, wherein the film is applied to the second surface of the leadframe; mounting at least one component to the film; applying a pre-mold material to cover at least a portion of the first surface of the leadframe and the at least one component; removing the film to expose the second surface of the leadframe; attaching a die to the second surface of the leadframe; forming at least one electrical connection between the die and the leadframe; and encapsulating the die, the leadframe, the at least one component and the pre-mold material with a final mold material to provide an IC package.


A method can include one or more of the following features: attaching a magnet to the opposite side of the leadframe as the die, the at least one component comprises one or more of a capacitor, resistor, inductor, and/or coil, the at least one component comprises one or more active components, the one or more active component comprises a transistor, transducer, and/or circuit, a magnetic field sensing element coupled to the die, the at least one component and the leadframe are substantially co-planar, the at least one electrical connection comprises a wirebond, a thickness of the IC package is less than 1.25 mm, a total thickness of the leadframe and the pre-mold material is less than about 0.75 mm, a thickness of the leadframe is less than about 0.35 mm, the IC package has exactly two leads, the IC package has exactly three leads, attaching a magnet to the opposite side of the leadframe as the die, wherein the magnet abuts the pre-mold material, providing wirebonds between the die and the leadframe, applying the pre-mold material, and then providing wirebonds to the at least one component, which is on an opposite side of the leadframe as the die, the at least one component is secured in position by the pre-mold material, connecting the at least one component to the leadframe with a wirebond, the at least one component includes first and second passive components with respective wirebonds, and/or the portion of the leadframe attached to the die comprises a non-conductive material.


In another aspect, a method comprises: employing a film having first and second surfaces; mounting at least one component to the first surface of the film; mounting leadframe portions to the first surface of the film; applying a pre-mold material on the first surface of the film to cover at least a portion of the passive component and the at least one of the leadframe portions; removing the film; attaching a die to the pre-mold material; forming at least one electrical connection from the at least one component to one of the leadframe portions and/or the die; and encapsulating the die, the at least one component, and the pre-mold material with a final mold material to provide an IC package.


A method can further include one or more of the following features: the at least one component comprises one or more of a capacitor, resistor, inductor, coil, transistor, transducer and/or circuit, the die includes a magnetic field sensing element, the at least one electrical connection comprises a wirebond, a thickness of the IC package is less than 1.25 mm, providing wirebonds between the die and the leadframe portions, applying the pre-mold material, and then providing wirebonds to the at least one component, and/or the at least one component is secured in position by the pre-mold material.


In a further aspect, an IC package comprises: a leadframe having first and second surfaces; at least one component supported by the leadframe; a pre-mold material covering at least a portion of the first surface of the leadframe and the at least one component and securing the at least one component in position; a die supported by the second surface of the leadframe; at least one electrical connection between the die and the leadframe; and encapsulant encapsulating the die, the leadframe, the at least one component, and the pre-mold material to provide an IC package.


An IC package can further include one or more of the following features: a magnet on the opposite side of the leadframe as the die, the at least one component comprises one or more of a capacitor, resistor, inductor, coil, active component, transistor, transducer, and/or circuit, a magnetic field sensing element on or about the die, the at least one component and the leadframe are substantially co-planar, the at least one electrical connection comprises a wirebond, a thickness of the IC package is less than about 1.25 mm, a total thickness of the leadframe and the pre-mold material is less than about 0.75 mm, a thickness of the leadframe is less than about 0.35 mm, the IC package has exactly two leads, the IC package has exactly three leads, and/or a magnet at the opposite side of the leadframe as the die, wherein the magnet abuts the pre-mold material.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention, as well as the invention itself may be more fully understood from the following detailed description of the drawings, in which:



FIG. 1A is side view of a sensor IC package in accordance with example embodiments of the invention;



FIG. 1B is a side view of a further sensor IC package in accordance with example embodiments of the invention;



FIG. 2A is a top view of a sensor IC package at a first stage of assembly in accordance with example embodiments of the invention;



FIG. 2B is a side view of the sensor IC package at a first stage of assembly of FIG. 2A;



FIG. 2C is a top view of a sensor IC assembly having a non-conductive die paddle at a first stage of assembly in accordance with example embodiments of the invention;



FIG. 2D is a cross-sectional view of the assembly of FIG. 2C;



FIG. 2E is a cross-sectional view of the assembly of FIG. 2C with the addition of a die;



FIG. 3A is a partially transparent view of a sensor IC package fabricated in accordance with example embodiments of the invention;



FIG. 3B is perspective view from the back of the sensor IC package of FIG. 3A;



FIG. 3C is a cross-sectional view along a first section line of the sensor IC package of FIG. 3A;



FIG. 3D is a cross-sectional view along a second section line of the sensor IC package of FIG. 3A;



FIG. 3E is a partially transparent view of a sensor IC package having a magnet fabricated in accordance with example embodiments of the invention;



FIG. 4 is a process flow diagram for providing a sensor IC package in accordance with example embodiments of the invention; and



FIG. 5 is a schematic representation of example leadframe which can be secured to a film to provide a low-profile sensor IC package.





DETAILED DESCRIPTION


FIG. 1A shows an example integrated circuit (IC) package 100 fabricated with the use of a film in a multi-stage molding process in accordance with example embodiments of the invention to provide a lower profile than conventional IC packages. The IC package 100 includes a leadframe 102 generally in the same plane as a passive component 104, such as a capacitor. A pre-mold material 106 covers some of the leadframe 102 and the passive component 104. A die 108 is supported by the leadframe 102. A final mold material 110 encapsulates the die/leadframe assembly. Prior to encapsulation, wirebonds 112 can be formed to make electrical connections between the die 108 and the leadframe 102. The IC package 100 may include a magnetic sensing element 114, which may be formed on or about the die 108, and the die can include circuitry 116 to process information from the magnetic sensing element 114.



FIG. 1B shows an example IC package 100′ similar to the sensor IC package 100 of FIG. 1B with the addition of a magnet 120 encapsulated within the final mold material 110′. The magnet 120 can back bias the sensing element to meet the needs of a particular application.



FIGS. 2A and 2B show an example assembly in a first stage of processing for the IC package 100 of FIG. 1A in which common reference numbers indicate like elements. The assembly includes a film 150 on which the leadframe 102 is supported. In example embodiments, the leadframe 102 can include a number of portions including an additional leadfinger 102a for external 10 connections. Leadframe 102 can provide a die paddle to support the die 108. In example embodiments, the film 150 includes an adhesive to secure one side of the leadframe 102 to the film. The passive component 104 is also secured to the film 150. In the illustrated embodiment, the passive component 104 comprises a capacitor having first and second ends 104a, 104b that are larger in size than the middle portion so that only the ends are secured to the film 150.


The first mold material 106, which can also be referred to as pre-mold material, covers the lead frame portions 102 and passive component 104. As can be seen, leadframe portions can extend from the pre-mold material to provide external 10 connections for the package. In embodiments, a surface of the leadframe 102 secured to the film 150 is left uncovered by the first mold material 106 to allow placement of a die on the leadframe. Removal of the film 150 enables placement of the die 108 (FIG. 1A) on the die paddle 102a of the leadframe 102, making wirebond connections 112 to the leadframe 102, and the like. In embodiments, the pre-mold 106 is applied in a film assist molding process. In example embodiments, a mold is clamped to the leadframe 102 and film 150 together. The film 150 can be held against a flat surface to support the film 150 and leadframe 102. In this case the passive component(s) 104 is also applied to the film/tape 150. The top cavity of the mold tool forms the shape of the pre-mold 106 during the injection process.


In some embodiments, a die can be supported by a non-conductive material instead of conductive leadframe material. For example, as shown in FIGS. 2C and 2D, conductive leadframe portions 102′ and a non-conductive die paddle 103 can be secured to a film 150′. A capacitor 104 can also be placed on the film. The die-supporting portion 102a of the leadframe in FIG. 2A, which comprises a conductive material such as plastic, can be replaced by the non-conductive die paddle 103. The non-conductive die paddle 103 can be secured to the film 150 along with the lead frame portions 102 and passive component 104. An optional magnetic layer 105 can be provided in the die paddle 103. A pre-mold material (not shown) can cover a portion of the lead frame portions and component 104, as described above, after which the film 150′ can be removed. As shown in FIG. 2E, a die 108′ can be secured to the assembly after which overmolding can be performed.


It should be noted that any practical number of components, such as the capacitor 104 shown in FIG. 2B, can be added to the embodiments of FIGS. 2C-2E. In one embodiment, the die paddle 103 is not connected to the leads. In other embodiments, the die paddle 103 is connected to the leads.


It is understood that the die paddle 103 can comprise a material, such as epoxy mold compound premolded, a metal, for example a piece of copper, in one embodiment as a portion of the leadframe, or a ferromagnetic material, including but not limited to a soft ferromagnetic material, such as a permalloy or a steel, or any other suitable material. In another embodiment the die paddle 103 is pre-molded to leave an opening for a component, such as the capacitor 104 of FIG. 2B to be electrically connected, including, but not limited to, by wire bonding. In embodiments, the pre-mold (106 of FIG. 2A) can form the non-conductive die paddle 103 so that the die is attached to the premold 106 by a material such as an epoxy and then wire bonded to the die-side of the leads after pre-mold 106 application and before overmolding with encapsulant. The film 150 can be removed prior to die attach, wire bonding, and overmolding the assembly.


In another embodiment the die may be attached to leads using a flip-chip technology, for example, using solder or other reflowable electrical material to connect the die to the leads of the leadframe which is secured by the pre-mold material. In such a case, a wire bond may be used to connect a leadframe portion to a passive element such as capacitor. This may be two different lead portions, for example, to connect the passive element between two leads. It should be noted that this connection also places the capacitor between two bonding pads of the die, where the two bonding pads are connected to the same lead portions by the solder bumps or other conductive elements.


In embodiments, the conductive leadframe material 102′ is outside a perimeter of the die 108 (FIGS. 2C-2E). The nonconductive die paddle 103 eliminates conductive material, e.g., copper, behind the magnetic sensing element for reducing eddy currents and increasing sensor performance.



FIGS. 3A-3D show an example sensor IC package after removal of the film, placement of the die 108, and application of the encapsulant 110, which can be referred to as overmold material. over the die 108 and pre-mold material 106. FIG. 3A is a partially transparent perspective view of a sensor IC package fabricated in accordance with example embodiments of the invention. FIG. 3B shows a partially transparent back view of the sensor IC package of FIG. 3A. FIG. 3C shows a partially transparent cross-sectional view along a first section line and FIG. 3D shows a partially transparent cross-sectional view along a second section line, which is perpendicular to the first section line.


As can be seen, in an example embodiment, a surface of the lead frame 102 is level with the pre-mold material, which was applied while the film 150 (FIG. 2B) was present. The leadframe 102 and passive component 104 are set to the same plane to allow connection to the film 150 which prevents mold contamination on these surfaces. This allows both the leadframe 102 and the passive component 104 to be wire bonded 112 to each other. In addition, these components can be connected using a bumped chip and reflowed. U.S. Patent Publication No. 2019/0157465, which is incorporated herein by reference, shows example bumped chip embodiments. As can also be seen, the passive component 104 is generally in the same plane as the leadframe 102. This allows the passive component 104 to be wire bonded 112 or a bumped connection to be made. FIG. 3E shows the sensor IC package of FIG. 2C with the addition of a back bias magnet 120.


With this arrangement, which is enabled by the film 150, a profile is achieved that is less than for conventional sensor IC packages. Example thicknesses are shown in FIG. 2B, where a first thickness T1 of the leadframe 102 is in the order of 0.35 mm, a second thickness T2 of the passive component 104 is in the order of 0.5 mm, and a third thickness T3 of the pre-mold material 106 is in the order of 0.65 mm. Example thickness shown in FIG. 1A include a package thickness having a first package thickness PT1 from a bottom of the die 108 to the top of the package in the order of 0.5 mm and a second package thickness PT2 from a bottom of the die to the bottom of the package in the order of about 0.75 mm, for a total package thickness of about 1.25 mm. It will be readily appreciated by one skilled in the art that thinner sensor IC packages are often desirable. The film 150 allows the pre-mold 106 to be completed while keeping the surfaces of the leadframe 102 and passive component 104 contaminant free. As a result, the completed package is thinner than conventional IC packages by allowing the passive component 104 to be within the plane of the leadframe 102. This process then allows the die 108 to be less than the height of the passive component 104 because they are no longer on the same side of leadframe 102.


It is understood that any practical number of components can be secured to the film and connected to the die or other components. This can include passive electrical components such as resistors, inductors and capacitors, as well as passive magnetic elements, such as magnets, ferrous shields or shunts. In some embodiments, first and second capacitors and/or inductors, RLC circuits and the like, are wirebonded to the leadframe or other location. It is understood that any practical number of capacitors and components in general at least partially covered by pre-mold material can be used to meet the needs of a particular application.


Leadframes 104 can be laminated to the film via multiple processes using heat and/or pressure. After the molding of the pre-mold 106 the film is removed using a process appropriate for the film 150. This can be with heat or UV being applied to the film 150 as it is stripped from the assembly. This film can have the passive component(s) 104 applied by pick and place machines on the film 150 in selected locations relative to the leadframe 102. The placement tools can be designed with limits for pressure and time. This will allow the passive component(s) 104 to be located on the film 150 as needed.



FIG. 4, in conjunction with FIGS. 1A-3E, show an example process flow for providing a low-profile sensor package in accordance with illustrative embodiments of the invention. In step 400, film/tape is laminated to a leadframe 102 and the assembly is loaded to a pick and place machine, for example, in step 402. In step 404, passive components 104 are mounted onto the film to provide an assembly. In step 406, a pre-mold material 106 is applied to the assembly to cover the leadframe 102 and passive component 104 while leaving a surface of the leadframe and a portion of the passive component exposed.


In step 408, the film/tape is removed from the assembly. In optional step 410, the assembly can be clean, such as with a suitable plasma cleaning process. In step 412, a die 108 is attached to the exposed leadframe 102 and cured in step 414. In optional step 416, the assembly is cleaned if needed. In step 418, wirebonds 112 can be attached to make electrical connections between the die and leadframe portions. In optional step 420, a magnet 120 can be attached to the pre-mold material 106 on an opposite side of the leadframe 102 as the die 108. In step 422, the assembly can be encapsulated with a final mold material.


It is understood that a lead frame can having a wide range of configurations to meet the needs of a particular application. The leadframe can include any practical number of non-contiguous portions and any practical number of lead fingers to provide external connections.



FIG. 5 shows an example leadframe 510 which can be secured to a film, as described above, to provide a low-profile sensor IC package. The leadframe 510 can include a plurality of leads 514, 516, 518 at least two of which (and here, all three) include a respective die attach portion 524, 526, 528 and connection portion 534, 536, 538. The lead frame 510 has a first surface 510a and a second, opposing surface. As will be explained, the die attach portion 524, 526, 528 of the leads (referred to herein sometimes as simply the die portion) can support a semiconductor die (not shown). While the lead frame 510 is shown to include three leads 514, 516, 518, it will be appreciated by those of ordinary skill in the art that various numbers of leads, such as between two and eight, are possible.


The connection portion 534, 536, 538 of the leads extends from a first end 534a, 536a, 538a proximate to the respective die portion 524, 526, 528 to a second, distal end. Generally, the connection portion 534, 536, 538 of the leads is elongated and is suitable for making electrical connection to electronic systems and components (not shown) outside of the integrated circuit package, such as a power source or microcontroller.


The lead frame 510 may have tie bars 546, 547549 to hold the leads 514, 516, 518 together during manufacture. Tie bar 546 is positioned near the die portion 524, 526, 528 of the leads and the first end 534a, 536a, 538a of the connection portions. Another tie bar portion is shown at 547 at the opposite side of the die portion 524, 526, 528 from the lead ends 534a, 536a, 538a. Another tie bar portion is shown at 549 on the outer side of the die portions 524, 528. In addition to facilitating manufacture, the tie bar(s) can also serve to protect the leads during handling, for example, by maintaining coplanarity of the elongated connection portions 534, 536, 538.


The lead frame 510 may be formed from various materials and by various techniques, such as stamping or etching. As one example, the lead frame 510 is a copper lead frame pre-plated with NiPdAu. Other suitable materials for the lead frame include but are not limited to aluminum, copper, copper alloys, titanium, tungsten, chromium, Kovar™, nickel, or alloys of the metals. Furthermore, the lead frame 10 may be comprised of a non-conductive substrate material, such as a standard PC board with FR-4 and copper traces, or a Kapton material with copper or other metal traces (for example a flexible circuit board).


The lead and lead frame dimensions can be readily varied to suit particular application requirements. In one illustrative example, the leads 514, 516, 518 have a thickness on the order of 0.25 mm and the connection portions 534, 536, 538 are on the order of 16 to 18 mm long. In other embodiments the thickness of the material may be less or more than 0.25 mm, for example a range of 0.1 mm to 0.5 mm. The length of the leads may also be longer or shorter than described above for example on the order of 10 mm to 25 mm. Typically, the lead frame which will be used to form a single integrated circuit, is formed (e.g., stamped) with a plurality of other identical or similar lead frames in a single stamping process for example, and the lead frames separated during manufacture for formation of individual integrated circuits. The lead frame may be flexible or rigid, depending on the material, dimensions, and requirements. Example leadframe materials include metals, such as copper, and/or soft ferromagnetic materials, including but not limited to Kovar.


In the illustrated embodiment, the die attach portion of one or more of the leads (here, illustrative die attach portions 524 and 528 of respective leads 514, 518) includes at least two separate portions. Die attach portion 524 includes two separate portions 524a and 524b, each of which has an end that is spaced from and proximate to the end of the other lead portion. Similarly, die attach portion 528 includes two separate portions 528a and 528b, each of which has an end that is spaced from and proximate to the end of the other lead portion.


The die attach portion of one or more of the leads further may further include at least one separating feature, here labeled 532, that serves to separate areas of a die attach portion from each other. The separating features 532 are provided in order to prevent solder or other material from adversely impacting adjacent solder or other connections to other elements. If the die were electrically attached to the lead frame through a flip-chip or other solder process the separating features 532 would prevent the solder or attach material (maybe a conductive epoxy in some embodiments) from adversely impacting other attachment areas of the lead frame. The separating features 532 may take various forms. As examples, the separating features 532 may be recessed or raised areas. The illustrative separating features 532 are recessed areas, such as may be formed by etching, partial etching, coining, or stamping.


The lead frame 510 and more particularly one or more of the die attach portions 524, 526, 528 may contain one or more slots (not shown). As is well known, in the presence of a changing, AC or transient magnetic field (e.g., a magnetic field surrounding a current carrying conductor), eddy currents can be induced in a conductive lead frame. Slots can move the position of the eddy currents and also reduce a size (e.g., a diameter or path length) of the closed loops in which the eddy currents travel in the lead frame to result in a smaller magnetic field error so that a Hall effect element experiences a smaller magnetic field from the eddy currents than it would otherwise experience, resulting in less error in the measured field and enhanced overall performance of the sensor. Details of a slotted lead frame may be found in U.S. Patent Application Publication No. 2012/0086090 for example, which application is incorporated herein by reference in its entirety.


Various techniques and materials can be used to attach a die to the die attach portions 524, 526, 528. Since the die 540 is attached across multiple leads 514, 516, 518, the mechanism for attaching the die to the lead frame 510 can include non-conductive adhesive and may take various forms, such as a non-conductive, electrically insulative adhesive, such as a thermoset adhesive (e.g., a two part epoxy), epoxy, tape, such as a Kapton® tape, or die attach film.


In addition to the magnetic field sensing element, the die may support other electronic components and circuitry, and the sensing element and other electronic components supported by the die can be coupled to the leads 514, 516, 518 by various techniques, such as by solder balls, solder bumps, pillar bumps, or the illustrated wire bonds. If solder balls, solder bumps, or pillar bumps are used, the die may be attached to the die attach portions 524, 526, 528 with the active die surface (in which the magnetic field sensing element is disposed) adjacent to the lead frame surface 510a, as in a flip-chip arrangement.


While a die, such as die 108 in FIG. 1A, may be used to form a magnetic field sensor and, may support at least one magnetic field sensing element 114, it will be appreciated by those of ordinary skill in the art that the integrated circuit packaging described herein can be used in connection with other types of integrated circuits. As used herein, the term “magnetic field sensing element” is used to describe a variety of electronic elements that can sense a magnetic field. The magnetic field sensing element can be, but is not limited to, a Hall effect element, a magnetoresistance element, or a magnetotransistor. As is known, there are different types of Hall effect elements, for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR, including spin-valve structures) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ). The magnetic field sensing element may be a single element or, alternatively, may include two or more magnetic field sensing elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge. Depending on the device type and other application requirements, the magnetic field sensing element may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a type III-V semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb).


As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of maximum sensitivity perpendicular to a substrate, while metal based or metallic magnetoresistance elements (e.g., GMR, TMR, AMR) and vertical Hall elements tend to have axes of maximum sensitivity parallel to a substrate.


As used herein, the term “magnetic field sensor” is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits. Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet or a ferromagnetic target (e.g., gear teeth) where the magnetic field sensor is used in combination with a back-biased or other magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.


The integrated circuit shown during and after manufacture in FIGS. 1A-3E may include at least one integrated passive component 104, such as a resistor, inductor, capacitor, Transient Voltage Suppressor (TVS), diode (including, but not limited to Zener diode). Passive components 104, such as capacitors, may be desirable for filtering and/or other functionality, and may be useful to reduce EMC, ESD or address other electrical issues with the resulting sensor. For example, with capacitors 104 power to the sensor may be held longer in order to prevent a power on reset state by holding an output state in the case of a broken or damaged wire. It is possible to have other types of passive components coupled between different leads and/or between the same leads in parallel. For example, one capacitor may be coupled between a power lead and a ground lead and another capacitor may be coupled between an output lead and a ground lead. While two capacitors are shown in FIG. 3A, for example, it will be appreciated that any number of capacitors or other passive components may be used as desirable for a particular application.


The integrated circuit subassembly shown during manufacture in FIGS. 1B and 3E includes a separately formed ferromagnetic element 120 adjacent to the lead frame 10. In use, a magnetic field sensor containing the subassembly may be positioned in proximity to a moveable magnetically permeable ferromagnetic article, or target (not shown), such that the magnetic field transducer is adjacent to the article and is thereby exposed to a magnetic field altered by movement of the article. The target may be comprised of a hard ferromagnetic, or simply hard magnetic material (i.e., a permanent magnet such as a segmented ring magnet), a soft ferromagnetic material, or even an electromagnet and sensor embodiments described herein may be used in conjunction with any such target arrangements. The magnetic field transducer generates a magnetic field signal proportional to the magnetic field.


The ferromagnetic element 120 may take various forms selected to enhance the magnetic field sensing capability and/or performance of the sensor based on attributes of the adjacent target, application specifications and requirements and other factors. In the embodiment of FIGS. 1A and 3E, the ferromagnetic element 120 comprises a magnet (hard ferromagnetic material) attached adjacent to the lead frame/pre-mold material.


Various materials and techniques are suitable for providing the ferromagnetic element attachment, such as a non-conductive, electrically insulative adhesive, such as a thermoset adhesive (e.g., a two part epoxy), epoxy, tape, such as a Kapton® tape, film, or spray. In some cases the tape may have a single sided adhesive layer, while in others a double-sided adhesive tape may be used. Furthermore, the ferromagnetic element attachment mechanism may comprise a combination of materials and layers, such a layer of Kapton® tape.


The magnet may be comprised of a hard ferromagnetic or simply hard magnetic material (i.e., a permanent magnet such as a segmented ring magnet) to form a bias magnet. In embodiments in which the magnet forms a bias magnet and in which the sensor is oriented relative to the target such that transducer is closer to the target than the magnet, the bias magnet may be referred to as a back bias magnet. This arrangement is well suited for embodiments in which the target is comprised of a soft ferromagnetic material. The magnet may also comprise a hard magnetic material or permanent magnet in embodiments in which the magnetic field sensing element is a magnetoresistance element and a bias field is desired.


Illustrative hard magnetic materials for the magnet include, but are not limited to hard magnetic ferrites, SmCo alloys, NdFeB alloy materials, or Plastiform® materials of Arnold Magnetic Technologies Corp., or other plastic compounds with hard magnetic particles, for example a thermoset polymer such as polyphenylene sulfide material (PPS) or nylon material containing SmCo, NdFeB, or hard ferromagnetic ferrite magnetic particles; or a thermoset polymer such as SUMIKON® EME of Sumitomo Bakelite Co., Ltd or similar type of thermoset mold material containing hard magnetic particles. In some embodiments it may be desirable to align the hard ferromagnetic particles during molding or sintering to form a more anisotropic or directional permanent magnetic material by molding or sintering in the presence of a magnetic field; whereas, in other embodiments, a sufficient magnet may result without an alignment step during molding for isotropic materials. It will be appreciated that a NdFeB or a SmCo alloy may contain other elements to improve temperature performance, magnetic coercivity, or other magnetic properties useful to a magnetic design. In some embodiments, including but not limited to NiFeB magnets, a coating such an electroplated Nickel layer may be applied to the surface of the magnet 66 to prevent or reduce corrosion of the magnet.


The magnet may be formed by sintering or other suitable method, such as compression molding, injection molding, and transfer molding, and potting. It will be appreciated that the magnet may be magnetized in multiple directions, either perpendicular or parallel to the die surface in an x, y, and/or z direction. Other off-axis directions may also be used to magnetize the magnet for specific applications. The magnetic properties for an anisotropic magnet will be optimal when the magnetization direction is aligned with the direction of field applied during manufacturing, but these two directions need not be used in all cases to manufacture a useful device. The magnet may have various shapes and dimensions. For example, the magnet may be provided in the form of a ring-like structure as may be described as having an “O” or “U” shape or a partial ring-like structure as may be described as having a “C” or “U” shape. In embodiments in which the magnet has a non-contiguous central region, the central region may be an open area or may contain a ferromagnetic material or a separately formed element, such as a steel rod for example.


During overmolding, a non-conductive mold material is used to encapsulate the assembly after film removal to encloses the semiconductor die 108 and a portion of the leads and die attach portion of the leadframe 102. The non-conductive molded enclosure may be formed by various techniques, including but not limited to injection molding, compression molding, transfer molding, and/or potting, from various non-conductive mold materials, such as Sumitomo FGT700. In general, the non-conductive mold material 110 is comprised of a non-conductive material so as to electrically isolate and mechanically protect the die and the enclosed portion of the lead frame 102 and pre-mold material 106. Suitable materials for the non-conductive mold material 110 include thermoset and thermoplastic mold compounds and other commercially available IC mold compounds. It will be appreciated that the non-conductive mold material, while typically non-ferromagnetic, can contain a ferromagnetic material, such as in the form of ferromagnetic particles, as long as such material is sufficiently non-conductive.


Having described preferred embodiments of the invention it will now become apparent to those of ordinary skill in the art that other embodiments incorporating these concepts may be used.


For example, it will be appreciated by those of ordinary skill in the art that the package types, shapes, and dimensions, can be readily varied to suit a particular application both in terms of the electrical and magnetic requirements as well as any packaging considerations. It will also be appreciated that the various features shown and described herein in connection with the various embodiments can be selectively combined. For example, any of the lead frame embodiments described herein can be used with any suitable ferromagnetic element configuration.


Accordingly, it is submitted that that the invention should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.

Claims
  • 1. A method, comprising: applying a film to a leadframe having first and second surfaces, wherein the film is applied to the second surface of the leadframe;mounting at least one component to the film;applying a pre-mold material to cover at least a portion of the first surface of the leadframe and the at least one component;removing the film to expose the second surface of the leadframe;attaching a die to the second surface of the leadframe;forming at least one electrical connection between the die and the leadframe; andencapsulating the die, the leadframe, the at least one component and the pre-mold material with a final mold material to provide an IC package.
  • 2. The method according to claim 1, further including attaching a magnet to the opposite side of the leadframe as the die.
  • 3. The method according to claim 1, wherein the at least one component comprises one or more of a capacitor, resistor, inductor, and/or coil.
  • 4. The method according to claim 1, wherein the at least one component comprises one or more active components.
  • 5. The method according to claim 4, wherein the one or more active component comprises a transistor, transducer, and/or circuit.
  • 6. The method according to claim 1, further including a magnetic field sensing element coupled to the die.
  • 7. The method according to claim 1, wherein the at least one component and the leadframe are substantially co-planar.
  • 8. The method according to claim 1, wherein the at least one electrical connection comprises a wirebond.
  • 9. The method according to claim 1, wherein a thickness of the IC package is less than 1.25 mm.
  • 10. The method according to claim 9, wherein a total thickness of the leadframe and the pre-mold material is less than about 0.75 mm.
  • 11. The method according to claim 10, wherein a thickness of the leadframe is less than about 0.35 mm.
  • 12. The method according to claim 1, wherein the IC package has exactly two leads.
  • 13. The method according to claim 1, wherein the IC package has exactly three leads.
  • 14. The method according to claim 1, further including attaching a magnet to the opposite side of the leadframe as the die, wherein the magnet abuts the pre-mold material.
  • 15. The method according to claim 1, further including providing wirebonds between the die and the leadframe, applying the pre-mold material, and then providing wirebonds to the at least one component, which is on an opposite side of the leadframe as the die.
  • 16. The method according to claim 1, wherein the at least one component is secured in position by the pre-mold material.
  • 17. The method according to claim 1, further including connecting the at least one component to the leadframe with a wirebond.
  • 18. The method according to claim 1, wherein the at least one component includes first and second passive components with respective wirebonds.
  • 19. The method according to claim 1, wherein the portion of the leadframe attached to the die comprises a non-conductive material.
  • 20. An IC package fabricated in accordance with claim 1.
  • 21. A method comprising: employing a film having first and second surfaces;mounting at least one component to the first surface of the film;mounting leadframe portions to the first surface of the film;applying a pre-mold material on the first surface of the film to cover at least a portion of the passive component and the at least one of the leadframe portions;removing the film;attaching a die to the premold material;forming at least one electrical connection from the at least one component to one of the leadframe portions and/or the die; andencapsulating the die, the at least one component, and the pre-mold material with a final mold material to provide an IC package.
  • 22. The method according to claim 21, wherein the at least one component comprises one or more of a capacitor, resistor, inductor, coil, transistor, transducer and/or circuit.
  • 23. The method according to claim 21, wherein the die includes a magnetic field sensing element.
  • 24. The method according to claim 21, wherein the at least one electrical connection comprises a wirebond.
  • 25. The method according to claim 21, wherein a thickness of the IC package is less than 1.25 mm.
  • 26. The method according to claim 21, further including providing wirebonds between the die and the leadframe portions, applying the pre-mold material, and then providing wirebonds to the at least one component.
  • 27. The method according to claim 21, wherein the at least one component is secured in position by the pre-mold material.
  • 28. An IC package, comprising: a leadframe having first and second surfaces;at least one component supported by the leadframe;a pre-mold material covering at least a portion of the first surface of the leadframe and the at least one component and securing the at least one component in position;a die supported by the second surface of the leadframe;at least one electrical connection between the die and the leadframe; andencapsulant encapsulating the die, the leadframe, the at least one component, and the pre-mold material to provide an IC package,wherein a thickness of the IC package is less than about 1.25 mm.
  • 29. The IC package according to claim 28, further including a magnet on the opposite side of the leadframe as the die.
  • 30. The IC package according to claim 28, wherein the at least one component comprises one or more of a capacitor, resistor, inductor, coil, active component, transistor, transducer, and/or circuit.
  • 31. The IC package according to claim 28, further including a magnetic field sensing element on or about the die.
  • 32. The IC package according to claim 28, wherein the at least one component and the leadframe are substantially co-planar.
  • 33. The IC package according to claim 28, wherein the at least one electrical connection comprises a wirebond.
  • 34. The IC package according to claim 28, wherein a total thickness of the leadframe and the pre-mold material is less than about 0.75 mm.
  • 35. The IC package according to claim 34, wherein a thickness of the leadframe is less than about 0.35 mm.
  • 36. The IC package according to claim 28, wherein the IC package has exactly two leads.
  • 37. The IC package according to claim 28, wherein the IC package has exactly three leads.
  • 38. The IC package according to claim 28, further including a magnet at the opposite side of the leadframe as the die, wherein the magnet abuts the pre-mold material.
US Referenced Citations (370)
Number Name Date Kind
3195043 Burig et al. Jul 1965 A
3281628 Bauer et al. Oct 1966 A
3627901 Happ Dec 1971 A
3661061 Tokarz May 1972 A
4048670 Eysermans Sep 1977 A
4188605 Stout Feb 1980 A
4204317 Winn May 1980 A
4210926 Hacke Jul 1980 A
4262275 DeMarco et al. Apr 1981 A
4283643 Levin Aug 1981 A
4315523 Mahawili et al. Feb 1982 A
4409608 Yoder Oct 1983 A
4425596 Satou Jan 1984 A
4614111 Wolff Sep 1986 A
4642716 Wakabayashi et al. Feb 1987 A
4733455 Nakamura et al. Mar 1988 A
4746859 Malik May 1988 A
4769344 Sakai et al. Sep 1988 A
4772929 Manchester Sep 1988 A
4893073 McDonald et al. Jan 1990 A
4908685 Shibasaki et al. Mar 1990 A
4935698 Kawaji et al. Jun 1990 A
4994731 Sanner Feb 1991 A
5010263 Murata Apr 1991 A
5012322 Guillotte et al. Apr 1991 A
5021493 Sandstrom Jun 1991 A
5028868 Murata et al. Jul 1991 A
5041780 Rippel Aug 1991 A
5045920 Vig et al. Sep 1991 A
5068712 Murakami et al. Nov 1991 A
5077633 Freyman et al. Dec 1991 A
5084289 Shin et al. Jan 1992 A
5121289 Gagliardi Jun 1992 A
5124642 Marx Jun 1992 A
5137677 Murata Aug 1992 A
5139973 Nagy et al. Aug 1992 A
5196794 Murata Mar 1993 A
5196821 Partin et al. Mar 1993 A
5210493 Schroeder et al. May 1993 A
5216405 Schroeder et al. Jun 1993 A
5244834 Suzuki et al. Sep 1993 A
5247202 Popovic et al. Sep 1993 A
5250925 Shinkle Oct 1993 A
5273938 Lin Dec 1993 A
5286426 Rano, Jr. et al. Feb 1994 A
5289344 Gagnon et al. Feb 1994 A
5315245 Schroeder et al. May 1994 A
5399905 Honda et al. Mar 1995 A
5414355 Davidson et al. May 1995 A
5434105 Liou Jul 1995 A
5442228 Pham et al. Aug 1995 A
5453727 Shibasaki et al. Sep 1995 A
5488294 Liddell et al. Jan 1996 A
5491633 Henry et al. Feb 1996 A
5500589 Sumcad Mar 1996 A
5508611 Schroeder et al. Apr 1996 A
5539241 Abidi et al. Jul 1996 A
5561366 Takahashi et al. Oct 1996 A
5563199 Harada et al. Oct 1996 A
5579194 Mackenzie et al. Nov 1996 A
5581170 Mammano et al. Dec 1996 A
5581179 Engel et al. Dec 1996 A
5612259 Okutomo et al. Mar 1997 A
5614754 Inoue Mar 1997 A
5615075 Kim Mar 1997 A
5627315 Figi et al. May 1997 A
5631557 Davidson May 1997 A
5648682 Nakazawa et al. Jul 1997 A
5666004 Bhattacharyya et al. Sep 1997 A
5691869 Engel et al. Nov 1997 A
5712562 Berg Jan 1998 A
5714405 Tsubosaki et al. Feb 1998 A
5719496 Wolf Feb 1998 A
5726577 Engel et al. Mar 1998 A
5729130 Moody et al. Mar 1998 A
5781005 Vig et al. Jul 1998 A
5804880 Mathew Sep 1998 A
5817540 Wark Oct 1998 A
5818222 Ramsden Oct 1998 A
5822849 Casali et al. Oct 1998 A
5859387 Gagnon Jan 1999 A
5883567 Mullins, Jr. Mar 1999 A
5891377 Libres et al. Apr 1999 A
5912556 Frazee et al. Jun 1999 A
5939779 Kim Aug 1999 A
5940256 MacKenzie et al. Aug 1999 A
5963028 Engel et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
6005383 Savary et al. Dec 1999 A
6016055 Jager et al. Jan 2000 A
6057997 MacKenzie et al. May 2000 A
6066890 Tsui et al. May 2000 A
6072228 Hinkle et al. Jun 2000 A
6097109 Fendt et al. Aug 2000 A
6150714 Andreycak et al. Nov 2000 A
6175233 McCurley et al. Jan 2001 B1
6178514 Wood Jan 2001 B1
6184679 Popovic et al. Feb 2001 B1
6225701 Hori et al. May 2001 B1
6252389 Baba et al. Jun 2001 B1
6265865 Engel et al. Jul 2001 B1
6278269 Vig et al. Aug 2001 B1
6294824 Brooks et al. Sep 2001 B1
6316736 Jairazbhoy et al. Nov 2001 B1
6316931 Nakagawa et al. Nov 2001 B1
6323634 Nakagawa et al. Nov 2001 B1
6356068 Steiner et al. Mar 2002 B1
6359331 Rinehart et al. Mar 2002 B1
6388336 Venkateshwaren et al. May 2002 B1
6396712 Kuijk May 2002 B1
6411078 Nakagawa et al. Jun 2002 B1
6420779 Sharma et al. Jul 2002 B1
6424018 Ohtsuka Jul 2002 B1
6429652 Allen et al. Aug 2002 B1
6445171 Sandquist et al. Sep 2002 B2
6452381 Nakatani et al. Sep 2002 B1
6462531 Ohtsuka Oct 2002 B1
6480699 Lovoi Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6486535 Liu Nov 2002 B2
6501268 Edelstein et al. Dec 2002 B1
6501270 Opie Dec 2002 B1
6504366 Bodin et al. Jan 2003 B2
6545332 Huang Apr 2003 B2
6545456 Radosevich et al. Apr 2003 B1
6545457 Goto et al. Apr 2003 B2
6545462 Schott et al. Apr 2003 B2
6563199 Yasunaga et al. May 2003 B2
6566856 Sandquist et al. May 2003 B2
6577012 Greenwood et al. Jun 2003 B1
6583572 Veltrop et al. Jun 2003 B2
6593545 Greenwood et al. Jul 2003 B1
6605491 Hsieh et al. Aug 2003 B1
6608375 Terui et al. Aug 2003 B2
6610923 Nagashima et al. Aug 2003 B1
6616736 Massey et al. Sep 2003 B2
6617846 Hayat-Dawoodi et al. Sep 2003 B2
6642609 Minamio et al. Nov 2003 B1
6642705 Kawase Nov 2003 B2
6667682 Wan et al. Dec 2003 B2
6683448 Ohtsuka Jan 2004 B1
6683452 Lee et al. Jan 2004 B2
6692676 Vig et al. Feb 2004 B1
6696952 Zirbes Feb 2004 B2
6713836 Liu et al. Mar 2004 B2
6714003 Babin Mar 2004 B2
6727683 Goto et al. Apr 2004 B2
6737298 Shim et al. May 2004 B2
6747300 Nadd et al. Jun 2004 B2
6759841 Goto et al. Jul 2004 B2
6770163 Kuah et al. Aug 2004 B1
6775140 Shim et al. Aug 2004 B2
6781359 Stauth et al. Aug 2004 B2
6789057 Bolkin et al. Sep 2004 B1
6791313 Ohtsuka Sep 2004 B2
6796485 Seidler Sep 2004 B2
6798044 Joshi Sep 2004 B2
6798057 Bolkin et al. Sep 2004 B2
6798193 Zimmerman et al. Sep 2004 B2
6809416 Sharma Oct 2004 B1
6812687 Ohtsuka Nov 2004 B1
6825067 Ararao et al. Nov 2004 B2
6828220 Pendse et al. Dec 2004 B2
6832420 Liu Dec 2004 B2
6841989 Goto et al. Jan 2005 B2
6853178 Hayat-Dawoodi Feb 2005 B2
6861283 Sharma Mar 2005 B2
6867573 Carper Mar 2005 B1
6875634 Shim et al. Apr 2005 B2
6921955 Goto et al. Jul 2005 B2
6956282 Alvarez et al. Oct 2005 B1
6960493 Ararao et al. Nov 2005 B2
6974909 Tanaka et al. Dec 2005 B2
6989665 Goto et al. Jan 2006 B2
6995315 Sharma et al. Feb 2006 B2
7005325 Chow et al. Feb 2006 B2
7006749 Illich et al. Feb 2006 B2
7026808 Vig et al. Apr 2006 B2
7046002 Edelstein May 2006 B1
7075287 Mangtani et al. Jul 2006 B1
7129691 Shibahara et al. Oct 2006 B2
7148086 Shim et al. Dec 2006 B2
7166807 Gagnon et al. Jan 2007 B2
7193412 Freeman Mar 2007 B2
7221045 Park et al. May 2007 B2
7248045 Shoji Jul 2007 B2
7250760 Ao Jul 2007 B2
7259545 Stauth et al. Aug 2007 B2
7259624 Barnett Aug 2007 B2
7265531 Stauth et al. Sep 2007 B2
7269992 Lamb et al. Sep 2007 B2
7285952 Hatanaka et al. Oct 2007 B1
7298038 Filoteo, Jr. Nov 2007 B2
7304370 Imaizumi et al. Dec 2007 B2
7323870 Tatschl et al. Jan 2008 B2
7355388 Ishio Apr 2008 B2
7358724 Taylor et al. Apr 2008 B2
7361531 Sharma et al. Apr 2008 B2
7378721 Frazee et al. May 2008 B2
7378733 Hoang et al. May 2008 B1
7385394 Auburger et al. Jun 2008 B2
7439620 Merilo Oct 2008 B2
7476816 Doogue et al. Jan 2009 B2
7476953 Taylor et al. Jan 2009 B2
7518493 Bryzek et al. Apr 2009 B2
7557563 Gunn et al. Jul 2009 B2
7573112 Taylor Aug 2009 B2
7598601 Taylor et al. Oct 2009 B2
7619314 Filoteo, Jr. Nov 2009 B2
7676914 Taylor Mar 2010 B2
7687882 Taylor et al. Mar 2010 B2
7696006 Hoang et al. Apr 2010 B1
7709754 Doogue et al. May 2010 B2
7768083 Doogue et al. Aug 2010 B2
7777607 Taylor et al. Aug 2010 B2
7816772 Engel Oct 2010 B2
7816905 Doogue et al. Oct 2010 B2
7868471 Camacho Jan 2011 B2
7939372 Chang May 2011 B1
8043894 Tay Oct 2011 B2
8080994 Taylor et al. Dec 2011 B2
8093670 Taylor Jan 2012 B2
8143169 Engel et al. Mar 2012 B2
8629539 Milano et al. Jan 2014 B2
8820160 Doering Sep 2014 B2
9201123 Elian Dec 2015 B2
9228860 Sharma et al. Jan 2016 B2
9283772 Perez Gellida et al. Mar 2016 B2
9299915 Milano et al. Mar 2016 B2
9411025 David Aug 2016 B2
9494660 David et al. Nov 2016 B2
9620705 Milano et al. Apr 2017 B2
9812588 Vig et al. Nov 2017 B2
10234513 Vig et al. Mar 2019 B2
10333055 Milano et al. Jun 2019 B2
20010028114 Hosomi Oct 2001 A1
20010028115 Yanagawa et al. Oct 2001 A1
20010030537 Honkura et al. Oct 2001 A1
20010052780 Hayat-Dawoodi Dec 2001 A1
20020005780 Ehrlich et al. Jan 2002 A1
20020020907 Seo et al. Feb 2002 A1
20020027488 Hayat-Dawoodi et al. Mar 2002 A1
20020041179 Gohara et al. Apr 2002 A1
20020068379 Cobbley et al. Jun 2002 A1
20020179987 Meyer et al. Dec 2002 A1
20020195693 Liu et al. Dec 2002 A1
20030038464 Furui Feb 2003 A1
20030039062 Takahasahi Feb 2003 A1
20030067057 Wu Apr 2003 A1
20030164548 Lee Sep 2003 A1
20030209784 Schmitz et al. Nov 2003 A1
20030230792 Wu et al. Dec 2003 A1
20040032251 Zimmerman et al. Feb 2004 A1
20040038452 Pu Feb 2004 A1
20040046248 Waelti et al. Mar 2004 A1
20040056647 Stauth et al. Mar 2004 A1
20040080308 Goto Apr 2004 A1
20040080314 Tsujii et al. Apr 2004 A1
20040094826 Yang et al. May 2004 A1
20040135220 Goto Jul 2004 A1
20040135574 Hagio et al. Jul 2004 A1
20040145043 Hayashi et al. Jul 2004 A1
20040155644 Stauth et al. Aug 2004 A1
20040174655 Tsai et al. Sep 2004 A1
20040184196 Jayasekara Sep 2004 A1
20040207035 Witcraft et al. Oct 2004 A1
20040207077 Leal et al. Oct 2004 A1
20040207398 Kudo et al. Oct 2004 A1
20040207400 Witcraft et al. Oct 2004 A1
20040212053 Koh et al. Oct 2004 A1
20040222503 Lee et al. Nov 2004 A1
20040251557 Kee Dec 2004 A1
20040262718 Ramakrishna Dec 2004 A1
20040263148 Takabatake Dec 2004 A1
20050035448 Hsu et al. Feb 2005 A1
20050040814 Vig et al. Feb 2005 A1
20050045359 Doogue et al. Mar 2005 A1
20050139972 Chiu et al. Jun 2005 A1
20050151448 Hikida et al. Jul 2005 A1
20050167790 Khor et al. Aug 2005 A1
20050173783 Chow et al. Aug 2005 A1
20050194676 Fukuda et al. Sep 2005 A1
20050224248 Gagnon et al. Oct 2005 A1
20050230843 Williams Oct 2005 A1
20050236698 Ozawa et al. Oct 2005 A1
20050248005 Hayat-Dawoodi Nov 2005 A1
20050248336 Sharma et al. Nov 2005 A1
20050253507 Fujimura et al. Nov 2005 A1
20050266611 Tu et al. Dec 2005 A1
20050270748 Hsu Dec 2005 A1
20050274982 Ueda et al. Dec 2005 A1
20050280411 Bicking Dec 2005 A1
20060002147 Hong et al. Jan 2006 A1
20060033487 Nagano et al. Feb 2006 A1
20060038289 Hsu et al. Feb 2006 A1
20060038560 Kurumado Feb 2006 A1
20060068237 Murphy et al. Mar 2006 A1
20060071655 Shoji Apr 2006 A1
20060077598 Taylor et al. Apr 2006 A1
20060091993 Shoji May 2006 A1
20060113988 Hall et al. Jun 2006 A1
20060114098 Shoji Jun 2006 A1
20060145690 Shoji Jul 2006 A1
20060152210 Mangtani et al. Jul 2006 A1
20060170529 Shoji Aug 2006 A1
20060175674 Taylor et al. Aug 2006 A1
20060181263 Doogue et al. Aug 2006 A1
20060219436 Taylor et al. Oct 2006 A1
20060238190 Ishio Oct 2006 A1
20060255797 Taylor et al. Nov 2006 A1
20060261801 Busch Nov 2006 A1
20060267135 Wolfgang et al. Nov 2006 A1
20060291106 Shoji Dec 2006 A1
20070007631 Knittl Jan 2007 A1
20070018290 Punzalan et al. Jan 2007 A1
20070018642 Ao Jan 2007 A1
20070044370 Shoji Mar 2007 A1
20070076332 Shoji Apr 2007 A1
20070085174 Wheless, Jr. et al. Apr 2007 A1
20070090825 Shoji Apr 2007 A1
20070096716 Shoji May 2007 A1
20070099348 Sharma et al. May 2007 A1
20070138651 Hauenstein Jun 2007 A1
20070170533 Doogue et al. Jul 2007 A1
20070188946 Shoji Aug 2007 A1
20070241423 Taylor et al. Oct 2007 A1
20070243705 Taylor Oct 2007 A1
20070279053 Taylor et al. Dec 2007 A1
20080013298 Sharma et al. Jan 2008 A1
20080018261 Kastner Jan 2008 A1
20080034582 Taylor Jan 2008 A1
20080036453 Taylor Feb 2008 A1
20080230879 Sharma et al. Sep 2008 A1
20080237818 Engel et al. Oct 2008 A1
20080297138 Taylor et al. Dec 2008 A1
20080308886 Ausserlechner et al. Dec 2008 A1
20090058412 Taylor et al. Mar 2009 A1
20090083963 Otremba Apr 2009 A1
20090102034 Pagkaliwangan et al. Apr 2009 A1
20090121704 Shibahara May 2009 A1
20090122437 Gong et al. May 2009 A1
20090140725 Ausserlechner Jun 2009 A1
20090152696 Dimasacat et al. Jun 2009 A1
20100019332 Taylor Jan 2010 A1
20100141249 Ararao Jun 2010 A1
20100188078 Foletto et al. Jul 2010 A1
20100201356 Koller et al. Aug 2010 A1
20100237450 Doogue et al. Sep 2010 A1
20100276769 Theuss et al. Nov 2010 A1
20100295140 Theuss et al. Nov 2010 A1
20100330708 Engel et al. Dec 2010 A1
20110031947 You Feb 2011 A1
20110050222 Ueno et al. Mar 2011 A1
20110068447 Camacho et al. Mar 2011 A1
20110068779 Werth et al. Mar 2011 A1
20110127998 Elain et al. Jun 2011 A1
20110133732 Sauber Jun 2011 A1
20110175598 Doering et al. Jul 2011 A1
20110204887 Ausserlechner et al. Aug 2011 A1
20110267039 Musselman et al. Nov 2011 A1
20110304327 Ausserlechner Dec 2011 A1
20120013333 Ararao et al. Jan 2012 A1
20120086090 Sharma et al. Apr 2012 A1
20120153446 Jiang Jun 2012 A1
20120153447 Jiang Jun 2012 A1
20130026615 Gong et al. Jan 2013 A1
20150325559 Niu Nov 2015 A1
20170148692 Pavier et al. May 2017 A1
20190157465 Vig et al. May 2019 A1
20200408854 Offermann Dec 2020 A1
Foreign Referenced Citations (90)
Number Date Country
683 469 Mar 1994 CH
40 31 560 Apr 1992 DE
4 141 386 Jun 1993 DE
102 31 194 Feb 2004 DE
103 14 602 Oct 2004 DE
10 2004 054 317 May 2006 DE
10 2004 060 298 Jun 2006 DE
10 2007 018 238 Oct 2008 DE
10 2008 064 047 Apr 2010 DE
10 2009 000 460 Jul 2010 DE
0 361 456 Apr 1990 EP
0 409 173 Jan 1991 EP
0 537 419 Apr 1993 EP
0 680 103 Nov 1995 EP
0 867 725 Sep 1998 EP
0 898 180 Feb 1999 EP
1 107 327 Jun 2001 EP
1 107 328 Jun 2001 EP
1 111 693 Jun 2001 EP
1 160 887 Dec 2001 EP
1 180 804 Feb 2002 EP
1 281 974 Feb 2003 EP
1 443 332 Aug 2004 EP
0 944 839 Mar 2006 EP
2 366 976 Sep 2011 EP
2 748 105 Oct 1997 FR
2 191 632 Dec 1987 GB
2 273 782 Jun 1994 GB
S 54-182859 Dec 1979 JP
S 63-84176 Apr 1988 JP
63-191069 Aug 1988 JP
63-263782 Oct 1988 JP
1-184885 Jul 1989 JP
1-207909 Aug 1989 JP
4-152688 May 1992 JP
4-364472 Dec 1992 JP
6-171649 Jun 1994 JP
8-97486 Apr 1996 JP
H 08-264569 Oct 1996 JP
9-079865 Mar 1997 JP
9-166612 Jun 1997 JP
H 09-232373 Sep 1997 JP
H 11-74142 Mar 1999 JP
2000-174357 Jun 2000 JP
2000-183241 Jun 2000 JP
2000-294692 Oct 2000 JP
2001-116815 Apr 2001 JP
2001-141738 May 2001 JP
2001-165702 Jun 2001 JP
2001-165963 Jun 2001 JP
2001-174486 Jun 2001 JP
2001-221815 Aug 2001 JP
2001-230467 Aug 2001 JP
2001-339109 Dec 2001 JP
2002-026419 Jan 2002 JP
2002-040058 Feb 2002 JP
2002-202326 Jul 2002 JP
2002-202327 Jul 2002 JP
2003-177171 Jun 2003 JP
2004-055932 Feb 2004 JP
2004-356338 Dec 2004 JP
2005-327859 Nov 2005 JP
2005-345302 Dec 2005 JP
2007-218799 Aug 2007 JP
2008-513632 May 2008 JP
4-357858 Nov 2009 JP
I240978 Oct 2005 TW
WO 9007176 Jun 1990 WO
WO 9914605 Mar 1999 WO
WO 0054068 Sep 2000 WO
WO 0069045 Nov 2000 WO
WO 0123899 Apr 2001 WO
WO 0174139 Oct 2001 WO
WO 03107018 Dec 2003 WO
WO 2004027436 Apr 2004 WO
WO 2005013363 Feb 2005 WO
WO 2005026749 Mar 2005 WO
WO 2006037695 Apr 2006 WO
WO 2006060330 Jun 2006 WO
WO 2006083479 Aug 2006 WO
WO 2006124252 Nov 2006 WO
WO 2006130393 Dec 2006 WO
WO 2007053383 May 2007 WO
WO 2008008140 Jan 2008 WO
WO 2008121443 Oct 2008 WO
WO 2010065315 Jun 2010 WO
WO 2011068653 Jun 2011 WO
WO 2013109355 Jul 2013 WO
WO 2013141981 Sep 2013 WO
WO 2013142112 Sep 2013 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 10/831,906, filed Apr. 26, 2004, Stauth et al.
U.S. Appl. No. 10/962,889, filed Oct. 12, 2004, Taylor et al.
U.S. Appl. No. 11/051,124, filed Feb. 4, 2005, Taylor et al.
U.S. Appl. No. 11/129,933, filed May 16, 2005, Taylor et al.
U.S. Appl. No. 11/140,250, filed May 27, 2005, Doogue et al.
U.S. Appl. No. 11/144,970, filed Jun. 3, 2005, Gagnon et al.
U.S. Appl. No. 11/335,944, filed Jan. 20, 2006, Doogue et al.
U.S. Appl. No. 11/336,602, filed Jan. 20, 2006, Mangtani et al.
U.S. Appl. No. 11/383,021, filed May 12, 2006, Taylor et al.
U.S. Appl. No. 11/401,160, filed Apr. 10, 2006, Doogue et al.
U.S. Appl. No. 11/457,626, filed Jul. 14, 2006, Sharma et al.
U.S. Appl. No. 11/776,242, filed Jul. 11, 2007, Taylor et al.
U.S. Appl. No. 12/171,651, filed Jul. 11, 2008, Taylor et al.
U.S. Appl. No. 12/178,781, filed Jul. 24, 2008, Taylor.
U.S. Appl. No. 12/261,629, filed Oct. 30, 2008, Taylor et al.
U.S. Appl. No. 12/360,889, filed Jan. 28, 2009, Foletto et al.
U.S. Appl. No. 13/241,380, filed Sep. 23, 2011, Ararao et al.
Related Publications (1)
Number Date Country
20210057314 A1 Feb 2021 US