This invention relates to the fabrication of dual work function metal gates for CMOS devices.
The present invention is described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
Referring to the drawings,
The CMOS transistors 60, 70 are electrically insulated from other active devices located within the semiconductor wafer 10 (not shown) by shallow trench isolation structures 50 formed within the semiconductor substrate 20; however, any conventional isolation structure may be used such as field oxide regions or implanted isolation regions. The semiconductor substrate 20 may be a single-crystalline substrate that is doped with n-type and p-type dopants; however, it may also be silicon germanium (“SiGe”) substrate, a silicon-on-insulator (“SOI”) substrate, or a single-crystalline substrate having an epitaxial silicon layer that is doped with n-type and p-type dopants.
Transistors, such as CMOS transistors 60, 70, are generally comprised of a gate, source, and drain. More specifically, as shown in
The example PMOS transistor 60 is a p-channel MOS transistor. Therefore it is formed within an n-well region 40 of the semiconductor substrate 20. In addition, the deep source/drain regions 80 and the extension regions 90 have p-type dopants, such as boron. The extension regions 90 may be lightly doped (“LDD”), medium doped (“MDD”), or highly doped (“HDD”). However, sources/drain regions 80 are usually heavily doped. The PMOS gate stack is initially comprised of a p-type doped polysilicon electrode 113 and gate oxide dielectric 100. Subsequent fabrication (described below) adds additional dopants to adjust the work function of the PMOS transistor 60 and then converts the polysilicon electrode 113 to a fully silicided (“FUSI”) gate electrode 110.
The example NMOS transistor 70 is an n-channel MOS transistor. Therefore it is formed within a p-well region 30 of the semiconductor substrate 20. In addition, the deep sources and drains 80 and the source and drain extensions 90 have n-type dopants such as arsenic, phosphorous, antimony, or a combination of n-type dopants. The extension regions 90 may be LDD, MDD, or HDD. However, sources/drain regions 80 are usually heavily doped. The NMOS gate stack is initially comprised of an n-type doped polysilicon electrode 113 and gate oxide dielectric 100. Subsequent fabrication adds additional dopants to adjust the work function of the NMOS transistor 70 and then converts the polysilicon electrode 113 to a fully silicided (“FUSI”) gate electrode 110.
An offset structure comprising source/drain sidewalls 150 is used during fabrication to enable the proper placement of the source/drain regions 80. More specifically, the sources/drain regions 80 are formed with the gate stack and source/drain sidewalls 150 as a mask. The extension regions 90 are formed with the gate stack as a mask in the example embodiment. However, it is within the scope of the invention to form the extension regions 90 using the gate stack plus extension sidewalls that are located proximate the gate stack (not shown) as a mask.
The sources/drain regions 80 have a layer of silicide 120 that is formed within the top surface of the sources/drain regions 80 during the fabrication process (as described below). The silicide layer 120 formed within the top surface of the sources/drain regions 80 is preferably NiSi or Ni2Si; however, it is within the scope of the invention to fabricate the silicide 120 with other metals (such as cobalt, platinum, titanium, tantalum, molybdenum, tungsten, or alloys of these metals). In the example application, the silicide layer 120 that is formed on the top surface of the sources/drain regions 80 is a self-aligned silicide (i.e. a “salicide”). Generally, the source/drain silicide layer 120 is NiSi, Ni2Si, or other Ni rich phase of nickel silicide for PMOS transistors 60 and NiSi for NMOS transistors 70. However, where a single electrode phase is used in both electrodes, then Ni rich or NiSi is used in both (NMOS and PMOS) transistors.
The gate electrode 110 is also silicided during the semiconductor fabrication process (as also described below). The purpose of the silicide formed within the gate electrode 110 and the top portion of the sources/drain regions 80 is the reduction of the contact resistance between the transistors 60, 70 and the electrical contacts 170, 180. The FUSI gate electrode 110 is fully silicided (“FUSI”) and is preferably comprised of NiSi or Ni2Si; however, other metals may be used, such as cobalt, platinum, titanium, tantalum, molybdenum, tungsten, or an alloy.
A layer of dielectric insulation 160 surrounds the transistors 60, 70. The composition of dielectric insulation 160 may be any suitable material such as SiO2, tetraethylorthosilicate (“TEOS”), or organosilicate glass (“OSG”). The dielectric material 160 electrically insulates the metal contacts 170 (and contact liners 180) that electrically connect the CMOS transistors 60, 70 to other active or passive devices (not shown) that are located throughout the semiconductor wafer 10. An optional dielectric liner (not shown in
In this example application, the contacts 170 are comprised of W; however, any suitable material (such as Cu, Ti, Al, or an alloy) may be used. In addition, an optional liner material 180 such as Ti, TiN, or Ta (or any combination or layer stack thereof) may be used to reduce the contact resistance at the interface between the contacts 170 and the selected FUSI gate electrode 110 or silicided sources/drain regions 80.
Subsequent fabrication will create the “back-end” portion of the integrated circuit (not shown). The back-end generally contains one or more interconnect layers (and possibly via layers) that properly route electrical signals and power though out the completed integrated circuit.
In the example application shown in
Similarly, the FUSI gate electrode 110 of PMOS transistor 60 is doped with an element, such as Ga (gallium), from the Group IIIa series to shift the work function of the PMOS transistor 60. It is also within the scope of the invention to oxidize the Group IIIa dopant in order to accelerate (i.e. increase) the work function enhancement that results from the presence of the Group IIIa element dopant or its oxide. Moreover, the gate dielectric 100 of the PMOS transistor 60 also contains dopants, such as Ga, from the Group IIIa series. For example, the Group IIIa series dopant Ga will react with the oxygen in the gate dielectric to form Ga2O3. (Note that the heaviest concentration of Ga2O3 will be along the interface between the dielectric 100 and the Ga doped FUSI electrode 110.) The presence of Ga in the gate dielectric may increase the dielectric constant (“k”) value of the gate dielectric 100.
Referring again to the drawings,
The gate oxide layer 105 and the gate polysilicon layer 115 are formed using well-known manufacturing techniques. The first layer formed over the surface of the semiconductor substrate 20 is a gate dielectric oxide layer 105. As an example, the gate dielectric layer 105 is silicon dioxide that is 10-50 Å thick and it is formed with a thermal oxidation process. However, the gate dielectric layer 105 may be any suitable material, such as plasma nitrided silicon oxide, silicon nitride, or a high-k gate dielectric material, and it may be formed using any one of a variety of standard processes such as an oxidation process, thermal nitridation, atomic layer deposition (“ALD”), plasma nitridation, physical vapor deposition (“PVD”), or chemical vapor deposition (“CVD”).
A gate electrode polysilicon layer 115 is then formed on the surface of the gate dielectric layer 105. The gate electrode layer 115 is comprised of polycrystalline silicon and it is 500-1500 Å thick in the example application. However, it is within the scope of the invention to use other materials such as an amorphous silicon, a silicon alloy (e.g. SiGe), or other suitable materials. The gate electrode layer 115 may be formed using any standard process technique such as CVD or PVD. In addition, the gate polysilicon layer 115 may be any suitable thickness, such as 500-1500 Å.
In accordance with the example embodiment, a gate hardmask layer 145 is then formed on the surface of the gate electrode layer 115. The gate hardmask layer 145 is comprised of silicon dioxide (SiO2) in the example application. However, it is within the scope of the invention to use other materials such as amorphous silicon, silicon-rich nitride, SiON, SiC, tetraethylorthosilicate (“TEOS”), plasma tetra Ethyl Oxysilane (“PTEOS”), or a combinational stack of these materials materials. Preferably, the gate hardmask layer 145 is formed with a rapid thermal CVD (“RTCVD”) process using silane or dichlorosilane and ammonia precursors; however, any suitable process may be used. In addition, the gate hardmask layer 145 may be any suitable thickness, such as 100-600 Å. The purpose of the gate hardmask layer 145 is to protect the gate polysilicon layer 113 during the source/drain formation and silicidation processes (described below).
After a pattern and etch process, a gate stack having a gate dielectric 100, a gate electrode 113, and gate hardmask layer 140 will be formed from the gate oxide layer 105, the gate polysilicon layer 115, and the gate hardmask layer 145 respectively. This gate stack, shown in
The fabrication of the PMOS transistors 60 and the NMOS transistors 70 now continues with standard process steps. Generally, the next step is the formation of the extension regions 90 using the gate stack as a template, as shown in
Alternatively, extension sidewalls (not shown) may be formed on the outer surface of the gate stack and used (along with the gate stack) as the mask to form the extension regions 90. If used, the extension sidewalls may be formed from a single material or may be formed from more than one layer of materials. For example, the extension sidewalls may be comprised of an oxide, oxi-nitride, silicon dioxide, nitride, or any other dielectric material or layers of dielectric materials. The material layers for the extension sidewalls may be formed with any suitable process, such as thermal oxidation, or deposition by ALD, CVD, or PVD. Preferably, at least one layer of the extension sidewall is comprised of a silicon nitride that is formed with a CVD process that uses a bis-t-butylaminosilane (“BTBAS”) precursor. Forming the silicon nitride layer with that precursor will help guard against the etching of the extension sidewalls during the process of removing the gate hardmask layer later in the fabrication process (because of the low etch rate of BTBAS in the etching solution that is used for the hardmask layer removal).
At some point after the implantation of the extension regions 90, the extension regions 90 are activated by an anneal process (performed now or later). This anneal step may be performed with any suitable process such as rapid thermal anneal (“RTA”).
It is within the scope of the embodiment to also form halo implant regions within the p-well 30 and the n-well 40 (not shown). The optional halo implants (sometimes called “pocket implants” or “punch through stoppers” because of their ability to stop punch through current) may be formed with any standard implant or diffusion process within (or proximate to) the extension regions 90.
Referring to
Now the source/drain sidewalls 150 (and the gate stack) are used as a template for the implantation of dopants into the source/drain regions 80 shown in
The implantation of the dopants is self-aligned with respect to the outer edges of the source/drain sidewalls 150. After the dopants are implanted, the source/drain regions 80 are activated by an anneal step. (However, the extension region anneal and the source/drain region anneal may be combined and performed at this point in the fabrication process.) This anneal step acts to repair the damage to the semiconductor wafer and to activate the dopants. The activation anneal may be performed by any suitable technique such as RTA (including spike anneal), flash lamp annealing (“FLA”), laser annealing, or a combination thereof. This anneal step often causes lateral and vertical migration of dopants in the extension regions 90 and the sources/drain regions 80 (not shown). In addition, this anneal step will cause the recrystallization of the ion implant areas 80, 90 (or the full crystallization of the ion implant areas 80, 90 if this is the first anneal).
It is to be noted that the gate hardmask 140 blocked the implantation of dopants into the polysilicon electrode 113 during the implementation processes that were used to form the extension regions 90 and the source/drain regions 80. Specifically, the gate hardmask 140 stores the dopants that were directed to the gate electrode 113 and then those stored dopants are removed when the gate hardmask is removed (as described infra.). As a result, the gate hardmask 140 may protect the gate electrode 113 from an undesirable work function shift.
In the example embodiment, the next step in the manufacturing process is the performance of the source/drain silicide loop. The purpose of the source/drain silicide loop is the creation of a source/drain silicide 120 on the exposed top surface of the source/drain regions 80. Referring to
An optional capping layer (not shown) may also be formed over the metal layer 125. If used, the capping layer acts as a passivation layer that prevents the diffusion of oxygen from ambient into the metal layer 125. The capping layer may be any suitable material, such as TiN, and may be between 5-30 nm thick.
The second step of the silicide loop is an anneal. The semiconductor wafer 10 may be annealed with any suitable process, such as RTA. In the example application, the silicide anneal is performed for 10-60 seconds at a temperature between 300-500° C. This anneal process will cause a silicide 120 (i.e. a Ni-rich silicide or Ni mono-silicide) to form over all active surfaces that are in contact with the metal layer 125; namely, the surface of the source/drain regions 80. These silicide regions 120 are shown in
It is to be noted that the metal layer 125 will only react with the active substrate (i.e. exposed Si); namely, the source/drain 80. Therefore, the source/drain silicide 120 formed by this annealing process is considered a self-aligned silicide (“salicide”). It is also to be noted that the gate electrode 113 was not modified by the silicide loop anneal because the gate electrode 113 was protected from the metal layer 125 by the gate hardmask 140 and the source/drain sidewalls 150 (which overlap the gate hardmask 140).
The third step in the silicide loop is the removal of the un-reacted metal layer 125, as shown in
The fourth step of the silicide loop is the performance of a second anneal (such as another RTA) to further react the source/drain silicide 120 with the source/drain regions 80. In the example application, a second silicide anneal is performed for 10-60 seconds at a temperature between 400-600° C. If the initial anneal process of the silicide loop did not complete the silicidation process, this second anneal will ensure the formation of a mono-silicide NiSi—which lowers the sheet resistance of the source/drain silicide 120.
As shown in
As also shown in
A standard Chemical Mechanical Polish (“CMP”), which is selective to silicon nitride, is now performed. As shown in
As shown in
In the example application, the gate hardmask 140 is removed by a wet etch using a dilute HF solution. However, any suitable process may be used to remove the gate hardmask 140, such as a wet etch using buffered HF or a dry etch using anhydrous HF. As noted above the dopants collected in the gate hardmask 140 during the implantation of the source/drain regions (
As discussed supra, the work function of the PMOS transistor 60 and the NMOS transistor 70 is adjusted with different dopant types; therefore, the work function adjustment implant is performed on the PMOS transistor 60 and the NMOS transistor 70 in separate steps. In the example application the work function of the PMOS transistor is adjusted first. (However, those skilled in the art realize that the work function of the NMOS transistor could be adjusted first.) A standard photoresist process is used to initially form a layer of photoresist over the semiconductor wafer 10 and then the photoresist layer patterned and developed to form a patterned photoresist layer 220 that simultaneously protects the region containing the NMOS transistor while exposing the region containing the PMOS transistor, as shown in
The PMOS work function adjustment implant 230 is now performed on the exposed region containing the PMOS transistor 60. Specifically, p-type dopants selected from the Group IIIa series (e.g. B, Al, Ga, In, TI) are implanted into the exposed gate electrode 113 of the PMOS transistor 60. In the example application, Ga is implanted into the gate electrode 113 with a standard high current implanter (such as the high current implanters sold by Varian or Axcellis). Moreover, the Group IIIa series dopant is implanted into the upper ⅓ of the gate electrode 113 in order to guard against the diffusion of the Group IIIa series dopants past the gate dielectric 100 (into the channel region) during any subsequent anneal process. Any suitable process parameters may be used, such as a dose of 2×1014 to 2×1015 atoms/cm2 and an energy of 5 to 20 keV. In the example application, the PMOS transistor has a work function of approximately 5.0 eV.
It is within the scope of the invention to also simultaneously implant oxygen into the gate electrode 113 to push the work function of the PMOS transistor 60 containing the Group IIIa dopants toward the silicon band edge. The O or O2 implant can be done either before or after the Group IIIa implant in the PMOS transistor 60. This optional implant provides further control of the tuning of the gate electrode work function during the fabrication of the semiconductor wafer 10.
It is also within the scope of the invention to etch a portion of the gate electrode 113 after the work function implant to create a nickel-rich FUSI gate electrode 110, thereby increasing the work function of the PMOS FUSI gate electrode 110. Any suitable process may be used to reduce the height of the gate electrode 110, such as a standard wet or dry etch.
It is to be noted that in the example application that the Ga dopant interacts with the oxygen within the gate dielectric 100, creating a layer of Ga2O3 that is preferably located close to the interface between the gate dielectric 100 and the Ga implanted gate electrode 113. The presence of Ga in the gate dielectric 100 may cause an increase in the k value of the gate dielectric 100. However, the presence of Ga2O3 at or near the interface between the gate dielectric 113 and the silicon substrate 20 may cause undesirable consequences, such as decreased channel mobility and increased gate dielectric leakage.
A standard ash and clean process is used to remove the patterned photoresist 220 over the NMOS region and now the work function adjustment implant process is performed on the NMOS region. First, a standard photoresist process is used to form a layer of photoresist over the semiconductor wafer 10 and then the photoresist layer is patterned and developed to form a patterned photoresist layer 220 that simultaneously protects the region containing the PMOS transistor while exposing the region containing the NMOS transistor, as shown in
The NMOS work function adjustment implant 240 is now performed on the exposed region containing the NMOS transistor 70. Specifically, n-type dopants selected from the lanthanide series (e.g. Yb, Gd, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) are implanted into the exposed gate electrode 113 of the NMOS transistor 70. In the example application, Yb is implanted into the gate electrode 113 with a standard high current implanter (such as the high current implanters sold by Varian or Axcellis). Moreover, the lanthanide series dopant is implanted into the upper ⅓ of the gate electrode 113 in order to guard against the diffusion of the lanthanide series dopants past the gate dielectric 100 (into the channel region) during any subsequent anneal process. Any suitable process parameters may be used, such as an implantation of Yb species at a dose of 1×1014 to 5×1015 atoms/cm2 and energy of 15 to 30 keV. In the example application, the NMOS transistor 70 has a work function of approximately 4.1 eV.
It is within the scope of the invention to also simultaneously implant standard n-type dopants, such as As, P, Sb, or a combination thereof—into the gate electrode 113 to adjust the work function of the NMOS transistor 70 containing lanthanide element dopants away from the band edge of silicon. This optional implant supports additional tuning of the work function of the lanthanide implanted NMOS transistor 70. If used, this optional implant is performed before the work function adjustment implant 240 because an n-type dopant (such as As) will probably facilitate the out diffusion of the lanthanide series dopant during the work function adjustment implant 240 (thereby moving the work function away from the band edge).
It is to be noted that in the example application that the Yb dopant interacts with the oxygen within the gate dielectric 100, creating a layer of Yb2O3 that is preferably located close to the interface between the gate dielectric 100 and the Yb-implanted gate electrode 113. The presence of Yb in the gate dielectric 100 may cause in increase in the k value of the gate dielectric 100. However, the presence of Yb2O3 at or near the interface between the gate dielectric 113 and the silicon substrate 20 may cause undesirable consequences, such as decreased channel mobility and increased gate dielectric leakage.
It is also to be noted that the dopants implanted during the work function adjustment implantation steps 230 and 240 will not be affected by the anneal temperatures used earlier to anneal the source/drain regions 80 (and the extension regions 90). Therefore the reduced thermal budget of the work function implant processes 230, 240 of this example application accommodate a more sensitive tuning of the work function (than can be realized with the large thermal budget of the source/drain anneal in combination with the work function adjustment implant).
The PMD isolation layer 210 (and the etch stop layer 200) protected the silicided source/drain region 80 from the work function adjustment implants 230, 240. In addition, the PMD isolation layer 210 (and the etch stop layer 200) will protect the silicided source/drain region 80 from the gate silicide process (infra).
A standard ash and clean process is used to remove the patterned photoresist 220 over the PMOS region, as shown in
As shown in
An optional capping layer 260 may also be formed over the metal layer 250. If used, the capping layer 230 acts as a passivation layer that prevents the diffusion of oxygen from ambient into the metal layer 250. The capping layer may be any suitable material, such as TiN or Ti. In the example application, the optional capping layer 260 is between 5-30 nm thick.
In accordance with the invention, the semiconductor wafer 10 is now annealed with any suitable process 270, such as a RTA. In the example application, the silicide anneal is performed for 10-60 seconds at a temperature between 300-500° C. In the example application, the polysilicon gate electrode 113 becomes a fully silicided (“FUSI”)gate electrode 110, as shown in
The next step is the removal of the un-reacted portions of the silicidaton metal layer 250, as shown in
It is within the scope of the invention to perform another silicide anneal (such as another RTA) at this point in the manufacturing process in order to further react the gate silicide 110. In the example application, the second silicide anneal is performed for 30-120 seconds at a temperature between 400-600° C. If the initial anneal process did not complete the silicidation process, this second anneal will ensure the formation of a NiSi having a lowered sheet resistance. As stated above, the gate electrode 110 is fully silicided (“FUSI”) through the silicidation process in the example application.
It is to be noted that the lanthanide series dopant contained within the NMOS transistor 70 will diffuse during the anneal steps of the gate silicide loop (causing lanthanide elements to react with the gate dielectric 100). As a result, the NMOS transistor 70 will have a higher k value (plus a higher capacitance) and the gate leakage may be reduced.
As shown in
It is within the scope of the invention to perform the source/drain silicide loop after the gate silicide loop, as shown in
Using the silicide loop process describe above, a metal layer 125 (plus an optional capping layer, if used) is formed over the semiconductor wafer 10, as shown in
As shown in
Upon completion of the formation of source/drain suicides 120, the work function adjustment implant, and the formation of the gate FUSI electrodes 110—using any of the process flows described above—the fabrication of the semiconductor wafer 10 now continues (using standard process steps) until the semiconductor device is complete. Generally, the next step is the formation of the dielectric insulator layer 160 using plasma-enhanced chemical vapor deposition (“PECVD”) or another suitable process (see
The contacts 170 are formed by etching the dielectric insulator layer 160 to expose the desired gate, source and/or drain. The etched spaces are usually filled with a liner 180 to improve the electrical interface between the silicide and the contact 170. Then contacts 170 are formed within the liner 180; creating the electrical interconnections between various semiconductor components located within the semiconductor substrate 20.
As discussed above, the fabrication of the final integrated circuit continues with the fabrication of the back-end structure. Once the fabrication process is complete, the integrated circuit will be tested and then packaged.
Various additional modifications to the invention as described above are within the scope of the claimed invention. As an example, interfacial layers may be formed between any of the layers shown. In addition, any of the implant processes may be followed by a post ion implantation clean. Furthermore, an anneal process may be performed after any step in the above-described fabrication process. When used, the anneal process can improve the microstructure of materials and thereby improve the quality of the semiconductor structure. Additionally, if a metal other than Ni is used then higher temperatures may be required for the described anneal processes.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 11694662 | Mar 2007 | US |
Child | 12255500 | US |