The present invention relates generally to invertible microfeature device packages and associated methods for manufacturing and installing such packages.
Microfeature devices, such as memory chips, are typically incorporated into a device package prior to installation in an end product. The package can include an encapsulant that protects the chip, and a leadframe that connects chip terminals (located on the chip and surrounded by the encapsulant) with package terminals that are accessible from outside the package. The package terminals can accordingly provide for communication between the chip and devices located external to the package.
The package terminals are typically arranged in a pattern that conforms to industry developed standards, so that the package is installable in a wide variety of electronic devices. Such standards have been developed for ball grid array (BGA) arrangements and quad flat no-lead (QFN) plastic package arrangements. However, device packages manufactured to be compatible with one standard attachment arrangement are typically not compatible with others. Accordingly, the versatility of such device packages is limited, and package manufacturers and suppliers must therefore manufacture and inventory packages compatible with a multitude of attachment arrangements.
A. Introduction
The present invention is directed to invertible microfeature device packages and associated methods for manufacturing and installing such packages. The term “microfeature device” is used throughout to include a device formed from a substrate upon which and/or in which submicron circuits or components, and/or data storage elements or layers are fabricated. Submicron features in the substrate include, but are not limited to, trenches, vias, lines, and holes. These features typically have a submicron width (e.g., ranging from, for example, 0.1 micron to 0.75 micron) generally transverse to a major surface (e.g., a front side or a back side) of the device. The term microfeature device is also used to include substrates upon which and/or in which micromechanical features are formed. Such features include read/write head features and other micromechanical features having submicron or supramicron dimensions. In any of these embodiments, the substrate is formed from suitable materials, including ceramics, and may support layers and/or other formations of other materials, including but not limited to metals, dielectric materials and photoresists.
A microfeature device package system in accordance with one aspect of the invention includes a microfeature device, a plurality of device contacts electrically coupled to structures within the microfeature device, and a conductive structure electrically connected to at least one of the plurality of device contacts. The conductive structure can have a plurality of first and second package contacts accessible for electrical coupling to at least one device external to the package. The first package contacts can be accessible from a first direction for coupling, and the second package contacts can be configured to receive solder balls and can be accessible from a second direction for coupling, the second direction being opposite the first direction. An encapsulant can be disposed adjacent to the microfeature device and the conductive structure, and can have apertures with aperture walls aligned with the second package contacts to contain solder balls carried by the second package contacts. Accordingly, the packaged microfeature device can be oriented in one direction for coupling to one type of substrate, and can be inverted for coupling to another type of substrate for which solder balls provide the intervening electrical connection.
A microfeature device package in accordance with another aspect of the invention includes a first microfeature device having a plurality of first device contacts and a second microfeature device having a plurality of second device contacts. The second microfeature device is coupleable to the first microfeature device in either of two orientations wherein in a first orientation the second device contacts face toward the first device contacts, and in a second orientation the first and second device contacts face in opposite directions. A conductive structure is positioned at least proximate to the first and second microfeature devices and is electrically connected to at least one of the first device contacts and to at least one of the second device contacts.
A method for forming a microfeature device package in accordance with another aspect of the invention includes disposing a conductive structure at least proximate to a microfeature device, with the conductive structure having a plurality of first and second package contacts. The microfeature device can further have a plurality of device contacts electrically coupled to structures within the microfeature device. The method can further include orienting the conductive structure with the first and second package contacts accessible for electrical coupling to devices external to the package. The first package contacts can be accessible from a first direction for coupling and the second package contacts can be accessible from a second direction for coupling, with the second direction opposite the first direction. The method can further include electrically coupling the conductive structure to the device contacts of the microfeature device, and disposing an encapsulant adjacent to the conductive structure. The encapsulant can include apertures aligned with the second package contacts, and aperture walls positioned to contain solder balls at the second package contacts.
B. Methods and Apparatuses in Accordance with the Embodiments of the Invention
Specific details of the invention are set forth in the following description and in
Referring now to
Referring now to
Referring now to
Referring now to
Referring next to
Referring now to
One feature of an embodiment of the microfeature device package 110 described above with reference to
In one aspect of this embodiment, the conductive structure 620 can extend between and around the microfeature devices 130a, 130b. In a particular aspect of this embodiment, the conductive structure 620 can include a first leadframe 121a (which can form a portion of the first package 110a) and a second leadframe 121b (which can form a portion of the second package 110b). In a further particular aspect of this embodiment, the first microfeature device 130a and the second microfeature device 130b are oriented so that a second surface 132a of the first microfeature device 130a faces toward a second surface 132b of the second microfeature device 130b. Accordingly, first device bond pads 133a of the first microfeature device 130 face toward second device bond pads 133b of the second microfeature device 130, and a first surface 131a of the first microfeature device 130a faces away from a first surface 131b of the second microfeature device 130b. In another embodiment, the orientations of the first and second microfeature devices 130a, 130b can be inverted, for example, as described in greater detail below with reference to
In one aspect of an embodiment shown in
One feature of the stacked device packages described above with reference to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4012579 | Fox et al. | Mar 1977 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4996587 | Hinrichsmeyer et al. | Feb 1991 | A |
5107328 | Kinsman | Apr 1992 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5140404 | Fogal et al. | Aug 1992 | A |
5252853 | Michii | Oct 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5304842 | Farnworth et al. | Apr 1994 | A |
5471369 | Honda et al. | Nov 1995 | A |
5475918 | Kubota et al. | Dec 1995 | A |
5518957 | Kim | May 1996 | A |
5536969 | Matsuoka | Jul 1996 | A |
5583371 | Hori | Dec 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5663593 | Mostafazadeh et al. | Sep 1997 | A |
5665651 | Asada et al. | Sep 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5715593 | Kimura | Feb 1998 | A |
5729049 | Corisis et al. | Mar 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
5744827 | Jeong et al. | Apr 1998 | A |
D394844 | Farnworth | Jun 1998 | S |
5815000 | Farnworth et al. | Sep 1998 | A |
D402638 | Farnworth | Dec 1998 | S |
5847455 | Manteghi | Dec 1998 | A |
5851845 | Wood et al. | Dec 1998 | A |
5866939 | Shin et al. | Feb 1999 | A |
5866953 | Akram et al. | Feb 1999 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891753 | Akram | Apr 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5894107 | Lee et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5956236 | Corisis et al. | Sep 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5973393 | Chia et al. | Oct 1999 | A |
5973396 | Farnworth | Oct 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
6008070 | Farnworth | Dec 1999 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028356 | Kimura | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6043430 | Chun | Mar 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6060778 | Jeong et al. | May 2000 | A |
6066514 | King et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6075284 | Choi et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6093969 | Lin | Jul 2000 | A |
6094058 | Hembree et al. | Jul 2000 | A |
6097087 | Farnworth | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6117710 | Mostafazadeh et al. | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6133068 | Kinsman | Oct 2000 | A |
6137162 | Park et al. | Oct 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150710 | Corisis | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175149 | Akram | Jan 2001 | B1 |
6181000 | Ooigawa et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6215177 | Corisis et al. | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228687 | Akram et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232229 | Reinberg | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6246110 | Kinsman et al. | Jun 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265660 | Tandy | Jul 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6277704 | Reinberg | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297543 | Hong et al. | Oct 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303469 | Larson et al. | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6303997 | Lee | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6329705 | Ahmad | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331448 | Ahmad | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6337510 | Chun-Jen et al. | Jan 2002 | B1 |
6339254 | Venkateshwaran et al. | Jan 2002 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6403398 | Ohuchi et al. | Jun 2002 | B2 |
6429528 | King et al. | Aug 2002 | B1 |
6486545 | Glenn et al. | Nov 2002 | B1 |
6498393 | Fujimoto et al. | Dec 2002 | B2 |
6501184 | Shin et al. | Dec 2002 | B1 |
6516516 | Lee | Feb 2003 | B1 |
6518659 | Glenn | Feb 2003 | B1 |
6528722 | Huang et al. | Mar 2003 | B2 |
6576494 | Farnworth | Jun 2003 | B1 |
6630729 | Huang | Oct 2003 | B2 |
6784023 | Ball | Aug 2004 | B2 |
6784525 | Kuan et al. | Aug 2004 | B2 |
6787393 | Jin et al. | Sep 2004 | B2 |
6819003 | Farnworth | Nov 2004 | B2 |
6830955 | Shin et al. | Dec 2004 | B2 |
6836009 | Koon et al. | Dec 2004 | B2 |
6841863 | Baik et al. | Jan 2005 | B2 |
6847104 | Huang et al. | Jan 2005 | B2 |
6876066 | Fee et al. | Apr 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
7049684 | Minamio et al. | May 2006 | B2 |
7195957 | Koon et al. | Mar 2007 | B2 |
7259451 | Seng et al. | Aug 2007 | B2 |
20010000053 | Suh et al. | Mar 2001 | A1 |
20010013645 | King et al. | Aug 2001 | A1 |
20020046854 | Huang et al. | Apr 2002 | A1 |
20030104654 | Farnworth | Jun 2003 | A1 |
20030205801 | Baik et al. | Nov 2003 | A1 |
20040026773 | Koon et al. | Feb 2004 | A1 |
20040036180 | Ho et al. | Feb 2004 | A1 |
20040080031 | Huang et al. | Apr 2004 | A1 |
20040100772 | Chye et al. | May 2004 | A1 |
20040150088 | Corisis | Aug 2004 | A1 |
20040155331 | Thurgood et al. | Aug 2004 | A1 |
20050023655 | Fee et al. | Feb 2005 | A1 |
20050026325 | Koon et al. | Feb 2005 | A1 |
20050046000 | Seng et al. | Mar 2005 | A1 |
20050179119 | Lien | Aug 2005 | A1 |
20060006534 | Yean et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
2001087444 | Sep 2001 | KR |
Number | Date | Country | |
---|---|---|---|
20050046000 A1 | Mar 2005 | US |