The present invention relates to semiconductor processing and, in particular, to a method of void-free filling of isolation trenches.
With increasingly smaller dimension scaling in memory integrated circuit (IC) fabrication, filling deep isolation trenches, as may be used, for example, in FLASH memory structures, without voids has become more difficult. This is particularly true for isolation trenches that use a nitride liner with an HDP oxide fill. The addition of a nitride liner provides several benefits, including improved corner rounding at the bottom and sidewalls of the isolation trenches to decrease the occurrence of voids, reduced stress adjacent the trench isolation structure, and reduced electrical leakage. However, a nitride liner is typically a spin-on-dielectric (SOD). The SOD process leaves residual nitride materials in the vicinity of the active area. Nitrides at the active areas may cause a shift in electrical parameters and device reliability degradation.
Therefore, it is desirable to have a method of forming an isolation trench, including deep isolation trenches, that can exploit the conformal properties of nitride film without leaving nitride materials in the vicinity of the device's active areas.
The invention provides a method of forming a void-free trench isolation structure having a nitride liner and HDP oxide fill. In an exemplary embodiment, an oxide layer is formed over a substrate having a smaller isolation trench and a larger isolation trench. For example, the smaller isolation trench may be for a memory array, while the larger isolation trench may be used for isolating the memory array from periphery circuitry. A nitride layer is formed over the oxide layer such that it completely fills the smaller isolation trench and lines the larger isolation trench. The nitride layer is etched back to form a recess in the nitride layer in the small isolation trench while the nitride layer lining the large isolation trench is completely removed. A layer of HDP oxide is deposited over the substrate, completely filling the smaller and larger isolation trenches. The HDP oxide layer is planarized to the upper surface of the substrate. A deeper larger isolation trench may be formed by performing an etching step in the larger isolation trench after the nitride layer has been removed, prior to depositing the HDP oxide.
In the following detailed description, reference is made to various specific exemplary embodiments in which the invention may be practiced. These embodiments are described with sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be employed, and that structural, logical, and electrical changes may be made.
The term “substrate” used in the following description may include any semiconductor-based structure that has a semiconductor surface. Substrate must be understood to include silicon, silicon-on insulator (SOI), silicon-on sapphire (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. The semiconductor need not be silicon-based. The semiconductor could be silicon-germanium, germanium, or gallium arsenide.
Referring now to the drawings, where like elements are designated by like reference numerals,
Referring now to
As shown in
In another embodiment, a deeper trench may be formed in the periphery area, if desired. Initial steps of processing are used as shown in
The substrate 10 then undergoes a selective silicon reactive-ion etch process, as shown in
Referring now to
The exemplary embodiments of the invention (described above) form larger and smaller void-free trench isolation structures, with nitride in the smaller trenches but without nitride residue surrounding the smaller trench isolation structures which may degrade devices constructed in the active areas of the substrate isolated by the smaller isolation trenches.
Although the invention has been described with reference to the formation of only two trench isolation structures, the invention also contemplates the formation of a multitude of larger and smaller isolation structures, having various depths, and located at various locations on the substrate to isolate devices. Further, although the invention has been described above with reference to a memory array and periphery circuitry, the invention also has applicability to other integrated circuits. For example, the invention may be used in flash memory with the smaller trenches isolating structures in the memory array and the larger trenches isolation structures elsewhere, such as the periphery, but can be used in any integrated circuit device where isolation is required.
The above description and drawings are only to be considered illustrative of exemplary embodiments, which achieve the features and advantages of the invention. Modification and substitutions to specific process conditions and structures can be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be considered as being limited by the foregoing description and drawings, but is only limited by the scope of the appended claims.
This patent resulted from a divisional application of U.S. patent application Ser. No. 14/589,432, filed Jan. 5, 2015, entitled “Isolation Trench Using Oxide Liner and Nitride Etch Back Technique With Dual Trench Depth Capability”, naming Xianfeng Zhou as inventor, which was a continuation application of U.S. patent application Ser. No. 12/712,401, filed Feb. 25, 2010, now U.S. Pat. No. 8,952,485, entitled “Isolation Trench Using Oxide Liner and Nitride Etch Back Technique With Dual Trench Depth Capability”, naming Xianfeng Zhou as inventor, which was a divisional application of U.S. patent application Ser. No. 11/374,000, filed Mar. 14, 2006, now U.S. Pat. No. 7,691,722, entitled “Isolation Trench Using Oxide Liner and Nitride Etch Back Technique With Dual Trench Depth Capability”, naming Xianfeng Zhou as inventor, the disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6531377 | Knorr et al. | Mar 2003 | B2 |
6624022 | Hurley et al. | Sep 2003 | B1 |
6642125 | Oh et al. | Nov 2003 | B2 |
6667223 | Seitz | Dec 2003 | B2 |
7033909 | Kim et al. | Apr 2006 | B2 |
7332408 | Violette | Feb 2008 | B2 |
20010036705 | Nishida et al. | Nov 2001 | A1 |
20020076900 | Park et al. | Jun 2002 | A1 |
20070212874 | Sandhu | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20160247878 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14589432 | Jan 2015 | US |
Child | 15147242 | US | |
Parent | 11374000 | Mar 2006 | US |
Child | 12712401 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12712401 | Feb 2010 | US |
Child | 14589432 | US |