Isotopically-enriched boron-containing compounds, and methods of making and using same

Information

  • Patent Grant
  • 9685304
  • Patent Number
    9,685,304
  • Date Filed
    Tuesday, September 22, 2015
    8 years ago
  • Date Issued
    Tuesday, June 20, 2017
    6 years ago
Abstract
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Description
FIELD

The present disclosure relates to isotopically-enriched boron-containing compounds, compositions, and methods of making and using same.


DESCRIPTION OF THE RELATED ART

Ion implantation is used in integrated circuit fabrication to accurately introduce controlled amounts of dopant impurities into semiconductor wafers and is a crucial process in microelectronic/semiconductor manufacturing.


In such implantation systems, an ion source ionizes a desired dopant element of a dopant source gas. The ion source generates ions by introducing electrons into a vacuum chamber filled with the dopant source gas (also commonly referred to as the “feedstock gas”). Feedstock gases used to generate implant species include, but are not limited to, BF3, B10H14, B12H22, PH3, AsH3, PF5, AsF5, H2Se, N2, Ar, GeF4, SiF4, O2, H2, and GeH4. The compositions containing the dopant element to be implanted are typically referred to as dopant sources or precursors. Collisions of the electrons with dopant atoms and molecules in the gas results in the creation of an ionized plasma consisting of positive and negative dopant ions.


The resulting ions are extracted from the source in the form of an ion beam of desired energy. Extraction is achieved by applying a high voltage across suitably shaped extraction electrodes, which incorporate apertures for passage of the extracted beam. The extracted beam passes through the aperture and out of the ion source as a collimated ion beam, which is accelerated towards the substrate.


The ion beam is impinged on the surface of the substrate, such as a semiconductor wafer, in order to implant the substrate with the dopant element. The ions of the beam penetrate the surface of the substrate to form a region of desired conductivity. Implanted ion species variously include B, P, As, Se, N, Ar, Ge, Si, O, and H, with boron being a particularly widely used implant species.


One of the main steps in manufacturing of integrated circuits is implantation of boron into silicon wafers. Since elemental boron exhibits very low vapor pressure even at high temperatures, utilization of volatile boron-containing compounds is necessary. Currently, boron trifluoride (BF3) is widely used as a feed gas for boron implantation (for example, it is estimated that the 2007 annual worldwide consumption of BF3 for ion implantation was ˜3000 kg).


Despite its widespread use, BF3 does have disadvantages. The BF3 molecule is very difficult to ionize and only about 15% of all BF3 flowed into the ion source can be fragmented. The rest is discarded. Further, only about 30% of the ionized BF3 is converted into B+ ions that can be used for implantation. This results in low B+ beam current that severely limits implantation process throughput.


Some increase of B+ beam current can be achieved by varying the process parameters, such as by raising the extraction current, and by increasing the BF3 flow rate. These measures result in reduced life time of the ion source, high voltage arcing leading to tool instability, and poor vacuum causing beam energy contamination. Even without drastic adjustment of the implantation process parameters, it is well established that implantation of boron requires more frequent preventive maintenance interruptions that present other problems for integrated circuit manufacturers.


The problem of throughput limitation because of low B+ beam current has become more important in recent years due to the semiconductor industry's general trend toward utilization of lower implantation energies. At lower implantation energies, the B+ beam experiences a greater blow-out effect due to space charge and the low atomic weight of boron.


In addition to the foregoing problems, it has been mentioned that elemental boron has a very low vapor pressure. Accordingly, if a boron-containing precursor is susceptible to excessive decomposition resulting in deposition of boron residue, then it may be unsuitable for ion implantation, from an ion implanter tool operation perspective.


In consequence of the foregoing, the art continues to seek improved boron precursors.


SUMMARY

The present disclosure relates to isotopically-enriched boron-containing compounds, and methods of making and using same.


In one aspect, the disclosure relates to an isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof.


A further aspect of the disclosure relates to a method of implanting boron into a substrate, comprising ionizing the compound of an above-describe type, to generate boron ions; and implanting the boron ions into a substrate.


Yet another aspect of the disclosure relates to a beam-line ion implantation, plasma immersion ion implantation or plasma doping system, comprising a source of the compound described above.


Another aspect of the disclosure relates to a gas storage and dispensing vessel comprising a compound of a above-described type.


The disclosure in another aspect relates to a method of improving beam current for an ion implantation process, comprising: flowing the compound of a type as described above; and generating an ion beam from the compound.


A further aspect of the disclosure relates to a method of synthesizing the compound of a type as described above, comprising contacting a boron-containing gas with a boron metal.


The disclosure relates another aspect to a method of preparing a source of the compound of an above described type, comprising filling a storage and dispensing vessel with the compound.


Another aspect of the disclosure relates to an ion implantation method, comprising flowing a compound of the type described above to an ion implantation tool with at least one co-flowed species selected from the group consisting of inert gas, argon, nitrogen, helium, hydrogen, ammonia, xenon, xenon difluoride, isotopically enriched diborane, and natural abundance diborane.


A further aspect of the disclosure relates to an ion implantation method, comprising flowing an isotopically-enriched atomic mass 11 boron B2F4 compound to an ion implantation tool with an isotopically-enriched atomic mass 11 boron BF3 compound.


Yet another aspect of the disclosure relates to an ion implantation method comprising use of a compound of an above-described type in an ion implantation tool, and periodically cleaning said tool or a component thereof by flow therethrough of a cleaning agent that is effective to at least partially remove deposits formed in said tool or a component thereof by ion implantation operation.


A further aspect of the disclosure relates to a method of carrying out ion implantation, comprising using a compound of a type as described above in an ion implantation tool as the only dopant source compound used in operation of said ion implantation tool.


Another aspect of the disclosure relates to a method of carrying out ion implantation, comprising conducting said ion implantation in an ion implantation tool processing only isotopically enriched atomic mass 11 boron B2F4 as a dopant compound therein.


In another aspect, the disclosure relates to a method of carrying out ion implantation, comprising conducting said ion implantation in an ion implantation tool using isotopically enriched atomic mass 11 boron B2F4 as a dopant compound therein, wherein the ion implantation tool also processes at least one of arsine, phosphine, carbon dioxide, carbon monoxide, silicon tetrafluoride and boron trifluoride.


A further aspect of the disclosure relates to a storage and dispensing vessel containing a compound of an above-described type in a storage medium selected from the group consisting of physical adsorbents and ionic liquids.


Yet another aspect of the disclosure relates to a storage and dispensing vessel containing a compound of an above-described type, wherein the vessel contains a restricted flow orifice located either within the vessel or within an output port of the vessel.


A further aspect the disclosure relates to a storage and dispensing vessel containing a compound of an above-described type, wherein the vessel is pressure-regulated for dispensing of the compound at subatmospheric pressure.


The disclosure relates in another aspect to an ionized composition useful for AMU separation to generate ionic species for ion implantation, said composition deriving from a boron precursor compound other than BF3, wherein said boron precursor compound is isotopically enriched beyond natural abundance in one of 10B and 11B, and wherein said composition comprises one or more species from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, F+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, F++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++, B+++, and F+++, the boron-containing ones of which are isotopically enriched beyond natural abundance in one of 10B and 11B.


A further aspect of the disclosure relates to a boron ionic species selected from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++ and B+++, and isotopically enriched beyond natural abundance in one of 10B and 11B.


The disclosure in another aspect relates to a method of improving beam current for an ion implantation process, comprising use of an isotopically-enriched, boron-containing compound that is effective to form isotopically enriched ionic species producing such improved beam current, in relation to a corresponding non-isotopically-enriched, boron-containing compound.


A further aspect the disclosure relates to a process system, comprising:


a process tool;


a first boron precursor source configured to supply a first boron precursor to the process tool; and


a second boron precursor source configured to supply a second boron precursor to the process tool concurrently with the first boron precursor,


wherein the first boron precursor source comprises B2F4 and the second boron precursor source comprises diborane.


A still further aspect the disclosure relates to an ion implantation process, comprising:


co-flowing B2F4 and diborane to an ionizing zone;


ionizing the co-flowed B2F4 and diborane in the ionizing zone to form boron dopant species; and


ion implanting the boron dopant species.


Other aspects, features and embodiments of the invention will be more fully apparent from the ensuing disclosure and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a semiconductor manufacturing facility including an ion implantation system arranged to receive an isotopically-enriched boron-containing precursor from a precursor supply vessel, according to one embodiment of the present disclosure.



FIG. 2 is a schematic representation of a manufacturing process system including a manufacturing facility containing a process tool (PROCESS TOOL) arranged to be supplied with boron precursor through a boron precursor co-flow feed line.





DETAILED DESCRIPTION

The present disclosure relates to isotopically-enriched boron-containing compounds, compositions, and to methods of making and using same.


In one aspect, the disclosure relates to an isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio that is greater than a natural abundance concentration or ratio thereof (of the desired isotope).


The boron-containing compound can be of any suitable type, and can include any number of boron atoms. In one embodiment, the boron-containing compound contains at least two boron atoms and at least one fluorine atom. In another embodiment, the boron-containing compound contains from 2 to 80 boron atoms, including diboron compounds such as B2F4, B2H6, H2B2F6, H2B2F2O3, H2B2F2O6, and H2B2F4O2, triboron compounds such as B3F6, tetraboron compounds such as H4B4F10, B(BF2)3CO, and (F2B)3BCO, pentaboron compounds, hexaboron compounds, septaboron compounds, octaboron compounds such as B8F12, nonaborane compounds, decaboron compounds such as B10F12, undecaboron compounds, dodecaboron compounds, etc., up to B80 compounds such as B80 analogs of fullerenes. In other embodiments, the boron-containing compound can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 boron atoms. Additional embodiments may comprise cluster boron compounds. In still other embodiments, the boron-containing compound can be a diboron compound. In other embodiments, the boron-containing compound can comprise diboron compounds other than particular boron-containing compound species, e.g., diboron compounds other than diborane. It will therefore be appreciated that the disclosure contemplates a wide variety of classes of boron-containing compounds, within the broad scope thereof.


In one embodiment of the isotopically-enriched, boron-containing compound, the desired isotope is atomic mass 10 boron and the natural abundance concentration is about 19.9%. In such boron compound, the concentration of atomic mass 10 boron isotope can for example be greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, or 99.99%, in specific compositional variants. For example, the concentration of atomic mass 10 boron isotope can be 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, 45-50%, 50-55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, 95-99% or 95-99.9%. In other embodiments, the concentration of atomic mass 10 boron isotope can be 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90%, or 90-99%. In various ones of these various embodiments, the boron-containing compound contains two boron atoms.


In another embodiment of the isotopically-enriched, boron-containing compound, the desired isotope is atomic mass 11 boron and the natural abundance concentration is about 80.1%. In such boron compound, the concentration of atomic mass 11 boron isotope can for example be greater than 80.1%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9% or 99.99%, in specific compositional variants. For example, the concentration of atomic mass 11 boron isotope can be 81-85%, 85-90%, 90-95%, 95-99%, 95-99.9%. In a specific embodiment, the concentration of atomic mass 11 boron isotope can be 81-90% or 90-99%. In various ones of these various embodiments, the boron-containing compound contains two boron atoms and at least one fluorine atom, and in other compounds, the ratio of 11B to 10B is in a range of from 4.1 to 10,000.


In various embodiments of the isotopically-enriched boron-containing compounds as described above, the boron-containing compound has a chemical formula of B2F4. In various other embodiments of the isotopically-enriched boron-containing compounds as described above, the boron-containing compound has a chemical formula of B2F6.


More generally, in isotopically-enriched, boron-containing compounds of the present disclosure, the concentration of desired isotopes in the two or more boron atoms can be the same as, or different from, one another. In various embodiments of the isotopically-enriched boron-containing compounds of the present disclosure, the boron-containing compound contains 3, 4, 5, 6, 7, 8, 9, 10, or 11 boron atoms.


The present disclosure, in one aspect, relates to a method of implanting boron into a substrate, comprising ionizing an isotopically-enriched, boron-containing compound as variously described herein, to generate boron ions, and implanting the boron ions into a substrate. In such method, the isotopically-enriched, boron-containing compound may be of any suitable type described hereinabove. In one embodiment, the compound has a chemical formula of B2F4. In various other embodiments of such method, the isotopically-enriched, boron-containing compound has a chemical formula of B2F6.


The disclosure in another aspect relates to a beam-line ion implantation, plasma immersion ion implantation or plasma doping system, comprising a source of the isotopically-enriched, boron-containing compound, wherein the compound may be of any type as variously described hereinabove. In one embodiment, the compound has a chemical formula of B2F4. In various other embodiments of such method, the isotopically-enriched, boron-containing compound has a chemical formula of B2F6. In another embodiment, the disclosure relates to ion implantation, in which boron ions are generated and accelerated by an electric field for impingement on a substrate, such as a microelectronic device substrate. Such method of implanting boron-containing ions in one implementation includes ionizing a boron-containing dopant species at a high ionization efficiency of at least 15% using an arc voltage less than 100 volts, preferably less than 90 volts, more preferably less than 80 volts, and most preferably less than 70 volts, using a conventional hot cathode ion source or comparable voltages using another ion source. In other embodiments, the ion implantation specifically excludes plasma immersion processes.


The above-described beam-line ion implantation, plasma immersion ion implantation or plasma doping system, in specific implementations thereof, comprise a conduit adapted for delivery of the isotopically-enriched boron-containing compound to an ionization chamber, wherein the conduit is maintained at a temperature effective to minimize or otherwise suppress clogging of the conduit and/or decomposition of the compound in the conduit. For such purpose, the ionization chamber and/or the precursor feed conduit can be equipped with active cooling capability, such as by provision of heat exchange flow circuitry serving to reduce the temperature of the influent dopant gas entering the ionization chamber.


In the delivery of the isotopically-enriched, boron-containing compound to the ion implanter tool, the isotopically-enriched, boron-containing compound may be delivered, e.g., co-flowed to the ion implanter tool, with other component(s), such as inert gas species, e.g., argon, xenon, nitrogen, helium or the like, hydrogen, ammonia, other boron precursors such as natural abundance boron precursors, other isotopically-enriched boron-containing precursors, other dopant precursors (i.e., non-boron dopant precursors), or one or more of the foregoing components.


In one embodiment, the isotopically-enriched, boron-containing compound, e.g., enriched atomic mass 11 boron isotope-containing B2F4, is co-flowed to the ion implanter tool with an enriched atomic mass 11 boron isotope-containing BF3, whereby the dilution of the isotopically-enriched B2F4 with the isotopically-enriched BF3 serves to enhance the resistance of the precursor stream to clogging of feed lines to the tool. In such case, the beam current can be maintained at levels that provide a significant benefit operationally, while concurrently maximizing the service life of the ion source.


In various other implementations of the use of isotopically-enriched, boron-containing precursors, operation of the ion implantation system may be carried out with in-situ cleaning of components of the system, such as by flow of a cleaning agent into the system or specific components thereof to be cleaned, at periodic intervals. The cleaning agent utilized in such operation can be of any suitable type, such as for example xenon difluoride, fluorine, nitrogen trifluoride, or other agent that is effective in contact with deposits formed in the ion implantation system or specific components thereof to be cleaned, to at least partially remove such deposits. The location to be cleaned in the ion implantation system by such periodic introduction of cleaning agent can be the gas tube, the arc chamber, forelines, or any other locations or regions in the tool or ancillary equipment in which deposits can be formed by chemical species utilized in the ion implantation operation.


In another implementation of the use of isotopically-enriched, boron-containing compounds as precursors, an ion implantation tool is operated with isotopically-enriched atomic mass 11 boron B2F4 as the only dopant precursor. In yet another implementation, ion implantation is carried out with isotopically-enriched atomic mass 11 boron B2F4 as the dopant species on an ion implantation tool that also is used to carry out doping operation involving a dopant precursor selected from the group consisting of arsine, phosphine, carbon dioxide, carbon monoxide, silicon tetrafluoride, and boron trifluoride.


A further aspect of the disclosure relates to a gas storage and dispensing vessel comprising an isotopically-enriched, boron-containing compound of any type as variously described herein. Such gas storage and dispensing vessel may for example contain an isotopically-enriched, boron-containing compound having the chemical formula of B2F4. The gas storage and dispensing vessel in specific embodiments may comprise one or more of a regulator, check valve, adsorbent, filter, and capillary flow restriction device disposed in an interior volume of the vessel. The vessel in other embodiments may contain a storage medium for the boron-containing compound, such as a solid-phase physical adsorbent, or alternatively an ionic liquid storage medium. In still other embodiments, the vessel can include a restrictive flow orifice located either within an interior volume of the vessel or within a connection port, e.g., outlet port, of the vessel.


Another aspect of the invention relates to a method of synthesizing an isotopically-enriched, boron-containing compound of any suitable type as described herein above, comprising contacting a boron-containing gas with a boron metal. In such method, one or both of the boron-containing gas and boron metal can be isotopically enriched. Thus, for example, the disclosure contemplates a combination of isotopically enriched boron metal and natural abundance boron trifluoride as being contacted, in one embodiment. In another illustrative embodiment, the disclosure contemplates combination of natural abundance boron metal and isotopically enriched boron trifluoride as being the contacted species, and in yet another illustrative embodiment, the disclosure contemplates contacting of isotopically enriched boron metal and isotopically enriched boron trifluoride.


As a specific example of the synthesis method described above, the isotopically-enriched, boron-containing compound that is synthesized in the contacting may be B2F4 and the boron-containing gas may be boron trifluoride.


The foregoing synthesis method may be carried out using atomic mass 10 boron isotope in the boron metal at any suitable concentration. In specific embodiments, the concentration of atomic mass 10 boron isotope in the boron metal can be greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9%, or 99.99%.


In other embodiments, the synthesis method may be carried out using atomic mass 11 boron isotope in the boron metal, and in specific embodiments of such type, the concentration of atomic mass 11 boron isotope in the boron metal can be greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


In still other embodiments of the synthesis method, in which boron trifluoride is employed, isotopically enriched boron trifluoride species can be employed, such as boron trifluoride in which the concentration of atomic mass 10 boron isotope is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9%, or 99.99%.


In other embodiments, the synthesis method using boron trifluoride in isotopically enriched form can be carried out, in which the boron trifluoride is enriched in atomic mass 11 boron isotope, wherein the concentration of atomic mass 11 boron isotope in the boron trifluoride is greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


The disclosure in a further aspect relates to a method of improving beam current for an ion implantation process, comprising use of an isotopically-enriched, boron-containing compound that is effective to produce such improved beam current, in relation to a corresponding non-isotopically-enriched, boron-containing compound. In a specific embodiment, the isotopically-enriched, boron-containing compound comprises isotopically-enriched B2F4.


A further aspect of the disclosure relates to a method of improving beam current in an ion implantation process, comprising flowing an isotopically-enriched, boron-containing compound of any suitable type as described hereinabove, and generating an ion beam from the compound. In such method, the isotopically-rich, boron-containing compound can comprise a compound having a chemical formula of B2F4. Such boron-containing compound upon ionization may form various ionic species and fragments, including one or more species from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, F+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, F++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++, B+++, and F+++.


Significant improvement can be achieved in beam current as a result of the use of isotopically-enriched boron-containing compounds, and their correspondingly enriched boron-containing ionic species and fragments, as selected for implantation, by a selector comprising an AMU magnet or other selector. In such various embodiments, the concentration of atomic mass 11 boron isotope in the boron-containing compound, and in ionic species and fragments therefrom, can be greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%. Alternatively, boron-containing compounds enriched in atomic mass 10 boron isotope can be utilized, i.e., boron-containing compounds, and corresponding ionic species and fragments therefrom, in which the concentration of atomic mass 10 boron isotope is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


In addition to utilizing isotopically-enriched compounds as feed gas sources for ion implantation, the disclosure contemplates arrangements in which combinations of boron-containing source compounds are utilized, to achieve various improvements, e.g., improvement in beam current and/or other operating parameters of the ion implant operation, reduction in levels of decomposition and deposits therefrom, enhancement of resistance to clogging of flow passages in the ion implantation system, etc.


The disclosure further contemplates use of compounds that are homogenous in boron isotope as precursors for boron ion implantation, i.e., boron-containing compounds, and ionic species and fragments therefrom, wherein all atomic boron is 10B or 11B, to achieve improvements in beam current or other operational parameters of the ion implantation operation and system.


Use of isotopically-enriched boron-containing compounds has been demonstrated to afford significant improvement in beam current for selected ionic species, e.g., beam current improvement levels of from 5 to 30% or more, depending on the particular ionic species being selected for ion implantation. The ionic species, isotopically enriched in boron content, can be of any suitable type, and can for example include one or more of B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, F+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, F++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++, B+++, and F+++. Thus, isotopic enrichment can be utilized to improve AMU magnet selection of ions of a desired type, such as for example BF2+, BF+ or F+. By increasing the beam current in the ion implant tool with such isotopically enriched species, it is possible to avoid the need for increasing the source gas flow and the source arc power, such as may otherwise be required to achieve higher beam current levels, but which are less efficient and result in low utilization of the source gas for ion implantation.


The use of isotopically-enriched B2F4 is particularly preferred, since such boron source compound even at natural abundance isotopic composition affords significant improvement in beam current as compared to beam currents obtained using boron trifluoride under the same conditions and in the same ion implant tool, e.g., for species such as BF2+ and B+. Isotopic enrichment can further increase the magnitude of such improvements.


The disclosure in another aspect relates to generation of ion species in ionization of an isotopically-enriched boron-containing compound, as useful for ion implantation, in which the isotopically-enriched boron-containing ion species is selected from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, F+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, F++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++, B+++, and F+++. The disclosure further contemplates AMU magnet selection of one or more of such ion species generated from ionization of an isotopically-enriched boron-containing compound, and implantation of such isotopically-enriched boron-containing ion species in a substrate, such as a microelectronic device substrate.


The isotopically-enriched boron-containing species may be isotopically enriched to provide a concentration of atomic mass 11 boron isotope, or a concentration of atomic mass 10 boron isotope varied from natural abundance levels, at any of the concentrations previously described, i.e., concentration of atomic mass 11 boron isotope in the ionic species greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%, or an isotopically-enriched boron containing species in which the concentration of mass 10 boron isotope is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


Another aspect of the present disclosure relates to a method of reducing thermal decomposition and deposition of material on surfaces of the ion implantation tool as a result of using isotopically-enriched boron-containing source compounds. Thermal decomposition of boron-containing source compounds used in ion implantation can result in deposition of elemental boron with production of boron trifluoride or other byproduct gas species. Even if the gas feed line is sufficiently cooled, some thermal deposition inevitably occurs on the arc chamber walls. The deposit formed as a result of such decomposition and associated deposition can be a mixture of boron metal deriving from the source gas, and tungsten or molybdenum from the arc chamber walls. Deposits can form in the gas feed lines near the ion source, as well as inside and on surfaces of nozzles, arc chamber base plates, and below base plate liners of the ionizer. Such deposits require periodic maintenance removal, such as by abrasive cleaning and chemical methods, e.g., flow through the tool containing deposits of a suitable cleaning gas, to volatilize the deposits so that they can be removed. The resulting effluent can be processed for remediation or recovery of specific materials from the effluent stream.


If the ion implanter is not dedicated to operation with only boron dopants, various types of solid materials or ions may be formed by interaction between the ions derived from the boron source compound and materials otherwise present in the vacuum chamber, depending on its materials of construction, such as the tungsten and molybdenum materials previously described. In a tungsten arc chamber with aluminum insulators, ions may be formed of widely varying type, including WFx+ wherein x=0, 1, 2, 3, 4, 5 or 6 and AlFy+ wherein y=0, 1, 2, or 3. Such ions can react with the isotopically-enriched boron-containing source compounds to form corresponding isotopically-enriched deposits. The isotopic character of such deposits may afford opportunity to utilize cleaning agents that are selective for same as a result of their isotopic composition.


A further aspect of the disclosure relates to a method of preparing a source of the isotopically enriched, boron-containing compound of any suitable type as described hereinabove, in which the method comprises filling a storage and dispensing vessel with the compound. In such method, the isotopically enriched, boron-containing compound in one embodiment has the chemical formula B2F4.


The isotopically-enriched, boron-containing compound of the present disclosure includes a wide variety of compounds, specific ones of which are in gas, solid or liquid forms at standard conditions (1 atm pressure, 25° C.).


Thus, the disclosure contemplates an ionized composition useful for AMU separation to generate ionic species for ion implantation, said composition deriving from a boron precursor compound other than BF3, wherein said boron precursor compound is isotopically enriched beyond natural abundance in one of 10B and 11B, and wherein said composition comprises one or more species from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, F+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, F++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++, B+++, and F+++, the boron-containing ones of which are isotopically enriched beyond natural abundance in one of 10B and 11B.


In such composition, the boron precursor compound can have the chemical formula of B2F4 or any other suitable formula. The composition may be constituted so that concentration of atomic mass 10 boron isotope in the boron-containing ionic species is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9%, or 99.99%. Alternatively, the composition may be constituted so that concentration of atomic mass 11 boron isotope in said boron-containing ionic species is greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


A further aspect of the disclosure relates to a boron ionic species selected from among B2F4+, B2F3+, B2F2+, BF3+, BF2+, BF+, B+, B2F4++, B2F3++, B2F2++, BF3++, BF2++, BF++, B++, B2F4+++, B2F3+++, B2F2+++, BF3+++, BF2+++, BF+++ and B+++, and isotopically enriched beyond natural abundance in one of 10B and 11B. In the boron ionic species, the concentration of atomic mass 10 boron isotope in said boron ionic species is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9%, or 99.99%, or alternatively, the concentration of atomic mass 11 boron isotope in said boron ionic species is greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


A still further aspect of the disclosure relates to a method of improving beam current for an ion implantation process, comprising use of an isotopically-enriched, boron-containing compound that is effective to form isotopically enriched ionic species producing such improved beam current, in relation to a corresponding non-isotopically-enriched, boron-containing compound.


The isotopically-enriched, boron-containing compound may have the chemical formula of B2F4, or comprise any other suitable isotopically-enriched, boron-containing compound. In one embodiment, the concentration of atomic mass 10 boron isotope in the isotopically enriched ionic species is greater than 19.9%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 99%, 99.9%, or 99.99%. In another embodiment, the concentration of atomic mass 11 boron isotope in said isotopically enriched ionic species is greater than 80.1%, 85%, 90%, 95%, 99%, 99.9% or 99.99%.


A further aspect of the disclosure relates to use of diborane (B2H6) in combination with B2F4, as a dopant precursor composition. The B2F4 in such dopant precursor composition may be isotopically-enriched as variously described herein, or alternatively in a non-isotopically-enriched form. The diborane in such dopant precursor composition likewise may be isotopically enriched in boron isotopic species, or alternatively in a non-isotopically-enriched form. In the use of such dopant precursor composition of B2F4 and diborane, the B2F4 and diborane compounds can be premixed with one another and delivered from a same source package, or alternatively, each of such B2F4 and diborane compounds can be supplied from separate source packages, and flowed to the process tool from such separate source packages, in any suitable manner. For example, the respective B2F4 and diborane compounds can be co-flowed to the process tool from the separate source packages, or alternatively, such compounds may be delivered to the process tool in a sequential or alternating manner.


In another aspect of the disclosure, boron compounds and compositions of the present disclosure can be utilized for plasma doping of substrates for production of solar cells, using boron ions derived from enriched, or non-enriched, B2F4 and B2F4-containing compositions variously described herein.


Referring now to the drawing, FIG. 1 is a schematic illustration of a semiconductor manufacturing facility including an ion implantation system arranged to receive an isotopically-enriched boron-containing precursor from a precursor supply vessel, according to one embodiment of the present disclosure.


As shown in FIG. 1, the semiconductor manufacturing facility 180 includes a dopant precursor supply vessel 182, arranged to dispense dopant precursor to the ion source chamber of the ion implantation system. The dopant precursor supply vessel 182 may be of any suitable type, and may for example be constituted by an adsorbent-based fluid storage and dispensing apparatus of the type commercially available from ATMI, Inc. (Danbury, Conn., USA) under the trademark “SDS”, arranged for supplying dopant precursor gas at sub-atmospheric pressure, e.g., a pressure below 600 torr, such as a pressure in a range of from about 10 to about 500 torr, when the dopant precursor is of gaseous form and physically adsorbable on the sorbent medium contained in the vessel. Alternatively, the dopant precursor may be of liquid form when stored in a pressurized state, e.g., in a pressure-regulated vessel of a type commercially available from ATMI, Inc. (Danbury, Conn., USA) under the trademark “VAC”, arranged to dispense gas at lower pressure from the liquid-containing vessel. As a still further alternative, the dopant precursor may be of a solid form and may be provided in a vaporizer vessel of a type commercially available from ATMI, Inc. (Danbury, Conn., USA) under the trademark ProE-Vap, in which the dopant precursor solid is heated to generate precursor vapor for the ion implantation operation.


The dopant precursor in the illustrative FIG. 1 system can for example comprise isotopically-enriched diboron tetrafluoride (B2F4), or any other isotopically enriched boron-containing precursor.


The dopant gas is flowed in feed line 184 to gas delivery unit 186, which is constructed and arranged to suppress ionization of the dopant gas upstream of the high-voltage inlet 188 of ion source 190, in which the dopant gas is subjected to ionization to form dopant ions of the desired character.


The resulting dopant ions are transmitted in passage 192 from the ion source 190 to the implant chamber 194, in which a wafer (not shown) is disposed in ion impingement position in relation to the ion stream of the dopant species.


The byproduct effluent from the implant chamber is flowed in effluent treatment line 196 to effluent treatment unit 198, in which the effluent may be subjected to treatment and/or reclamation processing, to produce a final effluent that is discharged from the effluent treatment unit 198.


Boron precursors and precursor mixtures may be utilized in the broad practice of the present disclosure to manufacture a variety of product articles, assemblies, and subassemblies. For example, such products may include, without limitation: semiconductor product articles, assemblies, and subassemblies; flat panel display articles, assemblies, and subassemblies; and solar product articles, assemblies, and subassemblies. These products may include boron-doped materials and/or other boron-containing materials, compositions, components and structural elements. The flat panel display articles, assemblies, and subassemblies may include products such as displays including field emission arrays comprising patterned boron nanocones, boron-doped polycrystalline silicon germanium films for thin film transistor elements of active matrix flat panel displays, boron nitride nanotube structures for flat panel display applications, etc. he solar product articles, assemblies, and subassemblies may include solar photovoltaic panels, solar thermal apparatus, boron-implanted N-ype solar cells, multi-crystalline silicon solar cells including screenprinted boron back surface field (BSF) construction, etc.


The disclosure in a further aspect relates to a process system, comprising


a process tool;


a first boron precursor source configured to supply a first boron precursor to the process tool; and


a second boron precursor source configured to supply a second boron precursor to the process tool concurrently with the first boron precursor,


wherein the first boron precursor source comprises B2F4 and the second boron precursor source comprises diborane.


The process tool in the foregoing process system can be of any suitable type, and for example can comprise an ion implantation apparatus, a vapor deposition apparatus, a reaction chamber, or other process tool. In one embodiment, the process tool can comprise a boron doping ion implantation apparatus disposed in a manufacturing facility configured to produce product articles, assemblies, or subassemblies, comprising boron doped material. Such manufacturing facility can be configured for specific production, e.g., configured to produce semiconductor product articles, assemblies, or subassemblies, comprising doped boron material. Alternatively, the manufacturing facility can be configured to produce solar energy product articles, assemblies, or subassemblies, comprising boron doped material. As a still further alternative, the manufacturing facility can be configured to produce flat panel display product articles, assemblies, or subassemblies, comprising boron doped material.


The process system can be configured in various embodiments so that the first boron precursor and second boron precursor are co-flowed to the process tool.


In one implementation of the foregoing process system, the process system comprises a co-flow feed line for introducing co-flowed first and second boron precursors to the process tool, where each of the first boron precursor source and second boron precursor source comprises a precursor supply vessel coupled in flow communication to the co-flow feed line.


The foregoing process system can be constituted, wherein at least one of the B2F4 and diborane boron precursor sources is isotopically enriched. Thus, process system implementations are contemplated in which only B2F4 is enriched, or in which only diborane is isotopically enriched, or in which both B2F4 and diborane are isotopically enriched.


A further aspect of the disclosure relates to an ion implantation process, comprising:


co-flowing B2F4 and diborane to an ionizing zone;


ionizing the co-flowed B2F4 and diborane in the ionizing zone to form boron dopant species; and


ion implanting the boron dopant species.


Such process may be conducted in various modes of operation, wherein at least one of the B2F4 and diborane boron precursor sources is isotopically enriched. The process may be conducted with only B2F4 being enriched, or with only diborane being isotopically enriched, or with both B2F4 and diborane being isotopically enriched.


The foregoing process can be conducted, with the ionizing being carried out so as to generate an ion beam of the boron dopant species, and the ion beam of the boron dopant species being accelerated by electric field to implant boron-containing ions in a substrate.


As discussed herein above, the ion implantation processes of the present disclosure can be carried out in a method of manufacturing a product article, assembly, or subassembly, comprising boron-doped material. For example, the product article, assembly, or subassembly can comprise a semiconductor product article, assembly, or subassembly. Alternatively, the product article, assembly, or subassembly can comprise a solar energy product article, assembly, or subassembly. As a still further alternative, the product article, assembly, or subassembly can comprise a flat panel display product article, assembly, or subassembly.



FIG. 2 is a schematic representation of a manufacturing process system 220 including a manufacturing facility 222 containing a process tool (PROCESS TOOL) arranged to be supplied with boron precursor through a boron precursor co-flow feed line 242.


First boron precursor source comprises vessel 224 containing B2F4 and equipped with a valve head assembly 228 coupled with a B2F4 supply line 234 containing flow controller 236 therein. The valve head assembly may be constructed with a manual handwheel as illustrated or the valve head assembly may be coupled with an automatic valve actuator couple operatively with a central processor unit (CPU) for automatic operation of the valve in the valve head assembly. The flow controller 236 can be of any suitable type, including for example mass flow controllers, regulators, restricted flow orifice (RFO) devices, flow control valves, or any other components that are effective to modulate the flow of the precursor from the vessel 224. The B2F4 supply line 234 is arranged to flow B2F4 to the boron precursor co-flow feed line 242.


The vessel itself may be of any suitable type, and can for example comprise a vessel containing a storage medium, such as a physical adsorbent or ionic liquid storage medium, on and/or in which the boron precursor is stored. Sorbent-based vessels useful for such purpose are commercially available from ATMI, Inc. (Danbury, Conn., USA) under the trademark SDS. Alternatively, the vessel may be of an internally pressure-regulated type, including a pressure regulator arrangement disposed in the interior volume of the vessel; vessels of such type are commercially available from ATMI, Inc. (Danbury, Conn., USA) under the trademark VAC.


Second boron precursor source comprises vessel 226 containing diborane and equipped with a valve head assembly 230 coupled with a diborane supply line 238 containing flow controller 240 therein. The valve head assembly may be constructed with a manual handwheel as illustrated or the valve head assembly may be coupled with an automatic valve actuator couple operatively with a central processor unit (CPU) for automatic operation of the valve in the valve head assembly. The flow controller 240, in like manner to flow controller 236 associated with vessel 224, can be of any suitable type, including for example mass flow controllers, regulators, restricted flow orifice (RFO) devices, flow control valves, or any other components that are effective to modulate the flow of the precursor from the vessel 226. The diborane supply line 238 is arranged to flow diborane to the boron precursor co-flow feed line 242.


The process tool in such system can comprise an ion implantation process tool, in which the co-flowed boron precursor mixture comprising B2F4 and diborane is flowed to an ion source chamber for ionization to form boron ions for implantation, e.g., in a semiconductor substrate.


In the above-described process system and process implementations wherein B2F4 and diborane are co-flowed to the process tool, e.g., an ionization chamber or other tool or process zone, the relative proportions of the respective B2F4 and diborane components in the co-flowed mixture can be varied, as necessary or desirable in a given application. For example, the amount of B2F4 in the B2F4 and diborane co-flow mixture can range from 1% to 99% by volume, based on total volume of B2F4 and diborane co-flow mixture, with diborane in the B2F4 and diborane co-flow mixture correspondingly ranging from 99% to 1% by volume, on the same total volume basis. In specific embodiments, the amount of B2F4 in the B2F4 and diborane co-flow mixture can be 1%, 2%, 3%, 4%, 5%, 7%, 9%, 10%, 12%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%, by volume, based on total volume of the B2F4 and diborane co-flow mixture, with the corresponding amount of diborane being 99%, 98%, 97%, 96%, 95%, 93%, 91%, 90%, 88%, 85%, 80%, 75%, 70%, 65%, 60%, if 5%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 50%, 10%, 5%, 3%, 2%, or 1%, respectively.


Boron precursor mixtures comprising B2F4 and diborane can be utilized in accordance with the present disclosure in ion implantation applications to generate ionic species and fragments for boron ion implantation. In such applications, the bicomponent precursor mixtures can be utilized with significant benefits over single boron precursor operation, including enhanced beam currents, increased ion source life, and lowered cost of ownership for the ion implantation apparatus.


The invention, as variously described herein in respect of features, aspects and embodiments thereof, may in particular implementations be constituted as comprising, consisting, or consisting essentially of, some or all of such features, aspects and embodiments, as well as elements and components thereof being aggregated to constitute various further implementations of the invention. The invention is described herein in various embodiments, and with reference to various features and aspects of the invention. The invention contemplates such features, aspects and embodiments in various permutations and combinations, as being within the scope of the invention. The invention may therefore be specified as comprising, consisting or consisting essentially of, any of such combinations and permutations of these specific features, aspects and embodiments, or a selected one or ones thereof.


While the invention has been has been described herein in reference to specific aspects, features and illustrative embodiments of the invention, it will be appreciated that the utility of the invention is not thus limited, but rather extends to and encompasses numerous other variations, modifications and alternative embodiments, as will suggest themselves to those of ordinary skill in the field of the present invention, based on the disclosure herein. Correspondingly, the invention as hereinafter claimed is intended to be broadly construed and interpreted, as including all such variations, modifications and alternative embodiments, within its spirit and scope.

Claims
  • 1. A method for enhancing operation of an ion implantation system comprising: providing for use in the ion implantation system a first gas storage and dispensing vessel holding a boron precursor comprising two or more boron atoms and at least one fluorine atom, wherein the boron precursor is isotopically-enriched in at least one boron isotope, said first gas storage and dispensing vessel coupled to a first flow controller and a co-flow feed line; providing a second gas storage and dispensing vessel containing diborane, said second gas storage and dispensing vessel coupled to a second flow controller and said gas feed line; andmodulating a flow of said isotopically-enriched boron precursor and modulating a flow of said diborane to form a co-flow mixture, the amount of isotopically-enriched boron precursor in the isotopically-enriched boron precursor and diborane co-flow mixture ranges from 1% to 99% by volume, based on total volume of isotopically-enriched boron precursor and diborane co-flow mixture, with diborane in the isotopically-enriched boron precursor and diborane co-flow mixture correspondingly ranging from 99% to 1% by volume, on the same total volume basis.
  • 2. The method of claim 1, wherein the isotopically-enriched boron precursor comprises B2F4.
  • 3. The method of claim 2, wherein said B2F4 is isotopically enriched in 10B.
  • 4. The method of claim 2, wherein said B2F4 is isotopically enriched in 11B.
  • 5. The method of claim 1, wherein the ion implantation system comprises a beamline ion implanter.
  • 6. The method of claim 5, wherein enhancing operation of the ion implantation system comprises generating ionic boron species and boron fragments resulting in at least one of increased beam current, increased ion source life, reduced levels of deposits in the ion implantation system, and reduced clogging of flow passages in the ion implantation system compared to the operation of said ion implantation system using a single boron precursor.
  • 7. The method of claim 1, wherein the first gas storage and dispensing vessel holds a storage medium for the boron precursor.
  • 8. The method of claim 7, wherein the storage medium comprises material selected from the group consisting of physical adsorbents and ionic liquids.
  • 9. The method of claim 7, wherein the storage medium comprises physical adsorbent.
  • 10. The method of claim 1, wherein the first gas storage and dispensing vessel comprises a pressure-regulated vessel.
  • 11. The method of claim 1, wherein the first gas storage and dispensing vessel further holds at least one co-flow gas.
  • 12. The method of claim 11, wherein the at least one co-flow gas comprises another boron precursor.
  • 13. The method of claim 12, wherein the isotopically-enriched boron precursor comprises B2F4 and the other boron precursor comprises BF3.
  • 14. The method of claim 13, wherein the BF3 is isotopically-enriched.
  • 15. The method of claim 11, wherein the isotopically-enriched boron precursor comprises B2F4, and the at least one co-flow gas comprises at least one of argon, xenon, nitrogen, helium, hydrogen, and ammonia.
  • 16. The method of claim 1, wherein the second gas storage and dispensing vessel contains isotopically enriched diborane.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application under 35 USC 120 of U.S. patent application Ser. No. 14/095,575 filed on Dec. 3, 2013 in the names of Robert Kaim, et al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME,” and issued Sep. 22, 2015 as U.S. Pat. No. 9,142,387, which is a divisional application under 35 USC 120 of U.S. patent application Ser. No. 13/300,575 filed Nov. 19, 2011 in the names of Robert Kaim, et al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME,” and issued Dec. 3, 2013 as U.S. Pat. No. 8,598,022, which is a continuation in part under 35 USC 120 of U.S. patent application Ser. No. 13/048,367 filed Mar. 15, 2011 in the names of Robert Kaim, et al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME,” and issued Nov. 22, 2011 as U.S. Pat. No. 8,062,965, which is a continuation in part under 35 USC 120 of U.S. patent application Ser. No. 12/913,721 filed Oct. 27, 2010 in the names of Robert Kaim, et al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME,” and issued Mar. 20, 2012 as U.S. Pat. No. 8,138,071, which in turn claims the benefit of priority under 35 USC 119(e) of the following U.S. Provisional Patent Applications: U.S. Provisional Patent Application No. 61/378,353 filed Aug. 30, 2010 in the names of Oleg Byl, et al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME;” U.S. Provisional Patent Application No. 61/375,031 filed Aug. 18, 2010 in the names of Oleg Byl, et. al. for “ISOTOPICALLY-ENRICHED BORON-CONTAINING COMPOUNDS, AND METHODS OF MAKING AND USING SAME;” U.S. Provisional Patent Application No. 61/358,514 filed Jun. 25, 2010 in the names of Edward Jones, et al. for “ACTIVE COOLING FOR ION IMPLANT GAS DELIVERY SYSTEM;” U.S. Provisional Patent Application No. 61/349,202 filed May 27, 2010 in the names of Edward Jones, et al. for “ACTIVE COOLING FOR ION IMPLANT GAS DELIVERY SYSTEM;” and U.S. Provisional Patent Application No. 61/255,097 filed Oct. 27, 2009 in the names of Robert Kaim, et al. for “BORON ION IMPLANTATION APPARATUS AND METHOD.” The disclosures of all of said U.S. patent application Ser. Nos. 14/095,575; 13/300,575; 13/048,367; and 12/913,721 and U.S. Provisional Patent Application Nos. 61/378,353; 61/375,031; 61/358,514; 61/349,202; and 61/255,097 are hereby incorporated herein by reference, in their respective entireties, for all purposes.

US Referenced Citations (176)
Number Name Date Kind
3472751 King Oct 1969 A
3602778 Ura et al. Aug 1971 A
3615203 Kaneko et al. Oct 1971 A
3625749 Yoshioka et al. Dec 1971 A
3658586 Wang Apr 1972 A
3725749 Groves et al. Apr 1973 A
3893769 Woolley Jul 1975 A
3960605 Beck et al. Jun 1976 A
4100310 Ura et al. Jul 1978 A
4128733 Fraas et al. Dec 1978 A
4331647 Goldenberg May 1982 A
4348376 Goldenberg Sep 1982 A
4369031 Goldman et al. Jan 1983 A
4600801 Guha et al. Jul 1986 A
4619729 Johncock et al. Oct 1986 A
4657774 Satou et al. Apr 1987 A
4680358 Yu Jul 1987 A
4722978 Yu Feb 1988 A
4803292 Ohfune et al. Feb 1989 A
4814842 Nakagawa et al. Mar 1989 A
4851255 Lagendijk et al. Jul 1989 A
4883969 Ishida et al. Nov 1989 A
4942246 Tanaka et al. Jul 1990 A
5061322 Asano Oct 1991 A
5436180 de Fresart et al. Jul 1995 A
5443732 Lahoda et al. Aug 1995 A
5516366 Kanno et al. May 1996 A
5517077 Bright et al. May 1996 A
5518528 Tom et al. May 1996 A
5704965 Tom et al. Jan 1998 A
5704967 Tom et al. Jan 1998 A
5707424 Tom et al. Jan 1998 A
5761910 Tom et al. Jun 1998 A
5834371 Ameen et al. Nov 1998 A
5837027 Olander et al. Nov 1998 A
5851270 Olander Dec 1998 A
5891242 Pesklak et al. Apr 1999 A
5916245 Tom Jun 1999 A
5935283 Sweeney et al. Aug 1999 A
5935293 Detering et al. Aug 1999 A
5935305 Tom et al. Aug 1999 A
5977552 Foad Nov 1999 A
5993766 Tom et al. Nov 1999 A
6077355 Yamashita et al. Jun 2000 A
6080297 Ayers Jun 2000 A
6083298 Wang et al. Jul 2000 A
6086837 Cowan et al. Jul 2000 A
6089027 Wang et al. Jul 2000 A
6096467 Shimizu et al. Aug 2000 A
6101816 Wang et al. Aug 2000 A
6132492 Hultquist et al. Oct 2000 A
6135128 Graf et al. Oct 2000 A
6140656 Fujii Oct 2000 A
6204180 Tom et al. Mar 2001 B1
6333272 McMillin et al. Dec 2001 B1
6343476 Wang et al. Feb 2002 B1
6346452 Kabir et al. Feb 2002 B1
6376664 Chan et al. Apr 2002 B1
6406519 Tom et al. Jun 2002 B1
6420304 Tsai et al. Jul 2002 B1
6452338 Horsky Sep 2002 B1
6486227 Nohr et al. Nov 2002 B2
6592653 Wang et al. Jul 2003 B2
6600092 Lee Jul 2003 B2
6660063 Tom et al. Dec 2003 B2
6730568 Sohn May 2004 B2
6734446 Yamazaki et al. May 2004 B1
6740586 Wang et al. May 2004 B1
6743278 Carruthers Jun 2004 B1
6772781 Doty et al. Aug 2004 B2
6780896 MacDonald et al. Aug 2004 B2
6802294 Osman Oct 2004 B2
6835414 Ramm Dec 2004 B2
6852610 Noda Feb 2005 B2
6868869 Olander Mar 2005 B2
6872639 DeBoer et al. Mar 2005 B2
6885057 Osada et al. Apr 2005 B2
6893907 Maydan et al. May 2005 B2
6905947 Goldberg Jun 2005 B2
6909839 Wang et al. Jun 2005 B2
6921062 Gregg et al. Jul 2005 B2
6939769 Oh Sep 2005 B2
6998626 Ryding et al. Feb 2006 B1
7094670 Collins et al. Aug 2006 B2
7138768 Maciejowski et al. Nov 2006 B2
7144809 Elers et al. Dec 2006 B2
7300038 Gregg et al. Nov 2007 B2
7397048 Singh et al. Jul 2008 B2
7473606 Hsiao et al. Jan 2009 B2
7518124 Goldberg Apr 2009 B2
7641879 Spielvogel et al. Jan 2010 B2
7666770 Sasaki et al. Feb 2010 B2
7759657 Tieger et al. Jul 2010 B2
7825016 Giles Nov 2010 B2
7833886 Giles et al. Nov 2010 B2
7919402 Jacobson et al. Apr 2011 B2
7943204 Olander et al. May 2011 B2
7947129 Murata et al. May 2011 B2
7947582 Hautala et al. May 2011 B2
8013312 Adams Sep 2011 B2
8062965 Kaim et al. Nov 2011 B2
8076694 Narukawa et al. Dec 2011 B2
8187971 Russell et al. May 2012 B2
8237136 Hautala et al. Aug 2012 B2
8252651 Kawasaki Aug 2012 B2
8389068 Olander et al. Mar 2013 B2
8598022 Kaim et al. Dec 2013 B2
8603252 Dimeo et al. Dec 2013 B2
8796131 Jones et al. Aug 2014 B2
9111860 Jones et al. Aug 2015 B2
9142387 Kaim et al. Sep 2015 B2
20020000523 Ng et al. Jan 2002 A1
20020014407 Allen et al. Feb 2002 A1
20020018897 Kuckertz et al. Feb 2002 A1
20020085446 Van Den Brink et al. Jul 2002 A1
20020130278 Vella Sep 2002 A1
20020145711 Magome et al. Oct 2002 A1
20020155724 Sakai et al. Oct 2002 A1
20030003668 Oh Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030023118 Kanayama et al. Jan 2003 A1
20030056720 Dauelsberg et al. Mar 2003 A1
20030203608 Deboer et al. Oct 2003 A1
20030216014 Goldberg Nov 2003 A1
20040002202 Horsky et al. Jan 2004 A1
20040018746 Arno Jan 2004 A1
20040053457 Sohn Mar 2004 A1
20040083962 Bang et al. May 2004 A1
20040110351 Narasimha Jun 2004 A1
20040119025 Klepper et al. Jun 2004 A1
20040166612 Maydan et al. Aug 2004 A1
20040235280 Keys et al. Nov 2004 A1
20050035284 Schultz et al. Feb 2005 A1
20050051096 Horsky et al. Mar 2005 A1
20050163693 Spielvogel et al. Jul 2005 A1
20050169827 Spielvogel et al. Aug 2005 A1
20050176832 Tonkovich et al. Aug 2005 A1
20050181621 Borland et al. Aug 2005 A1
20050191816 Vanderpool et al. Sep 2005 A1
20050202657 Borland et al. Sep 2005 A1
20060097193 Horsky et al. May 2006 A1
20060102464 Tillotson May 2006 A1
20060104851 Tillotson May 2006 A1
20060174941 Cohen et al. Aug 2006 A1
20060264051 Thibaut Nov 2006 A1
20070059848 Sasaki et al. Mar 2007 A1
20070148888 Krull et al. Jun 2007 A1
20070178679 Hatem et al. Aug 2007 A1
20070217967 McDermott et al. Sep 2007 A1
20070278417 Horsky et al. Dec 2007 A1
20080138967 Li et al. Jun 2008 A1
20080138968 Porshnev et al. Jun 2008 A1
20080149929 Giles Jun 2008 A1
20080164427 Collart et al. Jul 2008 A1
20080248636 Olander et al. Oct 2008 A1
20080305598 Horsky et al. Dec 2008 A1
20090087578 Hautala Apr 2009 A1
20090294698 Ray Dec 2009 A1
20100112795 Kaim et al. May 2010 A1
20100224264 Homan et al. Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100266087 Ahlfeld et al. Oct 2010 A1
20110065268 Olander et al. Mar 2011 A1
20110079241 Sinha et al. Apr 2011 A1
20110097882 Kaim Apr 2011 A1
20110143527 Platow et al. Jun 2011 A1
20110159671 Kaim et al. Jun 2011 A1
20110165053 Cook et al. Jul 2011 A1
20110212330 Schrumpf et al. Sep 2011 A1
20120051994 Byl et al. Mar 2012 A1
20120108044 Kaim et al. May 2012 A1
20120119113 Colvin et al. May 2012 A1
20120252195 Jones et al. Oct 2012 A1
20130137250 Olander et al. May 2013 A1
20130330917 Homan Dec 2013 A1
20140301932 Byl et al. Oct 2014 A1
Foreign Referenced Citations (65)
Number Date Country
1484288 Mar 2004 CN
1917947 Feb 2007 CN
1980940 Jun 2007 CN
101291742 Oct 2008 CN
101384747 Mar 2009 CN
0079705 May 1983 EP
0385709 May 1995 EP
0656668 Mar 1999 EP
58-8071 Jan 1983 JP
62095820 May 1987 JP
63-15228 Jan 1988 JP
63-48730 Mar 1988 JP
6438700 Feb 1989 JP
64-83147 Mar 1989 JP
1-225117 Sep 1989 JP
3165443 Jul 1991 JP
5106038 Apr 1993 JP
5-254808 Oct 1993 JP
6-80681 Mar 1994 JP
6-204160 Jul 1994 JP
6-204516 Jul 1994 JP
7065761 Mar 1995 JP
7-90201 Apr 1995 JP
7299304 Nov 1995 JP
8288233 Nov 1996 JP
9-298166 Nov 1997 JP
10-251592 Sep 1998 JP
11-329266 Nov 1999 JP
2001-332509 Nov 2001 JP
2002-343882 Nov 2002 JP
2002-348381 Dec 2002 JP
2004-363050 Dec 2004 JP
2006-196465 Jul 2006 JP
2007-526868 Sep 2007 JP
2008-518482 May 2008 JP
2009-506580 Feb 2009 JP
2011-502923 Jan 2011 JP
1020060070456 Jun 2006 KR
200711720 Apr 2007 TW
200832523 Aug 2008 TW
200845086 Nov 2008 TW
200848650 Dec 2008 TW
201029042 Aug 2010 TW
9811764 Mar 1998 WO
0143157 Jun 2001 WO
03057667 Jul 2003 WO
03100806 Dec 2003 WO
2004003973 Jan 2004 WO
2004003990 Jan 2004 WO
2004053945 Jun 2004 WO
2005020306 Mar 2005 WO
2005027208 Mar 2005 WO
2005059942 Jun 2005 WO
2005074531 Aug 2005 WO
2006047373 May 2006 WO
2006095086 Sep 2006 WO
2007027798 Mar 2007 WO
2007056249 May 2007 WO
2007087212 Aug 2007 WO
2007127865 Nov 2007 WO
2007134183 Nov 2007 WO
2008121549 Oct 2008 WO
2011056515 May 2011 WO
2011106750 Sep 2011 WO
2012030679 Mar 2012 WO
Non-Patent Literature Citations (28)
Entry
Kwok, D., et al., “Energy distribution and depth profile in BF3 plasma doping”, “Surface and Coatings Technology”, 2001, pp. 146-150, vol. 136.
Lu, N. et al, “Transition metal complexes incorporating the BF2 ligand formed by oxidative addition of the B—B bond in B2F4”, “J. Chem. Soc., Dalton Trans.”, Oct. 26, 2000, pp. 4032-4037.
Pardoe, J., “Further Studies of Boronmonohalide and Polyboron Halide Chemistry”, “Print”, Oct. 2001, pp. 1-243, Publisher: University of Bristol, Published in: Thesis.
Tang, Y., et al., “Improvements in Bpositive and BF2positive Beam Currents Through the Use of Diboron Tetrafluoride (B2F4) Gas”, “AIP Conf. Proc., 18th International Conference on Ion Implantation Technology”, Jun. 6-11, 2010, pp. 167-170, vol. CP1321, Published in: Kyoto, Japan.
Timms, P., “Boron-Fluorine Chemistry. I. Boron Monofluoride and Some Derivatives”, “Journal of the American Chemical Society”, Mar. 29, 1967, pp. 1629-1632, vol. 89, No. 7.
Unpublished U.S. Appl. No. 14/827,783, filed Aug. 17, 2015.
Unpublished U.S. Appl. No. 14/940,278, filed Nov. 13, 2015.
Weast, R. (Ed.), “Physical Constants of Inorganic Compounds—Boric Acid”, “Handbook of Chemistry and Physics, 56th Edition”, Sep. 1975, pp. B-78, Publisher: CRC Press, Inc.
Weast, R. (Ed.), “Vapor Pressure Inorganic Compounds”, “Handbook of Chemistry and Physics, 56 Ed.”, Sep. 1975, pp. D-183-D-188, Publisher: CRC Press, Inc.
“Webster's Ninth New Collegiate Dictionary”, 1990, p. 578 Publisher: Merriam-Webster Inc., Published in: Springfield, Massachusetts, US.
Wilson, R., et al., “Comparison of Sources of Boron, Phosphorus, and Arsenic Ions”, “Appl. Phys. Lett”, Feb. 15, 1973, pp. 176-179, vol. 22, No. 4.
Yu, J., et al., “Isotopically Enriched 10BN Nanotubes”, “Advanced Materials”, Jul. 2006, pp. 2157-2160, vol. 18.
Lu, Z., et al., “Shallow Junction Formation With Boron Fluoride and Low Energy Boron Ion Implantation Into Silicon”, “Nuclear Instruments and Methods in Physics Research B”, 1989, pp. 46-49, vol. 43.
Note: For the non-patent literature citations that no month of publication is indicated, the year of publication is more than 1 year prior to the effective filing date of the present application.
Note: As to any unpublished U.S. applications cited herein, Applicant will provide at the examiner's request any documents desired by the examiner from the USPTO file history of any such unpublished applications.
Ziegler, J. (Ed.), “Chapter 2: Advanced Technologies and Applications of Ion Implantation”, “Ion Implantation Science and Technology”, 2004, pp. 2-1-2-16, Publisher: Ion Implantation Technology Co., Published in: Edgewater, MD, US.
Becher, H., et al., “Vibrational Spectra of Normal, Boron-10-Enriched, And Deuteriomethylboron Difuoride”, “Spectrochimica Acta Part A: Molecular Spectroscopy”, 1978, pp. 141-146 (English Abstract), vol. 34, No. 2.
Begak, O., “Boron isotopic exchange in heterogenous system boron-boron fluoride”, “Radiokhimiya”, 1988, pp. 234-237 (English Abstract), vol. 30, No. 2.
Byl, O., et al., “Properties of Diboron Tetrafluoride (B2F4), a New Gas for Boron Ion Implantation”, “AIP Conf. Proc., 18th International Conference on Ion Implantation Technology”, Jun. 6-11, 2010, pp. 408-410, vol. CP1321, Published in: Kyoto, Japan.
Collart, E., et al., “Low energy boron implantation in silicon and room temperature diusion”, “Nuclear Instruments and Methods in Physics Research B”, 1998, pp. 98-107, vol. 139.
Hayton, L., et al., “An ESR study of the reaction of silver atoms with B2F4 under matrix isolation conditions”, “J. Chem. Soc., Dalton Trans.”, Mar. 8, 2002, pp. 1327-1329.
Kirk, R., “Dissertation on Synthetic Chemistry of Several High Temperature Boron Containing Species”, 1969, pp. 1-118.
Kirk, R., et al., “Boron-Fluorine Chemistry. III. Silicon-Boron Fluorides”, “Journal of the American Chemical Society”, Nov. 5, 1969, pp. 6315-6318, vol. 91, No. 23.
Koivisto, H., et al., “The first results with the new JYFL 14 GHz ECR ion source”, “Nuclear Instruments and Methods in Physics Research B”, 2001, pp. 379-384, vol. 174.
Kondratenko, S., et al., “Surface Oxidation Effects During Low Energy BF2positive Ion Implantation”, “AIP Conf. Proc., 18th International Conference on Ion Implantation Technology”, Jun. 6-11, 2010, pp. 127-130, vol. CP1321, Published in: Kyoto, Japan.
Advanced Technology Materials, Inc., “ATMI VAC BF3 Isotopically Enriched: Safe Delivery Package for Boron Trifluoride Gas Source”, Jun. 2005, https://www.mathesongas.com/pdfs/products/VAC-Package-for-Isotopically-Enriched-Boron-Trifluoride.pdf.
Translation of Taiwan Search Report for TW Application No. 104137028, mailed Aug. 30, 2016, 1 page.
Taiwan Office Action for TW Application No. 104137028, mailed Aug. 30, 2016, 7 pages.
Related Publications (1)
Number Date Country
20160013018 A1 Jan 2016 US
Provisional Applications (5)
Number Date Country
61378353 Aug 2010 US
61375031 Aug 2010 US
61358514 Jun 2010 US
61349202 May 2010 US
61255097 Oct 2009 US
Divisions (1)
Number Date Country
Parent 13300575 Nov 2011 US
Child 14095575 US
Continuations (1)
Number Date Country
Parent 14095575 Dec 2013 US
Child 14861844 US
Continuation in Parts (2)
Number Date Country
Parent 13048367 Mar 2011 US
Child 13300575 US
Parent 12913721 Oct 2010 US
Child 13048367 US