1. Field of the Invention
This invention relates to nano-technology and more particularly to the process of nano manufacturing through the use of a nano size dispenser and a nano size laser beam.
2. Background of the Invention
It has been recognized widely that nanotechnology will lead to the era of nanoelectronics enhancing the performance of current microelectronics. Nanolithography and nanoscale device fabrication are important steps for this advance in nano manufacturing. Over the past several years, numerous nanolithography techniques have been investigated, e.g., deep ultraviolet (DUV), extreme ultraviolet (EUV), X-rays, tip of an atomic microscope (AFM), tip of a near-field scanning optical microscope (NSOM), micro-contact printing, evanescent near-field optical lithography (ENFOL) and evanescent interferometric lithography (EIL). Both ENFOL and EIL techniques create an evanescent optical field directly below the contact mask with the promise of λ/20 resolution, where λ is the laser wavelength. Other nanolithography techniques include dip-pen patterning, embossing, self-assembly, electron beam as well as focused ion beam direct-writing and immersion interferometric nanolithography. Only a few of these techniques are being considered for nanomanufacturing. The acceptance of a given technique as a nanomanufacturing tool in the semiconductor industry is largely determined by its cost-effectiveness. Therefore there is a progressive need for developing cheaper and more efficient tools. Often new tools with novel capability allow rapid prototyping as well as fabrication of new products. The following patents represent some of the contribution in the art in nano technology.
U.S. Pat. No. 5,405,481 to Licoppe, et al. discloses a gas photonanograph for the production and optical analysis of nanometer scale patterns. The photonanograph has a gas expansion chamber equipped with a gas supply for producing patterns and provided at a first end with microcapillaries for the discharge of the gas, an optical fibre, which is sharp at a first end and which is to be positioned facing the sample to be treated, a light source coupled to the second end of the optical fiber, the latter being transparent to the light emitted by the light source, and detecting and processing apparatus for monitoring a light signal reflected by the sample. The photonanograph permits the localized etching or deposition of materials for microelectronics or microoptoelectronics.
U.S. Pat. No. 5,680,200 to Sugaya et. al. relates to inspection apparatus and method in which, based on images under a plurality of focus conditions formed by way of an optical system to be inspected, namely, using images under a plurality of defocal conditions, tendency in positional change or change of asymmetry between the images is calculated so as to specify at least one of aberration condition and optical adjustment condition of the optical system to be inspected as well as to exposure apparatuses and overlay accuracy measurement apparatuses provided with the inspection apparatus. In addition, the present invention relates to an image-forming optical system suitable to an alignment apparatus which is applicable to the exposure apparatuses. This image-forming optical system comprises a correction optical system for intentionally generating asymmetric aberration or symmetric aberration in the image-forming optical system and a decentering mechanism for decentering the correction optical system to cancel asymmetric aberration or symmetric aberration in the image-forming optical system.
U.S. Pat. No. 5,754,299 to Sugaya et. al. relates to inspection apparatus and method in which, based on images under a plurality of focus conditions formed by way of an optical system to be inspected, namely, using images under a plurality of defocal conditions, tendency in positional change or change of asymmetry between the images is calculated so as to specify at least one of aberration condition and optical adjustment condition of the optical system to be inspected as well as to exposure apparatuses and overlay accuracy measurement apparatuses provided with the inspection apparatus. In addition, the present invention relates to an image-forming optical system suitable to an alignment apparatus which is applicable to the exposure apparatuses. This image-forming optical system comprises a correction optical system for intentionally generating asymmetric aberration or symmetric aberration in the image-forming optical system and a decentering mechanism for decentering the correction optical system to cancel asymmetric aberration or symmetric aberration in the image-forming optical system.
U.S. Pat. No. 6,203,861 to Aravinda Kar et al. discloses a one-step rapid manufacturing process used to create three dimensional prototyping parts. Material such as metal, ceramics and the like powder, and wire, and the like, is delivered to a laser beam-material interaction region where it is melted and deposited on a substrate. The melted and deposited material is placed on a XYZ workstation. Three dimensional parts are created by moving the XYZ workstation relative to the laser beam while simultaneously feeding powdered alloys, first in the XY and then in the Z plane. Beam shaping focusing optics can be used to tailor the intensity distribution of the laser beam to the requirements of the deposition layers, and can be used to create parts with desired mechanical or thermodynamic properties. Additional beam splitting and recombining optics can be used to allow powder to be fed at a perpendicular angle to the substrate.
U.S. Pat. No. 6,526,327 to Aravinda Kar et al. discloses a one-step rapid manufacturing process used to create three dimensional prototyping parts. Material such as metal, ceramics and the like powder, and wire, and the like, is delivered to a laser beam-material interaction region where it is melted and deposited on a substrate. The melted and deposited material is placed on a XYZ workstation. Three dimensional parts are created by moving the XYZ workstation relative to the laser beam while simultaneously feeding powdered alloys, first in the XY and then in the Z plane. B earn shaping focusing optics can be used to tailor the intensity distribution of the laser beam to the requirements of the deposition layers, and can be used to create parts with desired mechanical or thermodynamic properties. Additional beam splitting and recombining optics can be used to allow powder to be fed at a perpendicular angle to the substrate.
U.S. Pat. No. 6,621,448 to Lasky et al. discloses a system and method for imaging objects obscured by a covering layer of snow. The system preferably utilizes a continuous-wave radar generating short-wavelength radio-frequency (RF) signal beam-scanned over angular displacements following a scanning pattern toward a target area. Reflections of the:RF signal from objects buried beneath the snow are registered by an array of RF detectors whose signal magnitudes are summed arid correlated with scan direction to generate a signal providing spatial object information, which by way of example, is visually displayed. The radio-frequency beam may be scanned over the scene electronically or by either mechanically or electromechanically modulating antenna direction or the orientation of a beam deflector. The system is capable of generating multiple image frames per second, high-resolution imaging, registration of objects to a depth exceeding two meters, and can be implemented at low cost without complex signal processing hardware.
Therefore, it is an object of the present invention is to advance the art by providing an apparatus and a method for forming a nano structure on a substrate.
Another object of this invention is to provide an apparatus and a method for forming a nano structure such as electrical conductors on a semiconductor substrate.
Another object of this invention is to provide an improved apparatus and a method for forming a nano structure incorporating a nano particle dispenser for depositing the nano particles onto a substrate.
Another object of this invention is to provide an improved apparatus and a method for forming a nano structure incorporating a nano size laser beam for impinging upon the deposited nano particles on the substrate.
The foregoing has outlined some of the more pertinent objects of the present invention. These objects should be construed as being merely illustrative of some of the more prominent features and applications of the invention. Many other beneficial results can be obtained by modifying the invention within the scope of the invention. Accordingly other objects in a full understanding of the invention may be had by referring to the summary of the invention and the detailed description describing the preferred embodiment of the invention.
A specific embodiment of the present invention is shown in the attached drawings. For the purpose of summarizing the invention, the invention relates to an improved apparatus for forming a nano structure on a substrate with nano particles suspended in a suspension fluid. The apparatus comprises a container for containing the nano particles suspended in the suspension fluid. A nano size pore communicates with the container. A pressure source forces the nano particles suspended in the suspension fluid through the nano size pore for depositing the nano particles onto the substrate. A concentrator focuses a concentrated laser beam is upon the nano particles deposited on the substrate for facilitating a reaction between the nano particles and the substrate.
In a more specific embodiment of the invention, the nano particles are suspended in a suspension fluid and the pressure source forces the nano particles suspended in the suspension fluid through the nano size pore for depositing the nano particles onto the substrate. In another example, the nano particles are suspended in a suspension liquid and the pressure source includes a gas pressure source for forcing the nano particles suspended in the suspension liquid through the nano size pore for depositing the nano particles onto the substrate. The nano size pore communicates with the container with the nano size pore formed, for example, with an electron beam.
The concentrator focuses the laser beam upon the nano particles deposited on the substrate. The laser beam evaporates the suspension fluid and fuses the nano particles to the substrate. The concentrator may include a waveguide and/or a negative refractive index material for focusing a concentrated laser beam onto the nano particles located on the substrate.
The invention is also incorporated into the method of forming a nano structure on a substrate, comprising the steps of depositing nano particles through a nano size pore onto the substrate and directing a laser beam through a concentration to focus a nano size laser beam onto the deposited nano particles on the substrate.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention in order that the detailed description that follows may be better understood so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject matter of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention.
For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description taken in connection with the accompanying drawings in which:
Similar reference characters refer to similar parts throughout the several Figures of the drawings.
In this example, the substrate 14 is shown as a semiconductor substrate 14 with the apparatus 10 forming a continuous nano pattern 12 on the substrate 14. The dispenser 20 is positioned adjacent to the surface 16 of the substrate 14. The dispenser 20 and/or the substrate 14 are movable relative to each other by conventional means (not shown) for enabling the dispenser 20 to be positioned and/or moved continuously to various locations about the surface 16 of the substrate 14.
The container 30 defines a volume 32 having a fluid input 33 having a closure 34. The container 30 includes a fluid output 36 and a pressure input 38. A dispenser head 44 having a nano pore 46 is affixed to the container 30 with the fluid output 36 communicating with the nano pore 46. The dispenser head 44 may be metal or ceramic member.
In the event a nano line of width 30 nm is desired, a nano pore 46 having a 30 nm diameter is formed in the dispenser 44 head. Preferably, the nano pore 46 is formed in the dispenser head 44 with an electron beam. For example, diameter less than 10 nm may be formed by a high quality electron beam system such as a Model No. LEICA 5000. It should be appreciated by those killed in the art that the nano pore 46 may be formed in dispensing head 44 by other suitable means.
The suspension fluid 40 may be a standard liquid solution, a sol-gel or a metal-organic fluid. In the case of a standard solution, the solution is the carrier for the metal or nonmetal nano particles 42. The viscosity of the suspension fluid 40 is controlled for constant rate deposition driven by pressure applied to the pressure input 38.
The suspension liquid 40 may be a liquid suspension of nano particles 42 or a metal-organic compound of a required metal for the nano particles 42. The nano particles 42 in the form of a metal-organic compound may provide a dopant for the semiconductor substrate 14. Preferably, the size of nano particles 42 in the suspension liquid 40 is less than the size of the nano pore 46.
The exponentially shaped channel 68 behaves as a waveguide to propagate a reduced diameter laser beam 69 from the exit aperture 66. The reduced diameter laser beam 69 may have a diameter less than the wavelength diameter of the laser beam 52. The exit aperture 66 must be very close to the surface 16 of the substrate 14. Preferably, the exit aperture 66 must be located within one wavelength of the laser beam 52 to maintain a reduced diameter laser beam 69. If the exit aperture 66 is located more than one wavelength of the laser beam 52 from the surface 16 of the substrate 14, the reduced diameter laser beam 69 will expand to the normal diameter of the laser beam 52
The waveguide 62 provides four distinct advantages. Firstly, the entrance aperture 64 is of a sufficient diameter to accept virtually all of the energy from the laser beam 52. Secondly, the exponentially shaped channel 68 concentrates the energy from the laser beam 52 into the reduced diameter laser beam 69. Thirdly, the reduced diameter laser beam 69 enables the creation of nano structure 12 on the surface 16 of the substrate 14. Fourthly, the diameter of the reduced diameter laser beam 69 may be reduced further at the exit aperture 68 by filling the exponentially shaped channel 69 with a high refractive index liquid which decreases the wavelength of the laser beam 52 enabling the use of a smaller exit aperture 66.
The reduced diameter laser beam 69 heats the suspension fluid 40 and the nano particles 42 to fuse the nano particles 42 to form the final nano structure 12 on the surface of the substrate 14 with required electrical properties. The concentrates the energy of the reduced diameter laser beam 69 induce metallurgical changes in the nano particles 42 in order to create smooth electrically continuous patterns nano structure 12.
The irradiance can be controlled to (1)
Example 1 illustrates the action of an electromagnetic wave entering a material with a positive refractive index (n). Conventional optical devices such as lenses, prisms and the like are made of positive refractive index materials (n>0), where n the refractive index. In accordance with Snell's law, an incident ray and a refracted ray lie on the opposite sides of a surface normal for a material with a positive refractive index (n>0).
When a light beam enters a converging lens such as a convex lens (not show), diffraction effect limit the minimum focused spot diameter of the converging lens. The minimum focused spot diameter is given by:
Dspot=1.27fλ/DL
for a Gaussian laser beam (TEM00 mode), where f is the focal length on the lens focusing the laser beam onto the substrate, λ is the laser wavelength and DL is the laser beam diameter on the lens.
Example 2 illustrates the action of a light wave entering a material with a negative refractive index (n<0). The propagation of an electromagnetic wave in a medium having negative refractive index (n<0) is different compared to when the waves propagate through a medium having positive refractive index (n<0). In accordance with Snell's law, an incident ray and a refracted ray lie on the same side of a surface normal for a material with a negative refractive index (n<0).
An article by J. B. Pendry in Volume 85, Number 18 of Physical Review Letters (30 Oct. 2000) discloses the use of a lens made from a thin slab of silver having a negative refraction index.
The waves W1 and W1′ impinge upon the first surface 71 at angles A1 and A1′ and are bend away from the normal N at refracted angles A2 and A2′ as waves W2 and W2′. The waves W2 and W2′ are bend away from the normal N due to the negative refractive index (n<0) of the material of the rectangular prism 70. The waves W2 and W2′ impinge upon the second surface 71 at angles A3 and A3′ and are bend away from the normal N at refracted angles A4 and A4′ as waves W3 and W3′. The negative refractive index (n<0) of the material of the rectangular prism 70 concentrates the concentrates the energy from the laser beam 52 into the reduced diameter laser beam 69.
The waves W1 and W1′ impinge upon the first surface 81 and are bend toward the normal N due to the positive refractive index (n>0) of the material of the rectangular prism 80. The waves W2 and W2′ impinge upon the first surface 91 and are bend away from the normal N due to the negative refractive index (n<0) of the material of the rectangular prism 90. The waves W3 and W3′ impinge upon the first surface 101 and are bend away from the normal N due to the positive refractive index (n>0) of the material of the rectangular prism 100. The waves W4 and W4′ exit from the second surface 103 of the rectangular prism 100 in a concentrated form.
The present invention provides the ability to directly and selectively convert a semiconductor substrate 14 to the required structure of given dimensions by depositing appropriate materials eliminating photolithography steps and photolithographic materials. Nano fluidics, i.e., flow of nano particle-containing fluids through a nanopore, will allow formation of nano width patterned structures. Laser irradiation of these structures will allow the fusion of nano particles 42 leading to electrically continuous patterns on the wafer. Since the fusion temperature of nano particles 42 is significantly lower than its bulk melting temperature, near-field optics can be used to create a sub-wavelength spot size on the nano wide pattern or a short pulse laser can be used to irradiate a small amount of energy to fuse the nano particles 42. Laser processing technology combined with an understanding of photon-materials interactions has the potential to achieve these objectives.
The invention creates a new capability for direct nano patterning of wafers without requiring photolithography steps and photolithographic materials, low volume 24 patterning options and rapid prototyping for new product design, development and manufacturing. The invention can be used to dope the substrate 14 in nano scale to fabricate nano electronics devices, e.g., nano scale p-n junctions and transistors. For example, phosphorous nano particles 42 can be placed on a silicon wafer using the nano dispenser 20 and then the particles can be heated with a laser beam 31 of the nano fuser not to melt the nano particles 42 but to induce diffusion of phosphorous atoms into the silicon wafer. Besides device fabrication, this invention can be used for materials conversion and for nano machining, e.g., subwavelength drilling, scribing, marking, etc. We have carried out laser doping of silicon carbide with both n- and p-type dopants.
The invention also can be used in numerous customized applications such as laser spot linking, fabrication of application specific integrated circuits, fast turnaround and personalized multichip modules. For example, a maskless laser spot linking system can be developed to process multilayer substrate 14 that are consisted of an incomplete top layer which often contains bond pads and several lower layers containing generic, design-independent wiring patters. Another example with regard to the fluid for the nano dispenser 20 is copper formate. Copper metallized interconnecting links are formed by spin-coating the wafer using a water solution of copper formate. The solution is spun onto the wafer, dried to form a solid film, irradiated at selective areas with a frequency doubled Nd:YAG laser to decompose the film creating copper metal deposits and then the rest of the film is washed away with water. This invention will allow direct deposition of the solution and metallization at selected nanoscale locations.
Although the concentrator 60, 60A and 60B have been disclosed for use with the present invention, it should be understood that the concentrator 60, 60A and 60B may be used to concentrate a laser beam for undertaking a wide variety of applications such as materials conversion, removing materials from a substrate to create a channel, a via or a holes through the melting or vaporization of the substrate or ablation or sublimation of a portion of the substrate.
Although the invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention.
This application is a division of application Ser. No. 11/189,266 filed Jul. 26, 2005, now U.S. Pat. No. 7,419,887. Application Ser. No. 11/189,266 filed Jul. 26, 2005 claims benefit of U.S. Patent Provisional application Ser. No. 60/592,925 filed Jul. 26, 2004. All subject matter set forth in application Ser. No. 11/189,266 and application Ser. No. 60/592,925 are incorporated herein by reference. This application claims benefit of U.S. Patent Provisional application Ser. No. 60/592,925 filed Jul. 29, 2004. All subject matter set forth in provisional application Ser. No. 60/592,925 is hereby incorporated by reference into the present application as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3214315 | Hildebrand | Oct 1965 | A |
3396401 | Nonomura | Aug 1968 | A |
3419321 | Barber et al. | Dec 1968 | A |
3605469 | Queralto | Sep 1971 | A |
3788120 | Takeo et al. | Jan 1974 | A |
3854123 | Banach | Dec 1974 | A |
3865564 | Jaeger et al. | Feb 1975 | A |
3874240 | Rembaum | Apr 1975 | A |
3943324 | Haggerty | Mar 1976 | A |
3944640 | Haggerty et al. | Mar 1976 | A |
3945318 | Landsman | Mar 1976 | A |
3965328 | Locke | Jun 1976 | A |
3981705 | Jaeger et al. | Sep 1976 | A |
4043170 | Erodi et al. | Aug 1977 | A |
4135902 | Oehrle | Jan 1979 | A |
4142088 | Hirsch | Feb 1979 | A |
4159414 | Suh et al. | Jun 1979 | A |
4215263 | Grey et al. | Jul 1980 | A |
4309224 | Shibata | Jan 1982 | A |
4339285 | Pankove | Jul 1982 | A |
4372989 | Menzel | Feb 1983 | A |
4383843 | Iyengar | May 1983 | A |
4496607 | Mathias | Jan 1985 | A |
4539251 | Sugisawa et al. | Sep 1985 | A |
4547650 | Arditty et al. | Oct 1985 | A |
4565712 | Noguchi et al. | Jan 1986 | A |
4620264 | Ushifusa et al. | Oct 1986 | A |
4624934 | Kokubu et al. | Nov 1986 | A |
4663826 | Baeuerle | May 1987 | A |
4691091 | Lyons et al. | Sep 1987 | A |
4710253 | Soszek | Dec 1987 | A |
4761339 | Komatsu et al. | Aug 1988 | A |
4791239 | Shirahata et al. | Dec 1988 | A |
4840853 | Lio et al. | Jun 1989 | A |
4847138 | Boylan et al. | Jul 1989 | A |
4860442 | Ainsworth et al. | Aug 1989 | A |
4872923 | Borodin | Oct 1989 | A |
4880770 | Mir et al. | Nov 1989 | A |
4901550 | Kolde | Feb 1990 | A |
4912087 | Aslam et al. | Mar 1990 | A |
4924033 | Iyogi et al. | May 1990 | A |
4950558 | Sarin | Aug 1990 | A |
4962085 | deBarbadillo, II et al. | Oct 1990 | A |
4988564 | D'Angelo et al. | Jan 1991 | A |
5015618 | Levinson | May 1991 | A |
5055967 | Sukonnik et al. | Oct 1991 | A |
5127364 | Savkar et al. | Jul 1992 | A |
5145741 | Quick | Sep 1992 | A |
5149681 | Ohkawa et al. | Sep 1992 | A |
5180440 | Siegel | Jan 1993 | A |
5224196 | Khanarian et al. | Jun 1993 | A |
5336360 | Nordine | Aug 1994 | A |
5391841 | Quick | Feb 1995 | A |
5405481 | Licoppe et al. | Apr 1995 | A |
5459098 | Maya | Oct 1995 | A |
5493096 | Koh | Feb 1996 | A |
5549971 | Nordine | Aug 1996 | A |
5585020 | Becker et al. | Dec 1996 | A |
5591564 | Rostoker et al. | Jan 1997 | A |
5629532 | Myrick | May 1997 | A |
5680200 | Sugaya et al. | Oct 1997 | A |
5695828 | Ghosh et al. | Dec 1997 | A |
5733609 | Wang | Mar 1998 | A |
5754299 | Sugaya et al. | May 1998 | A |
5793042 | Quick | Aug 1998 | A |
5823039 | Umeda et al. | Oct 1998 | A |
5837607 | Quick | Nov 1998 | A |
5847418 | Nakamura et al. | Dec 1998 | A |
5889234 | Ghosh et al. | Mar 1999 | A |
5906708 | Robinson et al. | May 1999 | A |
5961877 | Robinson et al. | Oct 1999 | A |
6025609 | Quick | Feb 2000 | A |
6054375 | Quick | Apr 2000 | A |
6064081 | Robinson et al. | May 2000 | A |
6203861 | Kar et al. | Mar 2001 | B1 |
6221154 | Lee et al. | Apr 2001 | B1 |
6252197 | Hoekstra et al. | Jun 2001 | B1 |
6255671 | Bojarczuk et al. | Jul 2001 | B1 |
6271576 | Quick | Aug 2001 | B1 |
6274234 | Dujardin et al. | Aug 2001 | B1 |
6313015 | Lee et al. | Nov 2001 | B1 |
6334939 | Zhou et al. | Jan 2002 | B1 |
6407443 | Chen et al. | Jun 2002 | B2 |
6526327 | Kar et al. | Feb 2003 | B2 |
6621448 | Lasky et al. | Sep 2003 | B1 |
6670693 | Quick | Dec 2003 | B1 |
6732562 | Quick et al. | May 2004 | B2 |
6890624 | Kambe et al. | May 2005 | B1 |
6930009 | Quick | Aug 2005 | B1 |
6939748 | Quick | Sep 2005 | B1 |
7237422 | Quick | Jul 2007 | B2 |
7268063 | Quick | Sep 2007 | B1 |
7419887 | Quick | Sep 2008 | B1 |
7630147 | Kar et al. | Dec 2009 | B1 |
Number | Date | Country |
---|---|---|
358095830 | Jun 1983 | JP |
405024975 | Feb 1993 | JP |
WO 03013757 | Feb 2003 | WO |
Entry |
---|
Nathaniel R. Quick, Laser Conversion of Ceramic Materials to Electroconductors, International Conference on Electronic Materials—1990, Materials Research Society, Newark, New Jersey, Sep. 17-19, 1990. |
Nathaniel R. Quick, Direct Conversion of Conductors on Ceramic Substrates, International Society for Hybrid Microelectronics, ISHM 90 Proceedings 1990. |
Nathaniel R. Quick and Jeffrey A. Phillips, Laser Processes for Integrating Substrate Fabrication, Proceedings of the International Conference on Lasers '91, The Society for Optical & Quantum Electronics, pp. 537-544 San Diego, CA Dec. 9-13, 1991. |
Nathaniel R. Quick and Richard J. Matson, Characterization of a Ceramic Electrical Conductor Synthesized by a Laser Conversion Process, Proceedings of the International Conference on Lasers '91, The Society for Optical & Quantum Electronics, pp. 545-552 San Diego, CA Dec. 9-13, 1991. |
Nathaniel R. Quick, Characterization of a Ceramic Sensor Synthesized by a Laser Conversion Process, Proceedings of the International Conference on Lasers '92, The Society for Optical & Quantum Electronics, pp. 881-887 Houston, Texas Dec. 7-10, 1992. |
Nathaniel R. Quick, Characterization of a Ceramic Thermal Sensor Synthesized by a Laser Conversion Process, ICALEO '92 (International Congress on Applications of Lasers and Electro-Optics), vol. 75 Laser Materials Processing, Laser Institute of America, pp. 394-404 Oct. 25-29, 1992. |
D. K. Sengupta, N. R. Quick and A. Kar, Laser Direct Write of Conducting and Insulating Tracks in Silicon Carbide, Materials Research Society Symposium Proceedings vol. 624 pp. 127-133 2000. |
D. K. Sengupta, N. R. Quick and A. Kar, Laser Conversion of Electrical Properties for Silicon Carbide Device Applications, Journal of Laser Applications., 2001, vol. 13, pp. 26-31. |
I.A. Salama, N.R. Quick and A. Kar, Laser Doping of Silicon Carbide Substrates, Journal of Electronic Materials, vol. 31, 2002, pp. 200-208. |
I.A. Salama, N. R. Quick and A. Kar, Microstructural and electrical resistance analysis of laser-processed SiC substrates for wide bandgap semiconductor materials, Journal of Materials Science, vol. 40, 2005, pp. 3969-3980. |
I.A. Salama, N. R. Quick and A. Kar, Laser Synthesis of Carbon-Rich SiC Nanoribbons, Journal of Applied Physics, vol. 93, 2003, pp. 9275-9281. |
I.A. Salama, N.R. Quick, and A. Kar, Laser Direct Write Doping of Wide-Bandgap Semiconductor Materials,IEEE ISCS 2003 Proceedings. |
A. Salama, C. F. Middleton, N. R. Quick G. D. Boreman and A. Kar, Laser-Metallized Silicon Carbide Schottky Diodes for Millimeter Wave Detection and Frequency Mixing, Symposium N1 Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV, 204th Meeting of the Electrochemical Society, Orlando, Florida Oct. 12-16, 2003. |
A. Salama, N. R. Quick and A. Kar, Laser Direct Metallization of Silicon Carbide without Metal Deposition, Symposium C, New Applications for Wide Bandgap Semiconductors, Materials Research Society, Apr. 23-24, 2003. |
I. A. Salama, N. R. Quick and A. Kar, Laser-induced Dopant Incorporation in Wide Bandgap Materials: SiC and GaN, ICALEO 2003 (International Congress on Applications of Lasers and Electro-Optics) Proceedings, 2003. |
I.A. Salama, N. R. Quick, and A. Kar, Laser Direct Writing and Doping of Diamond-like Carbon, Polycrystalline Diamond and Single Crystal Silicon Carbide, Journal of Laser Applications, vol. 16, 2004, pp. 92-99. |
Z. Tian, N. R. Quick and A. Kar, Laser Direct Write and Gas Immersion Laser Doping Fabrication of SiC Diodes, J: Silicon Carbide Materials, Procesing and Devices, Symposium J Apr. 14-15, 2004. |
Z. Tian, N. R. Quick and A. KAr, Laser Doping of Silicon Carbon and PIN Diode Fabrication, 23rd International Congress on Applications of Lasers & Electro-Optics 2004. |
A. Kar and N. R. Quick, Laser Processing for Wide Bandgap Semiconductor Device Fabrication, 2004 Meeting of Optical Society of America, 2004. |
Z. Tian, I.A. Salama, N. R. Quick and A. Kar, Effects of Different laser Sources and Doping Methods used to Dope Silicon Carbide, Acta Materialia, vol. 53, 2005, pp. 2835-2844. |
Z. Tian, N. R. Quick and A. Kar; Characteristics of 6H-Silicon Carbide PIN Diodes Prototyping by Laser Doping, Journal of Electronic Materials, vol. 34, 2005, pp. 430-438. |
Chong Zhang, A. Salama, N. R. Quick and A. Kar, Two-Dimensional Transient Modeling of CO2 Laser Drilling of Microvias in High Density Flip Chip Substrates, ICALEO 2005 (International Congress on Applications of Lasers and Electro-Optics), Laser Institute of America, Oct. 31-Nov. 3, 2005. |
Chong Zhang, S. Bet, A. Salama, N. R. Quick and A. Kar, CO2 Laser Drilling of Microvias Using Diffractive Optics Techniques: I Mathematical Modeling, InterPack 05, The ASME/Pacific Rim Technical Conference on Integration and Packaging of MEMS, NEMS and Electronic Systems, San Francisco, CA Jul. 17-22, 2005. |
Z. Tian, N. R. Quick and A. Kar, Laser Synthesis of Optical Structures in Silicon Carbide, 207th Meeting of the Electrochemical Society Proceedings, May 15-20, 2005. |
Z. Tian, N.R. Quick and A. Kar, Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide, Acta Materiallia, vol. 54, 2006, pp. 4273-4283. |
Z. Tian, N.R. Quick and A. Kar,Laser Direct Write Doping and Metallization Fabrication of Silicon Carbide PIN Diodes, Materials Science Forum, vols. 527-529, 2006, pp. 823-826. |
S. Dakshinamurthy, N.R. Quick and A. Kar, SiC-based Optical Interferometry at high pressures and temperatures for pressure and chemical sensing, Journal of Applied Physics, vol. 99, 2006, pp. 094902-1 to 094902-8. |
C. Zhang, A. Salama, N. R. Quick and A. Kar, Modelling of Microvia Drilling with a Nd:YAG Laser, Journal of Physics D: Applied Physics 39 (2006) 3910-3918. |
Z. Tian, N. R. Quick and A. Kar, Laser Endotaxy and PIN Diode Fabrication of Silicon Carbide, 2006 Spring Meting of Materials Research Society, 2006. |
Z. Tian, N. R. Quick and A. Kar, Characteristics of Laser-Fabricated Diodes on Endotaxial Silicon Carbide Substrates, ESCRM (European Conference on Silicon Carbide and Related Materials) Proceedings 2006. |
S. Bet, N.R. Quick and A. Kar, Laser Doping of Chromium and Selenium in p-type 4H—SiC, ICSCRM 2007 Symposium. |
N. Quick, S. Bet and A. Kar, Laser Doping Fabrication of Energy Conversion Devices Materials Science and Technology 2007 Conference and Exhibition. |
S. Bet, N.R. Quick and A. Kar, Effect of Laser Field and Thermal Stress on Diffusion in Laser Doping of SiC, Acta Materialia 55 (2007) 6816-6824. |
S. Bet, N.R. Quick and A. Kar, Laser-Doping of Silicon Carbide for p-n Junction and LED Fabrication, Physica Status Solidi (A), vol. 204, No. 4, 2007, pp. 1147-1157. |
S. Dakshinamurthy, N.R. Quick and A. Kar, Temperature-dependent Optical Properties of Silicon Carbide for Wireless Temperature Sensors, Journal of PhysicsD: Applied Physics 40 (2007)353-360. |
S. Dakshinamurthy, N.R. Quick and A. Kar, High temperature optical properties of silicon carbide for wireless thermal sensing, Journal of Physics D: Applied Physics, vol. 40, No. 2, 2007, pp. 353-360. |
Chong Zhang, A. Salama, N. R. Quick and A. Kar, Determination of Thermophysical Properties for Polymer Films using Conduction Analysis of Laser Heating, International Journal of Thermophysics, vol. 28, No. 3, Jun. 2007. |
N. R. Quick, S. Bet and A. Kar, Laser Doping Fabrication of Energy Conversion Devices, Materials Science and Technology 2007 Conference and Exhibition, Sep. 19, 2007. |
S. Bet, N.R. Quick and A. Kar, Laser Doping of Chromium in 6H—SiC for White Light Emitting Diodes, Laser Institute of America, Journal of Laser Applications Vo. 20 No. 1 pp. 43-49 Feb. 2008. |
Z. Tian, N. R. Quick and A. Kar, Laser Endotaxy in Silicon Carbide and PIN Diode Fabrication, Laser Institute of America, Journal of Laser Applications, vol. 20 No. 2 pp. 106-115, May 2008. |
I. Salama, N. Quick and A. Kar, Laser Direct Write Doping of Wide-Bandgap Semiconductor Materials, ISCS 2003 Proceedings ,2003. |
I. Salama, N. Quick and A. Kar, Laser Microprocessing of Wide Bandgap Materials, Proceedings of International Congress on Laser Advanced Materials Processing (LAMP 2002). |
S. Bet, N. Quick and A. Kar, Laser Doping of Chromium and Selenium in P-Type 4H—SiC, Materials Science Forum vols. 600-603 (2009) pp. 627-630. |
Number | Date | Country | |
---|---|---|---|
20090126627 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60592925 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11189266 | Jul 2005 | US |
Child | 12231078 | US |