The present invention relates to a processing method and, in particular, to a processing method using a laser.
Techniques for highly accurately cutting objects to be processed having various laminate structures such as those in which semiconductor active layers such as GaN are grown as crystals on an Al2O3 substrate for semiconductor devices and those in which glass substrates are bonded to other glass substrates for liquid crystal display devices have recently been in demand.
For cutting the objects to be processed having these laminate structures, it has conventionally been common to use a blade dicing or diamond scribe method.
The blade dicing method is a method in which an object to be processed is cut by being shaved with a diamond blade or the like. On the other hand, the diamond scribe method is a method in which a diamond point tool forms a scribe line on the front face of an object to be processed, and a knife edge is pressed against the rear face of the object along the scribe line, so as to break and cut the object.
However, sawdust or lubricant/washing water may enter a gap formed between a glass substrate and another glass substrate in the blade dicing method when the object is one for a liquid crystal display device mentioned above, for example.
In the diamond scribe method, on the other hand, a scribe line must be formed on not only the front face but also the rear face of the object when the object includes a substrate having a high hardness such as an Al2O3 substrate or when the object is one in which glass substrates are bonded together, whereby errors in cutting may occur because of a misalignment between the respective scribe lines formed on the front and rear faces.
In view of such circumstances, it is an object of the present invention to provide a laser cutting method which overcomes problems such as those mentioned above, and can cut an object to be processed with a high precision even when the object to be processed has various laminate structures.
In order to achieve the above-mentioned object, in one aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a substrate and a laminate part disposed on the substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the substrate so as to form a modified region due to multiphoton absorption, causing the modified region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, and expanding the expandable film so as to separate a plurality of parts produced upon cutting the object from the cutting start region acting as a start point from each other.
In another aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a semiconductor substrate and a laminate part disposed on the semiconductor substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the semiconductor substrate so as to form a molten processed region, causing the molten processed region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, and expanding the expandable film so as to separate a plurality of parts produced upon cutting the object from the cutting start region acting as a start point from each other.
By attaching a protective film to the front face of an object to be processed, these laser processing methods allow the object to be mounted on a table such that the rear face faces up, whereby the inside of the (semiconductor) substrate can favorably be irradiated with laser light from the rear face of the object. The modified region (molten processed region) formed by a phenomenon known as multiphoton absorption can form a cutting start region within the substrate along a desirable line to cut along which the object should be cut, whereby the object can be cut from the cutting start region acting as a start point. Attaching an expandable film to the rear face of the object and expanding the film can easily separate a plurality of cut parts of the object from each other. Namely, these laser processing method can form a cutting start region without directly irradiating the laminate part on the front face of the object with laser light, and cut the substrate by breaking it with a high precision while using a relatively small force from the cutting start region acting as a start point, thereby easily separating cut pieces of the object from each other. Therefore, even when the object to be processed has various laminate structures, these laser processing methods can cut the object with a high precision.
The laminate part on the substrate refers to one deposited on the front face of the substrate, one bonded to the front face of the substrate, one attached to the front face of the substrate, or the like, regardless of whether it is made of a material different from or identical to that of the substrate. The laminate part may be one disposed in close contact with the substrate, one disposed with a gap from the substrate, or the like. Its examples include a semiconductor active layer formed by crystal growth on the substrate, and other glass substrates bonded onto a glass substrate, whereas the laminate part include one in which a plurality of layers of different kinds of materials are formed. The inside of the substrate also encompasses the surface of the substrate provided with the laminate part. The light-converging point refers to a position where the laser light is converged. The cutting start region may be formed by a modified region formed continuously or by modified regions formed intermittently.
In still another aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a substrate and a laminate part disposed on the substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the substrate so as to form a modified region due to multiphoton absorption, causing the modified region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, applying an external force to the object so as to cut the object into a plurality of parts from the cutting start region acting as a start point, and expanding the expandable film so as to separate the plurality of parts of the object from each other.
In still another aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a substrate and a laminate part disposed on the substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the substrate so as to form a modified region due to multiphoton absorption, causing the modified region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, applying an external force to the object so as to cut the object into a plurality of parts from the cutting start region acting as a start point, and expanding the expandable film so as to separate the plurality of parts of the object from each other.
Even when the object to be processed has various laminate structures, these laser processing methods can cut the object with a high precision because of the same reason as with the laser processing methods mentioned earlier. Also, by applying an external force to the object when cutting the object into a plurality of parts, these methods can easily cut the object from the cutting start region acting as a start point.
In still another aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a substrate and a laminate part disposed on the substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the substrate so as to form a modified region due to multiphoton absorption, causing the modified region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, and expanding the expandable film so as to cut the object into a plurality of parts from the cutting start region acting as a start point and separate the plurality of parts of the object from each other.
In still another aspect, the present invention provides a laser processing method for cutting a flat object to be processed including a semiconductor substrate and a laminate part disposed on the semiconductor substrate, the method comprising the steps of attaching a protective film to a front face of the object on the laminate part side, irradiating the object with laser light while employing a rear face of the object as a laser light entrance surface and locating a light-converging point within the semiconductor substrate so as to form a molten processed region, causing the molten processed region to form a cutting start region inside by a predetermined distance from the laser light entrance surface along a line along which the object is intended to be cut, attaching an expandable film to the rear face of the object, and expanding the expandable film so as to cut the object into a plurality of parts from the cutting start region acting as a start point and separate the plurality of parts of the object from each other.
Even when the object to be processed has various laminate structures, these laser processing methods can cut the object with a high precision because of the same reason as with the laser processing methods mentioned earlier. Also, by expanding the expandable film, these methods can apply a tensile stress to the cutting start region of the object, thereby performing the step of cutting the object and the step of separating a plurality of parts from each other at the same time, thus reducing the number of manufacturing steps.
Preferably, in the above-mentioned laser processing methods in accordance with the present invention, the rear face of the object is shaved so as to thin the substrate of the object before forming the cutting start region in the object. This can accurately cut the object from the cutting start region acting as a start point with a smaller force or without requiring any special force.
Preferably, in the above-mentioned laser processing methods in accordance with the present invention, the protective film is removed after the expandable film is attached to the object. This can hold the object formed with the cutting start region without breaking it up. Alternatively, it will be preferred if the protective film is removed after a plurality of parts of the object are separated from each other by expanding the expandable film. This can protect a plurality of parts until the plurality of parts are taken out after the object is cut.
In the following, a preferred embodiment of the present invention will be explained in detail with reference to the drawings. In the laser processing method in accordance with this embodiment, a modified region due to multiphoton absorption is formed within an object to be processed. Therefore, this laser processing method, multiphoton absorption in particular, will be explained first.
A material becomes transparent when its absorption bandgap EG is greater than photon energy hv. Hence, a condition under which absorption occurs in the material is hv>EG. However, even when optically transparent, the material generates absorption under a condition of nhv>EG (where n=2, 3, 4, . . . ) if the intensity of laser light becomes very high. This phenomenon is known as multiphoton absorption. In the case of pulsed waves, the intensity of laser light is determined by the peak power density (W/cm2) of laser light at a light-converging point. The multiphoton absorption occurs under a condition where the peak power density is 1×108 (W/cm2) or greater, for example. The peak power density is determined by (energy of laser light at the light-converging point per pulse)/(beam spot cross-sectional area of laser light×pulse width). In the case of continuous waves, the intensity of laser light is determined by the field intensity (W/cm2) of laser light at the light-converging point.
The principle of the laser processing method in accordance with the embodiment using such multiphoton absorption will be explained with reference to
As shown in
The laser light L is relatively moved along the line 5 along which the object is intended to be cut (i.e., in the direction of arrow A in
If a start point exists in a part to cut when cutting the object 1, the object 1 will break from the start point, whereby the object 1 can be cut with a relatively small force as shown in
The modified region formed by multiphoton absorption in the laser processing method in accordance with this embodiment encompasses the following cases (1) to (3):
(1) Case where the Modified Region is a Crack Region Including One Crack or a Plurality of Cracks
A substrate (e.g., sapphire, glass, or a piezoelectric material made of LiTaO3) is irradiated with laser light while locating a light-converging point therewithin under a condition with a field intensity of at least 1×108 (W/cm2) at the light-converging point and a pulse width of 1 μs or less. This magnitude of pulse width is a condition under which a crack region can be formed only within the substrate while generating multiphoton absorption without causing unnecessary damages on the surface of the substrate. This generates a phenomenon of optical damage by multiphoton absorption within the substrate. This optical damage induces a thermal distortion within the substrate, thereby forming a crack region therewithin. The upper limit of field intensity is 1×1012 (W/cm2), for example. The pulse width is preferably 1 ns to 200 ns, for example.
The inventors determined the relationship between field intensity and crack size by an experiment. The following are conditions of the experiment.
(A) Substrate: Pyrex® glass (with a thickness of 700 μm)
(B) Laser
(C) Condenser lens
(D) Moving rate of the mount table mounting the substrate: 100 mm/sec
The laser light quality of TEM00 means that the light-converging characteristic is so high that convergence to about the wavelength of laser light is possible.
A mechanism by which the objet to be processed is cut by forming a crack region will now be explained with reference to
(2) Case where the Modified Region is a Molten Processed Region
A substrate (e.g., semiconductor material such as silicon) is irradiated with laser light while locating a light-converging point within the object under a condition with a field intensity of at least 1×108 (W/cm2) at the light-converging point and a pulse width of 1 μs or less. As a consequence, the inside of the substrate is locally heated by multiphoton absorption. This heating forms a molten processed region within the substrate. The molten processed region encompasses regions once molten and then re-solidified, regions just in a molten state, and regions in the process of being re-solidified from the molten state, and can also be referred to as a region whose phase has changed or a region whose crystal structure has changed. The molten processed region may also be referred to as a region in which a certain structure changes to another structure among monocrystal, amorphous, and polycrystal structures. For example, it means a region having changed from the monocrystal structure to the amorphous structure, a region having changed from the monocrystal structure to the polycrystal structure, or a region having changed from the monocrystal structure to a structure containing amorphous and polycrystal structures. When the substrate is of a silicon monocrystal structure, the molten processed region is an amorphous silicon structure, for example. The upper limit of field intensity is 1×1012 (W/cm2), for example. The pulse width is preferably 1 ns to 200 ns, for example.
By an experiment, the inventors verified that a molten processed region was formed within a silicon wafer. The following are conditions of the experiment.
(A) Object to be processed: silicon wafer (with a thickness of 350 μm and an outer diameter of 4 inches)
(B) Laser
(C) Condenser lens
(D) Moving rate of the mount table mounting the object: 100 mm/sec
The fact that the molten processed region 13 is formed by multiphoton absorption will now be explained.
For example, at the Nd:YAG laser wavelength of 1064 nm, the laser light appears to be transmitted through the silicon substrate by at least 80% when the silicon substrate has a thickness of 500 μm or less. Since the silicon wafer 11 shown in
A fracture is generated in a silicon wafer from a cutting start region formed by a molten processed region, acting as a start point, toward a cross section, and reaches the front and rear faces of the silicon wafer, whereby the silicon wafer is cut. According to studies conducted by the inventors, fractures seem to start from the molten processed region since distortions are likely to occur within the silicon wafer because of physical differences between the molten processed region and the other regions. On the other hand, as can be seen from the photograph shown in
(3) Case where the Modified Region is a Refractive Index Change Region
A substrate (e.g., glass) is irradiated with laser light while locating a light-converging point within the substrate under a condition with a field intensity of at least 1×108 (W/cm2) at the light-converging point and a pulse width of 1 ns or less. When multiphoton absorption is generated within the substrate with a very short pulse width, the energy caused by multiphoton absorption is not converted into thermal energy, whereby an eternal structure change such as ion valence change, crystallization, or orientation polarization is induced within the substrate, thus forming a refractive index change region. The upper limit of field intensity is 1×1012 (W/cm2), for example. The pulse width is preferably 1 ns or less, for example, more preferably 1 ps or less.
While the cases (1) to (3) are explained in the foregoing as a modified region formed by multiphoton absorption, a cutting start region may be formed as follows in view of the crystal structure of an object to be processed, its cleavage characteristic, and the like, whereby the object can be cut with a high precision by a smaller force from the cutting start region acting as a start point.
Namely, in the case of a substrate made of a monocrystal semiconductor having a diamond structure such as silicon, it will be preferred if a cutting start region is formed in a direction extending along a (111) plane (first cleavage plane) or a (110) plane (second cleavage plane). In the case of a substrate made of a III-V family compound semiconductor of sphalerite structure such as GaAs, it will be preferred if a cutting start region is formed in a direction extending along a (110) plane. In the case of a substrate having a crystal structure of hexagonal system such as sapphire (Al2O3), it will be preferred if a cutting start region is formed in a direction extending along a (1120) plane (A plane) or a (1100) plane (M plane) while using a (0001) plane (C plane) as a principal plane.
When cutting a disk-shaped wafer as a substrate, for example, if the wafer is formed with an orientation flat in a direction to be formed with the above-mentioned cutting start region (e.g., a direction extending along a (111) plane in a monocrystal silicon substrate) or a direction orthogonal to the direction to be formed therewith, the cutting start region extending in the direction to be formed with the cutting start region can be formed easily and accurately with reference to the orientation flat.
A laser processing apparatus employed in the above-mentioned laser processing method will now be explained with reference to
The laser processing apparatus 100 comprises a laser light source 101 for generating laser light L; a laser light source controller 102 for regulating the laser light source 101 so as to adjust the output, pulse width, and the like of the laser light L; a dichroic mirror 103 which functions to reflect the laser light L and is disposed so as to change the orientation of the optical axis by 90°; a condenser lens 105 for converging the laser light L reflected by the dichroic mirror 103; a mount table 107 for mounting the object 1 irradiated with the laser light L converged by the condenser lens 105; an X-axis stage 109 for moving the mount table 107 along an X axis; a Y-axis stage 111 for moving the mount table 107 along a Y axis orthogonal to the X axis; a Z-axis stage 113 for moving the mount table 107 along a Z axis orthogonal to the X and Y axes; and a stage controller 115 for regulating the movements of the three stages 109, 111, 113.
The movement of the light-converging point P along the X (Y) axis is effected by causing the X (Y)-axis stage 109 (111) to move the object 1 along the X (Y) axis. The Z axis is a direction orthogonal to the surface 10 of the object 1, and thus is a focal depth direction of the laser light L incident on the object 1. Hence, the light-converging point P of the laser light L can be positioned within the object 1 when the Z-axis stage 113 is moved along the Z axis.
The laser light source 101 is an Nd:YAG laser which generates pulsed laser light. Other examples of lasers usable in the laser light source 101 include Nd:YVO4, Nd:YLF, and titanium:sapphire lasers. Though pulsed laser light is used for processing the object 1 in this embodiment, continuous-wave laser light may also be used as long as it can cause multiphoton absorption.
The laser processing apparatus 100 further comprises an observation light source 117 which generates visible rays for illuminating the object 1 mounted on the mount table 107; and a beam splitter 119, disposed on the same optical axis as with the dichroic mirror 103 and condenser lens 105, for visible rays. The dichroic mirror 103 is disposed between the beam splitter 119 and the condenser lens 105. The beam splitter 119 functions to reflect about a half of the visible rays and transmit the remaining half therethrough, and is disposed so as to change the orientation of the optical axis of visible rays by 90°. About a half of the visible rays generated by the observation light source 117 are reflected by the beam splitter 119, and thus reflected visible rays are transmitted through the dichroic mirror 103 and condenser lens 105, so as to illuminate the surface 10 of the object 1 including a line 5 along which the object is intended to be cut and the like.
The laser processing apparatus 100 further comprises an image pickup device 121 and an imaging lens 123 which are disposed on the same optical axis as with the beam splitter 119, dichroic mirror 103, and condenser lens 105. An example of the image pickup device 121 is a CCD camera. Reflected light of the visible rays having illuminated the surface 10 including the line 5 along which the object is intended to be cut and the like is transmitted through the condenser lens 105, dichroic mirror 103, and beam splitter 119, so as to be focused by the imaging lens 123 and captured by the imaging device 121, thus becoming imaging data.
The laser processing apparatus 100 further comprises an imaging data processor 125 into which the imaging data outputted from the imaging device 121 is fed, an overall controller 127 for controlling the laser processing apparatus as a whole, and a monitor 129. According to the imaging data, the imaging data processor 125 calculates focal data for positioning the focal point of visible rays generated by the observation light source 117 onto the surface 10 of the object 1. According to the focal data, the stage controller 115 regulates the movement of the Z-axis stage 113 such that the focal point of visible rays is positioned on the surface 10 of the object 1. Hence, the imaging data processor 125 functions as an autofocus unit. Also, according to the imaging data, the imaging data processor 125 calculates image data such as enlarged images of the surface 10. The image data are sent to the overall controller 127, so as to be subjected to various kinds of processing therein, and then to the monitor 129. As a consequence, an enlarged image and the like are displayed on the monitor 129.
The overall controller 127 is also fed with data from the stage controller 115, image data from the imaging data processor 125, and the like, and controls the laser light source controller 102, observation light source 117, and stage controller 115 according to these data as well, thereby regulating the laser processing apparatus 100 as a whole. Hence, the overall controller 127 functions as a computer unit.
The laser processing method in accordance with the embodiment using the above-mentioned laser processing apparatus 100 will now be explained.
With reference to
The wafer 1a also has an orientation flat (hereinafter referred to as “OF”) 19. In this embodiment, the OF 19 is formed with its longitudinal direction aligning with a direction parallel to one of directions of the lines 5 along which the object is intended to be cut intersecting with each other vertically and horizontally. The OF 19 is provided for making it easier to identify a cutting direction when cutting the wafer 1a along the lines 5 along which the object is intended to be cut.
Referring to
The lines 5 along which the object is intended to be cut are set in regions in gaps between the second wiring layers 19b on the interlayer insulating layer 17b. In the lines 5 along which the object is intended to be cut, the surface of the interlayer insulating layer 17b (i.e., the front face 3 of the wafer 1a) is a flat and smooth surface.
Referring to
Subsequently, a cutting start region 8 is formed within the substrate 15 of the wafer 1a along a line 5 along which the object is intended to be cut (S3,
Referring to
Subsequently, in view of the thickness, material, refractive index, and the like of the substrate 15, the amount of movement of the wafer 1a along the Z axis is determined (S103). This is the amount of movement of the wafer 1a, with reference to the light-converging point P of laser light positioned at the rear face 21 of the wafer 1a, required for locating the light-converging point P of laser light L at a desirable position inside by a predetermined distance from the rear face 21 of the wafer 1a. This amount of movement is fed into the overall controller 127.
The wafer 1a is mounted on the mount table 107 of the laser processing apparatus 100 such that the rear face 21 of the wafer 1a opposes the condenser lens 105. Here, since the protective tape 25 is attached to the front face 3 of the wafer 1a provided with the laminate part 4, the wafer 1a can be mounted on the mount table 107 with the front face 3 facing down without any problems. Then, visible rays are generated by the observation light source 117, so as to illuminate the rear face 21 of the wafer 1a (S105). The illuminated rear face 21 of the wafer 1a is captured by the image pickup device 121. The imaging data captured by the image pickup device 121 is sent to the imaging data processor 125. According to the imaging data, the imaging data processor 125 calculates such focal data as to position the focal point of visible rays from the observation light source 117 at the rear face 21 of the wafer 1a (S107).
The focal data is sent to the stage controller 115. According to the focal data, the stage controller 115 moves the Z-axis stage 113 along the Z axis (S109). As a consequence, the focal point of visible rays from the observation light source 117 is positioned at the rear face 21 of the wafer 1a. According to the imaging data, the imaging data processor 125 calculates enlarged image data of the rear face 21 including the line 5 along which the object is intended to be cut. The enlarged image data is sent to the monitor 129 by way of the overall controller 127, whereby an enlarged image of the line 5 along which the object is intended to be cut and its vicinity is displayed on the monitor 129.
Data of the movement amount determined by step S103 has been fed into the overall controller 127 beforehand, and is sent to the stage controller 115. According to the movement amount data, the stage controller 115 causes the Z-axis stage 113 to move the wafer 1a along the Z axis such that the position of the light-converging point P of laser light L is inside by a predetermined distance from the rear face 21 of the wafer 1a (S111).
Subsequently, the laser light source 101 generates laser light L, with which the rear face 21 of the wafer 1a is irradiated. Since the light-converging point P of laser light L is positioned within the substrate 15, a molten processed region 13, which is a modified region, is formed only within the substrate 15. Then, the X-axis stage 109 or Y-axis stage 111 is moved along the line 5 along which the object is intended to be cut, so as to form a plurality of molten processed regions 13, or a molten processed region 13 is formed continuously along the line 5 along which the object is intended to be cut, whereby a cutting start region 8 extending along the line 5 along which the object is intended to be cut is formed within the substrate 15 (S113).
Referring to
Next, the wafer 1a is cut into a plurality of chip parts 24 along the cutting start region 8 (S7,
Subsequently, the protective tape 25 attached to the front face 3 of the wafer 1a is irradiated with UV rays V (S9,
Next, the wafer 1a is divided into individual chip parts 24 (S13,
As explained in the foregoing, by attaching the protective tape 25 to the front face 3 of the wafer 1a, the laser processing method in accordance with this example can mount the wafer 1a on the mount table 107 such that the rear face 21 faces up, and thus can favorably irradiate the inside of the substrate 15 with the laser light L from the rear face 21 of the wafer 1a.
Then, a modified region formed by a phenomenon known as multiphoton absorption can form a cutting start region 8 within the substrate 15 along a desirable line 5 along which the object is intended to be cut for cutting the wafer 1a, and cut the wafer 1a from the cutting start region 8 acting as a start point. Attaching the expandable tape 23 to the rear face 21 of the wafer 1a and expanding the tape 23 can easily separate a plurality of thus cut chip parts 24 of the wafer 1a from each other.
Namely, the laser processing method in accordance with this example can form the cutting start region 8 without directly irradiating the laminating part 4 on the front face 3 of the wafer 1a with the laser light L, and thus can prevent the laminating part 4 from being damaged by the laser light L. Also, by forming the cutting start region 8 within the substrate 15, the method can cut the wafer 1a by breaking it accurately with a relatively small force from the cutting start region 8 acting as a start point, thereby easily separating the cut pieces of the wafer 1a from each other. Therefore, this laser processing method can cut the wafer 1a with a high precision even when the wafer 1a includes the laminate part 4.
Also, the laser processing method in accordance with this example can make the dicing width between the chip parts 24 much smaller than that in the conventional blade dicing method and the like. When the dicing width is made smaller as such, the gap between the individual chip parts can be reduced, so that a greater number of chip parts 24 can be taken out.
Depending on constituent materials of the laminate 4, irradiation conditions of laser light L, and the like, there may occur cases where care must be taken such that device forming regions of the laminate 4 are not irradiated with the laser light L. Since the laser light L is drastically converged so as to utilize the multiphoton absorption phenomenon in particular in this method, there are cases where it is difficult to make the laser light L incident on the front face 3 without irradiating the device forming regions of the laminate 4 with the laser light L. In general, a semiconductor layer is often laminated for a device between device forming regions of the wafer. Also, there are cases where functional devices such as TEG (Test Element Group) are formed between the device forming regions in memories, integrated circuit devices, and the like. When the laser processing method in accordance with this example is used in these cases, the laser light L is made incident on the rear face 21 not provided with the laminate part 4, whereby the cutting start region 8 can favorably be formed within the substrate 15.
The laser processing method in accordance with this example applies an external force to the wafer 1a with the knife edge 33 or the like, so as to cut the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point. This can easily cut the wafer 1a from the cutting start region 8 acting as a start point.
The laser processing method in accordance with this example removes the protective tape 25 after attaching the expandable tape 23 to the wafer 1a. This can hold the wafer 1a formed with the cutting start region 8 without breaking it into the individual chip parts 24.
Forming the molten processed regions 13 as in this modified example can produce the cutting start region 8 extending in the thickness direction of the substrate 15. Therefore, the wafer 1a can be cut by breaking it with a smaller force. When a fracture due to the molten processed region 13 is grown in the thickness direction of the substrate 15, the wafer 1a can be divided without the aid of external forces.
Referring to
Subsequently, the rear face 21 of the wafer 1a is shaved (S23,
Subsequently, a cutting start region 8 is formed within the substrate 15 of the wafer 1a along the line 5 along which the object is intended to be cut (S25,
Next, the expandable tape 23 is expanded, so as to cut the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point and separate the individual chip parts 24 from each other (S29,
Subsequently, the protective tape 25 is irradiated with UV rays (S31,
The laser processing method in accordance with this example can form the cutting start region 8 without directly irradiating the laminate part 4 on the front face 3 of the wafer 1a as in the above-mentioned first example, whereby the laminate part 4 can be prevented from being damaged by the laser light L. Forming the cutting start region 8 within the substrate 15 can cut the wafer 1a by accurately breaking it from the cutting start region 8 acting as a start point with a relatively small force, and easily separate thus cut pieces of the wafer 1a from each other. Therefore, this laser processing method can cut the wafer 1a with a high precision even when the wafer 1a includes the laminate part 4.
The laser processing method in accordance with this example shaves the rear face 21 of the wafer 1a such that the substrate 15 of the wafer 1a becomes thinner. This can cut the wafer 1a with a smaller force or without any special force from the cutting start region 8 acting as a start point. Also, the wafer 1a can be cut with a higher precision than in the case where the substrate 15 is relatively thick.
The laser processing method in accordance with this example expands the expandable tape 23 attached to the rear face 21 of the wafer 1a, so as to cut the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point and separate the plurality of chip parts 24 from each other. When expanding the expandable tape 23, a tensile stress is applied to the cutting start region 8 of the wafer 1a, whereby the wafer 1a can favorably be cut from the cutting start region 8 acting as a start point. Hence, this embodiment can concurrently carry out the step of cutting the wafer 1a and the step of separating a plurality of chip parts 24 from each other, and thus can reduce the number of manufacturing steps.
The laser processing method in accordance with this example emits the laser light L while employing the rear face 21 of the wafer 1a as the laser light entrance surface. According to an experiment conducted by the inventors, modified regions such as the molten processed region 13 tend to be formed with a bias toward the laser light entrance surface side within the substrate 15. Therefore, in this laser processing method, the cutting start region 13 is likely to be formed with a bias toward the rear face 21 to which the expandable tape 23 is attached. On the other hand, expanding the expandable tape 23 applies a greater tensile stress to the vicinity of the rear face 21 of the substrate 15 than the vicinity of the front face 3 thereof. Therefore, when the cutting start region 8 is biased toward the rear face 21 within the substrate 15, the tensile stress due to the expanding of the expandable tape 25 can be exerted on the cutting start region 8 more effectively. As a consequence of the foregoing, the laser processing method in accordance with this example can exert the tensile stress on the cutting start region 8 more effectively, whereby the wafer 1a can be cut with a smaller force.
After separating a plurality of chip parts 24 of the wafer 1a from each other by expanding the expandable tape 23, the laser processing method in accordance with this example removes the protective tape 25. Tills can protect the plurality of chip parts 24 until they are taken out after cutting the wafer 1a.
Referring to
Next, the protective tape 25 is irradiated with UV rays (S47,
Subsequently, the expandable tape 23 is expanded, so as to cut the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point and separate the individual chip parts 24 from each other (S51,
The laser processing method in accordance with this example can cut the wafer 1a with a high precision even when the wafer 1a includes the laminate part 4, because of the same reason as that of the above-mentioned first example.
The laser processing method in accordance with this example expands the expandable tape 23, so as to cut the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point and separate the plurality of chip parts 24 from each other as with the above-mentioned second example. This can concurrently carry out the step of cutting the wafer 1a and the step of separating a plurality of chip parts 24 from each other, and thus can reduce the number of manufacturing steps.
Referring to
Next, the expandable tape 23 is attached to the rear face 21 of the wafer 1a (S67,
The laser processing method in accordance with this example can cut the wafer 1a with a high precision even when the wafer 1a includes the laminate part 4, because of the same reason as that of the above-mentioned first example.
The laser processing method in accordance with this example shaves the rear face 21 of the wafer 1a such that the substrate 15 of the wafer 1a becomes thinner as in the second example. This can cut the wafer 1a with a smaller force or without any special force from the cutting start region 8 acting as a start point.
The laser processing method in accordance with this example cuts the wafer 1a into a plurality of chip parts 24 from the cutting start region 8 acting as a start point by applying an external force to the wafer 1a as in the first example. This can easily cut the wafer 1a from the cutting start region 8 acting as a start point.
Though the embodiment and examples of the present invention are explained in detail in the foregoing, the present invention is not limited to the above-mentioned embodiment and examples as a matter of course.
For example, though the above-mentioned embodiment and examples use a semiconductor substrate as a substrate, the present invention is not limited thereto but is favorably applicable to wafers having conductive substrates and insulative substrates.
As explained in the foregoing, by attaching a protective film to the front face of an object to be processed, the laser processing method in accordance with the present invention can mount the object onto a table such that the rear face faces up, whereby the inside of the substrate can favorably be irradiated with laser light from the rear face of the object. A modified region formed by a phenomenon known as multiphoton absorption can form a cutting start region within the substrate, whereas the object can be cut from the cutting start region acting as a start point. Attaching an expandable film to the rear face of the object and expanding the film can easily separate a plurality of cut parts of the object from each other. Namely, this laser processing method can form a cutting start region without directly irradiating the laminate part on the front face of the object with laser light, and can cut the substrate by accurately breaking it with a relatively small force from the cutting start region acting as a start point, whereby thus cut pieces of the object can easily be separated from each other. Hence, this laser processing method can cut an object to be processed with a high precision, even when the object has various laminate structures.
Number | Date | Country | Kind |
---|---|---|---|
P2003-067276 | Mar 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/11626 | 9/11/2003 | WO | 00 | 11/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/082006 | 9/23/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3448510 | Bippus et al. | Jun 1969 | A |
3543979 | Grove et al. | Dec 1970 | A |
3610871 | Lumley | Oct 1971 | A |
3613974 | Chatelain et al. | Oct 1971 | A |
3626141 | Daly | Dec 1971 | A |
3629545 | Graham et al. | Dec 1971 | A |
3790051 | Moore | Feb 1974 | A |
3790744 | Bowen | Feb 1974 | A |
3800991 | Grove et al. | Apr 1974 | A |
3824678 | Harris et al. | Jul 1974 | A |
3909582 | Bowen | Sep 1975 | A |
3932726 | Verheyen et al. | Jan 1976 | A |
3970819 | Gates et al. | Jul 1976 | A |
3991296 | Kojima et al. | Nov 1976 | A |
4027137 | Liedtke | May 1977 | A |
4046985 | Gates | Sep 1977 | A |
4092518 | Merard | May 1978 | A |
4190759 | Hongo et al. | Feb 1980 | A |
4224101 | Tijburg et al. | Sep 1980 | A |
4242152 | Stone | Dec 1980 | A |
4306351 | Ohsaka et al. | Dec 1981 | A |
4336439 | Sasnett et al. | Jun 1982 | A |
4403134 | Klingel | Sep 1983 | A |
4475027 | Pressley | Oct 1984 | A |
4531060 | Suwa et al. | Jul 1985 | A |
4543464 | Takeuchi | Sep 1985 | A |
4546231 | Gresser et al. | Oct 1985 | A |
4562333 | Taub et al. | Dec 1985 | A |
4650619 | Watanabe | Mar 1987 | A |
4682003 | Minakawa et al. | Jul 1987 | A |
4689467 | Inoue | Aug 1987 | A |
4691093 | Banas et al. | Sep 1987 | A |
4734550 | Imamura et al. | Mar 1988 | A |
4769310 | Gugger et al. | Sep 1988 | A |
4814575 | Petitbon | Mar 1989 | A |
4815854 | Tanaka et al. | Mar 1989 | A |
4899126 | Yamada | Feb 1990 | A |
4914815 | Takada et al. | Apr 1990 | A |
4942284 | Etcheparre et al. | Jul 1990 | A |
4981525 | Kiyama et al. | Jan 1991 | A |
5023877 | Eden et al. | Jun 1991 | A |
5096449 | Matsuzaki | Mar 1992 | A |
5132505 | Zonneveld et al. | Jul 1992 | A |
5151135 | Magee et al. | Sep 1992 | A |
5211805 | Srinivasan | May 1993 | A |
5230184 | Bukhman | Jul 1993 | A |
5251003 | Vigouroux et al. | Oct 1993 | A |
5254149 | Hashemi et al. | Oct 1993 | A |
5254833 | Okiyama | Oct 1993 | A |
5293389 | Yano et al. | Mar 1994 | A |
5298719 | Shafir | Mar 1994 | A |
5300942 | Dolgoff | Apr 1994 | A |
5304357 | Sato et al. | Apr 1994 | A |
5321717 | Adachi et al. | Jun 1994 | A |
5359176 | Balliet, Jr. et al. | Oct 1994 | A |
5376793 | Lesniak | Dec 1994 | A |
5382770 | Black et al. | Jan 1995 | A |
5504772 | Deacon et al. | Apr 1996 | A |
5508489 | Benda et al. | Apr 1996 | A |
5521999 | Chuang et al. | May 1996 | A |
5534102 | Kadono et al. | Jul 1996 | A |
5543365 | Wills et al. | Aug 1996 | A |
5575936 | Goldfarb | Nov 1996 | A |
5580473 | Shinohara et al. | Dec 1996 | A |
5609284 | Kondratenko | Mar 1997 | A |
5622540 | Stevens | Apr 1997 | A |
5637244 | Erokhin | Jun 1997 | A |
5641416 | Chadha | Jun 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5663980 | Adachi | Sep 1997 | A |
5747769 | Rockstroh et al. | May 1998 | A |
5762744 | Shibata et al. | Jun 1998 | A |
5767483 | Cameron et al. | Jun 1998 | A |
5776220 | Allaire et al. | Jul 1998 | A |
5786560 | Tatah et al. | Jul 1998 | A |
5795795 | Kousai et al. | Aug 1998 | A |
5814532 | Ichihara | Sep 1998 | A |
5826772 | Ariglio et al. | Oct 1998 | A |
5841543 | Guldi et al. | Nov 1998 | A |
5867324 | Kmetec et al. | Feb 1999 | A |
5882956 | Umehara et al. | Mar 1999 | A |
5886319 | Preston et al. | Mar 1999 | A |
5900582 | Tomita et al. | May 1999 | A |
5916460 | Imoto et al. | Jun 1999 | A |
5922224 | Broekroelofs | Jul 1999 | A |
5925024 | Joffe | Jul 1999 | A |
5925271 | Pollack et al. | Jul 1999 | A |
5968382 | Matsumoto et al. | Oct 1999 | A |
5976392 | Chen | Nov 1999 | A |
5998238 | Kosaki | Dec 1999 | A |
6023039 | Sawada | Feb 2000 | A |
6031201 | Amako et al. | Feb 2000 | A |
6055829 | Witzmann et al. | May 2000 | A |
6057525 | Chang et al. | May 2000 | A |
6121118 | Jin et al. | Sep 2000 | A |
6127005 | Lehman et al. | Oct 2000 | A |
6141096 | Stern et al. | Oct 2000 | A |
6156030 | Neev | Dec 2000 | A |
6172329 | Shoemaker et al. | Jan 2001 | B1 |
6175096 | Nielsen | Jan 2001 | B1 |
6181728 | Cordingley et al. | Jan 2001 | B1 |
6187088 | Okumura | Feb 2001 | B1 |
6211488 | Hoekstra et al. | Apr 2001 | B1 |
6229113 | Brown | May 2001 | B1 |
6229114 | Andrews et al. | May 2001 | B1 |
6236446 | Izumi et al. | May 2001 | B1 |
6252197 | Hoekstra et al. | Jun 2001 | B1 |
6257224 | Yoshino et al. | Jul 2001 | B1 |
6259058 | Hoekstra | Jul 2001 | B1 |
6285002 | Ngoi et al. | Sep 2001 | B1 |
6294439 | Sasaki et al. | Sep 2001 | B1 |
6322958 | Hayashi | Nov 2001 | B1 |
6325855 | Sillmon et al. | Dec 2001 | B1 |
6327090 | Rando et al. | Dec 2001 | B1 |
6333486 | Troitski | Dec 2001 | B1 |
6344402 | Sekiya | Feb 2002 | B1 |
6359254 | Brown | Mar 2002 | B1 |
6376797 | Piwczyk et al. | Apr 2002 | B1 |
6402004 | Yoshikuni et al. | Jun 2002 | B1 |
6407363 | Dunsky et al. | Jun 2002 | B2 |
RE37809 | Deacon et al. | Jul 2002 | E |
6413839 | Brown et al. | Jul 2002 | B1 |
6420678 | Hoekstra | Jul 2002 | B1 |
6438996 | Cuvelier | Aug 2002 | B1 |
6489588 | Hoekstra et al. | Dec 2002 | B1 |
6527965 | Gee et al. | Mar 2003 | B1 |
6555781 | Ngoi et al. | Apr 2003 | B2 |
6562698 | Manor | May 2003 | B2 |
6566683 | Ogawa et al. | May 2003 | B1 |
6653210 | Choo et al. | Nov 2003 | B2 |
6726631 | Hatangadi et al. | Apr 2004 | B2 |
6744009 | Xuan et al. | Jun 2004 | B1 |
6770544 | Sawada | Aug 2004 | B2 |
6787732 | Xuan et al. | Sep 2004 | B1 |
6908784 | Farnworth et al. | Jun 2005 | B1 |
6951799 | Roche | Oct 2005 | B2 |
6992026 | Fukuyo et al. | Jan 2006 | B2 |
7174620 | Chiba et al. | Feb 2007 | B2 |
7396742 | Fukuyo et al. | Jul 2008 | B2 |
7489454 | Fukuyo et al. | Feb 2009 | B2 |
7547613 | Fukuyo et al. | Jun 2009 | B2 |
7566635 | Fujii et al. | Jul 2009 | B2 |
7592237 | Sakamoto et al. | Sep 2009 | B2 |
7592238 | Fukuyo et al. | Sep 2009 | B2 |
7605344 | Fukumitsu | Oct 2009 | B2 |
7608214 | Kuno et al. | Oct 2009 | B2 |
7615721 | Fukuyo et al. | Nov 2009 | B2 |
7626137 | Fukuyo et al. | Dec 2009 | B2 |
7709767 | Sakamoto | May 2010 | B2 |
7718510 | Sakamoto et al. | May 2010 | B2 |
7719017 | Tanaka | May 2010 | B2 |
7732730 | Fukuyo et al. | Jun 2010 | B2 |
7749867 | Fukuyo et al. | Jul 2010 | B2 |
7754583 | Sakamoto | Jul 2010 | B2 |
7825350 | Fukuyo et al. | Nov 2010 | B2 |
7897487 | Sugiura et al. | Mar 2011 | B2 |
7902636 | Sugiura et al. | Mar 2011 | B2 |
7939430 | Sakamoto et al. | May 2011 | B2 |
7947574 | Sakamoto et al. | May 2011 | B2 |
7989320 | Boyle et al. | Aug 2011 | B2 |
20010019361 | Savoye | Sep 2001 | A1 |
20010029673 | Brown et al. | Oct 2001 | A1 |
20010035401 | Manor | Nov 2001 | A1 |
20010046112 | Herchen | Nov 2001 | A1 |
20020005805 | Ogura et al. | Jan 2002 | A1 |
20020006765 | Michel et al. | Jan 2002 | A1 |
20020023903 | Ngoi et al. | Feb 2002 | A1 |
20020023907 | Morishige | Feb 2002 | A1 |
20020025432 | Noguchi et al. | Feb 2002 | A1 |
20020050489 | Ikegami et al. | May 2002 | A1 |
20020096994 | Iwafuchi et al. | Jul 2002 | A1 |
20020115235 | Sawada | Aug 2002 | A1 |
20020125232 | Choo et al. | Sep 2002 | A1 |
20020130367 | Cabral et al. | Sep 2002 | A1 |
20020158288 | Yamazaki et al. | Oct 2002 | A1 |
20020170896 | Choo et al. | Nov 2002 | A1 |
20020170898 | Ehrmann et al. | Nov 2002 | A1 |
20020177288 | Brown et al. | Nov 2002 | A1 |
20030010275 | Radojevic et al. | Jan 2003 | A1 |
20030024909 | Hoekstra et al. | Feb 2003 | A1 |
20030141570 | Chen et al. | Jul 2003 | A1 |
20040002199 | Fukuyo et al. | Jan 2004 | A1 |
20040245659 | Glenn et al. | Dec 2004 | A1 |
20050173387 | Fukuyo et al. | Aug 2005 | A1 |
20050181581 | Fukuyo et al. | Aug 2005 | A1 |
20050184037 | Fukuyo et al. | Aug 2005 | A1 |
20050189330 | Fukuyo et al. | Sep 2005 | A1 |
20050202596 | Fukuyo et al. | Sep 2005 | A1 |
20050272223 | Fujii et al. | Dec 2005 | A1 |
20050282359 | Nagai et al. | Dec 2005 | A1 |
20060040473 | Fukuyo et al. | Feb 2006 | A1 |
20060144828 | Fukumitsu et al. | Jul 2006 | A1 |
20060148212 | Fukuyo et al. | Jul 2006 | A1 |
20060255024 | Fukuyo et al. | Nov 2006 | A1 |
20070085099 | Fukumitsu et al. | Apr 2007 | A1 |
20070125757 | Fukuyo et al. | Jun 2007 | A1 |
20070252154 | Uchiyama et al. | Nov 2007 | A1 |
20080035611 | Kuno et al. | Feb 2008 | A1 |
20080037003 | Atsumi et al. | Feb 2008 | A1 |
20080090382 | Fujii et al. | Apr 2008 | A1 |
20080218735 | Atsumi et al. | Sep 2008 | A1 |
20080251506 | Atsumi et al. | Oct 2008 | A1 |
20090008373 | Muramatsu et al. | Jan 2009 | A1 |
20090032509 | Kuno et al. | Feb 2009 | A1 |
20090098713 | Sakamoto | Apr 2009 | A1 |
20090107967 | Sakamoto et al. | Apr 2009 | A1 |
20090117712 | Sakamoto et al. | May 2009 | A1 |
20090166342 | Kuno et al. | Jul 2009 | A1 |
20090166808 | Sakamoto et al. | Jul 2009 | A1 |
20090250446 | Sakamoto | Oct 2009 | A1 |
20090261083 | Osajima et al. | Oct 2009 | A1 |
20090302428 | Sakamoto et al. | Dec 2009 | A1 |
20100006548 | Atsumi et al. | Jan 2010 | A1 |
20100009547 | Sakamoto | Jan 2010 | A1 |
20100012632 | Sakamoto | Jan 2010 | A1 |
20100012633 | Atsumi et al. | Jan 2010 | A1 |
20100015783 | Fukuyo et al. | Jan 2010 | A1 |
20100025386 | Kuno et al. | Feb 2010 | A1 |
20100032418 | Kuno et al. | Feb 2010 | A1 |
20100055876 | Fukuyo et al. | Mar 2010 | A1 |
20100151202 | Fukumitsu | Jun 2010 | A1 |
20100176100 | Fukuyo et al. | Jul 2010 | A1 |
20100184271 | Sugiura et al. | Jul 2010 | A1 |
20100200550 | Kumagai | Aug 2010 | A1 |
20100203678 | Fukumitsu et al. | Aug 2010 | A1 |
20100203707 | Fujii et al. | Aug 2010 | A1 |
20100227453 | Sakamoto | Sep 2010 | A1 |
20100240159 | Kumagai et al. | Sep 2010 | A1 |
20100258539 | Sakamoto | Oct 2010 | A1 |
20100301521 | Uchiyama | Dec 2010 | A1 |
20100311313 | Uchiyama | Dec 2010 | A1 |
20100327416 | Fukumitsu | Dec 2010 | A1 |
20110000897 | Nakano et al. | Jan 2011 | A1 |
20110001220 | Sugiura et al. | Jan 2011 | A1 |
20110021004 | Fukuyo et al. | Jan 2011 | A1 |
20110027971 | Fukuyo et al. | Feb 2011 | A1 |
20110027972 | Fukuyo et al. | Feb 2011 | A1 |
20110037149 | Fukuyo et al. | Feb 2011 | A1 |
20110274128 | Fukumitsu et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
1160228 | Sep 1997 | CN |
196 46 332 | May 1998 | DE |
0213546 | Mar 1987 | EP |
0345752 | Dec 1989 | EP |
0 863 231 | Sep 1998 | EP |
1 022 778 | Jul 2000 | EP |
0126 735 | Aug 2000 | EP |
1 138 516 | Oct 2001 | EP |
1 338 371 | Aug 2003 | EP |
1 498 216 | Jan 2005 | EP |
1 580 800 | Sep 2005 | EP |
2 322 006 | Aug 1998 | GB |
46-024989 | Jul 1971 | JP |
48-012599 | Feb 1973 | JP |
53-33050 | Mar 1978 | JP |
53-141573 | Dec 1978 | JP |
56-76522 | Jun 1981 | JP |
56-028630 | Jul 1981 | JP |
56-128691 | Oct 1981 | JP |
58-36939 | Mar 1983 | JP |
58-57767 | Apr 1983 | JP |
58-171783 | Oct 1983 | JP |
58-181492 | Oct 1983 | JP |
59-76687 | May 1984 | JP |
59-130438 | Jul 1984 | JP |
59-141233 | Aug 1984 | JP |
59-150691 | Aug 1984 | JP |
60-055640 | Mar 1985 | JP |
60-144985 | Jul 1985 | JP |
60-167351 | Aug 1985 | JP |
61-96439 | May 1986 | JP |
61-112345 | May 1986 | JP |
61-121453 | Sep 1986 | JP |
61-220339 | Sep 1986 | JP |
62-004341 | Jan 1987 | JP |
62-098684 | May 1987 | JP |
63-215390 | Sep 1988 | JP |
63-278692 | Nov 1988 | JP |
64-038209 | Feb 1989 | JP |
1-112130 | Apr 1989 | JP |
1-225509 | Sep 1989 | JP |
1-225510 | Sep 1989 | JP |
03-124486 | May 1991 | JP |
03-234043 | Oct 1991 | JP |
3-276662 | Dec 1991 | JP |
03-281073 | Dec 1991 | JP |
04-029352 | Jan 1992 | JP |
04-111800 | Apr 1992 | JP |
04-167985 | Jun 1992 | JP |
4-188847 | Jul 1992 | JP |
4-300084 | Oct 1992 | JP |
04-339586 | Nov 1992 | JP |
04-356942 | Dec 1992 | JP |
05-335726 | Dec 1993 | JP |
06-039572 | Feb 1994 | JP |
06-188310 | Jul 1994 | JP |
06-198475 | Jul 1994 | JP |
07-029855 | Jan 1995 | JP |
07-037840 | Feb 1995 | JP |
07-040336 | Feb 1995 | JP |
07-075955 | Mar 1995 | JP |
07-076167 | Mar 1995 | JP |
7-32281 | Apr 1995 | JP |
7-263382 | Oct 1995 | JP |
7-308791 | Nov 1995 | JP |
8-148692 | Jun 1996 | JP |
08-197271 | Aug 1996 | JP |
8-264488 | Oct 1996 | JP |
08-264491 | Oct 1996 | JP |
09-017756 | Jan 1997 | JP |
9-017831 | Jan 1997 | JP |
09-150286 | Jun 1997 | JP |
09-213662 | Aug 1997 | JP |
09-216085 | Aug 1997 | JP |
9-260310 | Oct 1997 | JP |
9-263734 | Oct 1997 | JP |
10-034359 | Feb 1998 | JP |
10-071483 | Mar 1998 | JP |
10-163780 | Jun 1998 | JP |
10-214997 | Aug 1998 | JP |
10-233373 | Sep 1998 | JP |
10-305420 | Nov 1998 | JP |
10-321908 | Dec 1998 | JP |
11-028586 | Feb 1999 | JP |
11-071124 | Mar 1999 | JP |
11-121517 | Apr 1999 | JP |
11-138896 | May 1999 | JP |
11-156564 | Jun 1999 | JP |
11-160667 | Jun 1999 | JP |
11-162889 | Jun 1999 | JP |
11-163097 | Jun 1999 | JP |
11-163403 | Jun 1999 | JP |
11-177137 | Jul 1999 | JP |
11-177176 | Jul 1999 | JP |
11-204551 | Jul 1999 | JP |
11-207479 | Aug 1999 | JP |
11-221684 | Aug 1999 | JP |
11-224866 | Aug 1999 | JP |
11-267861 | Oct 1999 | JP |
2000-9991 | Jan 2000 | JP |
2000-015467 | Jan 2000 | JP |
2000-042764 | Feb 2000 | JP |
2000-61677 | Feb 2000 | JP |
2000-104040 | Apr 2000 | JP |
2000-124537 | Apr 2000 | JP |
2000-158156 | Jun 2000 | JP |
2000-195828 | Jul 2000 | JP |
2000-210785 | Aug 2000 | JP |
2000-216114 | Aug 2000 | JP |
2000-219528 | Aug 2000 | JP |
2000-237885 | Sep 2000 | JP |
2000-237886 | Sep 2000 | JP |
2000-247671 | Sep 2000 | JP |
2000-249859 | Sep 2000 | JP |
2000-294522 | Oct 2000 | JP |
2000-323441 | Nov 2000 | JP |
2000-349107 | Dec 2000 | JP |
2001-047264 | Feb 2001 | JP |
2001-064029 | Mar 2001 | JP |
2001-085736 | Mar 2001 | JP |
2001-127015 | May 2001 | JP |
2001-135654 | May 2001 | JP |
2001-144140 | May 2001 | JP |
2001-196282 | Jul 2001 | JP |
2001-250798 | Sep 2001 | JP |
2001-284292 | Oct 2001 | JP |
2001-326194 | Nov 2001 | JP |
2001-345252 | Dec 2001 | JP |
2002-026443 | Jan 2002 | JP |
2002-047025 | Feb 2002 | JP |
2002-050589 | Feb 2002 | JP |
2002-158276 | May 2002 | JP |
2002-192367 | Jul 2002 | JP |
2002-192368 | Jul 2002 | JP |
2002-192370 | Jul 2002 | JP |
2002-192371 | Jul 2002 | JP |
2002-205180 | Jul 2002 | JP |
2002-205181 | Jul 2002 | JP |
2002-224878 | Aug 2002 | JP |
2002-226796 | Aug 2002 | JP |
2002-192369 | Oct 2002 | JP |
2003-001458 | Jan 2003 | JP |
2003-017790 | Jan 2003 | JP |
2003-39184 | Feb 2003 | JP |
2003-046177 | Feb 2003 | JP |
2003-154517 | May 2003 | JP |
2003-334812 | Nov 2003 | JP |
2003-338467 | Nov 2003 | JP |
2003-338468 | Nov 2003 | JP |
2003-338636 | Nov 2003 | JP |
2005-001001 | Jan 2005 | JP |
2005-047290 | Feb 2005 | JP |
2005-159378 | Jun 2005 | JP |
2005-159379 | Jun 2005 | JP |
2005-313237 | Nov 2005 | JP |
2006-128723 | May 2006 | JP |
2006-135355 | May 2006 | JP |
10-1999-0072974 | Sep 1999 | KR |
2001-017690 | Mar 2001 | KR |
2001-0017690 | Mar 2001 | KR |
165354 | Aug 1991 | TW |
192484 | Oct 1992 | TW |
219906 | Feb 1994 | TW |
356613 | Apr 1999 | TW |
388197 | Apr 2000 | TW |
404871 | Sep 2000 | TW |
415036 | Dec 2000 | TW |
428295 | Apr 2001 | TW |
440551 | Jun 2001 | TW |
443581 | Jun 2001 | TW |
445684 | Jul 2001 | TW |
455914 | Sep 2001 | TW |
473896 | Jan 2002 | TW |
488001 | May 2002 | TW |
494042 | Jul 2002 | TW |
512451 | Dec 2002 | TW |
521310 | Feb 2003 | TW |
WO-9707927 | Mar 1997 | WO |
WO-0032349 | Jun 2000 | WO |
WO 0190709 | Nov 2001 | WO |
WO 0207927 | Jan 2002 | WO |
WO 0222301 | Mar 2002 | WO |
WO 0222301 | Mar 2002 | WO |
WO 03076118 | Sep 2003 | WO |
WO 2004082006 | Sep 2004 | WO |
Entry |
---|
A. Ishii et al., “CO2 Laser Processing Technology,” Nikkan Kogyo Publishing Production, Dec. 21, 1992, pp. 63-65 (with partial English translation). |
Arai, K.; “Laser Dicing process for Si Wafer,” Journal of the Japan Society of Griding Engineers, vol. 47, No. 5, May 2003; pp. 229-231, including English language translation. |
Miyazaki, T., “Laser beam Machining Technology,” published by Sangyo-Tosho Inc., May 31, 1991, First Edition pp. 9-10. |
Yajima T. et al., New Version Laser Handbook, published by Asakusa Shoten, Jun. 15, 1989, pp. 666-669. |
Tooling Machine Series, “Laser Machining” published by Taiga Shuppan Inc., 1990, pp. 91-96, including English language translation. |
Electronic Material, No. 9 in 2002, published by Kogyo Chousaki, pp. 17-21 (with full English translation). |
Fukuyo, F. et al., “Stealth Dicing Technology for Ultra Thin Wafer,” presented at 2003 ICEP (international Conference on Electronics Packaging), Apr. 16-18, 2003, Tokyo, Japan. |
Midorikawa, K., “Recent Progress of Femtosecond Lasers and their Applications to Material Processing,” Dai 45 kai Laser Netsukako Kenkyukai Ronbunshu, December. |
“Ultrashort Pulse Laser Microprocessing of Silicon,” Japan Welding Society Zenkoku taikai Koen Gaiyo, Mar. 2000, pp. 72-73 (with English translation). |
“Formation of Photo-included Structures in Glasses with Femtosecond Laser,” dai 42 kai Laser Netsukako Kenkyukai Ronbunshu, Nov. 1997, pp. 107, line 4 to pp. 109, line 5. |
“Inner Glass Marking by Harmonics of Solid State Laser,” Dai 45 kai Laser Netsukako Kenkyukai Ronbunshu, Dec. 1998. |
“Proceedings of the 63rd Laser Materials Processing Conference,” May 2005, pp. 115-123. |
“The 6th International Symposium on Laser Precision Microfabrication,” Apr. 2005. |
“Journal of Japan Laser Processing Society,” vol. 12, No. 1, Feb. 2005 (with English translation). |
Office Action dated Apr. 25, 2012 from related (not counterpart) U.S. Appl. No. 12/912,427 (33 pages). |
U.S. Appl. No. 13/206,181, filed Aug. 9, 2011. |
U.S. Appl. No. 13/269,274, filed Oct. 7, 2011. |
U.S. Appl. No. 13/235,936, filed Sep. 19, 2011. |
U.S. Appl. No. 13/233,662, filed Sep. 15, 2011. |
U.S. Appl. No. 13/061,438, filed Apr. 26, 2011. |
U.S. Appl. No. 13/107,056, filed May 13, 2011. |
U.S. Appl. No. 13/151,877, filed Jun. 2, 2011. |
U.S. Appl. No. 13/131,429, filed Jun. 28, 2011. |
U.S. Appl. No. 13/143,636, filed Sep. 21, 2011. |
U.S. Appl. No. 13/148,097, filed Aug. 26, 2011. |
U.S. Appl. No. 13/262,995, filed Oct. 5, 2011. |
U.S. Appl. No. 13/265,027, filed Oct. 18, 2011. |
U.S. Appl. No. 13/213,175, filed Aug. 19, 2011. |
X. Liu et al., “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE Journal of Quantum Electronics, vol. 33, No. 10, Oct. 1997, pp. 1706-1716. |
Search Report, Oct. 8, 2012, Intellectual Property Office of Singapore. |
K. Hirao et al., “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” Journal of Non-Crystalline Solids, vol. 239, Issues 1-3, Oct. 31, 1998, pp. 91-95. |
U.S. Office Action dated May 28, 2013 issued in U.S. Appl. No. 13/529,525. |
Non-Final Office Action of U.S. Appl. No. 13/529,525 mailed on Feb. 14, 2014. |
Welding with High Power Diode Lasers, http://coherent.com/downloads/HPDDWeldingWhitepaper—Final.pdf. |
Number | Date | Country | |
---|---|---|---|
20070158314 A1 | Jul 2007 | US |