1. Field
This application related sputtering systems, such as sputtering system used to deposit thin films on substrates during the fabrication of integrated circuits, solar cells, flat panel displays, etc.
2. Related Arts
Sputtering systems are well known in the art. An example of a sputtering system having a linear scan magnetron is disclosed in U.S. Pat. No. 5,873,989. One of the problems to be resolved in such a system is the uniformity of the film that is formed on the substrate. Another problem to be resolved in such a system is target utilization. Specifically, since the magnets of linear magnetrons scans back and forth, excessive sputtering occurs at both edges of the target, generating two deep grooves along, i.e., parallel to, the scan direction. Consequently, the target has to be replaced, even though the majority of the surface of the target is still usable. Various methods for combating this phenomenon are disclosed in the above cited '989 patent.
However, another target utilization issue that has not been previously addressed is the erosion caused at the edges of the scan cycle. That is, when the magnets reach an end of the target, the scan direction is reversed. In order to achieve film uniformity, the '989 patent suggests to slow the scan speed towards either end of the target. However, this leads to increased sputtering of the target, leading to excessive erosion at both ends of the target in a direction perpendicular to the scan direction.
Accordingly, there is a need in the art for a sputtering system that enable uniform film deposition and increased target utilization.
The following summary of the invention is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Disclosed herein is a sputtering system and method that enhance uniformity of the film formed on the substrate, and also enables high throughput. One embodiment provides a system wherein substrates continually move in front of the sputtering target. The magnetron is linearly scanned back and forth at speed that is at least several times higher than the speed on the substrates' motion. The magnetron is scanned in the direction of substrate travel and then in the reverse direction, repeatedly. During most of its travel, the magnetron is moved at a constant speed. However, as it approaches the end of its travel, it decelerates. Then, when it starts its travel in the opposite direction, it accelerates until it reaches the constant speed. The deceleration/acceleration in one embodiment is 0.5 g and in another it is 1 g. This enhances utilization of the target. According to another embodiment, the turning point of the magnetron is changed at successive scans, so as to define a zone of turnaround. This also helps in enhancing target utilization.
A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behinds the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. The movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone.
The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.
Embodiments of the inventive sputtering system will now be described with reference to the drawings. Different embodiments may be used for processing different substrates or to achieve different benefits, such as throughput, film uniformity, target utilization, etc. Depending on the outcome sought to be achieved, different features disclosed herein may be utilized partially or to their fullest, alone or in combination, balancing advantages with requirements and constraints. Therefore, certain benefits will be highlighted with reference to different embodiments, but are not limited to the disclosed embodiments.
For illustration purposes, in the example of
Each chamber includes a movable magnetron 242, 244, 246, mounted onto a linear track 242′, 244′, 246′, such that it scans the plasma over the surface of the target 262, as shown by the double-headed arrows. The magnets scan back and forth continuously as the substrates are transported in the chambers on the carriers. As illustrated with respect to magnets 242, as the magnets reach the leading edge 263 of the target 262, it reverses direction and travels towards the trailing edge 267 of target 262. When it reaches the trailing edge 267, it again reverses direction and is scanned towards the leading edge 263. This scanning process is repeated continuously.
As shown in
The problem with linear motion of magnetron behind a target is that when it reaches the leading or trailing end of the target, it stops and starts motion in the reverse direction. Consequently, the edges of the target get eroded much more than the main surface of the target. When the erosion at the edges of the target exceed specification, the target needs to be replaced, even though the center of the target is still usable. This problem is addressed using various embodiments, as described below.
According to one embodiment, offsets E and F are designated at the leading and trailing edges of the target, respectively. When the magnetron reaches the offset, it decelerates at a prescribed rate, e.g., 0.5 g, 1 g, etc. At the end of the offset the magnetron changes direction and accelerates at the prescribed rate. This is done at both ends of travel of the magnetron, i.e., at the leading and trailing edges of the target.
According to another embodiment, a rotation zone is prescribed, e.g., zones E and F are designated at the leading and trailing edges of the target, respectively. When the magnetron reaches either of the rotation zones, it changes travel direction at a point within the rotating zone. However, over time the magnetron changes direction at a different points within the rotating zone. This is exemplified by the callout in
The selection of the points of reversing scan direction can be done using various ways. For example, a random selection can be done at each scan, at each two scans, or after x number of scans. Conversely, a program can be implemented wherein at each scan the point is moved a distance Y in one direction until the end of the zone is reached, and then the points start to move a distance Y towards the opposite end. On the other hand, the movement can be designed to generate an interlaced pattern by moving in one direction a Z amount and then in the next step moving in the reverse direction a −w amount, wherein |w|<|Z|.
In the embodiments described herein, over the processing regime the magnetron is scanned at constant speed, as it has been found that varying the scan speed adversely affects film uniformity on the substrates. Notably, in configurations where the substrates continuously moves in front of the target, slowing down or speeding up the magnet array over the processing area is unadvisable, even for controlling the film thickness uniformity.
In the disclosed embodiments, moving many substrates on a conveyor can be thought of as a continuous (infinitely long) substrate that is moving at a constant speed. The scan speed must be selected so as to give good uniformity on a substrate moving at a constant speed. In these embodiments, special use is made of the start position, the stop position, acceleration, and deceleration to control target utilization. This has the effect of spreading out the deep grooves that occur at the ends when reversing the motion.
A pole design is used to reduce the deep grooves at the top and bottom of the plasma track. A thicker target can be used or higher power can be utilized into the targets because the scan is done at a fairly high speed, spreading the power out over the full surface of the substrate. Because each substrate sees multiple target passes of the plasma, the start and stop position can be varied with each pass and the effect of changing the scan length from one pass to the next will not be seen in the film uniformity. That is, while the embodiment of
For example, according to one embodiment the system is used to fabricate solar cells at a rate of 2400 substrates per hour. The conveyor continuously moves the substrates at a rate of about 35 mm/sec. The magnetron is scanned at a speed of at least 250 mm/sec, i.e., more than seven times the speed of the substrate transport. The target and magnetron are designed such that the stroke of the magnetron scan is about 260 mm. This provides film uniformity of over 97%. The acceleration/deceleration can be set at 0.5 g with a distance of about 6.4 mm or 1 g, for about half that distance.
However, the plot of
It should be understood that processes and techniques described herein are not inherently related to any particular apparatus and may be implemented by any suitable combination of components. Further, various types of general purpose devices may be used in accordance with the teachings described herein. The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations will be suitable for practicing the present invention.
Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This Application is a divisional application of U.S. patent application Ser. No. 13/667,976, filed on Nov. 2, 2012, which claims priority benefit from U.S. Provisional Application Ser. No. 61/556,154, filed on Nov. 4, 2011, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61556154 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13667976 | Nov 2012 | US |
Child | 15138154 | US |