The present invention relates to drive laser systems for a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) or soft x-ray light source, e.g., for integrated circuit photolithography process applications and other high power high stability uses, e.g., Low Temperature Poly-Silicon formation for, e.g., forming thin film transistors by laser annealing amorphous silicon to form crystallized silicon in which the thin film transistors may be formed, e.g., for flat panel displays and the like.
There is a need for an effective and efficient Laser Produced Plasma (“LPP”) extreme-ultraviolet light (“EUV”, otherwise known as soft X-ray) light source, e.g., for integrated circuit photolithographic uses. Applicants propose certain improvements and modifications to currently available technology.
An apparatus and method is disclosed which may comprise an EUV drive laser system comprising: a solid state seed laser master oscillator laser; a gas discharge excimer laser gain generator producing a drive laser output light beam that has a sufficently high spatial beam quality so that it can be relatively stratightforwardly focused to a relatively small spot, as will be understood by those skilled in the art. The solid state seed laser may comprise a third harmonic Nd:YLF laser, which may be tunable. The gas discharge excimer gain generator laser may comprise a XeF excimer laser power amplifier or power oscillator. The solid state laser may comprise a tunable laser tuned by changing the temperature of a laser crystal comprising the solid state laser, or by utilizing a wavelength selection element, e.g., a Lyot filter or an etalon.
Applicants propose improvements relating to the efficiency and beam quality of a laser system, e.g., an excimer gas discharge laser system, e.g., a XeF high power laser system, useful, e.g., for a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) or soft x-ray light source, e.g., for integrated circuit photolithography process applications and other high power high stability uses, e.g., Low Temperature Poly-Silicon (“LTPS”) formation for, e.g., forming thin film transistors by laser annealing amorphous silicon to form crystallized silicon with larger elongated crystals wherein the thin film transistors may better be formed, e.g., for flat panel displays and the like. The improvements also relate to economic issues such as cost reduction, e.g., through increased system life and reduction in the cost of consumables, e.g., optical elements and laser chambers.
The use of a solid state laser, e.g., a diode pumped 3-rd harmonic Nd:YLF master oscillator (MO), e.g., coupled with a gas discharge excimer amplifier laser, e.g., a XeF power amplifier (“PA”) or power oscillator (“PO”) allows, e.g., the design of a kW-level MOPA or MOPO system, e.g., with an output beam that has sufficently high spatial beam quality so that it can be relatively stratightforwardly focused to a small spot, as will be understood by those skilled in the art. A challenge to be addressed may be to provide efficient amplification of the solid state seed laser, e.g., the Nd:YLF-based MO beam in an amplifier medium, e.g., the XeF-media in either a power amplifier or power oscillator configuration (“MOPA”), “MOPO”). This is due, mainly to a mismatch between operating the wavelength of, e.g., the running Nd:YLF source and the XeF gain, as illustrated, e.g., in
In order to, e.g., provide more optimum conditions for efficient operation of XeF amplifier laser, e.g., in a power amplifier configuration, the output of the 3rd harmonic Nd:YLF MO may, e.g., be shifted towards longer wavelengths and broadened, e.g., to amplify at both peaks 34, 36 of the XeF amplifier laser. Thus, at the same time, the spectral width/shape of solid state MO output is proposed to be maintained to overlay two strong lines 34, 36 of XeF gain peaked at ˜351.126 nm and ˜351.268 nm respectively.
This required modification of spectral features of Nd:YLF output according to aspects of an embodiment of the present application may be done, e.g., because the width of Nd:YLF crystal gain is wide enough to accommodate spectral shift within a ˜420 pm range, e.g., the fluorescence spectrum of Nd:YLF is ˜±1.4 nm, e.g., @FWHM in accordance with the literature. Applicants propose to achieve this by, e.g., increasing the temperature of Nd:YLF crystal and/or an introducing wavelength selective element(s) in the laser resonator such as etalon, Lyot filter, diffraction grating, or their combination.
In addition, applicants propose further improvement, e.g., in coupling between, e.g., an Nd:YLF MO module and, e.g., the XeF PA/PO module, e.g., by using a two-line or multi-line MO oscillator, to produce a double-line MO output, e.g., that matches both 351.126 nm and 351.268 nm XeF gain lines more optimally. To achieve this requirement applicants propose, e.g., using an intracavity etalon, e.g., with FSR=3*Δλ, where Δλ(˜142 pm), or by using a Lyot filter, with proper spectral characteristic, e.g., a single plate Lyot filter with a birefringence that creates the desired split of the output of, e.g., a solid state seed laser, e.g., an Nd:YLF that ultimately produces, e.g., after frequency multiplication, the desited two peaks overlapping, e.g., the strong lines of the XeF excimer laser amplification, e.g., as shown in
Applicants have examined the feasibility of amplification of the laser beam produced by the commercially available 3rd harmonic Nd:YLF laser in the XeF gas discharge gain module. For example a production-grade excimer laser chamber, e.g., filled with a Xe:F2:Ne gas mixture and was excited by using a production-grade pulse power module, e.g., from applicant's assignee's single chamber laser system, e.g., an ELS 6010 series laser. A commercial Q-switched diode pumped 3rd harmonic Nd:YLF laser, e.g., a Photonics Industries International (model DS10-351) may be used as the MO 102 as illustrated schematically in
A proposed drive laser system for LPP EUV source is illustrated in
One of the advantages of the system according to aspects of an embodiment of the present invention is that, e.g., it can use a very robust, high power XeF gain module, developed on proven excimer laser technology. Another advantage of such a system can be, e.g., that it can implement a cost efficient diode pumped MO, e.g., with sufficiently high spatial beam quality so that it can be relatively stratightforwardly focused to a small spot, as will be understood by those skilled in the art. The MO laser 102 may be a frequency tripled Nd:YLF (third harmonic) laser, e.g., operating at 351 nm wavelength. Commercially available 3rd harmonic Nd:YLF lasers, are capable of operating at high repetition rates, e.g., exceeding 10 kHz and can deliver near diffraction limited beam quality, e.g., with a M2 parameter close to 1.
The spectroscopic measurements of Amplified Spontaneous Emission (ASE) in 351-353 nm range are shown in
As illustrated, e.g., in
The
In particular, a weak 351.08 nm line 38, which is, as can be seen, e.g., in
The number of passes in the gain module may not be able to be significantly increased above a triple-pass PA scheme, e.g., due to physical constraints of the system. Therefore, applicants have determined that, according to aspects of an embodiment of the present invention about 2 mJ of MO pulse energy may be needed for practical MOPA design. The use of Master Oscillator Power Oscillator (MO-PO) approach, therefore, according to aspects of an embodiment of the present invention may offer another method for further reduction of the required MO pulse energy. A possible set up of the MOPO configuration is shown illustratively in
The spatial filter 170 may be formed by a small aperture placed in a focal plate 172 of a telescope 174, e.g., consisting of two spherical lenses. After the spatial filter 170, an optical attenuator 160 can be used to adjust the amount of MO 150 energy injected into the PO 160 cavity. Before the MO 150 output beam 180 is injected into the PO cavity 160 it may be directed through an aperture 190 and thereby, e.g., shaped to match the PO 160 discharge cross section. The coupling of MO 150 output beam 180 into PO resonator 160 may be done through a partial reflector, e.g., beam splitter 192. Optical isolation between MO 150 and PO 160 may be achieved, e.g., by introducing a long optical delay between MO 150 and PO 160. The MO 150 energy can be measured before the PO output coupler. The MOPO energy can be measured after the beam splitter 192 and corrected for the beam splitter 192 transmittance. A maximum PO energy extracted was determined to be ˜82 mJ which is comparable with the MOPA. The maximum extraction efficiency was determined to be ˜3.4%, which is higher compared to MOPA results. An important advantage of the MOPO system can be that it requires much lower MO output energy compared to the MOPA configurations.
A comparative evaluation of the temporal pulse shape at the output of MOPA for single- and triple-pass PA configurations, as well as at the output of MOPO was conducted. Pulse waveforms for the MOPA and MOPO configurations are shown in
Applicants have achieved significant progress in the technology development of XeF gain modules. A key challenge for the discharge chamber is meeting the high average power requirement. Core chamber technology used in applicants' assignees XLA multi-chamber, e.g., MOPA systems have been proved to work reliably at 4 kHz, 100% DC, in such systems (and have been expanded to 6 kHz), the former producing an average power of ˜400W per module, as illustrated, e.g., in
An example of a 200 million pulses run, performed on high repetition rate XeF MOPA system, e.g., with a single-pass PA, is illustrated in
Multiple 200M shot runs in 600-800W power range have bee demonstrated to show the most critical modules of the MOPA system. Pulse energy density and average power density on output optical components have been experienced to exceeded 0.5J/cm2 and 1.7 kW/cm2 levels. No failures were observed on either reflective or transmissive optical elements.
The approaches described above will work for MOPO system as well. The minimal energy requirements for the MO laser in such a case are further significantly reduced.
According to aspects of an embodiment of the present invention an efficient LW or LTPS oscillator-amplifier system, e.g., a MOPA system can consist of a solid-state master oscillator (MO) and XeF gas discharge power amplifier (PA). A further advantage of such a system is the combination of the beam quality parameters of the solid-state laser seed beam and the high energy and short pulse duration of the excimer amplifier output, e.g., in a PA configuration. Applicants propose, e.g., that the MO comprise a diode-pumped solid state laser (DPSS) to provide a beam with has sufficiently high spatial beam quality so that it can be relatively stratightforwardly focused to a small spot, as will be understood by those skilled in the art, and with high pointing stability, such a laser may comprise a 3-rd harmonic Nd:YLF MO laser for a XeF PA amplifier module.
The gain spectrum of XeF media has a three-branch structure as illustrated in
An efficient UV MOPA system that consists of a solid-state master oscillator (MO), e.g., 60 illustrated in
A proper choice for XeF PA is a 3-rd harmonic Nd:YLF MO laser, that closely matches spectral properties of XeF excimer gain media, see patent disclosure by W. Partlo and D. Brown, 2004.
The gain spectrum of XeF media has three-branch structure and is shown in the
The operating wavelength of a Nd:YLF laser is offset, but can be tuned, e.g., to match two strong 351 nm lines of XeF power amplifier/oscillator, e.g., using a selective cavity as noted above. However, there is another strong XeF gain line at around 353 nm that cannot be seeded with the same MO. Since the gain values in excimer laser media are very high, efficient seeding of the PA 70 with an MO 60 beam, e.g., at around 351 nm can only be achieved according to aspects of an embodiment of the present invention if the significant gain branch at around 353 nm is suppressed. Otherwise, the beam quality and efficiency of the system can be compromised.
According to aspects of an embodiment of the present invention applicants propose to provide a configuration of, e.g., a MOPA system which consists of a solid state seed laser, e.g., a third harmonic Nd:YLF MO and a power amplifier laser, e.g., a dual or multi-pass XeF PA or a power oscillator laser as the amplifier portion, e.g., with a wavelength selector, e.g., to suppress amplified stimulated emission (ASE) at 353 nm and to provide good beam quality and efficient operational regime of the amplification at around 351 nm.
Turning now to
As one can see in the
According to aspects of an embodiment of the present invention applicants have researched a number of solutions to this critical need. A high power laser system, using two gas-discharge power amplifiers and repetition rates up to 12 kHz to produce more than 2 kW output power with high beam quality is proposed. Optical performance data, design features of the drive laser and output power scaling issues have been addressed and according to aspects of an embodiment of the present invention solutions are proposed. Applicants believe that such a system can be achieved meeting the following exemplary parameters of operation: (1) drive laser wavelength at around 351 nm; (2) power at about 2.4 kW per laser module; (3) pulse Energy at about 200 mJ; (4) pulse repetition rate 6-12 KHz; (5) pulse duration ˜10 ns and (6) beam quality (a) divergence at about 90% encircled integrated energy at <200 uRad and (b) pointing stability at about ˜20 mRad; (6) integral energy stability (˜0.3%), 3s for window=100 pulses; (7) laser efficiency at about ˜4%.
According to aspects of an embodiment of the present invention a suitable laser architecture may comprise a high repetition rate operation, e.g., based upon a two channel approach with two 6 kHz, 100% duty cycle (“DC”) gain modules. Both MOPA and MOPO optical schemes may be employed. High beam quality and 12 kHz repetition rates may be provided by, e.g., solid state diode pumped master oscillator.
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Applicants have successfully developed a 351 nm drive laser concept for an LPP EUV system based on, e.g., two XeF Power Amplifiers 102, 104 driven by a 3rd harmonic Nd:YLF Master Oscillator 102. To achieve efficient amplification the MO pulses may be tuned by ˜0.5 nm from the center of Nd:YLF emission spectrum for proper overlapping with XeF gain. Two basic architectural approaches, MOPA and MOPO, systems have been evaluated, using high power XeF laser technology. Both XeF MOPA and XeF MOPO have demonstrated adequate optical performance. MOPO has demonstrated the lowest MO seed energy to meet output power requirement (˜30 uJ), while MOPA has demonstrated a shorter pulse duration and greater flexibility for beam quality optimization, e.g., in the MO. 1010 pulses of operation of a MOPA system has been was demonstrated at a 600˜800W power range. No significant optics damage issues have been discovered were observed. Future development of the drive laser can include optimization of the beam quality, extension of operating repetition rates to 8 kHz, increase of output energy and power and system efficiency.
Efficient conversion of laser light into EUV radiation is one of the most important problems of the laser-produced plasma (LPP) EUV source. A too low conversion efficiency (CE) increases the amount of power the drive laser will have to deliver, which, besides the obvious laser cost increase, also increases the thermal load on all the components and can lead to increased debris generation. In order to meet the requirements for a high-volume manufacturing (HVM) tool and at the same time keep the laser power requirements within acceptable limits, a CE exceeding 2.5% is likely to be required. Applicants propose certain aspects according to embodiments of the present invention relating to optimizing conversion efficiency of LPP EUV generation. The optimization parameters include laser wavelength, target material, and laser pulse shape, energy and intensity. The final choice between parameter sets that leads to the required minimum CE may be affected by or ultimately determined by debris mitigation solutions and the laser source available for a particular parameter set.
Applicants have tested various combinations of laser wavelengths, pulse widths, energies, and target materials to find optimal conversion efficiency parameters. It has been shown that lithium produces narrow-line emission well suited for use with Mo/Si multi-layer mirrors. The lithium emission bandwidth is much smaller than the required 2% bandwidth that a next generation microlithography tool will need. In contrast, tin has a board spectrum, which may require a spectral purity filter. The source size of the lithium emission has been shown to be small, and can easily meet the etendue requirements for efficient collection of the emitted light. The source size has a strong dependence on the drive laser wavelength and a weak dependence on the drive laser energy.
The angular distribution measurements reveal better uniformity for tin than for lithium. Comparison of different target geometries reveals increased CE for Sn droplets in comparison to the planar targets. A pre-pulse can lead to a noticeable increase in CE. The conversion efficiency is only one consideration among many for the appropriate choice of drive laser parameters and target material. Ultimately, the initial cost and the cost of operation of the high volume manufacturing tool will dictate which laser/target combination is the best. System tradeoffs might require choosing lower CE options to extend collection optics lifetime.
LPP source geometry exposes the normal incidence collector to a high intensity flux of medium energy (1-10 keV) ions from the target material. Direct damage due to sputtering and implantation severely degrades reflectivity of a multi-layer reflector. Collector lifetime on the ETS (Sandia Nat'l Lab) was limited by ion damage from 1-6 keV Xe ions. Bi-layers were etched at a rate of 1 per 15M pulses. Therefore, any EUV source concept must include an effective means for stopping collector erosion due to damage from fast ions.
An ion energies summary is shown in Table VII below.
The ion flux intensity and energies vary with laser parameters and target material as illustrated in Table VIII below.
With regard to collector protection from condensable materials, e.g., a possible HVM technical path can utilize a Li target and, e.g., a heated multi-layer mirror. Condensed lithium can be evaporated from the collector mirror, maintained, e.g., at about 400C. Multi-layer mirror structures with high reflectivity and wavelength stability at high temperature have been developed by applicants' employer, along with highly effective Li diffusion barriers having suitably low EUV absorption, as shown, e.g., in co-pending patent applications noted above. LPP debris, consisting of both moderate energy ions, and condensable neutral material, represents a serious technical challenge for acceptable collector lifetime in a EUV light source. Ion debris has been characterized and different techniques with reasonable ion stopping power have been demonstrated. In parallel, the techniques are expected to reduce ion erosion to a level consistent with 100B shot collector lifetime. Condensable target material, Li, can be evaporated from the collector surface. Technical challenges include (1) development of high temperature MLM mirrors stable in reflectivity and center wavelength under prolonged annealing conditions; (2) development of a suitable and effective Li diffusion barrier.
It will be understood by those skilled in the art that the aspects of embodiments of the present invention disclosed above are intended to be preferred embodiments only and not to limit the disclosure of the present invention(s) in any way and particularly not to a specific preferred embodiment alone. Many changes and modification can be made to the disclosed aspects of embodiments of the disclosed invention(s) that will be understood and appreciated by those skilled in the art. The appended claims are intended in scope and meaning to cover not only the disclosed aspects of embodiments of the present invention(s) but also such equivalents and other modifications and changes that would be apparent to those skilled in the art. In additions to changes and modifications to the disclosed and claimed aspects of embodiments of the present invention(s) noted above the following could be implemented.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/657,606, entitled LPP EUV Drive Laser, filed on Feb. 28, 2005, Attorney docket No. 2004-0107-01, the disclosure of which is hereby incorporated by reference, and is a continuation in part of co-pending U.S. patent application Ser. No. 10/979,919, entitled LPP EUV LIGHT SOURCE, filed on Nov. 1, 2004; and Ser. No. 10/781,251, entitled VERY HIGH ENERGY, HIGH STABILITY GAS DISCHARGE LASER SURFACE TREATMENT SYSTEM, filed on Feb. 18, 2004; and Ser. No. 11/021,261, entitled EUV LIGHT SOURCE OPTICAL ELEMENTS, filed on Dec. 22, 2004, assigned to the assignee of the present application, the disclosures of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60657606 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10979919 | Nov 2004 | US |
Child | 11324104 | Dec 2005 | US |
Parent | 10781251 | Feb 2004 | US |
Child | 11324104 | Dec 2005 | US |
Parent | 11021261 | Dec 2004 | US |
Child | 11324104 | Dec 2005 | US |