Tom Campbell, “MEMS Switch Technology Approaches the “Ideal Switch”, ” Applied Microwave & Wireless, Dow-Key Microwave Corp., pp. 101-107. |
L. Pavesi et al., “Optical Gain in Silicon Nanocrystals,” Proceedings of SPIE vol. 4293 (2001), pp. 162-172. |
Hoa T.M. Pham et al., “Evaluation of In-situ Doped PECVD SiC Thin Films for Surface Micromachining,” Delft University of Technology, Netherlands, pp. 856-860. |
Andrea Borgioli et al., “Low-Loss Distributed MEMS Phase Shifter,” IEEE Microwave and Guided Wave Letters, vol. 10, No. 1, Jan. 2000, pp. 7-9. |
S. Chowdhury et al., “A Surface Mountable MEMS Beamforming Microphone Array and Associated MEMS Socket Structure,” Symposium on Microelectronics Research & Development in Canada, Ottawa, Jun. 7, 2001, 20 pages. |
R. Ghodssi et al., “Thick Buried Oxide In Silicon (TBOS): An Integrated Fabrication Technology For Multi-Stack Wafer-Bonded MEMS Processes,” 10th International Conference on Solid-State Sensors and Actuators, Sendai, Japan, Jun. 7-10, 1999, pp. 1-4. |
Veljko Milanovi et al., “Convection-based Accelerometer and Tilt Sensor Implemented in Standard CMOS,” International Mechanical Engineering Conference and Exposition, MEMS Symoisa, Anaheim, CA, Nov. 18, 1998, 4 pages. |
Michael Gaitan et al., “Micromachined Passive Microwave Elements for Effective Isotropic Radiated Power Sensor,” MEMS Interface Circuits Workshop, Oct. 14, 1999, 24 pages. |
Dr. Michael Gaitan, CMOS Foundry MEMS, ENEE 719R: Design and Fabrication of Micro-Electro-Mechanical Systems (MEMS), University of Maryland, Nov. 22, 2000, 54 pages. |