This patent document claims the benefit of Japanese Patent Application No. 2005-318708 filed on Nov. 1, 2005, which is hereby incorporated by reference.
1. Field
The present embodiments relate to a magnetic head assembly having AuSn dispersion layer and method of solder bonding.
2. Related Art
Generally, a magnetic head assembly, which is used in a hard disc drive (HDD), includes a slider that has a magnetoresistive element installed therein, a flexure that is formed of a thin flexible sheet metal so as to elastically support the slider, and a flexible printed circuit that is attached to the surface of the flexure and electrically connects the magnetoresistive element of the slider and a circuit system of a device on which the magnetic head assembly is mounted. The flexure is fixed to a load beam by, for example, spot welding. In general, in this type of magnetic head assembly, electrode pads for the magnetoresistive element of the slider and electrode pads of the flexible printed circuit are bonded to each other by a gold ball bonding method according to orthogonal positional relationships between the electrode pads. Recently, in order to cope with reduction in a bonding area (sizes of the electrode pads and intervals between the electrode pads), a solder ball bonding method using a solder ball, which has a smaller spherical diameter than the gold ball, has been proposed (for example, see JP-A-2004-283911 (US 2004228036A1)).
The solder ball bonding method can be performed by using, for example, a mounter of an SJB method that sprays a molten solder ball on a joint surface. As the molten solder supplied from the mounter onto the joint surface is solidified, the electrode pads of the slider and the electrode pads of the flexible printed circuit are bonded to each other. A surface protective layer, which is made of Au, is formed on the surfaces (joint surfaces) between the electrode pads of the slider and the flexible printed circuit so as to increase solder wettability.
As described above, when the solder ball in a melted state is supplied, the solder ball rapidly cools as soon as the solder ball is supplied to the joint surface, and Au is solidified before being sufficiently diffused into the solder. For this reason, an Au—Sn compound layer is formed at the boundary between the solidified solder and the electrode pads, and peeling of solder junctions is generated due to the Au—Sn compound layer. In addition, posture of the slider (pitch angle) greatly changes after the solder bonding because of shrinkage distortion that is generated when the solder ball is solidified. This change in posture reduces (worsens) a floating characteristic of the magnetic head slider, for example, an output characteristic.
The present embodiments may obviate one or more of the limitations of the related art. For example, in one embodiment, a magnetic head assembly and a solder bonding method thereof are capable of increasing bond reliability and preventing a change in posture of a slider.
The present embodiments have been finalized in view of the fact that under the recognition that an Au—Sn compound layer formed along the boundary between solidified solder and electrode pads causes peeling, the Au—Sn compound layer formed on the solder joint surface of the electrode pads can be dispersed into the molten solder by supplying a solder ball in a melted state to the joint surface and applying sufficient heat energy to the joint surface, and bending of a slider can be reduced by relieving shrinkage distortion of the solidified solder.
In one embodiment, a magnetic head assembly has electrode pads of a slider that have a magnetoresistive element installed therein. Electrode pads of a flexible printed circuit connect the magnetoresistive element to an external circuit and are bonded by solder. An Au layer is formed on solder contact surfaces of the electrode pads of the slider and the flexible printed circuit. An AuSn dispersion layer where Au atoms of the Au layer are dispersed is formed at least on the boundary between the solder contact surfaces of the electrode pads and the solder.
In one embodiment, the AuSn dispersion layer is equal to or greater than 50 μm in thickness. Since an adhesive layer (a NiSn or CuSn compound) is formed between the electrode pads and the solder, it is possible to increase solder bond strength.
In one embodiment, the AuSn dispersion layer has a higher Au atomic content toward the electrode pads from the solder.
An Sn compound layer made of materials of the electrode pads and Sn may be interposed between the electrode pads and the AuSn dispersion layer. The electrode pad may be formed of a single layer structure of Ni or Cu, or a laminated structure of Ni and Cu.
In one embodiment, a solder bonding method of a magnetic head assembly that bonds electrode pads of a slider has a magnetoresistive element installed therein and electrode pads of a flexible printed circuit that connect the magnetoresistive element and an external circuit by solder. The method includes preparing a capillary that has a carrier path that carries a solder ball by an inert gas stream and melts the solder ball by a laser beam that passes through the carrier path, disposing the capillary on bonding surfaces between the electrode pads of the slider and the electrode pads of the flexible printed circuit, introducing the solder ball and an inert gas stream into the carrier path of the capillary and causing the solder ball to drop on the bonding surfaces of the electrode pads with the solder ball melted by the laser beam that passes through the same carrier path, waiting until the solder ball dropped is solidified, and remelting the solidified solder ball by laser beam irradiation to resolidify the remelted solder ball and bonding the electrode pads of the slider to the electrode pads of the flexible printed circuit.
For the second laser irradiation, a laser beam in the same axial direction as the capillary that passes through the carrier path of the capillary may be used, or a laser beam in an axial direction different from the capillary that is irradiated outside of the capillary may be used. For example, the laser irradiation onto the solidified solder ball may be performed by approaching the capillary to the solder ball and remelting the solder ball by the laser beam that passes through the carrier path of the capillary. Also, the laser irradiation onto the solder ball may be performed by remelting the solder ball by the laser beam irradiated from the direction different from the capillary.
In one embodiment of the solder bonding method, the laser beam is irradiated by using a semiconductor laser, an ultraviolet laser, or a YAG laser.
The flexure 21 is a thin flexible sheet metal that has a plate spring shape. The flexure 21 is mounted on a front end of a load beam in a state where the flexure 21 floatingly supports the slider 11 elastically relative to the load beam. A flexible printed circuit (FPC) 22 is fixed to the surface of the flexure 21 by adhesion that uses an adhesive. The flexible printed circuit 22 electrically connects the magnetoresistive element of the slider 11 to a circuit system of a hard disc device on which the magnetic head assembly is mounted.
As shown in
In one embodiment of the magnetic head assembly 1 the electrode pads 13 of the slider 11 and the electrode pads 23 of the flexible printed circuit 22, which are provided according to orthogonal positional relationships, are solder-ball bonded using tin-based Sn solder that does not contain lead.
As shown in
In one embodiment, even though most of the solder fillet 41 is formed of solidified Sn solder 42, an AuSn dispersion layer 43 exists at least along the boundary of the electrode pads 13 and 23 and the Sn solder 42. The AuSn dispersion layer 43 is generated as follows. An AuSn compound is formed on the surfaces of the electrode pads 13 and 23, when the Sn solder 42 is melted and solidified for the first time. When the Sn solder 42 is melted for the second time, the AuSn compound is dispersed into the Sn solder 42. The Sn solder 42 is solidified again in a state where the AuSn compound is dispersed into the Sn solder 42. An Au atomic concentration of the AuSn dispersion layer 43 at the electrode pads 13 and 23 is higher than that at the Sn solder 42. The Au plating layers 13a and 23a are in a range of about 0.5 to 2.6 μm in thickness. The AuSn dispersion layer 43 has the thickness equal to or more than about 50 μm.
Referring to FIGS. 4 to 8, a solder bonding method according to a first embodiment will be described.
As shown in
The capillary 30 includes a circular delivery hole 31 that is formed at the center of a front end surface of the delivery end portion 30a so as to deliver the spherical solder ball 40. A carrier path 32 that extends along an axial direction of the capillary 30 carries the spherical solder ball 40 and a nitrogen gas stream N2 to the circular delivery hole 31. The capillary 30 is connected to a laser heat source. A YAG laser is used as the laser heat source. The laser beam outputted from the laser heat source has the center of the light beam in parallel with the axial direction of the capillary 30.
The laser beam passes through the carrier path 32 and then it is emitted from the delivery hole 31 to the outside. The laser beam is irradiated onto the solder ball 40 when the solder ball 40 is carried along the carrier path 32 by the nitrogen gas stream N2.
The solder ball 40 in the melted state is discharged from the delivery hole 31 to the outside. Though not shown, the capillary 30 includes an introduction hole through which the spherical solder ball 40 and the nitrogen gas stream N2 are inserted into the carrier path 32. In the present embodiment, the solder ball 40 is not more than about φ100 μm in diameter, and an effective spot diameter of the laser beam used is about φ100 μm.
As shown in
As shown in
As shown in
As shown in
When the solder ball 40 is completely melted, the AuSn compound layer formed on the surfaces of the electrode pads 13 and 23 is dispersed into the molten solder. The molten solder, which includes the dispersed Au atoms, is solidified, thereby forming the solder fillet 41 (See
In one embodiment, when the solder ball 4 is melted twice as described above, the shrinkage distortion that is applied to the flexure 21 is relieved, and the flexure 21 is likely to return to its horizontal state before the solder bonding. Since the second melting and solidification are performed on the electrode pads 13 and 23, the Sn solder 42 slowly falls in temperature and is solidified after being melted (not rapid cooling). Therefore, the shrinkage distortion caused by the second solidification of the Sn solder 42 is not more than the shrinkage distortion caused by the first solidification thereof.
As shown in
The electrode pads 13 of the slider 11 and the electrode pads 23 of the flexible printed circuit 22 are bonded to each other by the solder fillet 41.
Device: SBB (Solder Ball Bumper) manufactured by PacTech
Laser irradiation (first time): 40A for 2 ms
Laser irradiation (second time): 38A for 15 ms
Diameter of solder ball: 100 μm
As shown in
As the solder bonding method that forms the solder fillet 41 of
Hereinafter, a solder bonding method by performing one laser irradiation according to another embodiment of will be described with reference to FIGS. 10 to 18.
A capillary 130 shown in FIGS. 10 to 13 is prepared. The capillary 130 has a thin, long, and cylindrical shape and includes a delivery end portion 130a whose tip is narrow. The capillary 130 includes a circular delivery hole 131 that is formed at the center of a front end surface of the delivery end portion 130a so as to deliver a spherical solder ball 40. A carrier path 132 extends along an axial direction of the capillary 130 and carries the solder ball 40 and a nitrogen gas stream N2. A plurality of notch portions 134 are formed at a front end wall (a delivery wall) at predetermined intervals in a circumferential direction. The plurality of notch portions 134 serve as both an opening for discharging a nitrogen gas stream N2, which passes through the carrier path 132 and reaches the delivery hole 131, to the outside, and an opening for passing a laser beam irradiated from a different direction from a carrying direction of the solder ball 40. Each of the notch portions 134 is a trapezoid in section (See
As shown in
In one embodiment, the solder ball 40 is not more than about Ø100 μm in diameter, the delivery hole 131 and the carrier path 132 are more than the solder ball 40 in diameter. Depth of the notch portions 134 is less than that of the solder ball 40, an effective spot diameter of the laser beam used is in a range of about Ø50 to 100 μm.
As shown in
As shown in
As shown in
As shown in
For example, like the capillary 30, in a state where the capillary 130 is tilted about 45 degrees from both sides of the electrode pads 13 of the slider 11 and the electrode pads 23 of the flexible printed circuit 22, the laser beam is irradiated from a direction in which the capillary 30 is rotated clockwise or counterclockwise at a predetermined angle. At this time, since power of the laser beam completely melts the solder ball 40, the power is set such that an effective spot diameter of the laser beam is slightly smaller than the solder ball 40.
In one embodiment, since the solder ball 40 having a diameter of about 100 μm is used, it is preferable that the effective spot diameter of the laser beam be about 50 μm. As a laser heat source, a semiconductor laser that emits a laser beam of low energy or an ultraviolet laser may be used. Since the plurality of notch portions 134 are formed in a trapezoid section where each of the notch portions 134 gets wider toward the front end of the delivery end portion 130a so as to easily pass the laser beam, loss of laser beam is low. Therefore, it is possible to effectively apply the laser beam to the solder ball 40.
As shown in
According to another embodiment, even though the laser irradiation is performed once, the solder ball 40 is completely melted on the joint surface. Therefore, at the solder fillet 41, the AuSn dispersion layer 43 in which Au plating layers 13a and 23a on the surfaces of the electrode pads 13 and 23 are dispersed within the molten solder is formed at least along the boundary of the electrode pads 13 and 23. For example, since an AuSn compound layer is not formed but a SnNi or CuSn compound is formed, sufficient bond strength can be applied to the solder fillet 41. In addition, since the solder melted by the laser irradiation does not rapidly cool down, shrinkage distortion caused by solidification of the solder can be reduced. Therefore, it is possible to appropriately prevent a change in posture of the slider 11.
In present exemplary embodiments, the nitrogen gas stream N2 is used when carrying the solder ball 40. However, in addition to the nitrogen gas stream N2, inert gas streams, such as He, Ne, Ar or the like, may be used. In addition, the Sn solder that does not include lead is used as the solder ball, but lead-based solder or tin-based solder may be used.
In at least one embodiment, it is possible to achieve the magnetic head assembly and the solder bonding method thereof that are capable of increasing bond reliability and a change in posture of the slider.
Various embodiments described herein can be used alone or in combination with one another. The forgoing detailed description has described only a few of the many possible implementations of the present invention. For this reason, this detailed description is intended by way of illustration, and not by way of limitation. It is only the following claims, including all equivalents that are intended to define the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-318708 | Nov 2005 | JP | national |