BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a cross-sectional view of a reproducing head (thin film magnetic head) which is cut in a direction parallel to an opposite surface of a recording media, and the reproducing head includes a CPP single spin-valve thin film element (magnetic detection device)
FIG. 2 is a cross-sectional view of a reproducing head (thin film magnetic head) which is cut in a direction parallel to an opposite surface of a recording media, and the reproducing head includes a CPP dual spin-valve thin film element (magnetic detection device).
FIG. 3 is a schematic view illustrating an M-H curve in a fixed magnetic layer of a spin-valve thin film element.
FIG. 4 is a graph showing a relationship of an Fe ratio z and a plateau magnetic field Hp1 when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer and a free magnetic layer are formed of Co2(Mn1-zFex)Ge or Co2(Mn1-zFez)Si.
FIG. 5 is a graph showing a relationship of Fe ratio z and a plateau magnetic field Hp1 when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer and a free magnetic layer are formed of Co2(Mn1-zFez)Ge or Co2(Mn1-zFez)Si.
FIG. 6 is a graph showing a relationship of Fe ratio z and a unidirectional exchanged-bias field (Hex*) when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer and a free magnetic layer are formed of Co2(Mn1-zFez)Ge or Co2(Mn1-zFez)Si.
FIG. 7 is a graph showing a relationship of Fe ratio z and a magnetostriction λs of a free magnetic layer when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer and the free magnetic layer are formed of Co2(Mn1-zFez)Ge or Co2(M1-zFez)Si.
FIG. 8 is a graph showing a relationship of each composition ratio y of Heusler alloys and ΔRA when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer and the free magnetic layer are formed of Co2xFexAly, Co2xFexSiy, or Co2xFexGey (in each of the Heusler alloys, 3x plus y equals 100 at %).
FIG. 9 is a graph showing a relationship of a Fe ratio z and ΔRA when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer is formed of Co2(Mn1-zFez)Ge or Co2(Mn1-zFez)Si and the free magnetic layer is formed of Co2MnGe.
FIG. 10 is a graph showing a relationship of a Fe ratio z and a plateau magnetic field Hp1 when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer is formed of Co2(Mn1-zFez)Ge or Co2(Mn1-zFez)Si and the free magnetic layer is formed of Co2MnGe.
FIG. 11 is a graph showing a relationship of a composition ratio w of each Heusler alloy and ΔRA when a magnetic layer adjacent to a non-magnetic material layer constituting a fixed magnetic layer is formed of Heusler alloys represented by Co2vMnvGew (v and w all are at % and 3v plus w equals 100 at %) and Co2vFevGew.