The present exemplary embodiments pertain to managing thermal warpage in laminate substrates so that the laminate substrates have close to zero warpage at chip join temperatures.
An organic laminate substrate, often referred to also as a printed wiring board, and hereafter referred as just “laminate”, is assembled by stacking layers of substrate materials. The materials from which each of these layers are formed may be quite diverse, some layers for instance being metal, such as copper, while other layers may be nonmetallic and made from materials such as an epoxy resin and glass or fiberglass fibers. The coefficient of thermal expansion (CTE) for these individual layers may be considerably different which may invite a thermally induced substrate surface distortion, hereafter referred to as thermal warpage.
A high degree of flatness is expected for manufactured organic laminates in order to reduce, for example, connection failures when mounting components such as chips on the organic laminate. During fabrication of organic electronic modules, particularly those modules using thin core and coreless laminates, it is very important that the laminate remain as flat as possible in the chip site area during chip join reflow. Failure to keep the laminate flat can result in solder bridging (shorts) as well as chip interconnect opens. Die stresses can also result from variations in the laminate shape during chip join reflow.
Reducing thermal warpage is important to the design of the organic laminate and assembly process of mounting components on the organic laminate. Laminate warpage shows itself in a variety of shapes and each shape affects the bond and assembly process in a different way. This variety in shape is seen within the same part number laminate and can depend on what location of the panel from which the laminate was cut.
The various advantages and purposes of the exemplary embodiments as described above and hereafter are achieved by providing, according to an aspect of the exemplary embodiments, a method of managing thermal warpage of a laminate comprising: assembling a stiffener and an adhesive on the laminate, the stiffener being a material that has a higher modulus of elasticity than the laminate; applying a force to deform the laminate a predetermined amount; heating the laminate, stiffener and adhesive to a predetermined temperature at which the adhesive cures to bond the stiffener to the laminate; cooling the laminate, stiffener and adhesive to a temperature below the predetermined temperature, the laminate maintaining its deformed shape.
According to another aspect of the exemplary embodiments, there is provided a method of managing thermal warpage of an organic laminate, the method comprising: assembling a metallic stiffener and an adhesive on the organic laminate to form a laminate assembly, the metallic stiffener being a material that has a higher modulus of elasticity than the laminate, the metallic stiffener chosen to have a coefficient of thermal expansion (CTE) similar to that of the laminate at a temperature range above a glass transition temperature (Tg) of the organic laminate; applying a force perpendicular to a plane of the laminate to deform by a predetermined amount the laminate in a direction perpendicular to the plane of the laminate; heating the laminate assembly to a predetermined temperature above the Tg of the laminate at which predetermined temperature the adhesive cures to bond the stiffener to the laminate; and cooling the and laminate assembly to a temperature less than the Tg, the laminate maintaining its deformed shape after cooling to the temperature less than the Tg.
According to a further aspect of the exemplary embodiment, there is provided a method of managing thermal warpage of a laminate comprising: determining a baseline thermal warpage of the laminate comprising: modeling a thermal warpage of the laminate having a stiffener over a temperature range of room temperature to a chip join temperature, the stiffener being a material that has a higher modulus of elasticity than the laminate; measuring a room temperature warpage of the laminate and stiffener; assembling the stiffener and an adhesive on the laminate; applying a force to deform the laminate a predetermined amount to drive the thermal warpage at a solder reflow temperature to zero, plus or minus 20 μm, the predetermined amount determined from the baseline thermal warpage; heating the laminate, stiffener and adhesive to a curing temperature of the adhesive at which the adhesive cures to bond the stiffener to the laminate; and cooling the laminate substrate, stiffener and adhesive to a temperature below the predetermined temperature, the laminate maintaining its deformed shape.
The features of the exemplary embodiments believed to be novel and the elements characteristic of the exemplary embodiments are set forth with particularity in the appended claims. The Figures are for illustration purposes only and are not drawn to scale. The exemplary embodiments, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
The exemplary embodiments pertain to managing the thermal warpage of the laminate such that the chip site area of the laminate is flat or nearly flat during the molten solder range of the reflow cycle during chip join.
A stiffener is a material that has a higher modulus of elasticity, also known as Young's modulus, than the laminate so as to restrain out of plane deformation of the laminate.
By forcing a certain laminate shape during the attach of the perimeter stiffener to the laminate followed by adhesive cure and selecting a stiffener material with a CTE tuned to the laminate CTE, the warpage of the laminate during chip join may be accurately predicted and manipulated to have a flat or nearly flat shape during melting/solidification of the chip solder.
By using modeling and material properties of both the laminate and the stiffener, the thermal warpage of a laminate with stiffener may be predicted. The thermo-mechanical model used for modeling contains a stiffener that is attached in the fanout (peripheral) region of the laminate using an adhesive material. The entire assembly of laminate, stiffener and adhesive is assumed to be stress-free at the adhesive curing temperature. The model is then subjected to a cool down loading from the stress-free temperature to room temperature. The laminate warpage can then be extracted during the cool down process. The change in laminate warpage between the adhesive curing temperature and room temperature is called as thermal warpage. Depending on the material properties of the laminate and the CTE of the laminate, a corresponding stiffener material with known CTE may be selected that may give as flat a thermal response as possible during chip join reflow.
With the use of a fixture, preferably, during stiffener attach, the shape of the laminate with stiffener may be dialed in so that not only does the laminate with stiffener give a flat or nearly flat thermal response during chip join reflow, the thermal warpage at solder reflow temperature may be tuned to be close to zero.
Referring now to
The CTE of the laminate varies throughout the temperature range of interest, namely, room temperature to the chip join temperature while the CTE of the stiffener preferably remains constant. Negative thermal warpage corresponds to convex chip site thermal warpage while positive thermal warpage corresponds to concave thermal warpage. That is, the laminate plus 16 ppm/° K stiffener results in convex chip site thermal warpage while the laminate plus the 13 ppm/° K or 10 ppm/° K stiffener results in concave chip site thermal warpage. The inflection point at 125° C. in
Adding the stiffener to the laminate prior to chip join helps to normalize the highly variable warpage of the incoming laminate but does not necessarily set it at zero.
However, getting the room temperature thermal warpage to be zero is not the target of the exemplary embodiments. Rather, getting the thermal warpage as close to zero as possible during reflow of the solder interconnect is the target of the exemplary embodiments.
The EA6700 adhesive is a low modulus silicone-based adhesive and is manufactured by Dow Corning Corp. The Masterbond® adhesive is a high modulus epoxy-based adhesive and is manufactured by Master Bond Inc. These are commercially available adhesives that may be used in the assembly of electronic substrates. The adhesives shown in
As can be seen from
The thermal warpage curves may be shifted up or down such that the thermal warpage may be near zero at reflow temps by forcing a certain shape during stiffener attach and having the stiffener lock it in during adhesive cure. This can be accomplished by using a force applied, preferably by a fixture, with a perimeter shim under the laminate to force a concave shape when there is anticipated convex thermal warpage or a central shim under the laminate to force a convex shape when there is anticipated concave thermal warpage.
The amount that the laminate needs to be deformed may be derived from curves such as that shown in
The modeling, described with respect to
Zero thermal warpage=0=Room Temp Warpage+Thermal Warpage@Reflow Temp+Deformation.
The equation may be solved to determine the correct amount of deformation needed for zero thermal warpage.
Any springback after the stiffener is attached may need to be considered when determining how thick a shim to use for the deformation. Calculating the shim thickness to be used in the deformation fixture, for example the fixtures shown in
If the room temperature warpage measurement is done on an assembly that was created already using a shim to deform the assembly, then the shim thickness used when creating this assembly must be taken into account when determining the final shim thickness needed for the correct deformation.
If using modeling and room temperature warpage to determine deformation, it is advisable to, in addition, use the DIC curves such as those shown in
Referring now to
The amount of thermal warpage at the chip join temperature of 245° C. is less than 20 μm for the laminate/adhesive/stiffener combinations described with respect to
The amount of shift (i.e., shim thickness) may need to be optimized for a given material set so as to take into account the amount of needed deformation and any springback of the laminate.
Referring now to
If not already known, there may need to be a baseline determination of the thermal warpage characteristics of the laminate, adhesive and stiffener before the laminate is deformed, box 40, for example as previously shown in
This baseline determination may be done by using modeling (such as shown in
A stiffener and an adhesive may be placed on the laminate substrate to form a laminate assembly, box 42. The stiffener is preferably a stainless steel, copper or aluminum stiffener and may be chosen to have a coefficient of thermal expansion (CTE) similar to that of the laminate substrate preferably at a temperature range above the glass transition temperature of the nonmetallic layers of the laminate substrate to the temperature of chip join. A metallic stiffener is preferred since it may have a constant CTE through the temperature range of above the glass transition temperature of the nonmetallic layers of the laminate substrate through the chip join temperature. The stiffener may have a thickness of about 0.6 to 1 mm.
The CTE of the stiffener should match the CTE of the laminate as closely as possible (±1 ppm). Ideally the CTE of the stiffener should be matched to that of the laminate when the laminate is just above the Tg temperature since this will give the flattest thermal response at reflow temperature (not just absolute warpage magnitude at reflow temp but also rate of warpage change for temperature variations around the reflow temperature) and provide the largest process window. Referring back to
The laminate assembly preferably may be placed in a suitable fixture to hold the laminate while it is deformed, box 44. The fixture may be a fixture such as that shown in
A force is applied to deform the laminate by a predetermined amount, box 46. The force may be applied perpendicular to a plane of the laminate to deform the laminate the predetermined amount in a direction perpendicular to the plane of the laminate.
The fixture and laminate assembly may be heated to a predetermined temperature at which the adhesive cures to bond the stiffener to the laminate, box 48. The predetermined temperature is above the Tg of the laminate and may be, for example, 150° C. for 1 hour. The predetermined temperature and cure time is dependent on the recommended curing conditions of the adhesive used, but a typical range may be 150° C.±10° for 1 hour±10%.
The fixture and laminate assembly may then be cooled below the Tg temperature of the laminate, preferably to room temperature, box 50. Cooling may be simply removing the fixture and laminate assembly from the heating source in which the fixture and laminate assembly were heated and allowing the fixture and laminate assembly to cool below the Tg temperature. Alternatively, cooling may be actively cooling the fixture and laminate by, for example, blowing cool air on the fixture and laminate.
After cooling, the laminate will maintain its deformed shape. The laminate and adhered stiffener may be removed from the fixture after cooling if a fixture was used to apply the force. The stiffener remains as a permanent part of the laminate assembly.
The next set of process steps may be for an exemplary embodiment for chip joining which are described with reference to
A chip (may also be referred to as a semiconductor device) may be positioned on the chip site of the laminate substrate, box 52. For purposes of illustration and not limitation, the chip may be a so-called flip chip and have a plurality of solder balls to be joined to the laminate by a C4 connection.
The laminate and chip may be reheated to the chip join temperature, for example 245° C., to cause reflowing of the solder so as to join the chip to the laminate, box 54. In this step, the laminate and chip are not in a fixture such as that in
It will be apparent to those skilled in the art having regard to this disclosure that other modifications of the exemplary embodiments beyond those embodiments specifically described here may be made without departing from the spirit of the invention. Accordingly, such modifications are considered within the scope of the invention as limited solely by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6949404 | Fritz et al. | Sep 2005 | B1 |
7459782 | Li | Dec 2008 | B1 |
7538432 | Danovitch et al. | May 2009 | B1 |
7898076 | Furman et al. | Mar 2011 | B2 |
9012269 | Jin et al. | Apr 2015 | B2 |
9129942 | Blackshear | Sep 2015 | B2 |
9673172 | Maydar et al. | Jun 2017 | B2 |
20070071583 | Ong | Mar 2007 | A1 |
20120224335 | Yuan | Sep 2012 | A1 |
20170170086 | Iruvanti et al. | Jun 2017 | A1 |
Entry |
---|
“A method of reducing the TIM BLT using a jig”, disclosed anonymously, IPCOM000247995D, Oct. 14, 2016, all pages. |
“Method for an integrated solution to reliability and coplanarity issues on BGA packages with small pitch, large package, large die, and highspeed chips”, disclosed anonymously, IPCOM000009095D, Aug. 7, 2002, all pages. |
Number | Date | Country | |
---|---|---|---|
20190295921 A1 | Sep 2019 | US |