The present invention relates to nanoscale patterning. More specifically, the present invention relates to creating nanoscale patterned features using polymer brushes.
Production of faster and more powerful integrated circuits in the microelectronics industry requires that the dimensions of devices patterned using advanced lithography continue to decrease. Current high-resolution lithographic processes are based on chemically amplified resists (CARs) and are routinely used to pattern features with dimensions less than 100 nm. As feature dimensions shrink to below 50 nm, however, the use of CARs poses significant new challenges with respect to problems such as line edge roughness, critical dimension control, and collapse of patterned structures due to capillary forces.
Thus, new materials and processes are needed to deliver molecular level control to meet exacting tolerances and margins, and placement of the structures, including registration and overlay, with nanometer precision.
The present invention provides patterned features of dimensions of less than 50 nm on a substrate. According to various embodiments, the features may be “Manhattan” style structures, have high aspect ratios, and/or have atomically smooth surfaces. The patterned features are made from polymer brushes grafted to a substrate. In some embodiments, the dimensions of the features may be determined by adjusting the grafting density and/or the molecular weight of the brushes. Once the brushes are patterned, the features can be shaped and reshaped with thermal or solvent treatments to achieve the desired profiles. The chemical nature of the polymer brush is thus independent of the patterning process, which allows for optimization of the polymer brush used for specific applications. Applications include masks for pattern transfer techniques such as reactive ion etching.
One aspect of the invention relates to a patterned substrate; wherein the pattern has one or more features having an aspect ratio of at least 1:100. The features are formed from a plurality of polymer brushes. In certain embodiments, at least some brushes and features have a height of at least 2.5 nm. According to various embodiments, the pattern contains a feature having an aspect ratio of at least 1:10, 1:1, or 2:1. Also, in certain embodiments, the height of the brushes may be at least 5 nm or 10 nm. According to various embodiments, the pattern contains a feature having a width of no more than 50 nm, 25 nm, or 10 nm. Also in certain embodiments, the features in the pattern have substantially vertical sidewalls.
Another aspect of the invention relates to an array of patterned features on a substrate. The features are formed from a plurality of polymer brushes and, in certain embodiments, have a line edge roughness of no more than 10 nm. In particular embodiments, the features have a line edge roughness of no more than 2 nm. Also in certain embodiments, the features have a surface roughness of no more than 5 nm or 2 nm. In certain embodiments, the features have substantially vertical sidewalls and/or have aspect ratios of at least ratios of at least 1:10, 1:1 or 2:1 and/or widths of no more than 50 nm, 25 nm, or 10 nm.
Yet another aspect of the invention relates to a method of reshaping patterned features on a substrate. The method involves patterning the substrate, and after patterning the substrate, treating the patterned features to achieve a desired shape. According to various embodiments, treating the patterned features involves exposing the features to a solvent and/or annealing the features. Also according to various embodiments, the patterned features having aspect ratios of at least 100:1, 10:1, 1:1 or 1:2 and/or substantially vertical sidewalls are created.
Yet another aspect of the invention relates to a method of transferring a pattern to a substrate. The method involves patterning a substrate with polymer brushes to create an etch mask and etching the unmasked areas of the substrate.
These and other aspects of the invention are discussed further below with reference to the drawings.
a-c shows aspects of one method of generating patterned brushes according to various embodiments of the invention.
a is a schematic showing two distinct polymer brush features collapse into one brush as grafting density, G, and molecular weight, M, are increased past a certain limit.
b shows an image of two distinct polymer brush features and an image of collapsed brush that occurs as G and M are increased past a certain limit. The images were generated from a lattice simulation.
a-c show feature profiles resulting from a molecular dynamics simulation of polymer brush features.
a-c show SEM images of substrates patterned with a 50 nm 1:1 linear pattern and a grafting density of 0.7 chains/nm2 using brushes of various molecular weights.
a-c show SEM images of substrates patterned with a 50 nm 1:1 linear pattern and a grafting density of 0.25 chains/nm2 using brushes of various molecular weights.
a and b show SEM images of substrates patterned with a 25 nm 1:1 linear pattern and a grafting density of 0.3 chains/nm2 using brushes of various molecular weights.
a-d shows an example of using the patterned brushes of the present invention as an etch mask for pattern transfer to a substrate.
The present invention provides patterned features of features sizes of less than 50 nm suitable for use in applications such as pattern transfer techniques. Methods for creating the patterned features are also described below. To precisely transfer patterns, it is necessary to have “Manhattan” style features (i.e. features with vertical sidewalls) with high aspect ratios and smooth sidewalls. For some applications, the maximum tolerable line edge roughness is 5-10% of the feature size. For feature sizes on the order of 10-50 nm, line edge roughness should be no more than 0.5-5 nm.
The patterned features of the present invention comprise polymer brushes. A polymer brush is a polymer covalently bonded at one end to a site on a substrate. The sites where the polymer brushes attach to the substrate are referred to as grafting sites. In some instances, the polymer bonded to the substrate is referred to as a polymer brush grafted onto the substrate. The surface or interfacial tension (i.e. polymer:air or polymer:solvent tension) of polymer brushes make them suitable for forming patterned features style features because it yields atomically smooth surfaces—just as surface tension makes a droplet of liquid atomically smooth.
a shows one method of generating the patterned brushes shown in
In the example shown in
The initiator shown in
The initiators 204 are attached at the desired grafting density, G. The grafting density could be raised by adding more initiator molecules. After the imaging layer is prepared, a photoresist layer 205 is deposited on the imaging layer 202 as shown in operation B. Photoresist layer 205 is a material that may be patterned by photolithography, for example polymethylmethacrylate (PMMA). Layer 205 is masked and patterned in operation C. As discussed above, the present invention is particularly directed to patterns at scales of 50 nm and below—thus, it is necessary to use a patterning technique capable of nanoscale patterning, for example, extreme ultraviolet (EUV) lithography. Operation D shows the imaging layer 202 etched by an O2 plasma etch. The plasma etch removes the imaging layer and/or destroys the initiator sites at the patterned areas. In operation E, the patterned features 206 are created by growing the polymer brushes and annealing at sites where the imaging layer is functional.
The method shown in
Height, Grafting Density and Molecular Weight
The height, H, of the features is related to the grafting density, G, and molecular weight of the brushes, M.
As shown in
Height or aspect ratio of the feature and feature shape may all be controlled by varying G and M constrained by certain limits to avoid collapse.
a-c also show that feature shape may be controlled by adjusted G and M. The feature in
As described above, G and M may be varied to control feature properties such as height, aspect ratio and feature shape. G and M are constrained, however, by feature collapse described above with respect to
Patterned Feature Size
According to various embodiments, the patterned features of the present invention may have a minimum aspect ratio ranging from 1:100 to 2:1. In some embodiments, the features have aspect ratios of at least 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 1.3:1, 1.5:1, 1.7:1, 1.9:1 or 2:1. As discussed above, aspect ratios may be adjusted by varying G and M. Even larger aspect ratios may be obtainable with varying G and M and the post-patterning treatment.
The feature size is the smallest width of a feature in the pattern. For linear features, it is the width of the line. As discussed above, this invention is particularly suitable for pattern with feature sizes of 50 nm or below. The feature size may be about 50 nm, 45 nm, 40 nm, 35 nm, 25 nm, 20 nm, 15 nm, 10 nm, 5 nm or below. In preferred embodiments, the feature size is 25 nm or below. In particularly preferred embodiments, the feature size is about 10 nm or below. Features sizes as small as the width of a polymer brush molecule could be obtained. Feature size is determined by the patterning process, for example the EUV lithographic patterning described in
Feature height may be any height that may be maintained without collapse. According to various embodiments, feature height is at least about 2.5 nm, 3 nm, 4 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm or 30 nm. In a preferred embodiment, feature height is at least about 2.5 nm.
Roughness
The polymer brush features are smooth and have low roughness. In certain embodiments, the polymer brush features of the present invention are atomically smooth. Surface roughness measures the amount of variation in the topography of the feature. It should be noted that surface roughness does not measure deviations in the topography at the nanometer scale (e.g. a rounded top) but at the tenth of nanometer scale. Surface roughness has been found to be low for the polymer brushes of the invention regardless of G and M.
Line edge roughness measures the variation in the widths of line features. As with surface roughness, low line edge roughness has been found to result for all values of G and M. According to various embodiments, the line edge roughness may range from less than 1 nm to 10 nm. In preferred embodiments, the line edge roughness ranges from less than 1 nm to 5 nm. In particularly preferred embodiments, the line edge roughness ranges from less than 1 nm to 2 nm. In certain embodiments, the line edge roughness is no more than 10% of the feature size. In preferred embodiments, the line edge roughness is no more than 5% of the feature size.
Shaping and Re-Shaping
As explained above, height is a function of grafting density and molecular weight. However, the dependency of height on grafting density (i.e. linear, non-linear, etc.) is solvent-dependent. In good solvents, the height of the brushes is less dependent on grafting density than in bad solvents. For example, the height of polystyrene brushes in benzene (a good solvent) has been found to be proportional to MG1/3. In water (a poor solvent), the height is proportional to MG, while in cyclohexane (a “theta” or in-between solvent), height is proportional to MG1/2. Thus, feature height and aspect ratio of patterned features may be changed by exposing the features to a solvent and letting the material equilibrate. Any solvent that has the desired effect on the patterned features may be used. Examples of solvents are organic solvents such as toluene and supercritical fluids. Another method of adjusting patterned features of a given G and M is by annealing the polymer brush above the glass transition temperature (in the case of an amorphous polymer) and letting the material equilibrate into the desired shape.
Exposure to a solvent and/or annealing the polymer brushes affects the shape of the features. However, because the brushes are covalently bound to the substrate surface, the treatment does not destroy the patterned features.
Because the patterned features may be re-shaped by exposure to a solvent and/or annealing, the chemical nature of the brush may be optimized for post-patterning applications without regard to the patterning process. This is a significant improvement over current photoresist technology where photoresist materials must be optimized to be patterned as well as for post-patterning applications. Using the methods of this invention, the patterned features may be re-shaped as necessary after patterning. According to various embodiments, re-shaping the features may comprise making the features Manhattan style features, i.e. with substantially vertical sidewalls and/or substantially flat tops, changing the aspect ratio of the features and/or reducing the surface and line edge roughness.
Polymer Brushes
A polymer brush is a polymer covalently bonded to a site on a substrate. Any polymer that can be covalently bonded to a site on the substrate and tolerate the conditions of the post-processing treatments and applications may be used. The polymer is generally covalently bonded to an initiator that is bound or tethered to the substrate surface. Any suitable polymer may be used, for example polystyrene (PS). Preferred polymers include styrenes, substituted styrenes, acrylates (e.g. poly methylmethacrylate or PMMA), silanes and siloxanes. Silanes and siloxanes are particularly preferred where high etch resistance is required (for example, if the pattern is to be used as an etch mask). The brush may be tailored for the application. For example, a polymer brush comprising a biologically active molecule (e.g. a polypeptide or polynucleotide) may be used to interact with cells or other molecules. Similarly, a polymer brush may have desired electrical or optical properties.
The molecular weight of the polymers refers to the average molecular weight. Values of M given in this specification are number-average molecular weights. Molecular weight of the polymers may be expressed as equivalent polystyrene molecular weights. Equivalent polystyrene molecular weight refers to a polymer that has a molecular weight equivalent to polystyrene as determined, for example, by gel chromatography. The actual molecular weight may be different from the equivalent polystyrene weight. Although the stiffness of the polymer affects behavior, a polymer with a certain equivalent polystyrene molecular weight would be expected to behave in generally the same way as polystyrene of that molecular weight. Thus, values of M known to work for polystyrene may be generalized to all polymers.
The molecular weight may be any value that does not result in collapse of the polymer brush features. As discussed above, feature collapse is dependent on G and feature size and post-patterning treatment. General guidelines, based on experiments, are as follows: For a feature size around 50 nm with a grafting density of less than 0.7 chains/nm2, equivalent polystyrene molecular weights of less than 25,000 g/mole are stable. For features sizes around 50 nm and a grafting density less than 0.25 chains/nm2, equivalent polystyrene molecular weights of less than about 45,000 g/mole are stable. For feature sizes between about 20-30 rum with grafting density is less than about 0.4 chains/nm2, equivalent polystyrene molecular weights of less than about 30,000 g/mole are stable. Collapse is also a function of the distance between patterns. In all the preceding examples, the distance between features is equal to the feature size, i.e. the pitch of the pattern is 1:1. However, in a pattern where distance between features is greater or less than the feature size, the allowable molecular weight will be increased or decreased accordingly. For example, for a feature size of 30 nm and a pitch of 1:2 (i.e. 30 nm features with a 60 nm space between features), larger heights and molecular weights may be obtained than for the same size feature and a 1:1 pitch. The molecular weights given above are also based on a post-patterning exposure to toluene. Values for different post-patterning treatments may vary.
Patterns
Although the above discussion and below examples refer to linear patterns, the patterned features and methods may be used with any type of pattern, including dense lines and arrays of dots. The patterned features may be irregular patterned features (e.g. including angles). The pattern may include any type feature found in patterns useful in the microelectronics industry.
The invention is particularly suited for patterns with features sizes of 50 nm below.
Applications
The patterned features may be used for pattern transfer techniques. For example, the patterned brush features may be used as an etch mask in reactive ion etching. The patterned features may also be functional. For example, polymer brushes features incorporating nucleic acid or peptide sequences could be used to interact with cells. Polymer brushes features may also have electrical or optical functions (e.g. the features may be electrically conductive).
a-d show an example of how the patterned brushes of the present invention may be used as an etch mask for pattern transfer to a substrate. The substrate may be a silicon wafer substrate. In some embodiments, the wafer may have additional layers that require patterning, such as dielectric materials, deposited on it. In
The following examples provide details illustrating aspects of the present invention. These examples are provided to exemplify and more clearly illustrate these aspects of the invention and are in no way intended to be limiting.
Substrates with an imaging layer with initiator sites of grafting density G of 0.7 chains/nm2 were prepared as discussed above with respect to
Patterned brushes of various molecular weights were grown and observed. Molecular weight was increased until feature collapse was observed. Feature collapse is the point at which discrete features are no longer observed.
Substrates with a 50 nm 1:1 linear pattern and a grafting density of 0.25 chains/nm2 were prepared as in Example 1.
The average molecular weight of the patterned brushes in
The results shown in Examples 1 and 2 demonstrate that lower grafting density (i.e. fewer chains per unit area) require larger polymers (higher M) to get reach a certain height. Brushes of 9,720 g/mol are required to achieve a feature height of 12 nm for a G of 0.7 chains/nm2 (
A nearly defect free pattern was formed over a 0.3 mm2 area with G=0.25 chains/nm2 and M=20,000 g/mol.
Substrates with a 25 nm 1:1 linear pattern and a grafting density of 0.30 chains/nm2 were prepared as described in Example 1.
Multiscale modeling of patterned polymer brushes was done to determine stability, achievable aspect ratios, side wall and surface roughness and robustness of the structure to defects. Patterned brushes were modeled as chains on a cubic lattice (scale around 10 nm), as chains in a continuum (scale around 1 nm) and as atomistic (scale around 0.2nm).
The stability of patterned polymer brushes was predicted from modeling the brushes as chains on a cubic lattice.
Features profiles were modeled as chains in a continuum using a molecular dynamics simulation. Results are discussed above with respect to
Surface roughness as a function of grafting densities was determined using an atomistic model. Results are discussed above with respect to
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the invention. It should be noted that there are many alternative ways of implementing both the process and compositions of the present invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
All references cited are incorporated herein by reference in their entirety and for all purposes.
This application claims priority under 35 USC § 119(e) from U.S. Provisional Application No. 60/664,797, filed Mar. 23, 2005, hereby incorporated by reference in its entirety and for all purposes.
This invention was made with United States government support awarded by the following agency: NSF 0210588. The United States government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6413587 | Hawker et al. | Jul 2002 | B1 |
6844144 | Krause et al. | Jan 2005 | B2 |
7250253 | Klapproth et al. | Jul 2007 | B1 |
20020071943 | Hawker et al. | Jun 2002 | A1 |
20040043335 | Krause et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0043539 | Jul 2000 | WO |
WO 2004026931 | Jan 2004 | WO |
WO 2004026931 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070020749 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60664797 | Mar 2005 | US |