Materials and methods for engineering cells and uses thereof in immuno-oncology

Information

  • Patent Grant
  • 11207351
  • Patent Number
    11,207,351
  • Date Filed
    Monday, April 12, 2021
    3 years ago
  • Date Issued
    Tuesday, December 28, 2021
    2 years ago
Abstract
Materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface, and materials and methods for genome editing to modulate the expression, function, or activity of one or more immuno-oncology related genes in a cell, and materials and methods for treating a patient using the genome-edited engineered cells.
Description
FIELD

In some aspects, the present application provides materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface. In other aspects, the present application provides materials and methods for genome editing to modulate the expression, function, or activity of one or more immuno-oncology related genes in a cell. In yet other aspects, the present application provides materials and methods for treating a patient using the genome-edited engineered cells, both ex vivo and in vivo.


INCORPORATION BY REFERENCE OF SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 15, 2020, is named “105965-660657-005USDIV4-Sequence-Listing-ST25.TXT” and is 1,251,365 bytes in size. The Sequence Listing is being submitted by EFS Web and is hereby incorporated by reference into the specification.


BACKGROUND

Genome engineering refers to strategies and techniques for the targeted, specific modification of the genetic information (genome) of living organisms. Genome engineering is an active field of research because of the wide range of possible applications, particularly in the area of human health, e.g., to correct a gene carrying a harmful mutation or to explore the function of a gene. Early technologies developed to insert a transgene into a living cell were often limited by the random nature of the insertion location of the new sequence into the genome. Random insertions into the genome may result in disruption of normal regulation of neighboring genes leading to severe unintended effects. Furthermore, random integration technologies offer little reproducibility, as there is no guarantee that the sequence would be inserted at the same place in two different cells. Common genome engineering strategies, such as ZFNs, TALENs, HEs, and MegaTALs, allow a specific area of the DNA to be modified, thereby increasing precision of the correction or insertion compared to earlier technologies. These platforms offer a greater degree of reproducibility, but limitations remain.


Despite efforts from researchers and medical professionals worldwide to address genetic disorders, and despite the promise of previous genome engineering approaches, there remains a long-felt need to develop safe and effective universal donor cells in support of cell therapy treatments involving regenerative medicine and/or immuno-oncology related indications.


SUMMARY

Provided herein, in some embodiments, are cells, methods, and compositions (e.g., nucleic acids, vectors, pharmaceutical compositions) used for the treatment of certain malignancies. The gene editing technology of the present disclosure, in some aspects, is used to engineer immune cell therapies targeting tumor cells that express the CD19, CD70, or BCMA antigens. Surprisingly, the immune cell therapies engineered according to the methods of the present disclosure are capable of reducing tumor volume in vivo, in some embodiments, by at least 80%, relative to untreated controls. Data from animal models, as provided herein, demonstrates that the engineered immune cell therapies, in some embodiments, eliminate the presence of detectable tumor cells just 30 days following in vivo administration, and the effect in these animal models, following a single dose of the cell therapy, persists for at least 66 days. Further, in some embodiments, the engineered immune cell therapies of the present disclosure are capable of increasing the survival rate of subject by at least 50% relative to untreated controls.


Further still, these cells are engineered to block both host-versus-graft disease and graft-versus-host disease, which renders them suitable for use as allogeneic cell transplantation therapeutics.


Moreover, genetic constructs and methods provided herein may be used, in some embodiments, to engineer immune cell populations with gene modification efficiencies high enough that the cell populations do not require purification or enrichment prior to administration in vivo. For example, at least 80% of the immune cells of an exemplary engineered cell population of the present disclosure lack surface expression of both the T cell receptor alpha constant gene and the β2 microglobulin gene, and at least 50% of the immune cells also express the particular chimeric antigen receptor of interest (e.g., targeting CD19, CD70, or BCMA).


Thus, provided herein, in some aspects, are populations of cells comprising engineered T cells that comprise a T cell receptor alpha chain constant region (TRAC) gene disrupted by insertion of a nucleic acid encoding a chimeric antigen receptor (CAR) comprising (i) an ectodomain that comprises an anti-CD19 antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, and a disrupted beta-2-microglobulin (B2M) gene, wherein at least 70% of the engineered T cells do not express a detectable level of TCR surface protein and do not express a detectable level of B2M surface protein, and/or wherein at least 50% of the engineered T cells express a detectable level of the CAR.


Other aspects provide populations of cells comprising engineered T cells that comprise a TRAC gene disrupted by insertion of a nucleic acid encoding a CAR comprising (i) an ectodomain that comprises an anti-CD70 antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, and a disrupted B2M gene, wherein at least 70% of the engineered T cells do not express a detectable level of TCR surface protein and do not express a detectable level of B2M surface protein, and/or wherein at least 50% of the engineered T cells express a detectable level of the CAR.


Yet other aspects provide populations of cells comprising engineered T cells that comprise a TRAC gene disrupted by insertion of a nucleic acid encoding a CAR comprising (i) an ectodomain that comprises an anti-BCMA antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, and a disrupted B2M gene, wherein at least 70% of the engineered T cells do not express a detectable level of TCR surface protein and do not express a detectable level of B2M surface protein, and/or wherein at least 50% of the engineered T cells express a detectable level of the CAR.


Some aspects of the present disclosure provide methods for producing an engineered T cell suitable for allogenic transplantation, the method comprising (a) delivering to a composition comprising a T cell a RNA-guided nuclease, a gRNA targeting a TRAC gene, a gRNA targeting a B2M gene, and a vector comprising a donor template that comprises a nucleic acid encoding a CAR, wherein the CAR comprises (i) an ectodomain that comprises an anti-CD19 antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, wherein the nucleic acid encoding the CAR is flanked by left and right homology arms to the TRAC gene locus and (b) producing an engineered T cell suitable for allogeneic transplantation.


Other aspects of the present disclosure provide methods for producing an engineered T cell suitable for allogenic transplantation, the method comprising (a) delivering to a composition comprising a T cell a RNA-guided nuclease, a gRNA targeting a TRAC gene, a gRNA targeting a B2M gene, and a vector comprising a donor template that comprises a nucleic acid encoding a CAR, wherein the CAR comprises (i) an ectodomain that comprises an anti-CD70 antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, wherein the nucleic acid encoding the CAR is flanked by left and right homology arms to the TRAC gene locus and (b) producing an engineered T cell suitable for allogeneic transplantation.


Yet other aspects of the present disclosure provide methods for producing an engineered T cell suitable for allogenic transplantation, the method comprising (a) delivering to a composition comprising a T cell a RNA-guided nuclease, a gRNA targeting a TRAC gene, a gRNA targeting a B2M gene, and a vector comprising a donor template that comprises a nucleic acid encoding a CAR, wherein the CAR comprises (i) an ectodomain that comprises an anti-BCMA antibody fragment, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 41BB co-stimulatory domain and optionally a CD3z co-stimulatory domain, wherein the nucleic acid encoding the CAR is flanked by left and right homology arms to the TRAC gene locus and (b) producing an engineered T cell suitable for allogeneic transplantation.


In some embodiments, the engineered T cells are unpurified and/or unenriched. In some embodiments, the population of cells is unpurified and/or unenriched.


In some embodiments, the anti-CD19 antibody fragment is an anti-CD19 scFv antibody fragment. In some embodiments, the anti-CD70 antibody fragment is an anti-CD70 scFv antibody fragment. In some embodiments, the anti-BCMA antibody fragment is an anti-BCMA scFv antibody fragment.


In some embodiments, the antibody fragment (e.g., scFv fragment) is humanized. In some embodiments, the humanized anti-CD19 antibody fragment is encoded by the nucleotide sequence of SEQ ID NO: 1333 and/or wherein the humanized anti-CD19 antibody fragment comprises the amino acid sequence of SEQ ID NO: 1334. In some embodiments, the humanized anti-CD19 antibody fragment comprises a heavy chain that comprises the amino acid sequence of SEQ ID NO: 1595. In some embodiments, the humanized anti-CD19 antibody fragment comprises a light chain that comprises the amino acid sequence of SEQ ID NO: 1596. In some embodiments, the humanized anti-CD70 antibody fragment is encoded by the nucleotide sequence of SEQ ID NO: 1475 or 1476 and/or wherein the humanized anti-CD70 antibody fragment comprises the amino acid sequence of SEQ ID NO: 1499 or 1500. In some embodiments, the humanized anti-CD70 antibody fragment comprises a heavy chain that comprises the amino acid sequence of SEQ ID NO: 1592. In some embodiments, the humanized anti-CD70 antibody fragment comprises a light chain that comprises the amino acid sequence of SEQ ID NO: 1593. In some embodiments, the humanized anti-BCMA antibody fragment is encoded by the nucleotide sequence of SEQ ID NO: 1479 or 1485 the humanized anti-BCMA antibody fragment comprises the amino acid sequence of SEQ ID NO: 1503 or 1509. In some embodiments, the humanized anti-BCMA antibody fragment comprises a heavy chain that comprises the amino acid sequence of SEQ ID NO: 1589 or 1524. In some embodiments, the humanized anti-BCMA antibody fragment comprises a light chain that comprises the amino acid sequence of SEQ ID NO: 1590 or 1526.


In some embodiments, the ectodomain of the CAR further comprises a signal peptide, optionally a CD8 signal peptide. In some embodiments, the CAR further comprises a hinge domain, optionally a CD8 hinge domain, located between the anti-CD19 antibody fragment and the CD8 transmembrane domain. In some embodiments, the CAR comprises the following structural arrangement from N-terminus to C-terminus: the ectodomain that comprises an anti-CD19 antibody fragment, a CD8 hinge domain, the CD8 transmembrane domain, and the endodomain that comprises a CD28 or 41BB co-stimulatory domain and a CD3z co-stimulatory domain.


In some embodiments, the CAR (anti-CD19 CAR) is encoded by the nucleotide sequence of SEQ ID NO: 1316 and/or wherein the CAR comprises the amino acid sequence of SEQ ID NO: 1338. In some embodiments, the CAR (anti-CD70 CAR) is encoded by the nucleotide sequence of SEQ ID NO: 1423, 1424, or 1275, and/or wherein the CAR comprises the amino acid sequence of SEQ ID NO: 1449, 1450, or 1276. In some embodiments, the CAR (anti-BCMA CAR) is encoded by the nucleotide sequence of SEQ ID NO: 1427, 1428, 1434, or 1435, and/or wherein the CAR comprises the amino acid sequence of SEQ ID NO: 1453, 1454, 1460, or 1461.


In some embodiments, at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%) of the engineered T cells do not express a detectable level of TCR and/or B2M surface protein.


In some embodiments, at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) of the engineered T cells express a detectable level of the CAR.


In some embodiments, at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80%) of the engineered T cells express a detectable level of the CAR and do not express a detectable level of TCR surface protein or B2M surface protein (e.g., detectable by flow cytometry.


In some embodiments, co-culture of the engineered T cell with CD19+ B cells results in lysis of at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) of the CD19+ B cells. In some embodiments, co-culture of the engineered T cell with CD70+ B cells results in lysis of at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) of the CD70+ B cells. In some embodiments, co-culture of the engineered T cell with BCMA+ B cells results in lysis of at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) of the BCMA+ B cells.


In some embodiments, the engineered T cells produce interferon gamma in the presence of CD19+ cells. In some embodiments, the engineered T cells produce interferon gamma in the presence of CD70+ cells. In some embodiments, the engineered T cells produce interferon gamma in the presence of BCMA+ cells.


In some embodiments, the engineered T cells do not proliferate in the absence of cytokine stimulation, growth factor stimulation, or antigen stimulation.


In some embodiments, the population of cells further comprises a disrupted programmed cell death protein 1 (PD1) gene. In some embodiments, at least 70% (e.g., at least 75%, at least 80%, at least 85%, or at least 90%) of the engineered T cells do not express a detectable level of PD1 surface protein.


In some embodiments, the population of cells further comprises a disrupted cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) gene. In some embodiments, at least 70% (e.g., at least 75%, at least 80%, at least 85%, or at least 90%) of the engineered T cells do not express a detectable level of CTLA-4 surface protein.


In some embodiments, the population of cells further comprises a gRNA targeting the TRAC gene, a gRNA targeting the B2M gene, and Cas9 protein (e.g., a S. pyogenes Cas9 protein).


In some embodiments, the gRNA targeting the TRAC gene comprises the nucleotide sequence of any one of SEQ ID NOs: 83-158. In some embodiments, the gRNA targeting the TRAC gene targets the nucleotide sequence of any one of SEQ ID NOs: 7-82. In some embodiments, the gRNA targeting the B2M gene comprises the nucleotide sequence of any one SEQ ID NOs: 458-506. In some embodiments, the gRNA targeting the B2M gene targets the nucleotide sequence of any one of SEQ ID NOs: 409-457. In some embodiments, the gRNA targeting the TRAC gene comprises the nucleotide sequence of SEQ ID NO: 152. In some embodiments, the gRNA targeting the TRAC gene targets the nucleotide sequence of SEQ ID NO: 76. In some embodiments, the gRNA targeting the B2M gene comprises the nucleotide sequence of SEQ ID NO: 466. In some embodiments, the gRNA targeting the B2M gene targets the nucleotide sequence of SEQ ID NO: 417.


In some embodiments, the population of cells further comprises a gRNA targeting the PD1 gene. In some embodiments, the gRNA targeting the PD1 gene comprises the nucleotide sequence of any one of SEQ ID NOs: 1083-1274 and/or targets the nucleotide sequence of any one of SEQ ID NOs: 891-1082. In some embodiments, the gRNA targeting the PD1 gene comprises the nucleotide sequence of SEQ ID NOs: 1086. In some embodiments, the gRNA targeting the PD1 gene targets the nucleotide sequence of SEQ ID NO: 894.


In some embodiments, the population of cells further comprises a gRNA targeting the CTLA-4 gene. In some embodiments, the gRNA targeting the CTLA-4 gene comprises the nucleotide sequence of any one of SEQ ID NOs: 1289-1298. In some embodiments, the gRNA targeting the CTLA-4 gene targets the nucleotide sequence of any one of SEQ ID NOs: 1278-1287. In some embodiments, the gRNA targeting the CTLA-4 gene comprises the nucleotide sequence of SEQ ID NO: 1292. In some embodiments, the gRNA targeting the CTLA-4 gene targets the nucleotide sequence of SEQ ID NO: 1281.


In some embodiments, engineered T cells of the population of cells comprise a deletion of the nucleotide sequence of SEQ ID NO: 76, relative to unmodified T cells.


In some embodiments, the disrupted B2M gene comprises an insertion of at least one nucleotide base pair and/or a deletion of at least one nucleotide base pair.


In some embodiments, a disrupted B2M gene of the engineered T cells comprises at least one nucleotide sequence selected from the group consisting of: SEQ ID NO: 1560; SEQ ID NO: 1561; SEQ ID NO: 1562; SEQ ID NO: 1563; SEQ ID NO: 1564; and SEQ ID NO: 1565.


In some embodiments, at least 16% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1560; at least 6% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1561; at least 4% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1562; at least 2% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1563; at least 2% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1564; and at least 2% of the cells comprise a B2M gene edited to comprise the nucleotide of SEQ ID NO: 1565.


In some embodiments, the vector is an adeno-associated viral (AAV) vector. In some embodiments, the AAV vector is an AAV serotype 6 (AAV6) vector. In some embodiments, the AAV vector comprise the nucleotide sequence of any one of SEQ ID NOs: 1354-1357. In some embodiments, the AAV vector comprise the nucleotide sequence of SEQ ID NO: 1354. In some embodiments, the AAV vector comprise the nucleotide sequence of any one of SEQ ID NOs: 1358-1360. In some embodiments, the AAV vector comprise the nucleotide sequence of SEQ ID NO: 1360. In some embodiments, the AAV vector comprise the nucleotide sequence of any one of SEQ ID NOs: 1365, 1366, 1372, or 1373. In some embodiments, the AAV vector comprise the nucleotide sequence of SEQ ID NOs: 1366 or 1373.


In some embodiments, the donor template comprises the nucleotide sequence of any one of SEQ ID NOs: 1390-1393. In some embodiments, the donor template comprises the nucleotide sequence of SEQ ID NO: 1390. In some embodiments, the donor template comprises the nucleotide sequence of any one of SEQ ID NOs: 1394-1396. In some embodiments, the donor template comprises the nucleotide sequence of SEQ ID NO: 1396. In some embodiments, the donor template comprises the nucleotide sequence of any one of SEQ ID NOs: 1401, 1402, 1408, or 1409. In some embodiments, the donor template comprises the nucleotide sequence of SEQ ID NO: 1402 or 1409. It is understood that the inventions described in this specification are not limited to the examples summarized in this Summary Various other aspects are described and exemplified herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface, and materials and methods for treating a patient using the genome-edited engineered cells disclosed and described in this specification can be better understood by reference to the accompanying figures, in which:



FIG. 1 is a graph depicting a rank ordered list of IVT gRNAs targeting the TRAC gene and their respective activities (% InDel) in 293 cells.



FIGS. 2A and 2B are a series of graphs depicting a rank ordered list of IVT gRNAs targeting the CD3-epsilon (CD3E) gene and their respective activities (% InDel) in 293 cells.



FIG. 3 is a graph depicting a rank ordered list of IVT gRNAs targeting the B2M gene and their respective activities (% InDel) in 293 cells.



FIGS. 4A, 4B, 4C, and 4D are a series of graphs depicting a rank ordered list of IVT gRNAs targeting the CIITA gene and their respective activities (% InDel) in 293 cells.



FIGS. 5A, 5B, and 5C are a series of graphs depicting a rank ordered list of IVT gRNAs targeting the PD1 gene and their respective activities (% InDel) in 293 cells.



FIGS. 6A and 6B are a series of images of flow cytometry plots depicting lack of reactivity to PHA-L, but normal responses to PMA/ionomycin by TCRa or CD3E null human T cells as compared to controls. FIG. 6A shows levels of the T cell activation marker CD69 (top panel) and levels of CFSE (marking proliferative history) (bottom panel), and FIG. 6B depicts levels of degranulation (CD107a) and IFNg 1 (left panel) and depicts levels of IL-2 and TNF (right panel) in control and gene edited human T cells.



FIG. 7 is a series of graphs depicting the loss of MHC-II surface expression measured by flow cytometry after treatment of primary human T cells with RNPs containing RNPs to the CIITA or RFX-5 genes.



FIG. 8 is a graph depicting levels of surface protein loss as measured by flow cytometry after treatment of primary human T cells with RNPs targeting either 1, 2 or 3 genes alone or simultaneously (multiplex editing).



FIG. 9 is a graph depicting surface levels of PD1 by flow cytometry after PMA/ionomycin treatment in control and RNP (containing PD1 sgRNA) containing primary human T cells.



FIG. 10 is an image generated from an Agilent Tapestation analysis of DNA amplified by PCR from cells that had undergone homology directed repair of a DNA double stranded break evoked by Cas9/sgRNA RNP complex targeting a genomic site in the AAVS1 locus. The repair was facilitated by a donor template containing a GFP expression cassette flanked by homology arms around the RNP cut site and was delivered by an AAV6 virus. No RNP control and an RNP targeting a different genomic locus with no homology to the AAV donor template are also shown.



FIG. 11 shows flow cytometry plots depicting single T cells with concurrent loss of TCRa and B2M and expression of GFP after induction of HDR by a distinct RNP targeting the AAVS1 locus and AAV6 delivered donor template in primary human T cells.



FIG. 12 is a graph quantifying the percentage of cells that are GFP positive (a readout for RNP/AAV HDR) in cells from 3 biological donors treated with controls as well as RNPs targeting AAVS1, TRAC and B2M. HDR is also quantified in gates of cells that were rendered TRACB2M+ or TRACB2Mby Cas9/sgRNAs.



FIG. 13A is a graphical depiction of an allogeneic CAR-T cell in which expression of one more gene is modulated by CRISPR/Cas9/sgRNAs and AAV6 delivered donor templates. This depiction shows modulation of one or more target genes with knock-in of a CAR construct within or near the target gene locus as mediated by HDR.



FIG. 13B is a graphical depiction of an allogeneic CAR-T cell that lacks MHC-I expression produced by CRISPR/Cas9/sgRNAs and AAV6 delivered donor templates. This depiction shows knockout of the TRAC gene with knock-in of a CAR construct into the TRAC locus (mediated by HDR). This depiction also shows deletion of sites in the B2M gene.



FIG. 14 is a schematic representation of model graphics of AAV constructs to be used in production of AAV virus for delivery of donor DNA templates for repair of Cas9 induced double stranded breaks and site-specific transgene insertion.



FIG. 15 is a graph depicting TIDE analysis on DNA from Cas9:sgRNA RNP treated human T cells to demonstrate concurrent triple knockout of the TCR, B2M and CIITA. The RNP treatments included combinations of TCRa (TRAC), B2M and/or CIITA.



FIG. 16A is a series of graphs depicting the ability of T cells expressing an anti-CD19 CAR construct inserted into the AAVS1 locus (AAVS1 RNP+CTX131) or the TRAC locus (TRAC RNP+CTX-138) to lyse the Raji lymphoma cells in a co-culture assay (Left panel) and to produce Interferon gamma (IFNg or IFNγ) in the presence of Raji lymphoma cells (right panel).



FIG. 16B is a series of graphs demonstrating a lack of interferon gamma (IFNg) production in the presence of anti-CD19 CAR-T cells generated by CRISPR/AAV co-cultured with K562 cells (left panel). IFNg production levels increase in the presence of CAR-T expressing anti-CD19 CAR from either the AAVS1 locus (AAVS1 RNP+CTX131) or the TRAC locus (TRAC RNP+CTX-138) when co-cultured with K562 cells that have been designed to overexpress CD19 (right panel).



FIG. 17A is a series of flow cytometry plots demonstrating that single cells express a CAR construct and lack surface expression of the TCR and B2M only when the cells have been treated with RNPs to TRAC and B2M and have been infected with a vector that delivers a donor template containing a CAR construct flanked by homologous sequence to the TRAC locus mediated site specific integration and expression of the CAR construct.



FIG. 17B is a series flow cytometry plots demonstrating normal proportions of CD4 and CD8 T cells that are CAR+ TCRB2M.



FIG. 17C is a dot plot summarizing the proportions of CD4 and CD8 expression in replicates of the flow cytometry experiment in FIG. 17B. Four replicates of CAR+ TCRB2Mand four Control replicates were analyzed. CD4 and CD8 frequencies remain unchanged in the production of CAR+ TCRB2MT cells compared to controls.



FIG. 17D is a graph depicting the number of viable cells enumerated 8 days post electroporation and AAV6 infection.



FIG. 18A is a graph demonstrating lack of IFNg production in co-cultures of K562 and the indicated cells.



FIG. 18B is a graph demonstrating increased production of IFNg only in cells made to express an anti-CD19 CAR integrated in the TRAC locus with or without knockout of B2M when T cells were co-cultured with CD19-expressing K562 cells.



FIG. 18C is a graph demonstrating increased IFNg production in co-cultures of CD19+ Raji lymphoma cell line and T cells treated as indicated.



FIG. 19 is a graph depicting a statistically significant decrease in tumor volume (mm3) (p=0.007) in NOG Raji mice following treatment with TC1 cells.



FIG. 20 is a survival curve graph demonstrating increased survival of NOG Raji mice treated with TC1 cells in comparison to NOG Raji mice receiving no treatment.



FIG. 21A is a series of flow cytometry plots demonstrating that TC1 cells persist in NOG Raji mice.



FIG. 21B is a graph demonstrating that TC1 cells selectively eradicate splenic Raji cells in NOG Raji mice treated with TC1 in comparison to controls (NOG Raji mice with no treatment or NOG mice). The effect is depicted as a decreased splenic mass in NOG Raji mice treated with TC1 in comparison to controls.



FIG. 22 is a series of flow cytometry plots demonstrating that persistent splenic TC1 cells are edited in two independent NOG Raji mice with TC1 treatment.



FIG. 23 is a graph demonstrating that TC1 cells do not exhibit cytokine independent growth in vitro.



FIG. 24A is a graphical depiction of a CAR-T cell that lacks MHC-I expression produced by CRISPR/Cas9/sgRNAs and AAV6 delivered donor templates. This depiction shows knockout of the TRAC gene with knock-in of a CAR construct into the TRAC locus (mediated by HDR). This depiction also shows deletion of sites in the B2M gene.



FIG. 24B is a schematic representation of AAV constructs used in production of AAV virus for delivery of donor DNA templates for repair of Cas9 induced double stranded breaks and site-specific transgene insertion.



FIG. 25A is flow cytometry data demonstrating the production of TRACCD70CAR+ T cells using TRAC sgRNA containing RNPs and AAV6 to deliver the CTX-145 donor template into T cells.



FIG. 25B shows the maintenance of CD4/CD8 subset proportions in TRACCD70CAR+ T cells generated using TRAC sgRNA containing RNPs and AAV6 to deliver the CTX-145 donor template into T cells.



FIG. 26 is flow cytometry data demonstrating expression of the CD70CAR construct only when there is RNP to induce a double stranded break at the TRAC locus. Expression of the CD70 CAR construct does not occur with episomal AAV6 vector.



FIG. 27 is flow cytometry data showing the production of CD70CAR-T with TCR and B2M deletions.



FIG. 28A is a histogram from flow cytometry data showing increased expression of CD70 from K562-CD70 cells that were subsequently used in a functional assay.



FIG. 28B is a graph showing native CD70 expression levels in a panel of cell lines. The data is normalized to CD70 expression in Raji cells.



FIG. 29A is a graph showing % cell lysis of CD70 expressing K562 cells (CD70-K562) in the presence of TRAC/anti-CD70 CAR+ T cells (left panel) and IFNγ secretion from TRAC/anti-CD70 CAR+ T cells only when they interact with CD70 expressing K562 cells (CD70-K562) (right panel).



FIG. 29B is a graph depicting IFNγ secretion from TRAC/anti-CD70 CAR+ T cells (TRAC-CD70CAR+) only when co-cultured with CD70+ Raji cells, and not in the CD70 negative Nalm6 cells.



FIG. 29C is a graph showing that TRAC/anti-CD70 CAR+ T cells (TRAC-CD70CAR+) do not secrete IFNγ due to “self” stimulation when only TRAC/anti-CD70 CAR+ T cells are present alone in the absence of CD70 expressing target cells.



FIG. 29D is flow cytometry data demonstrating GranzymeB activity only in the CD70+ expressing target cells (Raji) that interacted with TRAC/anti-CD70 CAR+ T cells (TCR−CAR+).



FIG. 30A is a graph of cell killing data demonstrating CD70 specific cell killing.



FIG. 30B is a graph that shows TRAC-CD70CAR+ T cells induce cell lysis of renal cell carcinoma derived cell lines (24 hour and 48 hour time points).



FIG. 30C is a graph demonstrating that TCR-deficient anti-CD70 CAR-T cells (CD70 CAR+) display cell killing activity against a panel of RCC cell lines with varying CD70 expression (24 hour time point), as compared to TCR-cells (control).



FIG. 31A is a graphical depiction of a CAR-T cell that lacks MHC-I expression produced by CRISPR/Cas9/sgRNAs and AAV6 delivered donor templates. This depiction shows knockout of the TRAC gene with knock-in of a CAR construct into the TRAC locus (mediated by HDR). This depiction also shows deletion of sites in the B2M gene.



FIG. 31B is a schematic representation of AAV constructs used in production of AAV virus for delivery of donor DNA templates for repair of Cas9 induced double stranded breaks and site-specific transgene insertion. Schematic design of the anti-BCMA CAR AAV donor template. Both CTX152 and CTX154 were designed to co-express the CAR and Green fluorescent protein (GFP) from a bicistronic mRNA. CTX-152 CAR=VH−VL; CTX-154 CAR=VL−VH.



FIG. 32 is flow cytometry data showing the production of anti-BCMA (CTX152 and CTX154) CAR-T cells with TCR and B2M deletions (TRAC−/B2M-BCMA CAR+ Cells). TRAC and B2M genes were disrupted using CRISPR/CAS9 and the CAR constructs were inserted into the TRAC locus using homologous directed repair. Approximately 77% of the T-Cells were TCR−/B2M− as measured by FACS (top panel). CAR+ cells were both positive for GFP expression and recombinant BCMA binding (bottom panel). These CAR T-Cells were produced according to the methods described in Example 15. x and y axes are depicted in logarithmic scale.



FIG. 33A is a graph showing that treatment of RPMI8226 cells that express BCMA with TRAC-B2M−BCMA CAR-T cells results in cytotoxicity, whereas treatment with unmodified T-Cells (NO RNP/AAV) shows minimal cytotoxicity.



FIG. 33B is a graph showing high levels of IFNγ secretion from anti-BCMA CAR-T cells and minimal secretion from unmodified T-Cells (NO RNP/AAV). Both plots are from the same cytotoxicity experiment. Interferon gamma was measured according to the method described in Example 18.



FIG. 34 is a graph showing a strong correlation between surface CD19 CAR expression and HDR frequency (R2=0.88). This indicates site specific integration and high expression levels of CD19 CAR construct into the TRAC locus of T cells using CRISPR gene editing.



FIG. 35A is flow cytometry data demonstrating GranzymeB activity only in the CD19+ expressing target cells (Nalm6) that interacted with TRAC−/B2M-CD19CAR+ T cells.



FIG. 35B is a graph showing that TRAC−/B2M-CD19CAR+ T cells secrete high levels of IFNγ when cultured with CD19 positive Nalm6 cells.



FIG. 35C is a graph of cell killing data showing that TRAC−/B2M-CD19CAR+ T cells selectively kills Nalm6 cells at low T cell to target cell ratios.



FIG. 36A are a series of flow cytometry graphs showing the percentage of cells expressing CD70 during the production of CD70 CAR+ T-cells.



FIG. 36B are a series of flow cytometry graphs depicting proportions of T cells that express one or more of CD4, CD8, TCR or CD70 CAR. The top panel of plots correspond to CD70− population of cells from FIG. 36A. The bottom panel of plots correspond to CD70+ population of cells from FIG. 36A.



FIG. 37A is a graph depicting a decrease in tumor volume (mm3) at day 31 following treatment of NOG mice that were injected subcutaneously with A498 renal cell carcinoma cell lines with TRAC−/anti-CD70 CAR+ T cells. All Groups of NOG mice were injected with 5×106 cells/mouse. Group 1 received no T cell treatment. Mice in Group 2 were treated intravenously with 1×107 cell/mouse of TRAC−/anti-CD70 CAR+ T cells on day 10. Mice in Group 3 were treated intravenously with 2×107 cell/mouse of TRAC−/anti-CD70 CAR+ T cells on day 10.



FIG. 37B is a graph depicting a decrease in tumor volume (mm3) following treatment of NOG mice that were injected subcutaneously with A498 renal cell carcinoma cell lines with TRAC−/anti-CD70 CAR+ T cells. Both Groups of NOG mice were injected with 5×106 cells/mouse. The control group received no T cell treatment, and the test group of mice were treated intravenously with 2×107 cell/mouse of TRAC−/anti-CD70 CAR+ T cells on day 10.



FIG. 38A is a series of flow cytometry plots demonstrating the production of anti CD19 CAR-T cells expressing the CAR and lacking surface expression of TCR and B2M, which either have low or absent surface expression of PD1 (PD1LO and PD1KO, respectively). Preferred anti-CD19 CAR-T cells express the CAR and lack surface expression of TCR, B2M and PD1.



FIG. 38B is a bar graph depicting the editing efficiency for each gene edit as measured by flow cytometry. Measurements were taken from the cell population depicted in the bottom row of FIG. 38A.



FIG. 39 is a graph depicting high editing rates achieved at the TRAC and B2M loci in TRAC/B2MCD19CAR+ T cells (TC1). Surface expression of TCR and MHCI, which is the functional output of gene editing, was measured and plotted as editing percentage on the y-axis. High efficiency (e.g., greater than 50%) site-specific integration and expression of the CAR from the TRAC locus were detected. These data demonstrate greater than 50% efficiency for the generation of TRAC/B2M/anti-CD19CAR+ T cells.



FIG. 40 is a series of flow cytometry plots of human primary T-cells, TRAC/B2MCD19CAR+ T cells (TC1), 8 days post-editing. The graphs show reduced surface expression of TRAC and B2M. TCR/MHC I double knockout cells express high levels of the CAR transgene (bottom panel). Negative selection of TC1 cells with purification beads leads to a reduction in TCR positive cells (right panel).



FIG. 41 is a graph demonstrating a statistically significant increase in production of IFNγ in TRAC/B2MCD19CAR+ T cells (TC1) when co-cultured with CD19-expressing K562 cells but not when co-cultured with K562 cells that lack the expression of CD19. This experiment was performed in triplicate according to the method in FIG. 18B. Statistical analysis was performed with ANOVA using Tukey's multiple comparisons test.



FIGS. 42A and 42B are survival curve graphs demonstrating increased survival of NOG Raji mice (FIG. 42A) or NOG Nalm6 mice (FIG. 42B) treated with TRAC−/B2M-CD19CAR+ T cells (TC1) on Day 4, in comparison to control mice receiving no treatment on Day 1. This was, in part, a modified replicate experiment of FIG. 20.



FIG. 43 is a graph showing cell lysis data following treatment of Nalm6 tumor cells with TRAC−/B2M-CD19CAR+ T cells (TC1) or with the CAR-T donor DNA template packaged in a lentivirus vector. Both treatments yielded similar potency with respect to percent cell lysis. Control TCRCAR T cells measured in separate experiment showed no cell lysis activity.



FIG. 44 is a dot plot depicting the consistent percentage of TRAC/B2MCD19CAR+ T cells (TC1) that are produced from the donor DNA template. Additionally, in combination with the additional attributes of >80% TCR−/B2M− double knock out and >99.6% TCR-following purification, TC1 production is more homogenous and consistent than other lentiviral CAR-T products.



FIG. 45A is a graph showing that treatment of RPMI8226 which express BCMA, causes high levels of IFNγ secretion from TRAC-B2M− BCMA CAR-T cells and minimal secretion from unmodified T-Cells (TCR+CAR−) (4:1 T cell:RPMI-8226 ratio). Interferon gamma was measured according to the method described in Example 18.



FIG. 45B is a graph showing that treatment of RPMI8226 cells which express BCMA, with TRAC−/B2M− BCMA CAR+ T cells results in cell lysis and cytotoxicity.



FIGS. 46A-46C are graphs of data demonstrating that anti-BCMA CAR-T cells show specific cytotoxicity towards BCMA expressing U-266 and RPMI8226 cells. Allogeneic T-Cells (TRAC-, B2M-) that expressed the CTX152 and CTX154 anti-BCMA CAR constructs express INFγ in the presence and induced lysis of U-266 (FIG. 46A) and RMPI8226 (FIG. 46B) cells while allogeneic T cells lacking the CAR and unmodified T-Cells showed minimal activity. CTX152 and CTX154 showed no specific cytotoxicity towards K562 cells that lacks BCMA expression (FIG. 46C).



FIGS. 47A-47B are graphs of data demonstrating that other anti-BCMA CAR T cells secret interferon gamma specifically in the presence of cells expressing BCMA.



FIG. 48 is a graph showing anti-BCMA CAR expression. Allogeneic CAR T cells were generated as previously described. Anti-BCMA CAR expression was measured by determining the percent of cells that bound biotinylated recombinant human BCMA subsequently detected by FACS using streptavidin-APC.



FIGS. 49A-49C are graphs of data demonstrating that anti-BCMA CAR T cells expressing the CAR are potently cytotoxic towards RPMI-8226 cells. CAR constructs were evaluated for their ability to kill RPMI-8226 cells. All CAR T cells were potently cytotoxic towards effector cells while allogeneic T cells lacking a CAR showed little cytotoxicity.



FIG. 50 shows flow cytometry plots demonstrating that the health of TRAC−/B2M−/anti-CD19+CAR T cells is maintained at day 21 post gene editing. Cells were assayed for low exhaustion markers, LAGS and PD1 (left graph), as well as low senenscence marker, CD57 (right graph).



FIG. 51 shows flow cytometry graphs demonstrating that 95.5% of the gene edited cells are TCR negative, without further enrichment for a TCR negative cell population. Following enrichment/purification, greater than 99.5% of the gene edited cells are TCR negative.



FIG. 52A shows a representative FACS plot of (32M and TRAC expression one week following gene editing (left) and a representative FACS plot of CAR expression following knock-in to the TRAC locus (right).



FIG. 52B is a graph showing decreased surface expression of both TCR and MHC-I observed following gene editing. Combined with a high CAR expression, this leads to more than 60% cells with all desired modifications (TCR−/β2M−/CAR+).



FIG. 52C is a graph showing that production of allogeneic anti-BCMA CAR-T cells preserves CD4 and CD8 proportions.



FIG. 53 is a graph showing that allogenic BCMA-CAR-T cells maintain dependency on cytokines for ex vivo expansion.



FIG. 54A shows graphs demonstrating that allogeneic anti-BCMA CAR-T cells efficiently and selectively kill the BCMA-expressing MM cell line MM.1S in a 4-hour cell kill assay, while sparing the BCMA-negative leukemic line K562. FIG. 54B is a graph showing that the cells also selectively secrete the T cell activation cytokines IFNγ and IL-2, which are upregulated in response to induction only by MM.1S cells. Values below the limit of detection are shown as hollow data points. Potent cell kill was also observed upon exposure of anti-BCMA CAR-T cells to additional MM cell lines: (FIG. 54C) RPMI-8226 (24-hour assay) and (FIG. 54D) H929 (4-hour assay).



FIG. 55 is a graph showing that allogeneic anti-BCMA CAR-T cells eradicate tumors in a subcutaneous RPMI-8226 tumor xenograft model. 1×107 RPMI-8226 cells were injected subcutaneously into NOG mice, followed by CAR-T cells intravenously 10 days after inoculation. No clinical signs of GvHD were observed in the mice at any timepoint. N=5 for each group.



FIG. 56A is a graph demonstrating that high editing rates are achieved at the TRAC and (32M loci resulting in decreased surface expression of TCR and MHC-I. Highly efficient site-specific integration and expression of the CAR from the TRAC locus was also detected. Data are from three healthy donors.



FIG. 56B is a graph demonstrating that production of allogeneic anti-CD70 CAR-T cells (TCR−β2M-CAR+) preserves CD4 and CD8 proportions.



FIG. 57 is a graph demonstrating that allogeneic anti-CD70 CAR-T cells (TCR-β2M-CAR+) show potent cytotoxicity against the CD70+MM.1S multiple myeloma-derived cell line.



FIG. 58A is a graph showing that multi-editing results in decreased surface expression of TCR and MHC-I, as well as high CAR expression.



FIG. 58B is a graph showing that CD4/CD8 ratios remain similar in multi-edited anti-BCMA CAR-T cells.



FIG. 58C is a graph showing that multi-edited anti-BCMA CAR-T cells remain dependent on cytokines for growth following multi CRISPR/Cas9 editing.



FIG. 59A are graphs showing that anti-BCMA CAR-T cells efficiently and selectively kill the BCMA-expressing MM cell line MM.1S in a 4-hour cell kill assay, while sparing the BCMA-negative leukemic line K562.



FIG. 59B are graphs showing that the cells also selectively secrete the T cell activation cytokines IFNγ and IL-2, which are upregulated in response to induction only by BCMA+MM.1S cells.



FIG. 60 is a graph showing no observed change in Lag3 exhaustion marker between double or triple knockout (KO) anti-BCMA CAR-T cells after 1 week in culture. However, following 4 weeks in culture, Lag3 exhaustion marker expression was reduced in the triple KO anti-BCMA CAR-T cells.



FIG. 61 is a schematic of CTX-145b (SEQ ID NO: 1360), which includes an anti-CD70 CAR having a 4-1BB co-stimulatory domain flanked by left and right homology arms to the TRAC gene.



FIG. 62 is a graph showing that normal proportions of CD4+/CD8+ T cell subsets maintain the TRAC−/B2M−/anti-CD70 CAR+ fraction from cells treated with TRAC and B2M sgRNA-containing RNPs and CTX 145b AAV6.



FIG. 63 are graphs demonstrating efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP and AAV6 delivered donor template (CTX-145 and CTX-145b) containing an anti-CD70 CAR construct in primary human T cells.



FIG. 64 is a graph demonstrating that normal proportions of CD4+/CD8+ T cell subsets are maintained in the PD1−/TRAC−/B2M−/anti-CD70 CAR+ fraction from cells treated with PD1, TRAC and B2M sgRNA-containing RNPs and CTX-145b AAV6.



FIG. 65 is a graph showing that TRAC−/B2M−/andti-CD70 CAR+ cells demonstrated potent cell killing of renal cell carcinoma derived cell lines (A498 cells) after 24 hours co-incubation.



FIG. 66 is a graph showing that TRAC−/B2M−/anti-CD70 CAR+ cells and PD1−/TRAC−/B2M−/anti-CD70 CAR+ cells induced potent cell killing of CD70 expressing adherent renal cell carcinoma (RRC) derived cell line, ACHN, with a CD28 or 41BB costimulatory domain, at a 3:1 ratio T cell:target cell.



FIG. 67 is a graph showing anti-BCMA (CD28 v. 4-1BB) CAR expression in edited T cells.



FIG. 68 is a graph showing results from a cytotoxicity assay with MM.1S cells and TRAC−/B2M−/anti-BCMA (CD28 or 4-1BB) CAR+ T cells.



FIG. 69 includes graphs showing results from an IFN-γ secretion study with MM.1S cells (left) or K562 cells (right) and TRAC−/B2M−/anti-BCMA (CD28 or 4-1BB) CAR+ T cells.



FIG. 70 includes graphs showing results from a cell kill assay using TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells with RPMI-8226 cells (top left), H929 cells (top right), U2661 cells (bottom left), or K562 cells (bottom right).



FIG. 71 includes graphs showing IFN-γ stimulation studies in the presence of TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells with RPMI-8226 cells (top left), U2261 cells (top right), H929 cells (bottom left), or K562 cells (bottom right).



FIG. 72 includes graphs showing IL-2 stimulation studies in the presence of TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells with RPMI-8226 cells (top left), U2261 cells (top right), H929 cells (bottom left), or K562 cells (bottom right).



FIG. 73 includes graphs showing tumor volume in a RPMI-8226 subcutaneous tumor mouse model administered TRAC−/B2M−/anti-BCMA (CD28) CAR+ T cells or TRAC−/B2M−/PD-1-/anti-BCMA (CD28) CAR+ T cells.



FIG. 74 includes graphs showing results from cytotoxicity (left), IFN-γ stimulation (middle), and IL-2 stimulation studies with TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells or TRAC−/B2M−/PD-1-/anti-BCMA (4-1BB) CAR+ T cells in the presence of MM.1S cells or K562 cells.



FIG. 75 includes a graph showing that TRAC−/B2M−/anti-CD70 CAR+ or TRAC−/B2M−/PD1−/anti-CD70 CAR+ T Cells, with a CD28 or a 41BB costimulatory domain, display anti-tumor activity in a renal cell carcinoma mouse model.





BRIEF DESCRIPTION OF THE SEQUENCE LISTING

SEQ ID NOs: 1-3 are sgRNA backbone sequences (Table 1).


SEQ ID NOs: 4-6 are homing endonuclease sequences.


SEQ ID NOs: 7-82 are TRAC gene target sequences (Table 4).


SEQ ID NOs: 83-158 are gRNA spacer sequences targeting the TRAC gene (Table 4).


SEQ ID NOs: 159-283 are CD3E gene target sequences (Table 5).


SEQ ID NOs: 384-408 are gRNA spacer sequences targeting the CD3E gene (Table 5).


SEQ ID NOs: 409-457 are B2M gene target sequences (Table 6).


SEQ ID NOs: 458-506 are gRNA spacer sequences targeting the B2M gene (Table 6).


SEQ ID NOs: 507-698 are CIITA gene target sequences (Table 7).


SEQ ID NOs: 699-890 are gRNA spacer sequences targeting the CIITA gene (Table 7).


SEQ ID NOs: 891-1082 are PD1 gene target sequences (Table 8).


SEQ ID NOs: 1083-1274 are gRNA spacer sequences targeting the PD1 gene (Table 8).


SEQ ID NO: 1275 is the nucleotide sequence for the CAR of CTX-145b (Table 36).


SEQ ID NO: 1276 is the amino acid sequence for the CAR of CTX-145b (Table 36).


SEQ ID NOs: 1277-1287 are CTLA-4 gene target sequences (Table 10).


SEQ ID NOs: 1288-1298 are gRNA spacer sequences targeting the CTLA-4 gene (Table 10).


SEQ ID NO: 1299 is a TRAC gene target sequence (Table 11).


SEQ ID NO: 1300 is a PD1 gene target sequence (Table 11).


SEQ ID NOs: 1301 and 1302 are AAVS1 target sequences (Table 11).


SEQ ID NOs: 1303 and 1305 are CD52 target sequences (Table 11).


SEQ ID NOs: 1305-1307 are RFX5 target sequences (Table 11).


SEQ ID NO: 1308 is a gRNA spacer sequence targeting the AAVS1 gene.


SEQ ID NOs: 1309-1311 are gRNA spacer sequences targeting the RFX5 gene.


SEQ ID NO: 1312 is a gRNA spacer sequence targeting the CD52 gene.


SEQ ID NOs: 1313-1338 are donor template component sequences for generating the anti-CD19 CAR T cells (see Table 12).


SEQ ID NO: 1339 is the nucleotide sequence for the 4-1BB co-stimulatory domain.


SEQ ID NO: 1340 is the amino acid sequence for the 4-1BB co-stimulatory domain.


SEQ ID NO: 1341 is a linker sequence.


SEQ ID NOs: 1342-1347 are chemically-modified and unmodified sgRNA sequences for B2M, TRAC, and AAVS1 (see Table 32).


SEQ ID NOs: 1348-1386 are rAAV sequences of various donor templates (see Table 34).


SEQ ID NOs: 1387-1422 are left homology arm (LHA) to right homology arm (RHA) sequences of various donor templates (see Table 35).


SEQ ID NOs: 1423-1448 are CAR nucleotide sequences of donor templates of the present disclosure (see Table 36).


SEQ ID NOs: 1449-1474 are CAR amino acid sequences encoded by donor templates of the present disclosure (see Table 37).


SEQ ID NOs: 1475-1498 are scFv nucleic acid sequences of CARs of the present disclosure (see Table 38).


SEQ ID NOs: 1499-1522 are scFv amino acid sequences encoded by CARs of the present disclosure (see Table 39).


SEQ ID NOs: 1523-1531 are anti-BCMA light chain and heavy chain sequences (see Table 39).


SEQ ID NOs: 1532-1553 are plasmid sequences of the present disclosure.


SEQ ID NOs: 1554-1559 are primer sequences used in a ddPCR assay (see Table 25).


SEQ ID NOs: 1560-1565 are gene edited sequences in the B2M gene (Table 12.3).


SEQ ID NOs: 1566-1573 are gene edited sequences in the TRAC gene (Table 12.4).


SEQ ID NOs: 1574 and 1575 are chemically-modified and unmodified sgRNA sequences for PD1 (see Table 32).


SEQ ID NOs: 1576-1577 are ITR sequences (Table 12).


SEQ ID NOs: 1578-1582 are nucleotide sequences for the left homology arms and right homology arms used for CTX-139.1-CTX-139.3 (Table 12).


SEQ ID NO: 1586 is a CD8 signal peptide sequence (Table 12).


SEQ ID NOs: 1587 and 1588 are chemically-modified and unmodified sgRNA sequences for TRAC (EXON1_T7) (see Table 32).


SEQ ID NOs: 1589-1597 are the heavy chain, light chain and linker sequences for example anti-BCMA, anti-CD70, and anti-CD19 scFv molecules (Table 39).


SEQ ID NO: 1598 is the leader peptide sequence for the anti-CD19 CAR (Table 12).


SEQ ID NO: 1599 is the CD8a transmembrane sequence without the linker (Table 12).


SEQ ID NO: 1600 is the CD8a peptide sequence.


SEQ ID NO: 1601 is the CD28 co-stimulatory domain peptide sequence.


SEQ ID NO: 1602 is the CD3-zeta co-stimulatory domain peptide sequence.


DETAILED DESCRIPTION

Therapeutic Approach


CRISPR edited cells such as, for example, CRISPR edited T cells, can have therapeutic uses in multiple disease states. By way of non-limiting example, the nucleic acids, vectors, cells, methods, and other materials provided in the present disclosure are useful in treating cancer, inflammatory disease and/or autoimmune disease.


Gene editing provides an important improvement over existing or potential therapies, such as introduction of target gene expression cassettes through lentivirus delivery and integration. Gene editing to modulate gene activity and/or expression has the advantage of precise genome modification and lower adverse effects, and for restoration of correct expression levels and temporal control.


The materials and methods provided herein are useful in modulating the activity of a target gene. For example, the target gene can be a gene sequence associated with host versus graft response, a gene sequence associated with graft versus host response, a gene sequence encoding an immune suppressor (e.g.: checkpoint inhibitor), or any combination thereof.


The target gene can be a gene sequence associated with a graft versus host response that is selected from the group consisting of TRAC, CD3-episolon (CD3ε), and combinations thereof. TRAC and CD3E are components of the T cell receptor (TCR). Disrupting them by gene editing will take away the ability of the T cells to cause graft versus host disease.


The target gene can be a gene sequence associated with a host versus graft response that is selected from the group consisting of B2M, CIITA, RFX5, and combinations thereof. B2M is a common (invariant) component of MHC I complexes. Its ablation by gene editing will prevent host versus therapeutic allogeneic T cells responses leading to increased allogeneic T cell persistence. CIITA and RFX5 are components of a transcription regulatory complex that is required for the expression of MHC II genes. Disrupting them by gene editing will prevent host versus therapeutic allogeneic T cells responses leading to increased allogeneic T cell persistence.


The target gene can be a gene sequence encoding a checkpoint inhibitor that is selected from the group consisting of PD1, CTLA-4, and combinations thereof. PDCD1 (PD1) and CTLA4 are immune checkpoint molecules that are upregulated in activated T cells and serve to dampen or stop T cell responses. Disrupting them by gene editing could lead to more persistent and/or potent therapeutic T cell responses.


The target gene can be a sequence associated with pharmacological modulation of a cell. For example, CD52 is the target of the lympho-depleting therapeutic antibody alemtuzumab. Disruption of CD52 by gene editing will make therapeutic T cells resistant to alemtuzumab which may be useful in certain cancer settings.


Deletion of the above genes can be achieved with guide RNAs that have chosen from small (<5) to medium scale (>50) screens. The examples provided herein further illustrate the selection of various target regions and gRNAs useful for the creation of indels that result in disruption of a target gene, for example, reduction or elimination of gene expression and or function. The examples provided herein further illustrate the selection of various target regions and gRNAs useful for the creation of DSBs that facilitate insertion of a donor template into the genome. Examples of target genes associated with graft versus host disease, host versus graph disease and/or immune suppression. In some aspects, the guide RNA is a gRNA comprising a sequence disclosed herein.


The methods use chimeric antigen receptor constructs (CARs) that are inserted into genomic loci by using guide RNA/Cas9 to induce a double stranded break that is repaired by HDR using an AAV6 delivered donor template with homology around the cut site.


A chimeric antigen receptor (CAR) is an artificially constructed hybrid protein or polypeptide containing an antigen binding domain of an antibody (e.g., a single chain variable fragment (scFv)) linked to T-cell signaling or T-cell activation domains. CARs have the ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC-restricted manner, exploiting the antigen-binding properties of monoclonal antibodies. The non-MHC-restricted antigen recognition gives T-cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T-cell receptor (TCR) alpha and beta chains.


The materials and methods provided herein knock-in a nucleic acid encoding a chimeric antigen receptor (CAR) in or near a locus of a target gene by permanently deleting at least a portion of the target gene and inserting a nucleic acid encoding the CAR. The CARs used in the materials and methods provided herein include (i) an ectodomain comprising an antigen recognition region; (ii) a transmembrane domain, and (iii) an endodomain comprising at least one costimulatory domain. The nucleic acid encoding the CAR can also include a promoter, one or more gene regulatory elements, or a combination thereof. For example, the gene regulatory element can be an enhancer sequence, an intron sequence, a polyadenylation (poly(A)) sequence, and/or combinations thereof.


The donor for insertion by homology directed repair (HDR) contains the corrected sequence with small or large flanking homology arms to allow for annealing. HDR is essentially an error-free mechanism that uses a supplied homologous DNA sequence as a template during DSB repair. The rate of homology directed repair (HDR) is a function of the distance between the mutation and the cut site so choosing overlapping or nearby target sites is important. Templates can include extra sequences flanked by the homologous regions or can contain a sequence that differs from the genomic sequence, thus allowing sequence editing.


The target gene can be associated with an immune response in a subject, wherein disrupting expression of the target gene will modulate the immune response. For example, creating small insertions or deletions in the target gene, and/or permanently deleting at least a portion of the target gene and/or inserting an exogenous sequence into the target gene can disrupt expression of target gene. The target gene sequence can be associated with host versus graft response, a gene sequence associated with graft versus host response, a gene sequence encoding a checkpoint inhibitor, and/or any combination thereof.


Target genes associated with a graft versus host (GVH) response include, for example, TRAC, CD3-episolon (CDR), and combinations thereof. Permanently deleting at least a portion of these genes, creating small insertions or deletions in these genes, and/or inserting the nucleic acid encoding the CAR can reduce GVH response in a subject. The reduction in GVH response can be partial or complete.


Target genes associated with a host versus graft (HVG) response include, for example, B2M, CIITA, RFX5, and combinations thereof. Permanently deleting at least a portion of these genes, creating small insertions or deletions in these genes, and/or inserting the nucleic acid encoding the CAR can reduce HVG response in a subject. The reduction in HVG response can be partial or complete.


Target genes associated with immune suppression include, for example, checkpoint inhibitors such PD1, CTLA-4, and combinations thereof. Permanently deleting at least a portion of these genes, creating small insertions or deletions in these genes, and/or inserting the nucleic acid encoding the CAR can reduce immune suppression in a subject. The reduction in immune suppression can be partial or complete.


The target gene can be associated with pharmacological modulation of a cell, wherein disrupting expression of the target gene will modulate one or pharmacological characteristics of the cell.


Target genes associated with pharmacological modulation of a cell include, for example, CD52. Permanently deleting at least a portion of these genes, creating small insertions or deletions in these genes, and/or inserting the nucleic acid encoding the CAR can positively or negatively modulate one or pharmacological characteristics of the cell. The modulation of one or pharmacological characteristics of the cell can be partial or complete. For example, permanently deleting at least a portion of these genes and inserting the nucleic acid encoding the CAR can positively impact or otherwise allow the CAR T cells to survive. Alternatively, permanently deleting at least a portion of these genes and inserting the nucleic acid encoding the CAR can negatively impact or otherwise kill the CAR T cells.


The donor templates used in the nucleic acid constructs encoding the CAR can also include a minigene or cDNA. For example, the minigene or cDNA can comprise a gene sequence associated with pharmacological modulation of a cell. The gene sequence can encode Her2.


A Her2 gene sequence can be permanently inserted at a different locus in the target gene or at a different locus in the genome from where the nucleic acid encoding the CAR construct is inserted.


Provided herein are methods to DSBs that induce small insertions or deletions in a target gene resulting in the disruption (e.g.: reduction or elimination of gene expression and/or function) of the target gene.


Also, provided herein are methods to create DBSs and/or permanently delete within or near the target gene and to insert a nucleic acid construct encoding a CAR construct in the gene by inducing a double stranded break with Cas9 and a sgRNA in a target sequence (or a pair of double stranded breaks using two appropriate sgRNAs), and to provide a donor DNA template to induce Homology-Directed Repair (HDR). In some embodiments, the donor DNA template can be a short single stranded oligonucleotide, a short double stranded oligonucleotide, a long single or double stranded DNA molecule. These methods use gRNAs and donor DNA molecules for each target. In some embodiments, the donor DNA is single or double stranded DNA having homologous arms to the corresponding region. In some embodiments, the homologous arms are directed to the nuclease-targeted region of a gene selected from the group consisting of TRAC (chr14:22278151-22553663), CD3E (chr11:118301545-118319175), B2M (chr15:44708477-44721877), CIITA (chr16:10874198-10935281), RFX5 (chr1:151337640-151350251), PD1 (chr2:241846881-241861908), CTLA-4 (chr2:203864786-203876960), CD52 (chr1:26314957-26323523), PPP1R12C (chr19:55087913-55120559), and combinations thereof.


Provided herein are methods to knock-in target cDNA or a minigene (comprised of one or more exons and introns or natural or synthetic introns) into the locus of the corresponding gene. These methods use a pair of sgRNA targeting the first exon and/or the first intron of the target gene. In some embodiments, the donor DNA is single or double stranded DNA having homologous arms to the nuclease-targeted region of a Her2 gene selected.


Provided herein are cellular methods (e.g., ex vivo or in vivo) methods for using genome engineering tools to create permanent changes to the genome by: 1) creating DSBs to induce small insertions, deletions or mutations within or near a target gene, 2) deleting within or near the target gene or other DNA sequences that encode regulatory elements of the target gene and inserting, by HDR, a nucleic acid encoding a knock-in CAR construct within or near the target gene or other DNA sequences that encode regulatory elements of the target gene, or 3) creating DSBs within or near the target gene and inserting a nucleic acid construct within or near the target gene by HDR. Such methods use endonucleases, such as CRISPR-associated (Cas9, Cpf1 and the like) nucleases, to permanently delete, insert, edit, correct, or replace one or more or exons or portions thereof (i.e., mutations within or near coding and/or splicing sequences) or insert in the genomic locus of the target gene or other DNA sequences that encode regulatory elements of the target gene. In this way, the examples set forth in the present disclosure restore the reading frame or the wild-type sequence of, or otherwise correct the gene with a single treatment (rather than deliver potential therapies for the lifetime of the patient).


Provided herein are methods for treating a patient with a medical condition. An aspect of such method is an ex vivo cell-based therapy. For example, peripheral blood mononuclear cells are isolated from the patient. Next, the chromosomal DNA of these cells is edited using the materials and methods described herein. Finally, the genome-edited cells are implanted into the patient.


Also provided herein are methods for reducing volume of a tumor in a subject, comprising administering to the subject a dose of a pharmaceutical composition comprising a population of cells (e.g., engineered T cells) of the present disclosure and reducing the volume of the tumor in the subject by at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) relative to control (e.g., an untreated subject).


Further provided herein are methods for increasing survival rate in a subject, comprising administering to the subject a dose of a pharmaceutical composition comprising a population of cells (e.g., engineered T cells) of the present disclosure and increasing the survival rate in the subject by at least 50% % (e.g., at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%) relative to control (e.g., an untreated subject).


In some embodiments, the composition comprises at 1×105 to 1×106 cells. In some embodiments, the pharmaceutical composition comprises at 1×105 to 2×106 cells. For example, the composition may comprise 1×105, 2×105, 3×105, 4×105, 5×105, 6×105, 7×105, 8×105, 9×105, 1×106, or 2×106. In some embodiments, the pharmaceutical composition comprises 1×105 to 5×105 cells, 5×105 to 1×106 cells, or 5×105 to 1.5×106 cells.


Another aspect of an ex vivo cell-based therapy may include, for example, isolating T cells from a donor. Next, the chromosomal DNA of these cells are edited using the materials and methods described herein. Finally, the genome-edited cells are implanted into a patient.


In certain aspects, T cells are isolated from more than one donor. These cells are edited using the materials and methods described herein. Finally, the genome-edited cells are implanted into a patient.


One advantage of an ex vivo cell therapy approach is the ability to conduct a comprehensive analysis of the therapeutic prior to administration. Nuclease-based therapeutics have some level of off-target effects. Performing gene correction ex vivo allows one to fully characterize the corrected cell population prior to implantation. The present disclosure includes sequencing the entire genome of the corrected cells to ensure that the off-target effects, if any, are in genomic locations associated with minimal risk to the patient. Furthermore, populations of specific cells, including clonal populations, can be isolated prior to implantation.


Another embodiment of such methods also includes an in vivo based therapy. In this method, chromosomal DNA of the cells in the patient is edited using the materials and methods described herein. In some embodiments, the cells are T cells, such as CD4+ T-cells, CD8+ T-cells, or a combination thereof.


Also provided herein is a cellular method for editing the target gene in a cell by genome editing. For example, a cell is isolated from a patient or animal. Then, the chromosomal DNA of the cell is edited using the materials and methods described herein.


The methods provided herein, in some embodiments, involve one or a combination of the following: 1) creating indels within or near the target gene or other DNA sequences that encode regulatory elements of the target gene, 2) deleting within or near the target gene or other DNA sequences that encode regulatory elements of the target gene, 3) inserting, by HDR or NHEJ, a nucleic acid encoding a knock-in CAR construct within or near the target gene or other DNA sequences that encode regulatory elements of the target gene, or 4) deletion of at least a portion of the target gene and/or knocking-in target cDNA or a minigene (comprised of one or more exons or introns or natural or synthetic introns) or introducing exogenous target DNA or cDNA sequence or a fragment thereof into the locus of the gene.


The knock-in strategies utilize a donor DNA template in Homology-Directed Repair (HDR) or Non-Homologous End Joining (NHEJ). HDR in either strategy may be accomplished by making one or more single-stranded breaks (SSBs) or double-stranded breaks (DSBs) at specific sites in the genome by using one or more endonucleases.


For example, the knock-in strategy involves knocking-in target cDNA or a minigene (comprised of, natural or synthetic enhancer and promoter, one or more exons, and natural or synthetic introns, and natural or synthetic 3′UTR and polyadenylation signal) into the locus of the gene using a gRNA (e.g., crRNA+tracrRNA, or sgRNA) or a pair of sgRNAs targeting upstream of or in the first or other exon and/or intron of the target gene. The donor DNA can be a single or double stranded DNA having homologous arms to the nuclease-targeted region of the target gene. For example, the donor DNA can be a single or double stranded DNA having homologous arms to the nuclease-targeted region of a gene selected from the group consisting of TRAC (chr14:22278151-22553663), CD3E (chr11:118301545-118319175), B2M (chr15:44708477-44721877), CIITA (chr16:10874198-10935281), RFX5 (chr1:151337640-151350251), PD1 (chr2:241846881-241861908), CTLA-4 (chr2:203864786-203876960), CD52 (chr1:26314957-26323523), PPP1R12C (chr19:55087913-55120559), and combinations thereof.


For example, the deletion strategy involves, in some aspects, deleting one or more introns, exons, regulatory regions, of the target gene, partial segments of the target gene or the entire target gene sequence using one or more endonucleases and one or more gRNAs or sgRNAs.


As another example, the deletion strategy involves, in some aspects, deleting one or more nucleic acids, of one or more target genes, resulting in small insertions or deletions (indels) using one or more endonucleases and one or more gRNAs or sgRNAs.


In addition to the above genome editing strategies, another example editing strategy involves modulating expression, function, or activity of a target gene by editing in the regulatory sequence.


In addition to the editing options listed above, Cas9 or similar proteins can be used to target effector domains to the same target sites that may be identified for editing, or additional target sites within range of the effector domain. A range of chromatin modifying enzymes, methylases or demethlyases may be used to alter expression of the target gene. One possibility is increasing the expression of the target protein if the mutation leads to lower activity. These types of epigenetic regulation have some advantages, particularly as they are limited in possible off-target effects.


A number of types of genomic target sites are present in addition to mutations in the coding and splicing sequences.


The regulation of transcription and translation implicates a number of different classes of sites that interact with cellular proteins or nucleotides. Often the DNA binding sites of transcription factors or other proteins can be targeted for mutation or deletion to study the role of the site, though they can also be targeted to change gene expression. Sites can be added through non-homologous end joining NHEJ or direct genome editing by homology directed repair (HDR). Increased use of genome sequencing, RNA expression and genome-wide studies of transcription factor binding have increased the ability to identify how the sites lead to developmental or temporal gene regulation. These control systems may be direct or may involve extensive cooperative regulation that can require the integration of activities from multiple enhancers. Transcription factors typically bind 6-12 bp-long degenerate DNA sequences. The low level of specificity provided by individual sites suggests that complex interactions and rules are involved in binding and the functional outcome. Binding sites with less degeneracy may provide simpler means of regulation. Artificial transcription factors can be designed to specify longer sequences that have less similar sequences in the genome and have lower potential for off-target cleavage. Any of these types of binding sites can be mutated, deleted or even created to enable changes in gene regulation or expression (Canver, M. C. et al., Nature (2015)).


Another class of gene regulatory regions having these features is microRNA (miRNA) binding sites. miRNAs are non-coding RNAs that play key roles in post-transcriptional gene regulation. miRNA may regulate the expression of 30% of all mammalian protein-encoding genes. Specific and potent gene silencing by double stranded RNA (RNAi) was discovered, plus additional small noncoding RNA (Canver, M. C. et al., Nature (2015)). The largest class of noncoding RNAs important for gene silencing are miRNAs. In mammals, miRNAs are first transcribed as long RNA transcripts, which can be separate transcriptional units, part of protein introns, or other transcripts. The long transcripts are called primary miRNA (pri-miRNA) that include imperfectly base-paired hairpin structures. These pri-miRNA are cleaved into one or more shorter precursor miRNAs (pre-miRNAs) by Microprocessor, a protein complex in the nucleus, involving Drosha.


Pre-miRNAs are short stem loops ˜70 nucleotides in length with a 2-nucleotide 3′-overhang that are exported, into the mature 19-25 nucleotide miRNA:miRNA* duplexes. The miRNA strand with lower base pairing stability (the guide strand) can be loaded onto the RNA-induced silencing complex (RISC). The passenger guide strand (marked with *), may be functional, but is usually degraded. The mature miRNA tethers RISC to partly complementary sequence motifs in target mRNAs predominantly found within the 3′ untranslated regions (UTRs) and induces posttranscriptional gene silencing (Bartel, D. P. Cell 136, 215-233 (2009); Saj, A. & Lai, E. C. Curr Opin Genet Dev 21, 504-510 (2011)). miRNAs are important in development, differentiation, cell cycle and growth control, and in virtually all biological pathways in mammals and other multicellular organisms. miRNAs are also involved in cell cycle control, apoptosis and stem cell differentiation, hematopoiesis, hypoxia, muscle development, neurogenesis, insulin secretion, cholesterol metabolism, aging, viral replication and immune responses.


A single miRNA can target hundreds of different mRNA transcripts, while an individual transcript can be targeted by many different miRNAs. More than 28645 microRNAs have been annotated in the latest release of miRBase (v.21). Some miRNAs are encoded by multiple loci, some of which are expressed from tandemly co-transcribed clusters. The features allow for complex regulatory networks with multiple pathways and feedback controls. miRNAs are integral parts of these feedback and regulatory circuits and can help regulate gene expression by keeping protein production within limits (Herranz, H. & Cohen, S. M. Genes Dev 24, 1339-1344 (2010); Posadas, D. M. & Carthew, R. W. Curr Opin Genet Dev 27, 1-6 (2014)).


miRNAs are also important in a large number of human diseases that are associated with abnormal miRNA expression. This association underscores the importance of the miRNA regulatory pathway. Recent miRNA deletion studies have linked miRNA with regulation of the immune responses (Stern-Ginossar, N. et al., Science 317, 376-381 (2007)).


miRNAs also have a strong link to cancer and may play a role in different types of cancer. miRNAs have been found to be downregulated in a number of tumors. miRNAs are important in the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response, and are therefore used in diagnosis and are being targeted clinically. MicroRNAs delicately regulate the balance of angiogenesis, such that experiments depleting all microRNAs suppresses tumor angiogenesis (Chen, S. et al., Genes Dev 28, 1054-1067 (2014)).


As has been shown for protein coding genes, miRNA genes are also subject to epigenetic changes occurring with cancer. Many miRNA loci are associated with CpG islands increasing their opportunity for regulation by DNA methylation (Weber, B., Stresemann, C., Brueckner, B. & Lyko, F. Cell Cycle 6, 1001-1005 (2007)). The majority of studies have used treatment with chromatin remodeling drugs to reveal epigenetically silenced miRNAs.


In addition to their role in RNA silencing, miRNA can also activate translation (Posadas, D. M. & Carthew, R. W. Curr Opin Genet Dev 27, 1-6 (2014)). Knocking out these sites may lead to decreased expression of the targeted gene, while introducing these sites may increase expression.


Individual miRNAs can be knocked out most effectively by mutating the seed sequence (bases 2-8 of the microRNA), which is important for binding specificity. Cleavage in this region, followed by mis-repair by NHEJ can effectively abolish miRNA function by blocking binding to target sites. miRNA could also be inhibited by specific targeting of the special loop region adjacent to the palindromic sequence. Catalytically inactive Cas9 can also be used to inhibit shRNA expression (Zhao, Y. et al., Sci Rep 4, 3943 (2014)). In addition to targeting the miRNA, the binding sites can also be targeted and mutated to prevent the silencing by miRNA.


Chimeric Antigen Receptor (CAR) T Cells


A chimeric antigen receptor refers to an artificial immune cell receptor that is engineered to recognize and bind to an antigen expressed by tumor cells. Generally, a CAR is designed for a T cell and is a chimera of a signaling domain of the T-cell receptor (TcR) complex and an antigen-recognizing domain (e.g., a single chain fragment (scFv) of an antibody or other antibody fragment) (Enblad et al., Human Gene Therapy. 2015; 26(8):498-505). A T cell that expresses a CAR is referred to as a CAR T cell. CARs have the ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC-restricted manner. The non-MHC-restricted antigen recognition gives T-cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T-cell receptor (TCR) alpha and beta chains.


There are four generations of CARs, each of which contains different components. First generation CARs join an antibody-derived scFv to the CD3zeta or z) intracellular signaling domain of the T-cell receptor through hinge and transmembrane domains. Second generation CARs incorporate an additional domain, e.g., CD28, 4-1BB (41BB), or ICOS, to supply a costimulatory signal. Third-generation CARs contain two costimulatory domains fused with the TcR CD3-ζ chain. Third-generation costimulatory domains may include, e.g., a combination of CD3z, CD27, CD28, 4-1BB, ICOS, or OX40. CARs, in some embodiments, contain an ectodomain (e.g., CD3ζ), commonly derived from a single chain variable fragment (scFv), a hinge, a transmembrane domain, and an endodomain with one (first generation), two (second generation), or three (third generation) signaling domains derived from CD3Z and/or co-stimulatory molecules (Maude et al., Blood. 2015; 125(26):4017-4023; Kakarla and Gottschalk, Cancer J. 2014; 20(2):151-155).


CARs typically differ in their functional properties. The CD3 signaling domain of the T-cell receptor, when engaged, will activate and induce proliferation of T-cells but can lead to anergy (a lack of reaction by the body's defense mechanisms, resulting in direct induction of peripheral lymphocyte tolerance). Lymphocytes are considered anergic when they fail to respond to a specific antigen. The addition of a costimulatory domain in second-generation CARs improved replicative capacity and persistence of modified T-cells. Similar antitumor effects are observed in vitro with CD28 or 4-1BB CARs, but preclinical in vivo studies suggest that 4-1BB CARs may produce superior proliferation and/or persistence. Clinical trials suggest that both of these second-generation CARs are capable of inducing substantial T-cell proliferation in vivo, but CARs containing the 4-1BB costimulatory domain appear to persist longer. Third generation CARs combine multiple signaling domains (costimulatory) to augment potency.


In some embodiments, a chimeric antigen receptor is a first generation CAR. In other embodiments, a chimeric antigen receptor is a second generation CAR. In yet other embodiments, a chimeric antigen receptor is a third generation CAR.


A CAR, in some embodiments, comprises an extracellular (ecto) domain comprising an antigen binding domain (e.g., an antibody, such as an scFv), a transmembrane domain, and a cytoplasmic (endo) domain.


Ectodomain. The ectodomain is the region of the CAR that is exposed to the extracellular fluid and, in some embodiments, includes an antigen binding domain, and optionally a signal peptide, a spacer domain, and/or a hinge domain. In some embodiments, the antigen binding domain is a single-chain variable fragment (scFv) that include the light and heavy chains of immunoglobins connected with a short linker peptide (e.g., any one of SEQ ID NO: 1591, 1594, or 1597). The linker, in some embodiments, includes hydrophilic residues with stretches of glycine and serine for flexibility as well as stretches of glutamate and lysine for added solubility. A single-chain variable fragment (scFv) is not actually a fragment of an antibody, but instead is a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of the linker. In some embodiments, the scFv of the present disclosure is humanized. In other embodiments, the scFv is fully human. In yet other embodiments, the scFv is a chimera (e.g., of mouse and human sequence). In some embodiments, the scFv is an anti-CD70 scFv (binds specifically to CD70). Non-limiting examples of anti-CD70 scFv proteins and heavy and/or light chains that may be used as provided herein include those that comprise any one of SEQ ID NOs: 1499 (scFv), 1500 (scFV), 1592 (heavy chain), or 1593 (light chain).


The signal peptide can enhance the antigen specificity of CAR binding. Signal peptides can be derived from antibodies, such as, but not limited to, CD8, as well as epitope tags such as, but not limited to, GST or FLAG. Examples of signal peptides include MLLLVTSLLLCELPHPAFLLIP (SEQ ID NO: 1598) and MALPVTALLLPLALLLHAARP (SEQ ID NO: 1586). Other signal peptides may be used.


In some embodiments, a spacer domain or hinge domain is located between an extracellular domain (comprising the antigen binding domain) and a transmembrane domain of a CAR, or between a cytoplasmic domain and a transmembrane domain of the CAR. A spacer domain is any oligopeptide or polypeptide that functions to link the transmembrane domain to the extracellular domain and/or the cytoplasmic domain in the polypeptide chain. A hinge domain is any oligopeptide or polypeptide that functions to provide flexibility to the CAR, or domains thereof, or to prevent steric hindrance of the CAR, or domains thereof. In some embodiments, a spacer domain or a hinge domain may comprise up to 300 amino acids (e.g., 10 to 100 amino acids, or 5 to 20 amino acids). In some embodiments, one or more spacer domain(s) may be included in other regions of a CAR. In some embodiments, the hinge domain is a CD8 hinge domain. Other hinge domains may be used.


Transmembrane Domain. The transmembrane domain is a hydrophobic alpha helix that spans the membrane. The transmembrane domain provides stability of the CAR. In some embodiments, the transmembrane domain of a CAR as provided herein is a CD8 transmembrane domain. In other embodiments, the transmembrane domain is a CD28 transmembrane domain. In yet other embodiments, the transmembrane domain is a chimera of a CD8 and CD28 transmembrane domain. Other transmembrane domains may be used as provided herein. In some embodiments, the transmembrane domain is a CD8a transmembrane domain, optionally including a 5′ linker.


Endodomain. The endodomain is the functional end of the receptor. Following antigen recognition, receptors cluster and a signal is transmitted to the cell. The most commonly used endodomain component is CD3-zeta, which contains three (3) ITAMs. This transmits an activation signal to the T cell after the antigen is bound. In many cases, CD3-zeta may not provide a fully competent activation signal and, thus, a co-stimulatory signaling is used. For example, CD28 and/or 4-1BB may be used with CD3-zeta (CD3ζ) to transmit a proliferative/survival signal. Thus, in some embodiments, the co-stimulatory molecule of a CAR as provided herein is a CD28 co-stimulatory molecule. In other embodiments, the co-stimulatory molecule is a 4-1BB co-stimulatory molecule. In some embodiments, a CAR includes CD3ζ and CD28. In other embodiments, a CAR includes CD3-zeta and 4-1BB. In still other embodiments, a CAR includes CD3ζ, CD28, and 4-1BB. Non-limiting examples of co-stimulatory molecules that may be used herein include those encoded by the nucleotide sequence of SEQ ID NO: 1377 (CD3-zeta), SEQ ID NO 1336 (CD28), and/or SEQ ID NO: 1339 (4-1BB).


Human Cells


As described and illustrated herein, the principal targets for gene editing are human cells. For example, primary human T cells, CD4+ and/or CD8+, can be edited. They can be isolated from peripheral blood mononuclear cell isolations.


Gene editing can be verified by alterations in target surface protein expression as well as analysis of DNA by PCR and/or sequencing.


Edited cells can have a selective advantage. MHC-I and/or MHC-II as well as PDCD1 or CTLA4 knockout T cells can persist longer in patients.


Edited cells can be assayed for off-target gene editing as well as translocations. They can also be tested for the ability to grow in cytokine free media. If edited cells display low off-target activity and minimal translocations, as well as have the inability to grow in cytokine free media, they will be deemed safe.


Primary human T cells can be isolated from peripheral blood mononuclear cells (PBMC) isolated from leukopaks. T cells can be expanded from PBMC by treatment with anti-CD3/CD28 antibody-coupled nanoparticles or beads. Activated T cells can be electroporated with RNP(s) containing Cas9 complexed to sgRNA. Cells can then be treated with AAV6 virus containing donor template DNA when HDR is needed, for example, for insertion of a nucleic acid encoding a CAR construct. Cells can then be expanded for 1-2 weeks in liquid culture. When TCR negative cells are required, edited cells can be selected for by antibody/column based methods, such as, for example, MACS.


By performing gene editing in allogeneic cells that are derived from a donor who does not have or is not suspected of having a medical condition to be treated, it is possible to generate cells that can be safely re-introduced into the patient, and effectively give rise to a population of cells that are effective in ameliorating one or more clinical conditions associated with the patient's disease.


By performing gene editing in autologous cells that are derived from and therefore already completely immunologically matched with the patient in need, it is possible to generate cells that can be safely re-introduced into the patient, and effectively give rise to a population of cells that are effective in ameliorating one or more clinical conditions associated with the patient's disease.


Progenitor cells (also referred to as stem cells herein) are capable of both proliferation and giving rise to more progenitor cells, these in turn having the ability to generate a large number of mother cells that can in turn give rise to differentiated or differentiable daughter cells. The daughter cells themselves can be induced to proliferate and produce progeny that subsequently differentiate into one or more mature cell types, while also retaining one or more cells with parental developmental potential. The term “stem cell” refers then, to a cell with the capacity or potential, under particular circumstances, to differentiate to a more specialized or differentiated phenotype, and which retains the capacity, under certain circumstances, to proliferate without substantially differentiating. In one aspect, the term progenitor or stem cell refers to a generalized mother cell whose descendants (progeny) specialize, often in different directions, by differentiation, e.g., by acquiring completely individual characters, as occurs in progressive diversification of embryonic cells and tissues. Cellular differentiation is a complex process typically occurring through many cell divisions. A differentiated cell may derive from a multipotent cell that itself is derived from a multipotent cell, and so on. While each of these multipotent cells may be considered stem cells, the range of cell types that each can give rise to may vary considerably. Some differentiated cells also have the capacity to give rise to cells of greater developmental potential. Such capacity may be natural or may be induced artificially upon treatment with various factors. In many biological instances, stem cells are also “multipotent” because they can produce progeny of more than one distinct cell type, but this is not required for “stem-ness.”


Self-renewal is another important aspect of the stem cell. In theory, self-renewal can occur by either of two major mechanisms. Stem cells may divide asymmetrically, with one daughter retaining the stem state and the other daughter expressing some distinct other specific function and phenotype. Alternatively, some of the stem cells in a population can divide symmetrically into two stems, thus maintaining some stem cells in the population as a whole, while other cells in the population give rise to differentiated progeny only. Generally, “progenitor cells” have a cellular phenotype that is more primitive (i.e., is at an earlier step along a developmental pathway or progression than is a fully differentiated cell). Often, progenitor cells also have significant or very high proliferative potential. Progenitor cells can give rise to multiple distinct differentiated cell types or to a single differentiated cell type, depending on the developmental pathway and on the environment in which the cells develop and differentiate.


In the context of cell ontogeny, the adjective “differentiated,” or “differentiating” is a relative term. A “differentiated cell” is a cell that has progressed further down the developmental pathway than the cell to which it is being compared. Thus, stem cells can differentiate into lineage-restricted precursor cells (such as a myocyte progenitor cell), which in turn can differentiate into other types of precursor cells further down the pathway (such as a myocyte precursor), and then to an end-stage differentiated cell, such as a myocyte, which plays a characteristic role in a certain tissue type, and may or may not retain the capacity to proliferate further.


The term “hematopoietic progenitor cell” refers to cells of a stem cell lineage that give rise to all the blood cell types, including erythroid (erythrocytes or red blood cells (RBCs)), myeloid (monocytes and macrophages, neutrophils, basophils, eosinophils, megakaryocytes/platelets, and dendritic cells), and lymphoid (T-cells, B-cells, NK-cells).


Isolating a Peripheral Blood Mononuclear Cell


Peripheral blood mononuclear cells may be isolated according to any method known in the art. For example, white blood cells may be isolated from a liquid sample by centrifugation and cell culturing.


Treating a Patient with GCSF


A patient may optionally be treated with granulocyte colony stimulating factor (GCSF) in accordance with any method known in the art. In some embodiments, the GCSF is administered in combination with Plerixaflor.


Animal Models


For efficacy studies, NOG or NSG mice can be used. They can be transplanted with human lymphoma cell lines and subsequently transplanted with edited human CAR-T cells. Loss/prevention of lymphoma cells can indicate the efficacy of edited T cells.


The safety of TCR edited T cells can be assessed in NOG or NSG mice. Human T cells transplanted into these mice can cause a lethal xenogeneic graft versus host disease (GVHD). Removal of the TCR by gene editing should alleviate this type of GVHD.


Genome Editing


Genome editing generally refers to the process of modifying the nucleotide sequence of a genome, preferably in a precise or pre-determined manner Examples of methods of genome editing described herein include methods of using site-directed nucleases to cut deoxyribonucleic acid (DNA) at precise target locations in the genome, thereby creating single-strand or double-strand DNA breaks at particular locations within the genome. Such breaks may be and regularly are repaired by natural, endogenous cellular processes, such as homology-directed repair (HDR) and non-homologous end-joining (NHEJ), as recently reviewed in Cox et al., Nature Medicine 21(2), 121-31 (2015). These two main DNA repair processes consist of a family of alternative pathways. NHEJ directly joins the DNA ends resulting from a double-strand break, sometimes with the loss or addition of nucleotide sequence, which may disrupt or enhance gene expression. HDR utilizes a homologous sequence, or donor sequence, as a template for inserting a defined DNA sequence at the break point. The homologous sequence may be in the endogenous genome, such as a sister chromatid. Alternatively, the donor may be an exogenous nucleic acid, such as a plasmid, a single-strand oligonucleotide, a double-stranded oligonucleotide, a duplex oligonucleotide or a virus, that has regions of high homology with the nuclease-cleaved locus, but which may also contain additional sequence or sequence changes including deletions that may be incorporated into the cleaved target locus. A third repair mechanism is microhomology-mediated end joining (MMEJ), also referred to as “Alternative NHEJ”, in which the genetic outcome is similar to NHEJ in that small deletions and insertions can occur at the cleavage site. MMEJ makes use of homologous sequences of a few basepairs flanking the DNA break site to drive a more favored DNA end joining repair outcome, and recent reports have further elucidated the molecular mechanism of this process; see, e.g., Cho and Greenberg, Nature 518, 174-76 (2015); Kent et al., Nature Structural and Molecular Biology, Adv. Online doi:10.1038/nsmb.2961 (2015); Mateos-Gomez et al., Nature 518, 254-57 (2015); Ceccaldi et al., Nature 528, 258-62 (2015). In some instances, it may be possible to predict likely repair outcomes based on analysis of potential microhomologies at the site of the DNA break.


Each of these genome editing mechanisms can be used to create desired genomic alterations. A step in the genome editing process is to create one or two DNA breaks, the latter as double-strand breaks or as two single-stranded breaks, in the target locus as close as possible to the site of intended mutation. This can be achieved via the use of site-directed polypeptides, as described and illustrated herein.


Site-directed polypeptides, such as a DNA endonuclease, can introduce double-strand breaks or single-strand breaks in nucleic acids, e.g., genomic DNA. The double-strand break can stimulate a cell's endogenous DNA-repair pathways (e.g., homology-dependent repair or non-homologous end joining or alternative non-homologous end joining (A-NHEJ) or microhomology-mediated end joining). NHEJ can repair cleaved target nucleic acid without the need for a homologous template. This can sometimes result in small deletions or insertions (indels) in the target nucleic acid at the site of cleavage, and can lead to disruption or alteration of gene expression. HDR can occur when a homologous repair template, or donor, is available. The homologous donor template comprises sequences that are homologous to sequences flanking the target nucleic acid cleavage site. The sister chromatid is generally used by the cell as the repair template. However, for the purposes of genome editing, the repair template is often supplied as an exogenous nucleic acid, such as a plasmid, duplex oligonucleotide, single-strand oligonucleotide, double-stranded oligonucleotide, or viral nucleic acid. With exogenous donor templates, it is common to introduce an additional nucleic acid sequence (such as a transgene) or modification (such as a single or multiple base change or a deletion) between the flanking regions of homology so that the additional or altered nucleic acid sequence also becomes incorporated into the target locus. MMEJ results in a genetic outcome that is similar to NHEJ in that small deletions and insertions can occur at the cleavage site. MMEJ makes use of homologous sequences of a few basepairs flanking the cleavage site to drive a favored end-joining DNA repair outcome. In some instances, it may be possible to predict likely repair outcomes based on analysis of potential microhomologies in the nuclease target regions.


Thus, in some embodiments, either non-homologous end joining or homologous recombination is used to insert an exogenous polynucleotide sequence into the target nucleic acid cleavage site. An exogenous polynucleotide sequence is termed a donor polynucleotide (or donor or donor sequence or polynucleotide donor template) herein. In some embodiments, the donor polynucleotide, a portion of the donor polynucleotide, a copy of the donor polynucleotide, or a portion of a copy of the donor polynucleotide is inserted into the target nucleic acid cleavage site. In some embodiments, the donor polynucleotide is an exogenous polynucleotide sequence, i.e., a sequence that does not naturally occur at the target nucleic acid cleavage site.


The modifications of the target DNA due to NHEJ and/or HDR can lead to, for example, mutations, deletions, alterations, integrations, gene correction, gene replacement, gene tagging, transgene insertion, nucleotide deletion, gene disruption, translocations and/or gene mutation. The processes of deleting genomic DNA and integrating non-native nucleic acid into genomic DNA are examples of genome editing.


CRISPR Endonuclease System


A CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) genomic locus can be found in the genomes of many prokaryotes (e.g., bacteria and archaea). In prokaryotes, the CRISPR locus encodes products that function as a type of immune system to help defend the prokaryotes against foreign invaders, such as virus and phage. There are three stages of CRISPR locus function: integration of new sequences into the CRISPR locus, expression of CRISPR RNA (crRNA), and silencing of foreign invader nucleic acid. Five types of CRISPR systems (e.g., Type I, Type II, Type III, Type U, and Type V) have been identified.


A CRISPR locus includes a number of short repeating sequences referred to as “repeats.” When expressed, the repeats can form secondary structures (e.g., hairpins) and/or comprise unstructured single-stranded sequences. The repeats usually occur in clusters and frequently diverge between species. The repeats are regularly interspaced with unique intervening sequences referred to as “spacers,” resulting in a repeat-spacer-repeat locus architecture. The spacers are identical to or have high homology with known foreign invader sequences. A spacer-repeat unit encodes a crisprRNA (crRNA), which is processed into a mature form of the spacer-repeat unit. A crRNA comprises a “seed” or spacer sequence that is involved in targeting a target nucleic acid (in the naturally occurring form in prokaryotes, the spacer sequence targets the foreign invader nucleic acid). A spacer sequence is located at the 5′ or 3′ end of the crRNA.


A CRISPR locus also comprises polynucleotide sequences encoding CRISPR Associated (Cas) genes. Cas genes encode endonucleases involved in the biogenesis and the interference stages of crRNA function in prokaryotes. Some Cas genes comprise homologous secondary and/or tertiary structures.


Type II CRISPR Systems


crRNA biogenesis in a Type II CRISPR system in nature requires a trans-activating CRISPR RNA (tracrRNA). The tracrRNA is modified by endogenous RNaseIII, and then hybridizes to a crRNA repeat in the pre-crRNA array. Endogenous RNaseIII is recruited to cleave the pre-crRNA. Cleaved crRNAs is subjected to exoribonuclease trimming to produce the mature crRNA form (e.g., 5′ trimming) The tracrRNA remains hybridized to the crRNA, and the tracrRNA and the crRNA associate with a site-directed polypeptide (e.g., Cas9). The crRNA of the crRNA-tracrRNA-Cas9 complex guides the complex to a target nucleic acid to which the crRNA can hybridize. Hybridization of the crRNA to the target nucleic acid activates Cas9 for targeted nucleic acid cleavage. The target nucleic acid in a Type II CRISPR system is referred to as a protospacer adjacent motif (PAM). In nature, the PAM is essential to facilitate binding of a site-directed polypeptide (e.g., Cas9) to the target nucleic acid. Type II systems (also referred to as Nmeni or CASS4) are further subdivided into Type II-A (CASS4) and II-B (CASS4a). Jinek et al., Science, 337(6096):816-821 (2012) showed that the CRISPR/Cas9 system is useful for RNA-programmable genome editing, and international patent application publication number WO2013/176772 provides numerous examples and applications of the CRISPR/Cas endonuclease system for site-specific gene editing.


Type V CRISPR Systems


Type V CRISPR systems have several important differences from Type II systems. For example, Cpf1 is a single RNA-guided endonuclease that, in contrast to Type II systems, lacks tracrRNA. In fact, Cpf1-associated CRISPR arrays are processed into mature crRNAs without the requirement of an additional trans-activating tracrRNA. The Type V CRISPR array is processed into short mature crRNAs of 42-44 nucleotides in length, with each mature crRNA beginning with 19 nucleotides of direct repeat followed by 23-25 nucleotides of spacer sequence. In contrast, mature crRNAs in Type II systems start with 20-24 nucleotides of spacer sequence followed by about 22 nucleotides of direct repeat. Also, Cpf1 utilizes a T-rich protospacer-adjacent motif such that Cpf1-crRNA complexes efficiently cleave target DNA preceded by a short T-rich PAM, which is in contrast to the G-rich PAM following the target DNA for Type II systems. Thus, Type V systems cleave at a point that is distant from the PAM, while Type II systems cleave at a point that is adjacent to the PAM. In addition, in contrast to Type II systems, Cpf1 cleaves DNA via a staggered DNA double-stranded break with a 4 or 5 nucleotide 5′ overhang. Type II systems cleave via a blunt double-stranded break. Similar to Type II systems, Cpf1 contains a predicted RuvC-like endonuclease domain, but lacks a second HNH endonuclease domain, which is in contrast to Type II systems.


Cas Genes/Polypeptides and Protospacer Adjacent Motifs


Exemplary CRISPR/Cas polypeptides include the Cas9 polypeptides in FIG. 1 of Fonfara et al., Nucleic Acids Research, 42: 2577-2590 (2014). The CRISPR/Cas gene naming system has undergone extensive rewriting since the Cas genes were discovered. FIG. 5 of Fonfara, supra, provides PAM sequences for the Cas9 polypeptides from various species.


Site-Directed Polypeptides


A site-directed polypeptide is a nuclease used in genome editing to cleave DNA. The site-directed may be administered to a cell or a patient as either: one or more polypeptides, or one or more mRNAs encoding the polypeptide.


In the context of a CRISPR/Cas or CRISPR/Cpf1 system, the site-directed polypeptide can bind to a guide RNA that, in turn, specifies the site in the target DNA to which the polypeptide is directed. In embodiments of the CRISPR/Cas or CRISPR/Cpf1 systems herein, the site-directed polypeptide is an endonuclease, such as a DNA endonuclease.


In some embodiments, a site-directed polypeptide comprises a plurality of nucleic acid-cleaving (i.e., nuclease) domains. Two or more nucleic acid-cleaving domains can be linked together via a linker. For example, the linker comprises a flexible linker. In some embodiments, linkers comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40 or more amino acids in length.


Naturally-occurring wild-type Cas9 enzymes comprise two nuclease domains, a HNH nuclease domain and a RuvC domain. Herein, the “Cas9” refers to both naturally-occurring and recombinant Cas9s. Cas9 enzymes contemplated herein comprises a HNH or HNH-like nuclease domain, and/or a RuvC or RuvC-like nuclease domain.


HNH or HNH-like domains comprise a McrA-like fold. HNH or HNH-like domains comprises two antiparallel β-strands and an α-helix. HNH or HNH-like domains comprises a metal binding site (e.g., a divalent cation binding site). HNH or HNH-like domains can cleave one strand of a target nucleic acid (e.g., the complementary strand of the crRNA targeted strand).


RuvC or RuvC-like domains comprise an RNaseH or RNaseH-like fold. RuvC/RNaseH domains are involved in a diverse set of nucleic acid-based functions including acting on both RNA and DNA. The RNaseH domain comprises 5 β-strands surrounded by a plurality of α-helices. RuvC/RNaseH or RuvC/RNaseH-like domains comprise a metal binding site (e.g., a divalent cation binding site). RuvC/RNaseH or RuvC/RNaseH-like domains can cleave one strand of a target nucleic acid (e.g., the non-complementary strand of a double-stranded target DNA).


Site-directed polypeptides can introduce double-strand breaks or single-strand breaks in nucleic acids, e.g., genomic DNA. The double-strand break can stimulate a cell's endogenous DNA-repair pathways (e.g., homology-dependent repair (HDR) or non-homologous end-joining (NHEJ) or alternative non-homologous end joining (A-NHEJ) or microhomology-mediated end joining (MMEJ)). NHEJ can repair cleaved target nucleic acid without the need for a homologous template. This can sometimes result in small deletions or insertions (indels) in the target nucleic acid at the site of cleavage, and can lead to disruption or alteration of gene expression. HDR can occur when a homologous repair template, or donor, is available. The homologous donor template comprises sequences that are homologous to sequences flanking the target nucleic acid cleavage site. The sister chromatid is generally used by the cell as the repair template. However, for the purposes of genome editing, the repair template is often supplied as an exogenous nucleic acid, such as a plasmid, duplex oligonucleotide, single-strand oligonucleotide or viral nucleic acid. With exogenous donor templates, it is common to introduce an additional nucleic acid sequence (such as a transgene) or modification (such as a single or multiple base change or a deletion) between the flanking regions of homology so that the additional or altered nucleic acid sequence also becomes incorporated into the target locus. MMEJ results in a genetic outcome that is similar to NHEJ in that small deletions and insertions can occur at the cleavage site. MMEJ makes use of homologous sequences of a few basepairs flanking the cleavage site to drive a favored end-joining DNA repair outcome. In some instances, it may be possible to predict likely repair outcomes based on analysis of potential microhomologies in the nuclease target regions.


Thus, in some embodiments, homologous recombination is used to insert an exogenous polynucleotide sequence into the target nucleic acid cleavage site. An exogenous polynucleotide sequence is termed a donor polynucleotide (or donor or donor sequence) herein. In some embodiments, the donor polynucleotide, a portion of the donor polynucleotide, a copy of the donor polynucleotide, or a portion of a copy of the donor polynucleotide is inserted into the target nucleic acid cleavage site. In some embodiments, the donor polynucleotide is an exogenous polynucleotide sequence, i.e., a sequence that does not naturally occur at the target nucleic acid cleavage site.


The modifications of the target DNA due to NHEJ and/or HDR can lead to, for example, mutations, deletions, alterations, integrations, gene correction, gene replacement, gene tagging, transgene insertion, nucleotide deletion, gene disruption, translocations and/or gene mutation. The processes of deleting genomic DNA and integrating non-native nucleic acid into genomic DNA are examples of genome editing.


In some embodiments, the site-directed polypeptide comprises an amino acid sequence having at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% amino acid sequence identity to a wild-type exemplary site-directed polypeptide [e.g., Cas9 from S. pyogenes, US2014/0068797 Sequence ID No. 8 or Sapranauskas et al., Nucleic Acids Res, 39(21): 9275-9282 (2011)], and various other site-directed polypeptides. In some embodiments, the site-directed polypeptide comprises at least 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids.


In some embodiments, the site-directed polypeptide comprises an amino acid sequence having at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% amino acid sequence identity to the nuclease domain of a wild-type exemplary site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra).


In some embodiments, the site-directed polypeptide comprises at most: 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids. In some embodiments, the site-directed polypeptide comprises at least: 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids in a HNH nuclease domain of the site-directed polypeptide. In some embodiments, the site-directed polypeptide comprises at most: 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids in a HNH nuclease domain of the site-directed polypeptide. In some embodiments, the site-directed polypeptide comprises at least: 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids in a RuvC nuclease domain of the site-directed polypeptide. In some embodiments, the site-directed polypeptide comprises at most: 70, 75, 80, 85, 90, 95, 97, 99, or 100% identity to a wild-type site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra) over 10 contiguous amino acids in a RuvC nuclease domain of the site-directed polypeptide.


In some embodiments, the site-directed polypeptide comprises a modified form of a wild-type exemplary site-directed polypeptide. In some embodiments, the modified form of the wild-type exemplary site-directed polypeptide comprises a mutation that reduces the nucleic acid-cleaving activity of the site-directed polypeptide. In some embodiments, the modified form of the wild-type exemplary site-directed polypeptide has less than 90%, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nucleic acid-cleaving activity of the wild-type exemplary site-directed polypeptide (e.g., Cas9 from S. pyogenes, supra). In some embodiments, the modified form of the site-directed polypeptide has no substantial nucleic acid-cleaving activity. When a site-directed polypeptide is a modified form that has no substantial nucleic acid-cleaving activity, it is referred to herein as “enzymatically inactive.”


In some embodiments, the modified form of the site-directed polypeptide comprises a mutation such that it can induce a single-strand break (SSB) on a target nucleic acid (e.g., by cutting only one of the sugar-phosphate backbones of a double-strand target nucleic acid). In some embodiments, the mutation results in less than 90%, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nucleic acid-cleaving activity in one or more of the plurality of nucleic acid-cleaving domains of the wild-type site directed polypeptide (e.g., Cas9 from S. pyogenes, supra). In some embodiments, the mutation results in one or more of the plurality of nucleic acid-cleaving domains retaining the ability to cleave the complementary strand of the target nucleic acid, but reducing its ability to cleave the non-complementary strand of the target nucleic acid. In some embodiments, the mutation results in one or more of the plurality of nucleic acid-cleaving domains retaining the ability to cleave the non-complementary strand of the target nucleic acid, but reducing its ability to cleave the complementary strand of the target nucleic acid. For example, residues in the wild-type exemplary S. pyogenes Cas9 polypeptide, such as Asp10, His840, Asn854 and Asn856, are mutated to inactivate one or more of the plurality of nucleic acid-cleaving domains (e.g., nuclease domains). The residues to be mutated can correspond to residues Asp10, His840, Asn854 and Asn856 in the wild-type exemplary S. pyogenes Cas9 polypeptide (e.g., as determined by sequence and/or structural alignment). Non-limiting examples of mutations include D10A, H840A, N854A or N856A. One skilled in the art will recognize that mutations other than alanine substitutions can be suitable.


In some embodiments, a D10A mutation is combined with one or more of H840A, N854A, or N856A mutations to produce a site-directed polypeptide substantially lacking DNA cleavage activity. In some embodiments, a H840A mutation is combined with one or more of D10A, N854A, or N856A mutations to produce a site-directed polypeptide substantially lacking DNA cleavage activity. In some embodiments, a N854A mutation is combined with one or more of H840A, D10A, or N856A mutations to produce a site-directed polypeptide substantially lacking DNA cleavage activity. In some embodiments, a N856A mutation is combined with one or more of H840A, N854A, or D10A mutations to produce a site-directed polypeptide substantially lacking DNA cleavage activity. Site-directed polypeptides that comprise one substantially inactive nuclease domain are referred to as “nickases”.


Nickase variants of RNA-guided endonucleases, for example Cas9, can be used to increase the specificity of CRISPR-mediated genome editing. Wild type Cas9 is typically guided by a single guide RNA designed to hybridize with a specified ˜20 nucleotide sequence in the target sequence (such as an endogenous genomic locus). However, several mismatches can be tolerated between the guide RNA and the target locus, effectively reducing the length of required homology in the target site to, for example, as little as 13 nt of homology, and thereby resulting in elevated potential for binding and double-strand nucleic acid cleavage by the CRISPR/Cas9 complex elsewhere in the target genome—also known as off-target cleavage. Because nickase variants of Cas9 each only cut one strand, in order to create a double-strand break it is necessary for a pair of nickases to bind in close proximity and on opposite strands of the target nucleic acid, thereby creating a pair of nicks, which is the equivalent of a double-strand break. This requires that two separate guide RNAs—one for each nickase—must bind in close proximity and on opposite strands of the target nucleic acid. This requirement essentially doubles the minimum length of homology needed for the double-strand break to occur, thereby reducing the likelihood that a double-strand cleavage event will occur elsewhere in the genome, where the two guide RNA sites—if they exist—are unlikely to be sufficiently close to each other to enable the double-strand break to form. As described in the art, nickases can also be used to promote HDR versus NHEJ. HDR can be used to introduce selected changes into target sites in the genome through the use of specific donor sequences that effectively mediate the desired changes. Descriptions of various CRISPR/Cas systems for use in gene editing can be found, e.g., in international patent application publication number WO2013/176772, and in Nature Biotechnology 32, 347-355 (2014), and references cited therein.


Mutations contemplated include substitutions, additions, and deletions, or any combination thereof. In some embodiments, the mutation converts the mutated amino acid to alanine. In some embodiments, the mutation converts the mutated amino acid to another amino acid (e.g., glycine, serine, threonine, cysteine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tyrosine, tryptophan, aspartic acid, glutamic acid, asparagines, glutamine, histidine, lysine, or arginine). In some embodiments, the mutation converts the mutated amino acid to a non-natural amino acid (e.g., selenomethionine). In some embodiments, the mutation converts the mutated amino acid to amino acid mimics (e.g., phosphomimics). In some embodiments, the mutation is a conservative mutation. For example, the mutation converts the mutated amino acid to amino acids that resemble the size, shape, charge, polarity, conformation, and/or rotamers of the mutated amino acids (e.g., cysteine/serine mutation, lysine/asparagine mutation, histidine/phenylalanine mutation). In some embodiments, the mutation causes a shift in reading frame and/or the creation of a premature stop codon. In some embodiments, mutations cause changes to regulatory regions of genes or loci that affect expression of one or more genes.


In some embodiments, the site-directed polypeptide (e.g., variant, mutated, enzymatically inactive and/or conditionally enzymatically inactive site-directed polypeptide) targets nucleic acid. In some embodiments, the site-directed polypeptide (e.g., variant, mutated, enzymatically inactive and/or conditionally enzymatically inactive endoribonuclease) targets DNA. In some embodiments, the site-directed polypeptide (e.g., variant, mutated, enzymatically inactive and/or conditionally enzymatically inactive endoribonuclease) targets RNA.


In some embodiments, the site-directed polypeptide comprises one or more non-native sequences (e.g., the site-directed polypeptide is a fusion protein).


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), a nucleic acid binding domain, and two nucleic acid cleaving domains (i.e., a HNH domain and a RuvC domain).


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), and two nucleic acid cleaving domains (i.e., a HNH domain and a RuvC domain).


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), and two nucleic acid cleaving domains, wherein one or both of the nucleic acid cleaving domains comprise at least 50% amino acid identity to a nuclease domain from Cas9 from a bacterium (e.g., S. pyogenes).


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), two nucleic acid cleaving domains (i.e., a HNH domain and a RuvC domain), and non-native sequence (for example, a nuclear localization signal) or a linker linking the site-directed polypeptide to a non-native sequence.


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), two nucleic acid cleaving domains (i.e., a HNH domain and a RuvC domain), wherein the site-directed polypeptide comprises a mutation in one or both of the nucleic acid cleaving domains that reduces the cleaving activity of the nuclease domains by at least 50%.


In some embodiments, the site-directed polypeptide comprises an amino acid sequence comprising at least 15% amino acid identity to a Cas9 from a bacterium (e.g., S. pyogenes), and two nucleic acid cleaving domains (i.e., a HNH domain and a RuvC domain), wherein one of the nuclease domains comprises mutation of aspartic acid 10, and/or wherein one of the nuclease domains comprises a mutation of histidine 840, and wherein the mutation reduces the cleaving activity of the nuclease domain(s) by at least 50%.


In some embodiments, the one or more site-directed polypeptides, e.g. DNA endonucleases, comprises two nickases that together effect one double-strand break at a specific locus in the genome, or four nickases that together effect or cause two double-strand breaks at specific loci in the genome. Alternatively, one site-directed polypeptide, e.g. DNA endonuclease, effects one double-strand break at a specific locus in the genome.


Genome-Targeting Nucleic Acid


The present disclosure provides a genome-targeting nucleic acid that can direct the activities of an associated polypeptide (e.g., a site-directed polypeptide) to a specific target sequence within a target nucleic acid. The genome-targeting nucleic acid can be an RNA. A genome-targeting RNA is referred to as a “guide RNA” or “gRNA” herein. A guide RNA comprises at least a spacer sequence that hybridizes to a target nucleic acid sequence of interest, and a CRISPR repeat sequence. In Type II systems, the gRNA also comprises a second RNA called the tracrRNA sequence. In the Type II guide RNA (gRNA), the CRISPR repeat sequence and tracrRNA sequence hybridize to each other to form a duplex. In the Type V guide RNA (gRNA), the crRNA forms a duplex. In both systems, the duplex binds a site-directed polypeptide, such that the guide RNA and site-direct polypeptide form a complex. In some embodiments, the genome-targeting nucleic acid provides target specificity to the complex by virtue of its association with the site-directed polypeptide. The genome-targeting nucleic acid thus directs the activity of the site-directed polypeptide.


Exemplary guide RNAs include the spacer sequences in SEQ ID NOs: 83-158, 284-408, 458-506, 699-890, 1083-1276, 1288-1298, and 1308-1312 with the genome location of their target sequence and the associated endonuclease (e.g., Cas9) cut site. As is understood by the person of ordinary skill in the art, each guide RNA is designed to include a spacer sequence complementary to its genomic target sequence. For example, each of the spacer sequences in SEQ ID NOs: 83-158, 284-408, 458-506, 699-890, 1083-1276, 1288-1298, and 1308-1312 can be put into a single RNA chimera or a crRNA (along with a corresponding tracrRNA). See Jinek et al., Science, 337, 816-821 (2012) and Deltcheva et al., Nature, 471, 602-607 (2011).


In some embodiments, the genome-targeting nucleic acid is a double-molecule guide RNA. In some embodiments, the genome-targeting nucleic acid is a single-molecule guide RNA.


A double-molecule guide RNA comprises two strands of RNA. The first strand comprises in the 5′ to 3′ direction, an optional spacer extension sequence, a spacer sequence and a minimum CRISPR repeat sequence. The second strand comprises a minimum tracrRNA sequence (complementary to the minimum CRISPR repeat sequence), a 3′ tracrRNA sequence and an optional tracrRNA extension sequence.


A single-molecule guide RNA (sgRNA) in a Type II system comprises, in the 5′ to 3′ direction, an optional spacer extension sequence, a spacer sequence, a minimum CRISPR repeat sequence, a single-molecule guide linker, a minimum tracrRNA sequence, a 3′ tracrRNA sequence and an optional tracrRNA extension sequence. The optional tracrRNA extension may comprise elements that contribute additional functionality (e.g., stability) to the guide RNA. The single-molecule guide linker links the minimum CRISPR repeat and the minimum tracrRNA sequence to form a hairpin structure. The optional tracrRNA extension comprises one or more hairpins.


A single-molecule guide RNA (sgRNA) in a Type V system comprises, in the 5′ to 3′ direction, a minimum CRISPR repeat sequence and a spacer sequence.


The sgRNA can comprise a 20 nucleotide spacer sequence at the 5′ end of the sgRNA sequence. The sgRNA can comprise a less than a 20 nucleotide spacer sequence at the 5′ end of the sgRNA sequence. The sgRNA can comprise a more than 20 nucleotide spacer sequence at the 5′ end of the sgRNA sequence. The sgRNA can comprise a variable length spacer sequence with 17-30 nucleotides at the 5′ end of the sgRNA sequence (see Table 1).


The sgRNA can comprise no uracil at the 3′ end of the sgRNA sequence, such as in SEQ ID NO: 1 of Table 1. The sgRNA can comprise one or more uracil at the 3′ end of the sgRNA sequence, such as in SEQ ID NOs: 1, 2, or 3 in Table 1. For example, the sgRNA can comprise 1 uracil (U) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 2 uracil (UU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 3 uracil (UUU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 4 uracil (UUUU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 5 uracil (UUUUU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 6 uracil (UUUUUU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 7 uracil (UUUUUUU) at the 3′ end of the sgRNA sequence. The sgRNA can comprise 8 uracil (UUUUUUUU) at the 3′ end of the sgRNA sequence.


The sgRNA can be unmodified or modified. For example, modified sgRNAs can comprise one or more 2′-O-methyl phosphorothioate nucleotides.










TABLE 1





SEQ ID NO.
sgRNA sequence







1
nnnnnnnnnnnnnnnnnnnnguuuuagagcuag



aaauagcaaguuaaaauaaggcuaguccguuau



caacuugaaaaaguggcaccgagucggugcuuuu







  








2
nnnnnnnnnnnnnnnnnnnnguuuuagagcuag



aaauagcaaguuaaaauaaggcuaguccguuau



caacuugaaaaaguggcaccgagucggugc





3
n(17-30)guuuuagagcuagaaauagcaaguu



aaaauaaggcuaguccguuaucaacuugaaaaa



guggcaccgagucggugcu(1-8)









By way of illustration, guide RNAs used in the CRISPR/Cas/Cpf1 system, or other smaller RNAs can be readily synthesized by chemical means, as illustrated below and described in the art. While chemical synthetic procedures are continually expanding, purifications of such RNAs by procedures such as high performance liquid chromatography (HPLC, which avoids the use of gels such as PAGE) tends to become more challenging as polynucleotide lengths increase significantly beyond a hundred or so nucleotides. One approach used for generating RNAs of greater length is to produce two or more molecules that are ligated together. Much longer RNAs, such as those encoding a Cas9 or Cpf1 endonuclease, are more readily generated enzymatically. Various types of RNA modifications can be introduced during or after chemical synthesis and/or enzymatic generation of RNAs, e.g., modifications that enhance stability, reduce the likelihood or degree of innate immune response, and/or enhance other attributes, as described in the art.


Spacer Extension Sequence


In some examples of genome-targeting nucleic acids, a spacer extension sequence may modify activity, provide stability and/or provide a location for modifications of a genome-targeting nucleic acid. A spacer extension sequence may modify on- or off-target activity or specificity. In some embodiments, a spacer extension sequence is provided. A spacer extension sequence may have a length of more than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 1000, 2000, 3000, 4000, 5000, 6000, or 7000 or more nucleotides. The spacer extension sequence may have a length of less than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 1000, 2000, 3000, 4000, 5000, 6000, 7000 or more nucleotides. In some embodiments, the spacer extension sequence is less than 10 nucleotides in length. In some embodiments, the spacer extension sequence is between 10-30 nucleotides in length. In some embodiments, the spacer extension sequence is between 30-70 nucleotides in length.


In some embodiments, the spacer extension sequence comprises another moiety (e.g., a stability control sequence, an endoribonuclease binding sequence, a ribozyme). In some embodiments, the moiety decreases or increases the stability of a nucleic acid targeting nucleic acid. In some embodiments, the moiety is a transcriptional terminator segment (i.e., a transcription termination sequence). In some embodiments, the moiety functions in a eukaryotic cell. In some embodiments, the moiety functions in a prokaryotic cell. In some embodiments, the moiety functions in both eukaryotic and prokaryotic cells. Non-limiting examples of suitable moieties include: a 5′ cap (e.g., a 7-methylguanylate cap (m7 G)), a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and protein complexes), a sequence that forms a dsRNA duplex (i.e., a hairpin), a sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like), a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.), and/or a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators, transcriptional repressors, DNA methyltransferases, DNA demethylases, histone acetyltransferases, histone deacetylases, and the like).


Spacer Sequence


A gRNA comprises a spacer sequence. A spacer sequence is a sequence (e.g., a 20 base pair sequence) that defines the target sequence (e.g., a DNA target sequences, such as a genomic target sequence) of a target nucleic acid of interest. The “target sequence” is adjacent to a PAM sequence and is the sequence modified by an RNA-guided nuclease (e.g., Cas9). The “target nucleic acid” is a double-stranded molecule: one strand comprises the target sequence and is referred to as the “PAM strand,” and the other complementary strand is referred to as the “non-PAM strand.” One of skill in the art recognizes that the gRNA spacer sequence hybridizes to the reverse complement of the target sequence, which is located in the non-PAM strand of the target nucleic acid of interest. Thus, the gRNA spacer sequence is the RNA equivalent of the target sequence. For example, if the target sequence is 5′-AGAGCAACAGTGCTGTGGCC-3′ (SEQ ID NO: 76), then the gRNA spacer sequence is 5′-AGAGCAACAGUGCUGUGGCC-3′ (SEQ ID NO: 152). The spacer of a gRNA interacts with a target nucleic acid of interest in a sequence-specific manner via hybridization (i.e., base pairing). The nucleotide sequence of the spacer thus varies depending on the target sequence of the target nucleic acid of interest.


In a CRISPR/Cas system herein, the spacer sequence is designed to hybridize to a region of the target nucleic acid that is located 5′ of a PAM of the Cas9 enzyme used in the system. The spacer may perfectly match the target sequence or may have mismatches. Each Cas9 enzyme has a particular PAM sequence that it recognizes in a target DNA. For example, S. pyogenes recognizes in a target nucleic acid a PAM that comprises the sequence 5′-NRG-3′, where R comprises either A or G, where N is any nucleotide and N is immediately 3′ of the target nucleic acid sequence targeted by the spacer sequence.


In some embodiments, the target nucleic acid sequence comprises 20 nucleotides. In some embodiments, the target nucleic acid comprises less than 20 nucleotides. In some embodiments, the target nucleic acid comprises more than 20 nucleotides. In some embodiments, the target nucleic acid comprises at least: 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. In some embodiments, the target nucleic acid comprises at most: 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. In some embodiments, the target nucleic acid sequence comprises 20 bases immediately 5′ of the first nucleotide of the PAM. For example, in a sequence comprising 5′-NNNNNNNNNNNNNNNNNNNNNRG-3′, the target nucleic acid comprises the sequence that corresponds to the Ns, wherein N is any nucleotide, and the underlined NRG sequence is the S. pyogenes PAM.


In some embodiments, the spacer sequence that hybridizes to the target nucleic acid has a length of at least about 6 nucleotides (nt). The spacer sequence can be at least about 6 nt, at least about 10 nt, at least about 15 nt, at least about 18 nt, at least about 19 nt, at least about 20 nt, at least about 25 nt, at least about 30 nt, at least about 35 nt or at least about 40 nt, from about 6 nt to about 80 nt, from about 6 nt to about 50 nt, from about 6 nt to about 45 nt, from about 6 nt to about 40 nt, from about 6 nt to about 35 nt, from about 6 nt to about 30 nt, from about 6 nt to about 25 nt, from about 6 nt to about 20 nt, from about 6 nt to about 19 nt, from about 10 nt to about 50 nt, from about 10 nt to about 45 nt, from about 10 nt to about 40 nt, from about 10 nt to about 35 nt, from about 10 nt to about 30 nt, from about 10 nt to about 25 nt, from about 10 nt to about 20 nt, from about 10 nt to about 19 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60 nt, from about 20 nt to about 25 nt, from about 20 nt to about 30 nt, from about 20 nt to about 35 nt, from about 20 nt to about 40 nt, from about 20 nt to about 45 nt, from about 20 nt to about 50 nt, or from about 20 nt to about 60 nt. In some embodiments, the spacer sequence comprises 20 nucleotides. In some embodiments, the spacer comprises 19 nucleotides.


In some embodiments, the percent complementarity between the spacer sequence and the target nucleic acid is at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or 100%. In some embodiments, the percent complementarity between the spacer sequence and the target nucleic acid is at most about 30%, at most about 40%, at most about 50%, at most about 60%, at most about 65%, at most about 70%, at most about 75%, at most about 80%, at most about 85%, at most about 90%, at most about 95%, at most about 97%, at most about 98%, at most about 99%, or 100%. In some embodiments, the percent complementarity between the spacer sequence and the target nucleic acid is 100% over the six contiguous 5′-most nucleotides of the target sequence of the complementary strand of the target nucleic acid. In some embodiments, the percent complementarity between the spacer sequence and the target nucleic acid is at least 60% over about 20 contiguous nucleotides. In some embodiments, the length of the spacer sequence and the target nucleic acid differs by 1 to 6 nucleotides, which may be thought of as a bulge or bulges.


In some embodiments, the spacer sequence can be designed using a computer program. The computer program can use variables, such as predicted melting temperature, secondary structure formation, predicted annealing temperature, sequence identity, genomic context, chromatin accessibility, % GC, frequency of genomic occurrence (e.g., of sequences that are identical or are similar but vary in one or more spots as a result of mismatch, insertion or deletion), methylation status, presence of SNPs, and the like.


Minimum CRISPR Repeat Sequence


In some embodiments, a minimum CRISPR repeat sequence is a sequence with at least about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% sequence identity to a reference CRISPR repeat sequence (e.g., crRNA from S. pyogenes).


A minimum CRISPR repeat sequence comprises nucleotides that can hybridize to a minimum tracrRNA sequence in a cell. The minimum CRISPR repeat sequence and a minimum tracrRNA sequence form a duplex, i.e. a base-paired double-stranded structure. Together, the minimum CRISPR repeat sequence and the minimum tracrRNA sequence bind to the site-directed polypeptide. At least a part of the minimum CRISPR repeat sequence hybridizes to the minimum tracrRNA sequence. In some embodiments, at least a part of the minimum CRISPR repeat sequence comprises at least about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% complementary to the minimum tracrRNA sequence. In some embodiments, at least a part of the minimum CRISPR repeat sequence comprises at most about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% complementary to the minimum tracrRNA sequence.


The minimum CRISPR repeat sequence can have a length from about 7 nucleotides to about 100 nucleotides. For example, the length of the minimum CRISPR repeat sequence is from about 7 nucleotides (nt) to about 50 nt, from about 7 nt to about 40 nt, from about 7 nt to about 30 nt, from about 7 nt to about 25 nt, from about 7 nt to about 20 nt, from about 7 nt to about 15 nt, from about 8 nt to about 40 nt, from about 8 nt to about 30 nt, from about 8 nt to about 25 nt, from about 8 nt to about 20 nt, from about 8 nt to about 15 nt, from about 15 nt to about 100 nt, from about 15 nt to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt, or from about 15 nt to about 25 nt. In some embodiments, the minimum CRISPR repeat sequence is approximately 9 nucleotides in length. In some embodiments, the minimum CRISPR repeat sequence is approximately 12 nucleotides in length.


In some embodiments, the minimum CRISPR repeat sequence is at least about 60% identical to a reference minimum CRISPR repeat sequence (e.g., wild-type crRNA from S. pyogenes) over a stretch of at least 6, 7, or 8 contiguous nucleotides. For example, the minimum CRISPR repeat sequence is at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100% identical to a reference minimum CRISPR repeat sequence over a stretch of at least 6, 7, or 8 contiguous nucleotides.


Minimum tracrRNA Sequence


In some embodiments, a minimum tracrRNA sequence is a sequence with at least about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% sequence identity to a reference tracrRNA sequence (e.g., wild type tracrRNA from S. pyogenes).


A minimum tracrRNA sequence comprises nucleotides that hybridize to a minimum CRISPR repeat sequence in a cell. A minimum tracrRNA sequence and a minimum CRISPR repeat sequence form a duplex, i.e. a base-paired double-stranded structure. Together, the minimum tracrRNA sequence and the minimum CRISPR repeat bind to a site-directed polypeptide. At least a part of the minimum tracrRNA sequence can hybridize to the minimum CRISPR repeat sequence. In some embodiments, the minimum tracrRNA sequence is at least about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% complementary to the minimum CRISPR repeat sequence.


The minimum tracrRNA sequence can have a length from about 7 nucleotides to about 100 nucleotides. For example, the minimum tracrRNA sequence can be from about 7 nucleotides (nt) to about 50 nt, from about 7 nt to about 40 nt, from about 7 nt to about 30 nt, from about 7 nt to about 25 nt, from about 7 nt to about 20 nt, from about 7 nt to about 15 nt, from about 8 nt to about 40 nt, from about 8 nt to about 30 nt, from about 8 nt to about 25 nt, from about 8 nt to about 20 nt, from about 8 nt to about 15 nt, from about 15 nt to about 100 nt, from about 15 nt to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt or from about 15 nt to about 25 nt long. In some embodiments, the minimum tracrRNA sequence is approximately 9 nucleotides in length. In some embodiments, the minimum tracrRNA sequence is approximately 12 nucleotides. In some embodiments, the minimum tracrRNA consists of tracrRNA nt 23-48 described in Jinek et al., supra.


In some embodiments, the minimum tracrRNA sequence is at least about 60% identical to a reference minimum tracrRNA (e.g., wild type, tracrRNA from S. pyogenes) sequence over a stretch of at least 6, 7, or 8 contiguous nucleotides. For example, the minimum tracrRNA sequence is at least about 65% identical, about 70% identical, about 75% identical, about 80% identical, about 85% identical, about 90% identical, about 95% identical, about 98% identical, about 99% identical or 100% identical to a reference minimum tracrRNA sequence over a stretch of at least 6, 7, or 8 contiguous nucleotides.


In some embodiments, the duplex between the minimum CRISPR RNA and the minimum tracrRNA comprises a double helix. In some embodiments, the duplex between the minimum CRISPR RNA and the minimum tracrRNA comprises at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides. In some embodiments, the duplex between the minimum CRISPR RNA and the minimum tracrRNA comprises at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides.


In some embodiments, the duplex comprises a mismatch (i.e., the two strands of the duplex are not 100% complementary). In some embodiments, the duplex comprises at least about 1, 2, 3, 4, or 5 or mismatches. In some embodiments, the duplex comprises at most about 1, 2, 3, 4, or 5 or mismatches. In some embodiments, the duplex comprises no more than 2 mismatches.


Bulges


In some embodiments, there is a “bulge” in the duplex between the minimum CRISPR RNA and the minimum tracrRNA. A bulge is an unpaired region of nucleotides within the duplex. In some embodiments, the bulge contributes to the binding of the duplex to the site-directed polypeptide. In some embodiments, the bulge comprises, on one side of the duplex, an unpaired 5′-XXXY-3′ where X is any purine and Y comprises a nucleotide that can form a wobble pair with a nucleotide on the opposite strand, and an unpaired nucleotide region on the other side of the duplex. The number of unpaired nucleotides on the two sides of the duplex can be different.


In some embodiments, the bulge comprises an unpaired purine (e.g., adenine) on the minimum CRISPR repeat strand of the bulge. In some embodiments, the bulge comprises an unpaired 5′-AAGY-3′ of the minimum tracrRNA sequence strand of the bulge, where Y comprises a nucleotide that can form a wobble pairing with a nucleotide on the minimum CRISPR repeat strand.


In some embodiments, a bulge on the minimum CRISPR repeat side of the duplex comprises at least 1, 2, 3, 4, or 5 or more unpaired nucleotides. In some embodiments, a bulge on the minimum CRISPR repeat side of the duplex comprises at most 1, 2, 3, 4, or 5 or more unpaired nucleotides. In some embodiments, a bulge on the minimum CRISPR repeat side of the duplex comprises 1 unpaired nucleotide.


In some embodiments, a bulge on the minimum tracrRNA sequence side of the duplex comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more unpaired nucleotides. In some embodiments, a bulge on the minimum tracrRNA sequence side of the duplex comprises at most 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more unpaired nucleotides. In some embodiments, a bulge on a second side of the duplex (e.g., the minimum tracrRNA sequence side of the duplex) comprises 4 unpaired nucleotides.


In some embodiments, a bulge comprises at least one wobble pairing. In some embodiments, a bulge comprises at most one wobble pairing. In some embodiments, a bulge comprises at least one purine nucleotide. In some embodiments, a bulge comprises at least 3 purine nucleotides. In some embodiments, a bulge sequence comprises at least 5 purine nucleotides. In some embodiments, a bulge sequence comprises at least one guanine nucleotide. In some embodiments, a bulge sequence comprises at least one adenine nucleotide.


Hairpins


In various embodiments, one or more hairpins are located 3′ to the minimum tracrRNA in the 3′ tracrRNA sequence.


In some embodiments, the hairpin starts at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more nucleotides 3′ from the last paired nucleotide in the minimum CRISPR repeat and minimum tracrRNA sequence duplex. In some embodiments, the hairpin starts at most about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more nucleotides 3′ of the last paired nucleotide in the minimum CRISPR repeat and minimum tracrRNA sequence duplex.


In some embodiments, the hairpin comprises at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more consecutive nucleotides. In some embodiments, the hairpin comprises at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or more consecutive nucleotides.


In some embodiments, the hairpin comprises a CC dinucleotide (i.e., two consecutive cytosine nucleotides).


In some embodiments, the hairpin comprises duplexed nucleotides (e.g., nucleotides in a hairpin, hybridized together). For example, a hairpin comprises a CC dinucleotide that is hybridized to a GG dinucleotide in a hairpin duplex of the 3′ tracrRNA sequence.


One or more of the hairpins can interact with guide RNA-interacting regions of a site-directed polypeptide.


In some embodiments, there are two or more hairpins, and in other embodiments there are three or more hairpins.


3′ tracrRNA Sequence


In some embodiments, a 3′ tracrRNA sequence comprises a sequence with at least about 30%, about 40%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or 100% sequence identity to a reference tracrRNA sequence (e.g., a tracrRNA from S. pyogenes).


The 3′ tracrRNA sequence has a length from about 6 nucleotides to about 100 nucleotides. For example, the 3′ tracrRNA sequence can have a length from about 6 nucleotides (nt) to about 50 nt, from about 6 nt to about 40 nt, from about 6 nt to about 30 nt, from about 6 nt to about 25 nt, from about 6 nt to about 20 nt, from about 6 nt to about 15 nt, from about 8 nt to about 40 nt, from about 8 nt to about 30 nt, from about 8 nt to about 25 nt, from about 8 nt to about 20 nt, from about 8 nt to about 15 nt, from about 15 nt to about 100 nt, from about 15 nt to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt, or from about 15 nt to about 25 nt. In some embodiments, the 3′ tracrRNA sequence has a length of approximately 14 nucleotides.


In some embodiments, the 3′ tracrRNA sequence is at least about 60% identical to a reference 3′ tracrRNA sequence (e.g., wild type 3′ tracrRNA sequence from S. pyogenes) over a stretch of at least 6, 7, or 8 contiguous nucleotides. For example, the 3′ tracrRNA sequence is at least about 60% identical, about 65% identical, about 70% identical, about 75% identical, about 80% identical, about 85% identical, about 90% identical, about 95% identical, about 98% identical, about 99% identical, or 100% identical, to a reference 3′ tracrRNA sequence (e.g., wild type 3′ tracrRNA sequence from S. pyogenes) over a stretch of at least 6, 7, or 8 contiguous nucleotides.


In some embodiments, the 3′ tracrRNA sequence comprises more than one duplexed region (e.g., hairpin, hybridized region). In some embodiments, the 3′ tracrRNA sequence comprises two duplexed regions.


In some embodiments, the 3′ tracrRNA sequence comprises a stem loop structure. In some embodiments, the stem loop structure in the 3′ tracrRNA comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 or more nucleotides. In some embodiments, the stem loop structure in the 3′ tracrRNA comprises at most 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more nucleotides. In some embodiments, the stem loop structure comprises a functional moiety. For example, the stem loop structure may comprise an aptamer, a ribozyme, a protein-interacting hairpin, a CRISPR array, an intron, or an exon. In some embodiments, the stem loop structure comprises at least about 1, 2, 3, 4, or 5 or more functional moieties. In some embodiments, the stem loop structure comprises at most about 1, 2, 3, 4, or 5 or more functional moieties.


In some embodiments, the hairpin in the 3′ tracrRNA sequence comprises a P-domain. In some embodiments, the P-domain comprises a double-stranded region in the hairpin.


tracrRNA Extension Sequence


In some embodiments, a tracrRNA extension sequence is provided whether the tracrRNA is in the context of single-molecule guides or double-molecule guides. In some embodiments, the tracrRNA extension sequence has a length from about 1 nucleotide to about 400 nucleotides. In some embodiments, the tracrRNA extension sequence has a length of more than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, or 400 nucleotides. In some embodiments, the tracrRNA extension sequence has a length from about 20 to about 5000 or more nucleotides. In some embodiments, the tracrRNA extension sequence has a length of more than 1000 nucleotides. In some embodiments, the tracrRNA extension sequence has a length of less than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400 or more nucleotides. In some embodiments, the tracrRNA extension sequence has a length of less than 1000 nucleotides. In some embodiments, the tracrRNA extension sequence comprises less than 10 nucleotides in length. In some embodiments, the tracrRNA extension sequence is 10-30 nucleotides in length. In some embodiments, the tracrRNA extension sequence is 30-70 nucleotides in length.


In some embodiments, the tracrRNA extension sequence comprises a functional moiety (e.g., a stability control sequence, ribozyme, endoribonuclease binding sequence). In some embodiments, the functional moiety comprises a transcriptional terminator segment (i.e., a transcription termination sequence). In some embodiments, the functional moiety has a total length from about 10 nucleotides (nt) to about 100 nucleotides, from about 10 nt to about 20 nt, from about 20 nt to about 30 nt, from about 30 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt, from about 15 nt to about 80 nt, from about 15 nt to about 50 nt, from about 15 nt to about 40 nt, from about 15 nt to about 30 nt, or from about 15 nt to about 25 nt. In some embodiments, the functional moiety functions in a eukaryotic cell. In some embodiments, the functional moiety functions in a prokaryotic cell. In some embodiments, the functional moiety functions in both eukaryotic and prokaryotic cells.


Non-limiting examples of suitable tracrRNA extension functional moieties include a 3′ poly-adenylated tail, a riboswitch sequence (e.g., to allow for regulated stability and/or regulated accessibility by proteins and protein complexes), a sequence that forms a dsRNA duplex (i.e., a hairpin), a sequence that targets the RNA to a subcellular location (e.g., nucleus, mitochondria, chloroplasts, and the like), a modification or sequence that provides for tracking (e.g., direct conjugation to a fluorescent molecule, conjugation to a moiety that facilitates fluorescent detection, a sequence that allows for fluorescent detection, etc.), and/or a modification or sequence that provides a binding site for proteins (e.g., proteins that act on DNA, including transcriptional activators, transcriptional repressors, DNA methyltransferases, DNA demethylases, histone acetyltransferases, histone deacetylases, and the like). In some embodiments, the tracrRNA extension sequence comprises a primer binding site or a molecular index (e.g., barcode sequence). In some embodiments, the tracrRNA extension sequence comprises one or more affinity tags.


Single-Molecule Guide Linker Sequence


In some embodiments, the linker sequence of a single-molecule guide nucleic acid has a length from about 3 nucleotides to about 100 nucleotides. In Jinek et al., supra, for example, a simple 4 nucleotide “tetraloop” (-GAAA-) was used, Science, 337(6096):816-821 (2012). An illustrative linker has a length from about 3 nucleotides (nt) to about 90 nt, from about 3 nt to about 80 nt, from about 3 nt to about 70 nt, from about 3 nt to about 60 nt, from about 3 nt to about 50 nt, from about 3 nt to about 40 nt, from about 3 nt to about 30 nt, from about 3 nt to about 20 nt, from about 3 nt to about 10 nt. For example, the linker can have a length from about 3 nt to about 5 nt, from about 5 nt to about 10 nt, from about 10 nt to about 15 nt, from about 15 nt to about 20 nt, from about 20 nt to about 25 nt, from about 25 nt to about 30 nt, from about 30 nt to about 35 nt, from about 35 nt to about 40 nt, from about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt. In some embodiments, the linker of a single-molecule guide nucleic acid is between 4 and 40 nucleotides. In some embodiments, the linker is at least about 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, or 7000 or more nucleotides. In some embodiments, the linker is at most about 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, or 7000 or more nucleotides.


Linkers comprise any of a variety of sequences, although in some examples the linker will not comprise sequences that have extensive regions of homology with other portions of the guide RNA, which might cause intramolecular binding that could interfere with other functional regions of the guide. In Jinek et al., supra, a simple 4 nucleotide sequence -GAAA- was used, Science, 337(6096):816-821 (2012), but numerous other sequences, including longer sequences can likewise be used.


In some embodiments, the linker sequence comprises a functional moiety. For example, the linker sequence may comprise one or more features, including an aptamer, a ribozyme, a protein-interacting hairpin, a protein binding site, a CRISPR array, an intron, or an exon. In some embodiments, the linker sequence comprises at least about 1, 2, 3, 4, or 5 or more functional moieties. In some embodiments, the linker sequence comprises at most about 1, 2, 3, 4, or 5 or more functional moieties.


Genome engineering strategies to edit cells by deletion, insertion, or modulation of one or more nucleic acids or exons within or near a target gene, and by knocking-in cDNA, an expression vector, or minigene into the locus of the corresponding target gene.


Some genome engineering strategies involve deleting the target DNA and/or knocking-in cDNA, expression vector, or a minigene (comprised of one or more exons and introns or natural or synthetic introns) and/or knocking-in a cDNA interrupted by some or all target introns into the locus of the corresponding gene. These strategies treat, and/or mitigate the diseased state. These strategies may require a more custom approach. This is advantageous, as HDR efficiencies may be inversely related to the size of the donor molecule. Also, it is expected that the donor templates can fit into size constrained viral vector molecules, e.g., adeno-associated virus (AAV) molecules, which have been shown to be an effective means of donor template delivery. Also, it is expected that the donor templates can fit into other size constrained molecules, including, by way of non-limiting example, platelets and/or exosomes or other microvesicles.


Homology direct repair is a cellular mechanism for repairing double-stranded breaks (DSBs). The most common form is homologous recombination. There are additional pathways for HDR, including single-strand annealing and alternative-HDR. Genome engineering tools allow researchers to manipulate the cellular homologous recombination pathways to create site-specific modifications to the genome. It has been found that cells can repair a double-stranded break using a synthetic donor molecule provided in trans. Therefore, by introducing a double-stranded break near a specific mutation and providing a suitable donor, targeted changes can be made in the genome. Specific cleavage increases the rate of HDR more than 1,000 fold above the rate of 1 in 106 cells receiving a homologous donor alone. The rate of homology directed repair (HDR) at a particular nucleotide is a function of the distance to the cut site, so choosing overlapping or nearest target sites is important. Gene editing offers the advantage over gene addition, as correcting in situ leaves the rest of the genome unperturbed.


Supplied donors for editing by HDR vary markedly but generally contain the intended sequence with small or large flanking homology arms to allow annealing to the genomic DNA. The homology regions flanking the introduced genetic changes can be 30 bp or smaller or as large as a multi-kilobase cassette that can contain promoters, cDNAs, etc. Both single-stranded and double-stranded oligonucleotide donors have been used. These oligonucleotides range in size from less than 100 nt to over many kb, though longer ssDNA can also be generated and used. Double-stranded donors are often used, including PCR amplicons, plasmids, and mini-circles. In general, it has been found that an AAV vector is a very effective means of delivery of a donor template, though the packaging limits for individual donors is <5 kb. Active transcription of the donor increased HDR three-fold, indicating the inclusion of promoter may increase conversion. Conversely, CpG methylation of the donor decreased gene expression and HDR.


In addition to wildtype endonucleases, such as Cas9, nickase variants exist that have one or the other nuclease domain inactivated resulting in cutting of only one DNA strand. HDR can be directed from individual Cas nickases or using pairs of nickases that flank the target area. Donors can be single-stranded, nicked, or dsDNA.


The donor DNA can be supplied with the nuclease or independently by a variety of different methods, for example by transfection, nano-particle, micro-injection, or viral transduction. A range of tethering options has been proposed to increase the availability of the donors for HDR. Examples include attaching the donor to the nuclease, attaching to DNA binding proteins that bind nearby, or attaching to proteins that are involved in DNA end binding or repair.


The repair pathway choice can be guided by a number of culture conditions, such as those that influence cell cycling, or by targeting of DNA repair and associated proteins. For example, to increase HDR, key NHEJ molecules can be suppressed, such as KU70, KU80 or DNA ligase IV.


Without a donor present, the ends from a DNA break or ends from different breaks can be joined using the several nonhomologous repair pathways in which the DNA ends are joined with little or no base-pairing at the junction. In addition to canonical NHEJ, there are similar repair mechanisms, such as alt-NHEJ. If there are two breaks, the intervening segment can be deleted or inverted. NHEJ repair pathways can lead to insertions, deletions or mutations at the joints.


NHEJ was used to insert a gene expression cassette into a defined locus in human cell lines after nuclease cleavage of both the chromosome and the donor molecule. (Cristea, et al., Biotechnology and Bioengineering 110:871-880 (2012); Maresca, M., Lin, V. G., Guo, N. & Yang, Y., Genome Res 23, 539-546 (2013)).


In addition to genome editing by NHEJ or HDR, site-specific gene insertions have been conducted that use both the NHEJ pathway and HR. A combination approach may be applicable in certain settings, possibly including intron/exon borders. NHEJ may prove effective for ligation in the intron, while the error-free HDR may be better suited in the coding region.


The target gene contains a number of exons. Any one or more of the exons or nearby introns may be targeted. Alternatively, there are various mutations associated with various medical conditions, which are a combination of insertions, deletions, missense, nonsense, frameshift and other mutations, with the common effect of inactivating target. Any one or more of the mutations may be repaired in order to restore the inactive target. As a further alternative, a cDNA construct, expression vector, or minigene (comprised of, natural or synthetic enhancer and promoter, one or more exons, and natural or synthetic introns, and natural or synthetic 3′UTR and polyadenylation signal) may be knocked-in to the genome or a target gene. In some embodiments, the methods can provide one gRNA or a pair of gRNAs that can be used to facilitate incorporation of a new sequence from a polynucleotide donor template to knock-in a cDNA construct, expression vector, or minigene


Some embodiments of the methods provide gRNA pairs that make a deletion by cutting the gene twice, one gRNA cutting at the 5′ end of one or more mutations and the other gRNA cutting at the 3′ end of one or more mutations that facilitates insertion of a new sequence from a polynucleotide donor template to replace the one or more mutations, or deletion may exclude mutant amino acids or amino acids adjacent to it (e.g., premature stop codon) and lead to expression of a functional protein, or restore an open reading frame. The cutting may be accomplished by a pair of DNA endonucleases that each makes a DSB in the genome, or by multiple nickases that together make a DSB in the genome.


Alternatively, some embodiments of the methods provide one gRNA to make one double-strand cut around one or more mutations that facilitates insertion of a new sequence from a polynucleotide donor template to replace the one or more mutations. The double-strand cut may be made by a single DNA endonuclease or multiple nickases that together make a DSB in the genome, or single gRNA may lead to deletion (MMEJ), which may exclude mutant amino acid (e.g., premature stop codon) and lead to expression of a functional protein, or restore an open reading frame.


Illustrative modifications within the target gene include replacements within or near (proximal) to the mutations referred to above, such as within the region of less than 3 kb, less than 2 kb, less than 1 kb, less than 0.5 kb upstream or downstream of the specific mutation. Given the relatively wide variations of mutations in the target gene, it will be appreciated that numerous variations of the replacements referenced above (including without limitation larger as well as smaller deletions), would be expected to result in restoration of the target gene.


Such variants include replacements that are larger in the 5′ and/or 3′ direction than the specific mutation in question, or smaller in either direction. Accordingly, by “near” or “proximal” with respect to specific replacements, it is intended that the SSB or DSB locus associated with a desired replacement boundary (also referred to herein as an endpoint) may be within a region that is less than about 3 kb from the reference locus noted. In some embodiments, the SSB or DSB locus is more proximal and within 2 kb, within 1 kb, within 0.5 kb, or within 0.1 kb. In the case of small replacement, the desired endpoint is at or “adjacent to” the reference locus, by which it is intended that the endpoint is within 100 bp, within 50 bp, within 25 bp, or less than about 10 bp to 5 bp from the reference locus.


Embodiments comprising larger or smaller replacements is expected to provide the same benefit, as long as the target protein activity is restored. It is thus expected that many variations of the replacements described and illustrated herein will be effective for ameliorating a medical condition.


Another genome engineering strategy involves exon deletion. Targeted deletion of specific exons is an attractive strategy for treating a large subset of patients with a single therapeutic cocktail. Deletions can either be single exon deletions or multi-exon deletions. While multi-exon deletions can reach a larger number of patients, for larger deletions the efficiency of deletion greatly decreases with increased size. Therefore, deletions range can be from 40 to 10,000 base pairs (bp) in size. For example, deletions may range from 40-100; 100-300; 300-500; 500-1,000; 1,000-2,000; 2,000-3,000; 3,000-5,000; or 5,000-10,000 base pairs in size.


Deletions can occur in enhancer, promoter, 1st intron, and/or 3′UTR leading to upregulation of the gene expression, and/or through deletion of the regulatory elements.


In order to ensure that the pre-mRNA is properly processed following deletion, the surrounding splicing signals can be deleted. Splicing donor and acceptors are generally within 100 base pairs of the neighboring intron. Therefore, in some embodiments, methods can provide all gRNAs that cut approximately +/−100-3100 bp with respect to each exon/intron junction of interest.


For any of the genome editing strategies, gene editing can be confirmed by sequencing or PCR analysis.


Target Sequence Selection


Shifts in the location of the 5′ boundary and/or the 3′ boundary relative to particular reference loci are used to facilitate or enhance particular applications of gene editing, which depend in part on the endonuclease system selected for the editing, as further described and illustrated herein.


In a first, nonlimiting example of such target sequence selection, many endonuclease systems have rules or criteria that guide the initial selection of potential target sites for cleavage, such as the requirement of a PAM sequence motif in a particular position adjacent to the DNA cleavage sites in the case of CRISPR Type II or Type V endonucleases.


In another nonlimiting example of target sequence selection or optimization, the frequency of off-target activity for a particular combination of target sequence and gene editing endonuclease (i.e. the frequency of DSBs occurring at sites other than the selected target sequence) is assessed relative to the frequency of on-target activity. In some embodiments, cells that have been correctly edited at the desired locus may have a selective advantage relative to other cells. Illustrative, but nonlimiting, examples of a selective advantage include the acquisition of attributes such as enhanced rates of replication, persistence, resistance to certain conditions, enhanced rates of successful engraftment or persistence in vivo following introduction into a patient, and other attributes associated with the maintenance or increased numbers or viability of such cells. In other embodiments, cells that have been correctly edited at the desired locus may be positively selected for by one or more screening methods used to identify, sort or otherwise select for cells that have been correctly edited. Both selective advantage and directed selection methods may take advantage of the phenotype associated with the correction. In some embodiments, cells may be edited two or more times in order to create a second modification that creates a new phenotype that is used to select or purify the intended population of cells. Such a second modification could be created by adding a second gRNA for a selectable or screenable marker. In some embodiments, cells can be correctly edited at the desired locus using a DNA fragment that contains the cDNA and also a selectable marker.


Whether any selective advantage is applicable or any directed selection is to be applied in a particular case, target sequence selection is also guided by consideration of off-target frequencies in order to enhance the effectiveness of the application and/or reduce the potential for undesired alterations at sites other than the desired target. As described further and illustrated herein and in the art, the occurrence of off-target activity is influenced by a number of factors including similarities and dissimilarities between the target site and various off-target sites, as well as the particular endonuclease used. Bioinformatics tools are available that assist in the prediction of off-target activity, and frequently such tools can also be used to identify the most likely sites of off-target activity, which can then be assessed in experimental settings to evaluate relative frequencies of off-target to on-target activity, thereby allowing the selection of sequences that have higher relative on-target activities. Illustrative examples of such techniques are provided herein, and others are known in the art.


Another aspect of target sequence selection relates to homologous recombination events. Sequences sharing regions of homology can serve as focal points for homologous recombination events that result in deletion of intervening sequences. Such recombination events occur during the normal course of replication of chromosomes and other DNA sequences, and also at other times when DNA sequences are being synthesized, such as in the case of repairs of double-strand breaks (DSBs), which occur on a regular basis during the normal cell replication cycle but may also be enhanced by the occurrence of various events (such as UV light and other inducers of DNA breakage) or the presence of certain agents (such as various chemical inducers). Many such inducers cause DSBs to occur indiscriminately in the genome, and DSBs are regularly being induced and repaired in normal cells. During repair, the original sequence may be reconstructed with complete fidelity, however, in some embodiments, small insertions or deletions (referred to as “indels”) are introduced at the DSB site.


DSBs may also be specifically induced at particular locations, as in the case of the endonucleases systems described herein, which can be used to cause directed or preferential gene modification events at selected chromosomal locations. The tendency for homologous sequences to be subject to recombination in the context of DNA repair (as well as replication) can be taken advantage of in a number of circumstances, and is the basis for one application of gene editing systems, such as CRISPR, in which homology directed repair is used to insert a sequence of interest, provided through use of a “donor” polynucleotide, into a desired chromosomal location.


Regions of homology between particular sequences, which can be small regions of “microhomology” that may comprise as few as ten basepairs or less, can also be used to bring about desired deletions. For example, a single DSB is introduced at a site that exhibits microhomology with a nearby sequence. During the normal course of repair of such DSB, a result that occurs with high frequency is the deletion of the intervening sequence as a result of recombination being facilitated by the DSB and concomitant cellular repair process.


In some circumstances, however, selecting target sequences within regions of homology can also give rise to much larger deletions, including gene fusions (when the deletions are in coding regions), which may or may not be desired given the particular circumstances.


The examples provided herein further illustrate the selection of various target regions for the creation of DSBs designed to induce replacements that result in modulation of target protein activity, as well as the selection of specific target sequences within such regions that are designed to minimize off-target events relative to on-target events.


Nucleic Acid Modifications


In some embodiments, polynucleotides introduced into cells comprise one or more modifications that can be used individually or in combination, for example, to enhance activity, stability or specificity, alter delivery, reduce innate immune responses in host cells, or for other enhancements, as further described herein and known in the art.


In some embodiments, modified polynucleotides are used in the CRISPR/Cas9/Cpf1 system, in which case the guide RNAs (either single-molecule guides or double-molecule guides) and/or a DNA or an RNA encoding a Cas or Cpf1 endonuclease introduced into a cell can be modified, as described and illustrated below. Such modified polynucleotides can be used in the CRISPR/Cas9/Cpf1 system to edit any one or more genomic loci.


Using the CRISPR/Cas9/Cpf1 system for purposes of nonlimiting illustrations of such uses, modifications of guide RNAs can be used to enhance the formation or stability of the CRISPR/Cas9/Cpf1 genome editing complex comprising guide RNAs, which may be single-molecule guides or double-molecule, and a Cas or Cpf1 endonuclease. Modifications of guide RNAs can also or alternatively be used to enhance the initiation, stability or kinetics of interactions between the genome editing complex with the target sequence in the genome, which can be used, for example, to enhance on-target activity. Modifications of guide RNAs can also or alternatively be used to enhance specificity, e.g., the relative rates of genome editing at the on-target site as compared to effects at other (off-target) sites.


Modifications can also or alternatively be used to increase the stability of a guide RNA, e.g., by increasing its resistance to degradation by ribonucleases (RNases) present in a cell, thereby causing its half-life in the cell to be increased. Modifications enhancing guide RNA half-life can be particularly useful in aspects in which a Cas or Cpf1 endonuclease is introduced into the cell to be edited via an RNA that needs to be translated in order to generate endonuclease, because increasing the half-life of guide RNAs introduced at the same time as the RNA encoding the endonuclease can be used to increase the time that the guide RNAs and the encoded Cas or Cpf1 endonuclease co-exist in the cell.


Modifications can also or alternatively be used to decrease the likelihood or degree to which RNAs introduced into cells elicit innate immune responses. Such responses, which have been well characterized in the context of RNA interference (RNAi), including small-interfering RNAs (siRNAs), as described below and in the art, tend to be associated with reduced half-life of the RNA and/or the elicitation of cytokines or other factors associated with immune responses.


One or more types of modifications can also be made to RNAs encoding an endonuclease that are introduced into a cell, including, without limitation, modifications that enhance the stability of the RNA (such as by increasing its degradation by RNAses present in the cell), modifications that enhance translation of the resulting product (i.e. the endonuclease), and/or modifications that decrease the likelihood or degree to which the RNAs introduced into cells elicit innate immune responses.


Combinations of modifications, such as the foregoing and others, can likewise be used. In the case of CRISPR/Cas9/Cpf1, for example, one or more types of modifications can be made to guide RNAs (including those exemplified above), and/or one or more types of modifications can be made to RNAs encoding Cas endonuclease (including those exemplified above).


By way of illustration, guide RNAs used in the CRISPR/Cas9/Cpf1 system, or other smaller RNAs can be readily synthesized by chemical means, enabling a number of modifications to be readily incorporated, as illustrated below and described in the art. While chemical synthetic procedures are continually expanding, purifications of such RNAs by procedures such as high performance liquid chromatography (HPLC, which avoids the use of gels such as PAGE) tends to become more challenging as polynucleotide lengths increase significantly beyond a hundred or so nucleotides. One approach used for generating chemically-modified RNAs of greater length is to produce two or more molecules that are ligated together. Much longer RNAs, such as those encoding a Cas9 endonuclease, are more readily generated enzymatically. While fewer types of modifications are generally available for use in enzymatically produced RNAs, there are still modifications that can be used to, e.g., enhance stability, reduce the likelihood or degree of innate immune response, and/or enhance other attributes, as described further below and in the art; and new types of modifications are regularly being developed.


By way of illustration of various types of modifications, especially those used frequently with smaller chemically synthesized RNAs, modifications can comprise one or more nucleotides modified at the 2′ position of the sugar, in some embodiments, a 2′-O-alkyl, 2′-O-alkyl-O-alkyl, or 2′-fluoro-modified nucleotide. In some embodiments, RNA modifications comprise 2′-fluoro, 2′-amino or 2′ O-methyl modifications on the ribose of pyrimidines, abasic residues, or an inverted base at the 3′ end of the RNA. Such modifications are routinely incorporated into oligonucleotides and these oligonucleotides have been shown to have a higher Tm (i.e., higher target binding affinity) than 2′-deoxyoligonucleotides against a given target.


A number of nucleotide and nucleoside modifications have been shown to make the oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligonucleotide; these modified oligos survive intact for a longer time than unmodified oligonucleotides. Specific examples of modified oligonucleotides include those comprising modified backbones, for example, phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Some oligonucleotides are oligonucleotides with phosphorothioate backbones and those with heteroatom backbones, particularly CH2—NH—O—CH2, CH, —N(CH3)—O—CH2 (known as a methylene(methylimino) or MMI backbone), CH2—O—N (CH3)—CH2, CH2—N(CH3)—N(CH3)—CH2 and O—N(CH3)— CH2—CH2 backbones, wherein the native phosphodiester backbone is represented as O— P—O— CH); amide backbones [see De Mesmaeker et al., Ace. Chem. Res., 28:366-374 (1995)]; morpholino backbone structures (see Summerton and Weller, U.S. Pat. No. 5,034,506); peptide nucleic acid (PNA) backbone (wherein the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone, see Nielsen et al., Science 1991, 254, 1497). Phosphorus-containing linkages include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3′ alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′; see U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.


Morpholino-based oligomeric compounds are described in Braasch and David Corey, Biochemistry, 41(14): 4503-4510 (2002); Genesis, Volume 30, Issue 3, (2001); Heasman, Dev. Biol., 243: 209-214 (2002); Nasevicius et al., Nat. Genet., 26:216-220 (2000); Lacerra et al., Proc. Natl. Acad. Sci., 97: 9591-9596 (2000); and U.S. Pat. No. 5,034,506, issued Jul. 23, 1991.


Cyclohexenyl nucleic acid oligonucleotide mimetics are described in Wang et al., J. Am. Chem. Soc., 122: 8595-8602 (2000).


Modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These comprise those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S, and CH2 component parts; see U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.


One or more substituted sugar moieties can also be included, e.g., one of the following at the 2′ position: OH, SH, SCH3, F, OCN, OCH3, OCH3O(CH2)nCH3, O(CH2)nNH2, or O(CH2)n CH3, where n is from 1 to about 10; C1 to C10 lower alkyl, alkoxyalkoxy, substituted lower alkyl, alkaryl or aralkyl; Cl; Br; CN; CF3; OCF3; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; SOCH3; SO2CH3; ONO2; NO2; N3; NH2; heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonucleotide; or a group for improving the pharmacodynamic properties of an oligonucleotide and other substituents having similar properties. In some embodiments, a modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl)) (Martin et al, Helv. Chim Acta, 1995, 78, 486). Other modifications include 2′-methoxy (2′-O—CH3), 2′-propoxy (2′-OCH2CH2CH3) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics, such as cyclobutyls in place of the pentofuranosyl group.


In some embodiments, both a sugar and an internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, for example, an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds comprise, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Further teaching of PNA compounds can be found in Nielsen et al, Science, 254: 1497-1500 (1991).


Guide RNAs can also include, additionally or alternatively, nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include adenine (A), guanine (G), thymine (T), cytosine (C), and uracil (U). Modified nucleobases include nucleobases found only infrequently or transiently in natural nucleic acids, e.g., hypoxanthine, 6-methyladenine, 5-Me pyrimidines, particularly 5-methylcytosine (also referred to as 5-methyl-2′ deoxycytosine and often referred to in the art as 5-Me-C), 5-hydroxymethylcytosine (HMC), glycosyl HMC and gentobiosyl HMC, as well as synthetic nucleobases, e.g., 2-aminoadenine, 2-(methylamino)adenine, 2-(imidazolylalkyl)adenine, 2-(aminoalklyamino)adenine or other heterosubstituted alkyladenines, 2-thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl)adenine, and 2,6-diaminopurine. Kornberg, A., DNA Replication, W. H. Freeman & Co., San Francisco, pp 75-77 (1980); Gebeyehu et al., Nucl. Acids Res. 15:4513 (1997). A “universal” base known in the art, e.g., inosine, can also be included. 5-Me-C substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., in Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are embodiments of base substitutions.


Modified nucleobases comprise other synthetic and natural nucleobases, such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudo-uracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylquanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine, and 3-deazaguanine and 3-deazaadenine.


Further, nucleobases comprise those disclosed in U.S. Pat. No. 3,687,808, those disclosed in ‘The Concise Encyclopedia of Polymer Science And Engineering’, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandle Chemie, International Edition’, 1991, 30, page 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications’, pages 289-302, Crooke, S. T. and Lebleu, B. ea., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, comprising 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds, ‘Antisense Research and Applications’, CRC Press, Boca Raton, 1993, pp. 276-278) and are aspects of base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications. Modified nucleobases are described in U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,596,091; 5,614,617; 5,681,941; 5,750,692; 5,763,588; 5,830,653; 6,005,096; and US Patent Application Publication 2003/0158403.


Thus, the term “modified” refers to a non-natural sugar, phosphate, or base that is incorporated into a guide RNA, an endonuclease, or both a guide RNA and an endonuclease. It is not necessary for all positions in a given oligonucleotide to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single oligonucleotide, or even in a single nucleoside within an oligonucleotide.


In some embodiments, the guide RNAs and/or mRNA (or DNA) encoding an endonuclease are chemically linked to one or more moieties or conjugates that enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide. Such moieties comprise, but are not limited to, lipid moieties such as a cholesterol moiety [Letsinger et al., Proc. Natl. Acad. Sci. USA, 86: 6553-6556 (1989)]; cholic acid [Manoharan et al., Bioorg. Med. Chem. Let., 4: 1053-1060 (1994)]; a thioether, e.g., hexyl-S-tritylthiol [Manoharan et al, Ann. N.Y. Acad. Sci., 660: 306-309 (1992) and Manoharan et al., Bioorg. Med. Chem. Let., 3: 2765-2770 (1993)]; a thiocholesterol [Oberhauser et al., Nucl. Acids Res., 20: 533-538 (1992)]; an aliphatic chain, e.g., dodecandiol or undecyl residues [Kabanov et al., FEBS Lett., 259: 327-330 (1990) and Svinarchuk et al., Biochimie, 75: 49-54 (1993)]; a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate [Manoharan et al., Tetrahedron Lett., 36: 3651-3654 (1995) and Shea et al., Nucl. Acids Res., 18: 3777-3783 (1990)]; a polyamine or a polyethylene glycol chain [Mancharan et al., Nucleosides & Nucleotides, 14: 969-973 (1995)]; adamantane acetic acid [Manoharan et al., Tetrahedron Lett., 36: 3651-3654 (1995)]; a palmityl moiety [(Mishra et al., Biochim Biophys. Acta, 1264: 229-237 (1995)]; or an octadecylamine or hexylamino-carbonyl-t oxycholesterol moiety [Crooke et al., J. Pharmacol. Exp. Ther., 277: 923-937 (1996)]. See also U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599, 928 and 5,688,941.


Sugars and other moieties can be used to target proteins and complexes comprising nucleotides, such as cationic polysomes and liposomes, to particular sites. For example, hepatic cell directed transfer can be mediated via asialoglycoprotein receptors (ASGPRs); see, e.g., Hu, et al., Protein Pept Lett. 21(10):1025-30 (2014). Other systems known in the art and regularly developed can be used to target biomolecules of use in the present case and/or complexes thereof to particular target cells of interest.


These targeting moieties or conjugates can include conjugate groups covalently bound to functional groups, such as primary or secondary hydroxyl groups. Conjugate groups of the disclosure include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this disclosure, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this disclosure, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present disclosure. Representative conjugate groups are disclosed in International Patent Application No. PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No. 6,287,860, which are incorporated herein by reference. Conjugate moieties include, but are not limited to, lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-5-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxy cholesterol moiety. See, e.g., U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941.


Longer polynucleotides that are less amenable to chemical synthesis and are typically produced by enzymatic synthesis can also be modified by various means. Such modifications can include, for example, the introduction of certain nucleotide analogs, the incorporation of particular sequences or other moieties at the 5′ or 3′ ends of molecules, and other modifications. By way of illustration, the mRNA encoding Cas9 is approximately 4 kb in length and can be synthesized by in vitro transcription. Modifications to the mRNA can be applied to, e.g., increase its translation or stability (such as by increasing its resistance to degradation with a cell), or to reduce the tendency of the RNA to elicit an innate immune response that is often observed in cells following introduction of exogenous RNAs, particularly longer RNAs such as that encoding Cas9.


Numerous such modifications have been described in the art, such as polyA tails, 5′ cap analogs (e.g., Anti Reverse Cap Analog (ARCA) or m7G(5′)ppp(5′)G (mCAP)), modified 5′ or 3′ untranslated regions (UTRs), use of modified bases (such as Pseudo-UTP, 2-Thio-UTP, 5-Methylcytidine-5′-Triphosphate (5-Methyl-CTP) or N6-Methyl-ATP), or treatment with phosphatase to remove 5′ terminal phosphates. These and other modifications are known in the art, and new modifications of RNAs are regularly being developed.


There are numerous commercial suppliers of modified RNAs, including for example, TriLink Biotech, AxoLabs, Bio-Synthesis Inc., Dharmacon and many others. As described by TriLink, for example, 5-Methyl-CTP can be used to impart desirable characteristics, such as increased nuclease stability, increased translation or reduced interaction of innate immune receptors with in vitro transcribed RNA. 5-Methylcytidine-5′-Triphosphate (5-Methyl-CTP), N6-Methyl-ATP, as well as Pseudo-UTP and 2-Thio-UTP, have also been shown to reduce innate immune stimulation in culture and in vivo while enhancing translation, as illustrated in publications by Kormann et al. and Warren et al. referred to below.


It has been shown that chemically modified mRNA delivered in vivo can be used to achieve improved therapeutic effects; see, e.g., Kormann et al., Nature Biotechnology 29, 154-157 (2011). Such modifications can be used, for example, to increase the stability of the RNA molecule and/or reduce its immunogenicity. Using chemical modifications such as Pseudo-U, N6-Methyl-A, 2-Thio-U and 5-Methyl-C, it was found that substituting just one quarter of the uridine and cytidine residues with 2-Thio-U and 5-Methyl-C respectively resulted in a significant decrease in toll-like receptor (TLR) mediated recognition of the mRNA in mice. By reducing the activation of the innate immune system, these modifications can be used to effectively increase the stability and longevity of the mRNA in vivo; see, e.g., Kormann et al., supra.


It has also been shown that repeated administration of synthetic messenger RNAs incorporating modifications designed to bypass innate anti-viral responses can reprogram differentiated human cells to pluripotency. See, e.g., Warren, et al., Cell Stem Cell, 7(5):618-30 (2010). Such modified mRNAs that act as primary reprogramming proteins can be an efficient means of reprogramming multiple human cell types. Such cells are referred to as induced pluripotency stem cells (iPSCs), and it was found that enzymatically synthesized RNA incorporating 5-Methyl-CTP, Pseudo-UTP and an Anti Reverse Cap Analog (ARCA) could be used to effectively evade the cell's antiviral response; see, e.g., Warren et al., supra.


Other modifications of polynucleotides described in the art include, for example, the use of polyA tails, the addition of 5′ cap analogs (such as m7G(5′)ppp(5′)G (mCAP)), modifications of 5′ or 3′ untranslated regions (UTRs), or treatment with phosphatase to remove 5′ terminal phosphates—and new approaches are regularly being developed.


A number of compositions and techniques applicable to the generation of modified RNAs for use herein have been developed in connection with the modification of RNA interference (RNAi), including small-interfering RNAs (siRNAs). siRNAs present particular challenges in vivo because their effects on gene silencing via mRNA interference are generally transient, which can require repeat administration. In addition, siRNAs are double-stranded RNAs (dsRNA) and mammalian cells have immune responses that have evolved to detect and neutralize dsRNA, which is often a by-product of viral infection. Thus, there are mammalian enzymes such as PKR (dsRNA-responsive kinase), and potentially retinoic acid-inducible gene I (RIG-I), that can mediate cellular responses to dsRNA, as well as Toll-like receptors (such as TLR3, TLR7 and TLR8) that can trigger the induction of cytokines in response to such molecules; see, e.g., the reviews by Angart et al., Pharmaceuticals (Basel) 6(4): 440-468 (2013); Kanasty et al., Molecular Therapy 20(3): 513-524 (2012); Burnett et al., Biotechnol J. 6(9):1130-46 (2011); Judge and MacLachlan, Hum Gene Ther 19(2):111-24 (2008); and references cited therein.


A large variety of modifications have been developed and applied to enhance RNA stability, reduce innate immune responses, and/or achieve other benefits that can be useful in connection with the introduction of polynucleotides into human cells, as described herein; see, e.g., the reviews by Whitehead K A et al., Annual Review of Chemical and Biomolecular Engineering, 2: 77-96 (2011); Gaglione and Messere, Mini Rev Med Chem, 10(7):578-95 (2010); Chernolovskaya et al, Curr Opin Mol Ther., 12(2):158-67 (2010); Deleavey et al., Curr Protoc Nucleic Acid Chem Chapter 16: Unit 16.3 (2009); Behlke, Oligonucleotides 18(4):305-19 (2008); Fucini et al., Nucleic Acid Ther 22(3): 205-210 (2012); Bremsen et al., Front Genet 3:154 (2012).


As noted above, there are a number of commercial suppliers of modified RNAs, many of which have specialized in modifications designed to improve the effectiveness of siRNAs. A variety of approaches are offered based on various findings reported in the literature. For example, Dharmacon notes that replacement of a non-bridging oxygen with sulfur (phosphorothioate, PS) has been extensively used to improve nuclease resistance of siRNAs, as reported by Kole, Nature Reviews Drug Discovery 11:125-140 (2012). Modifications of the 2′-position of the ribose have been reported to improve nuclease resistance of the internucleotide phosphate bond while increasing duplex stability (Tm), which has also been shown to provide protection from immune activation. A combination of moderate PS backbone modifications with small, well-tolerated 2′-substitutions (2′-O-Methyl, 2′-Fluoro, 2′-Hydro) have been associated with highly stable siRNAs for applications in vivo, as reported by Soutschek et al. Nature 432:173-178 (2004); and 2′-O-Methyl modifications have been reported to be effective in improving stability as reported by Volkov, Oligonucleotides 19:191-202 (2009). With respect to decreasing the induction of innate immune responses, modifying specific sequences with 2′-O-Methyl, 2′-Fluoro, 2′-Hydro have been reported to reduce TLR7/TLR8 interaction while generally preserving silencing activity; see, e.g., Judge et al., Mol. Ther. 13:494-505 (2006); and Cekaite et al., J. Mol. Biol. 365:90-108 (2007). Additional modifications, such as 2-thiouracil, pseudouracil, 5-methylcytosine, 5-methyluracil, and N6-methyladenosine have also been shown to minimize the immune effects mediated by TLR3, TLR7, and TLR8; see, e.g., Kariko, K. et al., Immunity 23:165-175 (2005).


As is also known in the art, and commercially available, a number of conjugates can be applied to polynucleotides, such as RNAs, for use herein that can enhance their delivery and/or uptake by cells, including for example, cholesterol, tocopherol and folic acid, lipids, peptides, polymers, linkers and aptamers; see, e.g., the review by Winkler, Ther. Deliv. 4:791-809 (2013), and references cited therein.


Codon-Optimization


In some embodiments, a polynucleotide encoding a site-directed polypeptide is codon-optimized according to methods standard in the art for expression in the cell containing the target DNA of interest. For example, if the intended target nucleic acid is in a human cell, a human codon-optimized polynucleotide encoding Cas9 is contemplated for use for producing the Cas9 polypeptide.


Complexes of a Genome-Targeting Nucleic Acid and a Site-Directed Polypeptide


A genome-targeting nucleic acid interacts with a site-directed polypeptide (e.g., a nucleic acid-guided nuclease such as Cas9), thereby forming a complex. The genome-targeting nucleic acid guides the site-directed polypeptide to a target nucleic acid.


RNPs


The site-directed polypeptide and genome-targeting nucleic acid may each be administered separately to a cell or a patient. On the other hand, the site-directed polypeptide may be pre-complexed with one or more guide RNAs, or one or more crRNA together with a tracrRNA. The pre-complexed material may then be administered to a cell or a patient. Such pre-complexed material is known as a ribonucleoprotein particle (RNP).


Nucleic Acids Encoding System Components


The present disclosure provides a nucleic acid comprising a nucleotide sequence encoding a genome-targeting nucleic acid of the disclosure, a site-directed polypeptide of the disclosure, and/or any nucleic acid or proteinaceous molecule necessary to carry out the aspects of the methods of the disclosure.


The nucleic acid encoding a genome-targeting nucleic acid of the disclosure, a site-directed polypeptide of the disclosure, and/or any nucleic acid or proteinaceous molecule necessary to carry out the aspects of the methods of the disclosure comprises a vector (e.g., a recombinant expression vector).


The term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double-stranded DNA loop into which additional nucleic acid segments can be ligated. Another type of vector is a viral vector (e.g., AAV), wherein additional nucleic acid segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.


In some embodiments, vectors are capable of directing the expression of nucleic acids to which they are operatively linked. Such vectors are referred to herein as “recombinant expression vectors”, or more simply “expression vectors”, which serve equivalent functions.


The term “operably linked” means that the nucleotide sequence of interest is linked to regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence. The term “regulatory sequence” is intended to include, for example, promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are well known in the art and are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells, and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the target cell, the level of expression desired, and the like.


Expression vectors contemplated include, but are not limited to, viral vectors based on vaccinia virus, poliovirus, adenovirus, adeno-associated virus, SV40, herpes simplex virus, human immunodeficiency virus, retrovirus (e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus) and other recombinant vectors. Other vectors contemplated for eukaryotic target cells include, but are not limited to, the vectors pXT1, pSG5, pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia). Additional vectors contemplated for eukaryotic target cells include, but are not limited to, the vectors. Other vectors may be used so long as they are compatible with the host cell.


In some embodiments, a vector comprises one or more transcription and/or translation control elements. Depending on the host/vector system utilized, any of a number of suitable transcription and translation control elements, including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. may be used in the expression vector. In some embodiments, the vector is a self-inactivating vector that either inactivates the viral sequences or the components of the CRISPR machinery or other elements.


Non-limiting examples of suitable eukaryotic promoters (i.e., promoters functional in a eukaryotic cell) include those from cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, early and late SV40, long terminal repeats (LTRs) from retrovirus, human elongation factor-1 promoter (EF1), a hybrid construct comprising the cytomegalovirus (CMV) enhancer fused to the chicken beta-actin promoter (CAG), murine stem cell virus promoter (MSCV), phosphoglycerate kinase-1 locus promoter (PGK), and mouse metallothionein-I.


For expressing small RNAs, including guide RNAs used in connection with Cas endonuclease, various promoters such as RNA polymerase III promoters, including for example U6 and H1, can be advantageous. Descriptions of and parameters for enhancing the use of such promoters are known in art, and additional information and approaches are regularly being described; see, e.g., Ma, H. et al., Molecular Therapy—Nucleic Acids 3, e161 (2014) doi:10.1038/mtna.2014.12.


The expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator. The expression vector may also comprise appropriate sequences for amplifying expression. The expression vector may also include nucleotide sequences encoding non-native tags (e.g., histidine tag, hemagglutinin tag, green fluorescent protein, etc.) that are fused to the site-directed polypeptide, thus resulting in a fusion protein.


In some embodiments, a promoter is an inducible promoter (e.g., a heat shock promoter, tetracycline-regulated promoter, steroid-regulated promoter, metal-regulated promoter, estrogen receptor-regulated promoter, etc.). In some embodiments, the promoter is a constitutive promoter (e.g., CMV promoter, UBC promoter). In some embodiments, the promoter is a spatially restricted and/or temporally restricted promoter (e.g., a tissue specific promoter, a cell type specific promoter, etc.).


In some embodiments, the nucleic acid encoding a genome-targeting nucleic acid of the disclosure and/or a site-directed polypeptide is packaged into or on the surface of delivery vehicles for delivery to cells. Delivery vehicles contemplated include, but are not limited to, nanospheres, liposomes, quantum dots, nanoparticles, polyethylene glycol particles, hydrogels, and micelles. As described in the art, a variety of targeting moieties can be used to enhance the preferential interaction of such vehicles with desired cell types or locations.


Introduction of the complexes, polypeptides, and nucleic acids of the disclosure into cells can occur by viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, nucleofection, calcium phosphate precipitation, polyethyleneimine (PEI)-mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro-injection, nanoparticle-mediated nucleic acid delivery, and the like.


Delivery


Guide RNA polynucleotides (RNA or DNA) and/or endonuclease polynucleotide(s) (RNA or DNA) can be delivered by viral or non-viral delivery vehicles known in the art. Alternatively, endonuclease polypeptide(s) may be delivered by viral or non-viral delivery vehicles known in the art, such as electroporation or lipid nanoparticles. In some embodiments, the DNA endonuclease may be delivered as one or more polypeptides, either alone or pre-complexed with one or more guide RNAs, or one or more crRNA together with a tracrRNA.


Polynucleotides may be delivered by non-viral delivery vehicles including, but not limited to, nanoparticles, liposomes, ribonucleoproteins, positively charged peptides, small molecule RNA-conjugates, aptamer-RNA chimeras, and RNA-fusion protein complexes. Some exemplary non-viral delivery vehicles are described in Peer and Lieberman, Gene Therapy, 18: 1127-1133 (2011) (which focuses on non-viral delivery vehicles for siRNA that are also useful for delivery of other polynucleotides).


Polynucleotides, such as guide RNA, sgRNA, and mRNA encoding an endonuclease, may be delivered to a cell or a patient by a lipid nanoparticle (LNP).


A LNP refers to any particle having a diameter of less than 1000 nm, 500 nm, 250 nm, 200 nm, 150 nm, 100 nm, 75 nm, 50 nm, or 25 nm. Alternatively, a nanoparticle may range in size from 1-1000 nm, 1-500 nm, 1-250 nm, 25-200 nm, 25-100 nm, 35-75 nm, or 25-60 nm.


LNPs may be made from cationic, anionic, or neutral lipids. Neutral lipids, such as the fusogenic phospholipid DOPE or the membrane component cholesterol, may be included in LNPs as ‘helper lipids’ to enhance transfection activity and nanoparticle stability. Limitations of cationic lipids include low efficacy owing to poor stability and rapid clearance, as well as the generation of inflammatory or anti-inflammatory responses.


LNPs may also be comprised of hydrophobic lipids, hydrophilic lipids, or both hydrophobic and hydrophilic lipids.


Any lipid or combination of lipids that are known in the art may be used to produce a LNP. Examples of lipids used to produce LNPs are: DOTMA, DOSPA, DOTAP, DMRIE, DC-cholesterol, DOTAP-cholesterol, GAP-DMORIE-DPyPE, and GL67A-DOPE-DMPE-polyethylene glycol (PEG). Examples of cationic lipids are: 98N12-5, C12-200, DLin-KC2-DMA (KC2), DLin-MC3-DMA (MC3), XTC, MD1, and 7C1. Examples of neutral lipids are: DPSC, DPPC, POPC, DOPE, and SM. Examples of PEG-modified lipids are: PEG-DMG, PEG-CerC14, and PEG-CerC20.


The lipids may be combined in any number of molar ratios to produce a LNP. In addition, the polynucleotide(s) may be combined with lipid(s) in a wide range of molar ratios to produce a LNP.


As stated previously, the site-directed polypeptide and genome-targeting nucleic acid may each be administered separately to a cell or a patient. On the other hand, the site-directed polypeptide may be pre-complexed with one or more guide RNAs, or one or more crRNA together with a tracrRNA. The pre-complexed material may then be administered to a cell or a patient. Such pre-complexed material is known as a ribonucleoprotein particle (RNP).


RNA is capable of forming specific interactions with RNA or DNA. While this property is exploited in many biological processes, it also comes with the risk of promiscuous interactions in a nucleic acid-rich cellular environment. One solution to this problem is the formation of ribonucleoprotein particles (RNPs), in which the RNA is pre-complexed with an endonuclease. Another benefit of the RNP is protection of the RNA from degradation.


The endonuclease in the RNP may be modified or unmodified. Likewise, the gRNA, crRNA, tracrRNA, or sgRNA may be modified or unmodified. Numerous modifications are known in the art and may be used.


The endonuclease and sgRNA may be generally combined in a 1:1 molar ratio. Alternatively, the endonuclease, crRNA and tracrRNA may be generally combined in a 1:1:1 molar ratio. However, a wide range of molar ratios may be used to produce a RNP.


A recombinant adeno-associated virus (AAV) vector may be used for delivery. Techniques to produce rAAV particles, in which an AAV genome to be packaged that includes the polynucleotide to be delivered, rep and cap genes, and helper virus functions are provided to a cell are standard in the art. Production of rAAV requires that the following components are present within a single cell (denoted herein as a packaging cell): a rAAV genome, AAV rep and cap genes separate from (i.e., not in) the rAAV genome, and helper virus functions. The AAV rep and cap genes may be from any AAV serotype for which recombinant virus can be derived, and may be from a different AAV serotype than the rAAV genome ITRs, including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10, AAV-11, AAV-12, AAV-13 and AAV rh.74. Production of pseudotyped rAAV is disclosed in, for example, international patent application publication number WO 01/83692. See Table 2.












TABLE 2







AAV Serotype
Genbank Accession No.









AAV-1
NC_002077.1



AAV-2
NC_001401.2



AAV-3
NC_001729.1



AAV-3B
AF028705.1



AAV-4
NC_001829.1



AAV-5
NC_006152.1



AAV-6
AF028704.1



AAV-7
NC_006260.1



AAV-8
NC_006261.1



AAV-9
AX753250.1



AAV-10
AY631965.1



AAV-11
AY631966.1



AAV-12
DQ813647.1



AAV-13
EU285562.1










A method of generating a packaging cell involves creating a cell line that stably expresses all of the necessary components for AAV particle production. For example, a plasmid (or multiple plasmids) comprising a rAAV genome lacking AAV rep and cap genes, AAV rep and cap genes separate from the rAAV genome, and a selectable marker, such as a neomycin resistance gene, are integrated into the genome of a cell. AAV genomes have been introduced into bacterial plasmids by procedures such as GC tailing (Samulski et al., 1982, Proc. Natl. Acad. S6. USA, 79:2077-2081), addition of synthetic linkers containing restriction endonuclease cleavage sites (Laughlin et al., 1983, Gene, 23:65-73) or by direct, blunt-end ligation (Senapathy & Carter, 1984, J. Biol. Chem., 259:4661-4666). The packaging cell line is then infected with a helper virus, such as adenovirus. The advantages of this method are that the cells are selectable and are suitable for large-scale production of rAAV. Other examples of suitable methods employ adenovirus or baculovirus, rather than plasmids, to introduce rAAV genomes and/or rep and cap genes into packaging cells.


General principles of rAAV production are reviewed in, for example, Carter, 1992, Current Opinions in Biotechnology, 1533-539; and Muzyczka, 1992, Curr. Topics in Microbial. and Immunol., 158:97-129). Various approaches are described in Ratschin et al., Mol. Cell. Biol. 4:2072 (1984); Hermonat et al., Proc. Natl. Acad. Sci. USA, 81:6466 (1984); Tratschin et al., Mol. Cell. Biol. 5:3251 (1985); McLaughlin et al., J. Virol., 62:1963 (1988); and Lebkowski et al., 1988 Mol. Cell. Biol., 7:349 (1988). Samulski et al. (1989, J. Virol., 63:3822-3828); U.S. Pat. No. 5,173,414; WO 95/13365 and corresponding U.S. Pat. No. 5,658,776; WO 95/13392; WO 96/17947; PCT/US98/18600; WO 97/09441 (PCT/US96/14423); WO 97/08298 (PCT/US96/13872); WO 97/21825 (PCT/US96/20777); WO 97/06243 (PCT/FR96/01064); WO 99/11764; Perrin et al. (1995) Vaccine 13:1244-1250; Paul et al. (1993) Human Gene Therapy 4:609-615; Clark et al. (1996) Gene Therapy 3:1124-1132; U.S. Pat. Nos. 5,786,211; 5,871,982; and 6,258,595.


AAV vector serotypes can be matched to target cell types. For example, the following exemplary cell types may be transduced by the indicated AAV serotypes among others. See Table 3.












TABLE 3







Tissue/Cell Type
Serotype









Liver
AAV3, AAV5, AAV8, AAV9



Skeletal muscle
AAV1, AAV7, AAV6, AAV8, AAV9



Central nervous system
AAV5, AAV1, AAV4



RPE
AAV5, AAV4



Photoreceptor cells
AAV5



Lung
AAV9



Heart
AAV8



Pancreas
AAV8



Kidney
AAV2, AAV8



Hematopoietic stem cells
AAV6










In addition to adeno-associated viral vectors, other viral vectors can be used. Such viral vectors include, but are not limited to, lentivirus, alphavirus, enterovirus, pestivirus, baculovirus, herpesvirus, Epstein Barr virus, papovavirusr, poxvirus, vaccinia virus, and herpes simplex virus.


In some embodiments, Cas9 mRNA, sgRNA targeting one or two loci in target gene, and donor DNA is each separately formulated into lipid nanoparticles, or are all co-formulated into one lipid nanoparticle, or co-formulated into two or more lipid nanoparticles.


In some embodiments, Cas9 mRNA is formulated in a lipid nanoparticle, while sgRNA and donor DNA are delivered in an AAV vector. In some embodiments, Cas9 mRNA and sgRNA are co-formulated in a lipid nanoparticle, while donor DNA is delivered in an AAV vector.


Options are available to deliver the Cas9 nuclease as a DNA plasmid, as mRNA or as a protein. The guide RNA can be expressed from the same DNA, or can also be delivered as an RNA. The RNA can be chemically modified to alter or improve its half-life, or decrease the likelihood or degree of immune response. The endonuclease protein can be complexed with the gRNA prior to delivery. Viral vectors allow efficient delivery; split versions of Cas9 and smaller orthologs of Cas9 can be packaged in AAV, as can donors for HDR. A range of non-viral delivery methods also exist that can deliver each of these components, or non-viral and viral methods can be employed in tandem. For example, nano-particles can be used to deliver the protein and guide RNA, while AAV can be used to deliver a donor DNA.


Exosomes


Exosomes, a type of microvesicle bound by phospholipid bilayer, can be used to deliver nucleic acids to specific tissue. Many different types of cells within the body naturally secrete exosomes. Exosomes form within the cytoplasm when endosomes invaginate and form multivesicular-endosomes (MVE). When the MVE fuses with the cellular membrane, the exosomes are secreted in the extracellular space. Ranging between 30-120 nm in diameter, exosomes can shuttle various molecules from one cell to another in a form of cell-to-cell communication. Cells that naturally produce exosomes, such as mast cells, can be genetically altered to produce exosomes with surface proteins that target specific tissues, alternatively exosomes can be isolated from the bloodstream. Specific nucleic acids can be placed within the engineered exosomes with electroporation. When introduced systemically, the exosomes can deliver the nucleic acids to the specific target tissue.


Genetically Modified Cells


The term “genetically modified cell” refers to a cell that comprises at least one genetic modification introduced by genome editing (e.g., using the CRISPR/Cas9/Cpf1 system). In some examples, (e.g., ex vivo examples) herein, the genetically modified cell is genetically modified progenitor cell. In some examples herein, the genetically modified cell is genetically modified T cell. A genetically modified cell comprising an exogenous genome-targeting nucleic acid and/or an exogenous nucleic acid encoding a genome-targeting nucleic acid is contemplated herein.


The term “control treated population” describes a population of cells that has been treated with identical media, viral induction, nucleic acid sequences, temperature, confluency, flask size, pH, etc., with the exception of the addition of the genome editing components. Any method known in the art can be used to measure restoration of target gene or protein expression or activity, for example Western Blot analysis of the target protein or quantifying target mRNA.


The term “isolated cell” refers to a cell that has been removed from an organism in which it was originally found, or a descendant of such a cell. Optionally, the cell is cultured in vitro, e.g., under defined conditions or in the presence of other cells. Optionally, the cell is later introduced into a second organism or re-introduced into the organism from which it (or the cell from which it is descended) was isolated.


The term “isolated population” with respect to an isolated population of cells refers to a population of cells that has been removed and separated from a mixed or heterogeneous population of cells. In some embodiments, the isolated population is a substantially pure population of cells, as compared to the heterogeneous population from which the cells were isolated or enriched. In some embodiments, the isolated population is an isolated population of human progenitor cells, e.g., a substantially pure population of human progenitor cells, as compared to a heterogeneous population of cells comprising human progenitor cells and cells from which the human progenitor cells were derived.


The term “substantially enhanced,” with respect to a particular cell population, refers to a population of cells in which the occurrence of a particular type of cell is increased relative to pre-existing or reference levels, by at least 2-fold, at least 3-, at least 4-, at least 5-, at least 6-, at least 7-, at least 8-, at least 9, at least 10-, at least 20-, at least 50-, at least 100-, at least 400-, at least 1000-, at least 5000-, at least 20000-, at least 100000- or more fold depending, e.g., on the desired levels of such cells for ameliorating a medical condition.


The term “substantially enriched” with respect to a particular cell population, refers to a population of cells that is at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70% or more with respect to the cells making up a total cell population.


The terms “substantially enriched” or “substantially pure” with respect to a particular cell population, refers to a population of cells that is at least about 75%, at least about 85%, at least about 90%, or at least about 95% pure, with respect to the cells making up a total cell population. That is, the terms “substantially pure” or “essentially purified,” with regard to a population of progenitor cells, refers to a population of cells that contain fewer than about 20%, about 15%, about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, about 1%, or less than 1%, of cells that are not progenitor cells as defined by the terms herein.


Implanting Cells into Patients


Another step of the ex vivo methods of the present disclosure comprises implanting the cells into patients. This implanting step may be accomplished using any method of implantation known in the art. For example, the genetically modified cells may be injected directly in the patient's blood or otherwise administered to the patient. The genetically modified cells may be purified ex vivo using a selected marker.


Pharmaceutically Acceptable Carriers


The ex vivo methods of administering progenitor cells to a subject contemplated herein involve the use of therapeutic compositions comprising progenitor cells.


Therapeutic compositions contain a physiologically tolerable carrier together with the cell composition, and optionally at least one additional bioactive agent as described herein, dissolved or dispersed therein as an active ingredient. In some embodiments, the therapeutic composition is not substantially immunogenic when administered to a mammal or human patient for therapeutic purposes, unless so desired.


In general, the progenitor cells described herein are administered as a suspension with a pharmaceutically acceptable carrier. One of skill in the art will recognize that a pharmaceutically acceptable carrier to be used in a cell composition will not include buffers, compounds, cryopreservation agents, preservatives, or other agents in amounts that substantially interfere with the viability of the cells to be delivered to the subject. A formulation comprising cells can include e.g., osmotic buffers that permit cell membrane integrity to be maintained, and optionally, nutrients to maintain cell viability or enhance engraftment upon administration. Such formulations and suspensions are known to those of skill in the art and/or can be adapted for use with the progenitor cells, as described herein, using routine experimentation.


A cell composition can also be emulsified or presented as a liposome composition, provided that the emulsification procedure does not adversely affect cell viability. The cells and any other active ingredient can be mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient, and in amounts suitable for use in the therapeutic methods described herein.


Additional agents included in a cell composition can include pharmaceutically acceptable salts of the components therein. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide) that are formed with inorganic acids, such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases, such as, for example, sodium, potassium, ammonium, calcium or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.


Physiologically tolerable carriers are well known in the art. Exemplary liquid carriers are sterile aqueous solutions that contain no materials in addition to the active ingredients and water, or contain a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline. Still further, aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, polyethylene glycol and other solutes. Liquid compositions can also contain liquid phases in addition to and to the exclusion of water. Exemplary of such additional liquid phases are glycerin, vegetable oils such as cottonseed oil, and water-oil emulsions. The amount of an active compound used in the cell compositions that is effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques.


Administration & Efficacy


The terms “administering,” “introducing” and “transplanting” are used interchangeably in the context of the placement of cells, e.g., progenitor cells, into a subject, by a method or route that results in at least partial localization of the introduced cells at a desired site, such as a site of injury or repair, such that a desired effect(s) is produced. The cells e.g., progenitor cells, or their differentiated progeny can be administered by any appropriate route that results in delivery to a desired location in the subject where at least a portion of the implanted cells or components of the cells remain viable. The period of viability of the cells after administration to a subject can be as short as a few hours, e.g., twenty-four hours, to a few days, to as long as several years, or even the life time of the patient, i.e., long-term engraftment. For example, in some aspects described herein, an effective amount of myogenic progenitor cells is administered via a systemic route of administration, such as an intraperitoneal or intravenous route.


The terms “individual”, “subject,” “host” and “patient” are used interchangeably herein and refer to any subject for whom diagnosis, treatment or therapy is desired. In some aspects, the subject is a mammal. In some aspects, the subject is a human being.


The term “donor” is used to refer to an individual that is not the patient. In some embodiments, the donor is an individual who does not have or is not suspected of having the medical condition to be treated. In some embodiments, multiple donors, e.g., two or more donors, can be used. In some embodiments, each donor used is an individual who does not have or is not suspected of having the medical condition to be treated.


When provided prophylactically, progenitor cells described herein can be administered to a subject in advance of any symptom of a medical condition, e.g., prior to the development of alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus (CMV) infection, autoimmunity, chronic inflammation of the skin, eosinophilia, failure to thrive, swollen lymph nodes, swollen spleen, diarrhea and enlarged liver. Accordingly, the prophylactic administration of a hematopoietic progenitor cell population serves to prevent a medical condition.


When provided therapeutically, hematopoietic progenitor cells are provided at (or after) the onset of a symptom or indication of a medical condition, e.g., upon the onset of disease.


In some embodiments, the T cell population being administered according to the methods described herein comprises allogeneic T cells obtained from one or more donors. In some embodiments, the cell population being administered can be allogeneic blood cells, hematopoietic stem cells, hematopoietic progenitor cells, embryonic stem cells, or induced embryonic stem cells. “Allogeneic” refers to a cell, cell population, or biological samples comprising cells, obtained from one or more different donors of the same species, where the genes at one or more loci are not identical to the recipient. For example, a hematopoietic progenitor cell population, or T cell population, being administered to a subject can be derived from one or more unrelated donors, or from one or more non-identical siblings. In some embodiments, syngeneic cell populations may be used, such as those obtained from genetically identical donors, (e.g., identical twins). In some embodiments, the cells are autologous cells; that is, the cells (e.g.: hematopoietic progenitor cells, or T cells) are obtained or isolated from a subject and administered to the same subject, i.e., the donor and recipient are the same.


The term “effective amount” refers to the amount of a population of progenitor cells or their progeny needed to prevent or alleviate at least one or more signs or symptoms of a medical condition, and relates to a sufficient amount of a composition to provide the desired effect, e.g., to treat a subject having a medical condition. The term “therapeutically effective amount” therefore refers to an amount of progenitor cells or a composition comprising progenitor cells that is sufficient to promote a particular effect when administered to a typical subject, such as one who has or is at risk for a medical condition. An effective amount would also include an amount sufficient to prevent or delay the development of a symptom of the disease, alter the course of a symptom of the disease (for example but not limited to, slow the progression of a symptom of the disease), or reverse a symptom of the disease. It is understood that for any given case, an appropriate “effective amount” can be determined by one of ordinary skill in the art using routine experimentation.


For use in the various aspects described herein, an effective amount of progenitor cells comprises at least 102 progenitor cells, at least 5×102 progenitor cells, at least 103 progenitor cells, at least 5×103 progenitor cells, at least 104 progenitor cells, at least 5×104 progenitor cells, at least 105 progenitor cells, at least 2×105 progenitor cells, at least 3×105 progenitor cells, at least 4×105 progenitor cells, at least 5×105 progenitor cells, at least 6×105 progenitor cells, at least 7×105 progenitor cells, at least 8×105 progenitor cells, at least 9×105 progenitor cells, at least 1×106 progenitor cells, at least 2×106 progenitor cells, at least 3×106 progenitor cells, at least 4×106 progenitor cells, at least 5×106 progenitor cells, at least 6×106 progenitor cells, at least 7×106 progenitor cells, at least 8×106 progenitor cells, at least 9×106 progenitor cells, or multiples thereof. The progenitor cells are derived from one or more donors, or are obtained from an autologous source. In some examples described herein, the progenitor cells are expanded in culture prior to administration to a subject in need thereof.


Modest and incremental increases in the levels of functional target expressed in cells of patients having a medical condition can be beneficial for ameliorating one or more symptoms of the disease, for increasing long-term survival, and/or for reducing side effects associated with other treatments. Upon administration of such cells to human patients, the presence of hematopoietic progenitors that are producing increased levels of functional target is beneficial. In some embodiments, effective treatment of a subject gives rise to at least about 3%, 5% or 7% functional target relative to total target in the treated subject. In some embodiments, functional target will be at least about 10% of total target. In some embodiments, functional target will be at least about 20% to 30% of total target. Similarly, the introduction of even relatively limited subpopulations of cells having significantly elevated levels of functional target can be beneficial in various patients because in some situations normalized cells will have a selective advantage relative to diseased cells. However, even modest levels of hematopoietic progenitors with elevated levels of functional target can be beneficial for ameliorating one or more aspects of a medical condition in patients. In some embodiments, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90% or more of the hematopoietic progenitors in patients to whom such cells are administered are producing increased levels of functional target.


“Administered” refers to the delivery of a progenitor cell composition into a subject by a method or route that results in at least partial localization of the cell composition at a desired site. A cell composition can be administered by any appropriate route that results in effective treatment in the subject, i.e. administration results in delivery to a desired location in the subject where at least a portion of the composition delivered, i.e. at least 1×104 cells are delivered to the desired site for a period of time. Modes of administration include injection, infusion, instillation, or ingestion. “Injection” includes, without limitation, intravenous, intramuscular, intra-arterial, intrathecal, intraventricular, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, sub capsular, subarachnoid, intraspinal, intracerebro spinal, and intrasternal injection and infusion. In some embodiments, the route is intravenous. For the delivery of cells, administration by injection or infusion can be made.


The cells are administered systemically. The phrases “systemic administration,” “administered systemically”, “peripheral administration” and “administered peripherally” refer to the administration of a population of progenitor cells other than directly into a target site, tissue, or organ, such that it enters, instead, the subject's circulatory system and, thus, is subject to metabolism and other like processes.


The efficacy of a treatment comprising a composition for the treatment of a medical condition can be determined by the skilled clinician. However, a treatment is considered “effective treatment,” if any one or all of the signs or symptoms of, as but one example, levels of functional target are altered in a beneficial manner (e.g., increased by at least 10%), or other clinically accepted symptoms or markers of disease are improved or ameliorated. Efficacy can also be measured by failure of an individual to worsen as assessed by hospitalization or need for medical interventions (e.g., progression of the disease is halted or at least slowed). Methods of measuring these indicators are known to those of skill in the art and/or described herein. Treatment includes any treatment of a disease in an individual or an animal (some non-limiting examples include a human, or a mammal) and includes: (1) inhibiting the disease, e.g., arresting, or slowing the progression of symptoms; or (2) relieving the disease, e.g., causing regression of symptoms; and (3) preventing or reducing the likelihood of the development of symptoms.


The treatment according to the present disclosure ameliorates one or more symptoms associated with a medical condition by increasing the amount of functional target in the individual. Early signs typically associated with a medical condition include for example, development of alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus (CMV) infection, autoimmunity, chronic inflammation of the skin, eosinophilia, failure to thrive, swollen lymph nodes, swollen spleen, diarrhea and enlarged liver.


Kits


The present disclosure provides kits for carrying out the methods described herein. A kit can include one or more of a genome-targeting nucleic acid, a polynucleotide encoding a genome-targeting nucleic acid, a site-directed polypeptide, a polynucleotide encoding a site-directed polypeptide, and/or any nucleic acid or proteinaceous molecule necessary to carry out the aspects of the methods described herein, or any combination thereof.


In some embodiments, a kit comprises: (1) a vector comprising a nucleotide sequence encoding a genome-targeting nucleic acid, (2) the site-directed polypeptide or a vector comprising a nucleotide sequence encoding the site-directed polypeptide, and (3) a reagent for reconstitution and/or dilution of the vector(s) and or polypeptide.


In some embodiments, a kit comprises: (1) a vector comprising (i) a nucleotide sequence encoding a genome-targeting nucleic acid, and (ii) a nucleotide sequence encoding the site-directed polypeptide; and (2) a reagent for reconstitution and/or dilution of the vector.


In some embodiments of any of the above kits, the kit comprises a single-molecule guide genome-targeting nucleic acid. In some embodiments of any of the above kits, the kit comprises a double-molecule genome-targeting nucleic acid. In some embodiments of any of the above kits, the kit comprises two or more double-molecule guides or single-molecule guides. In some embodiments, the kits comprise a vector that encodes the nucleic acid targeting nucleic acid.


In any of the above kits, the kit further comprises a polynucleotide to be inserted to affect the desired genetic modification.


Components of a kit may be in separate containers, or combined in a single container.


Any kit described above can further comprise one or more additional reagents, where such additional reagents are selected from a buffer, a buffer for introducing a polypeptide or polynucleotide into a cell, a wash buffer, a control reagent, a control vector, a control RNA polynucleotide, a reagent for in vitro production of the polypeptide from DNA, adaptors for sequencing and the like. A buffer can be a stabilization buffer, a reconstituting buffer, a diluting buffer, or the like. In some embodiments, a kit also comprises one or more components that can be used to facilitate or enhance the on-target binding or the cleavage of DNA by the endonuclease, or improve the specificity of targeting.


In addition to the above-mentioned components, a kit further comprises instructions for using the components of the kit to practice the methods. The instructions for practicing the methods are generally recorded on a suitable recording medium. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. The instructions nay be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging), etc. The instructions can be present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, flash drive, etc. In some instances, the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source (e.g. via the Internet), can be provided. An example of this case is a kit that comprises a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions can be recorded on a suitable substrate.


Guide RNA Formulation


Guide RNAs of the present disclosure are formulated with pharmaceutically acceptable excipients such as carriers, solvents, stabilizers, adjuvants, diluents, etc., depending upon the particular mode of administration and dosage form. Guide RNA compositions are generally formulated to achieve a physiologically compatible pH, and range from a pH of about 3 to a pH of about 11, about pH 3 to about pH 7, depending on the formulation and route of administration. In some embodiments, the pH is adjusted to a range from about pH 5.0 to about pH 8. In some embodiments, the compositions comprise a therapeutically effective amount of at least one compound as described herein, together with one or more pharmaceutically acceptable excipients. Optionally, the compositions comprise a combination of the compounds described herein, or may include a second active ingredient useful in the treatment or prevention of bacterial growth (for example and without limitation, anti-bacterial or anti-microbial agents), or may include a combination of reagents of the present disclosure.


Suitable excipients include, for example, carrier molecules that include large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Other exemplary excipients can include antioxidants (for example and without limitation, ascorbic acid), chelating agents (for example and without limitation, EDTA), carbohydrates (for example and without limitation, dextrin, hydroxyalkylcellulose, and hydroxyalkylmethylcellulose), stearic acid, liquids (for example and without limitation, oils, water, saline, glycerol and ethanol), wetting or emulsifying agents, pH buffering substances, and the like.


Other Possible Therapeutic Approaches


Gene editing can be conducted using nucleases engineered to target specific sequences. To date there are four major types of nucleases: meganucleases and their derivatives, zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and CRISPR-Cas9 nuclease systems. The nuclease platforms vary in difficulty of design, targeting density and mode of action, particularly as the specificity of ZFNs and TALENs is through protein-DNA interactions, while RNA-DNA interactions primarily guide Cas9. Cas9 cleavage also requires an adjacent motif, the PAM, which differs between different CRISPR systems. Cas9 from Streptococcus pyogenes cleaves using a NRG PAM, CRISPR from Neisseria meningitidis can cleave at sites with PAMs including NNNNGATT, NNNNNGTTT and NNNNGCTT. A number of other Cas9 orthologs target protospacer adjacent to alternative PAMs.


CRISPR endonucleases, such as Cas9, can be used in the methods of the present disclosure. However, the teachings described herein, such as therapeutic target sites, could be applied to other forms of endonucleases, such as ZFNs, TALENs, HEs, or MegaTALs, or using combinations of nucleases. However, in order to apply the teachings of the present disclosure to such endonucleases, one would need to, among other things, engineer proteins directed to the specific target sites.


Additional binding domains may be fused to the Cas9 protein to increase specificity. The target sites of these constructs would map to the identified gRNA specified site, but would require additional binding motifs, such as for a zinc finger domain. In the case of Mega-TAL, a meganuclease can be fused to a TALE DNA-binding domain. The meganuclease domain can increase specificity and provide the cleavage. Similarly, inactivated or dead Cas9 (dCas9) can be fused to a cleavage domain and require the sgRNA/Cas9 target site and adjacent binding site for the fused DNA-binding domain. This likely would require some protein engineering of the dCas9, in addition to the catalytic inactivation, to decrease binding without the additional binding site.


Zinc Finger Nucleases


Zinc finger nucleases (ZFNs) are modular proteins comprised of an engineered zinc finger DNA binding domain linked to the catalytic domain of the type II endonuclease Fold. Because Fold functions only as a dimer, a pair of ZFNs must be engineered to bind to cognate target “half-site” sequences on opposite DNA strands and with precise spacing between them to enable the catalytically active FokI dimer to form. Upon dimerization of the Fold domain, which itself has no sequence specificity per se, a DNA double-strand break is generated between the ZFN half-sites as the initiating step in genome editing.


The DNA binding domain of each ZFN is typically comprised of 3-6 zinc fingers of the abundant Cys2-His2 architecture, with each finger primarily recognizing a triplet of nucleotides on one strand of the target DNA sequence, although cross-strand interaction with a fourth nucleotide also can be important. Alteration of the amino acids of a finger in positions that make key contacts with the DNA alters the sequence specificity of a given finger. Thus, a four-finger zinc finger protein will selectively recognize a 12 bp target sequence, where the target sequence is a composite of the triplet preferences contributed by each finger, although triplet preference can be influenced to varying degrees by neighboring fingers. An important aspect of ZFNs is that they can be readily re-targeted to almost any genomic address simply by modifying individual fingers, although considerable expertise is required to do this well. In most applications of ZFNs, proteins of 4-6 fingers are used, recognizing 12-18 bp respectively. Hence, a pair of ZFNs will typically recognize a combined target sequence of 24-36 bp, not including the 5-7 bp spacer between half-sites. The binding sites can be separated further with larger spacers, including 15-17 bp. A target sequence of this length is likely to be unique in the human genome, assuming repetitive sequences or gene homologs are excluded during the design process. Nevertheless, the ZFN protein-DNA interactions are not absolute in their specificity so off-target binding and cleavage events do occur, either as a heterodimer between the two ZFNs, or as a homodimer of one or the other of the ZFNs. The latter possibility has been effectively eliminated by engineering the dimerization interface of the FokI domain to create “plus” and “minus” variants, also known as obligate heterodimer variants, which can only dimerize with each other, and not with themselves. Forcing the obligate heterodimer prevents formation of the homodimer. This has greatly enhanced specificity of ZFNs, as well as any other nuclease that adopts these FokI variants.


A variety of ZFN-based systems have been described in the art, modifications thereof are regularly reported, and numerous references describe rules and parameters that are used to guide the design of ZFNs; see, e.g., Segal et al., Proc Natl Acad Sci USA 96(6):2758-63 (1999); Dreier B et al., J Mol Biol. 303(4):489-502 (2000); Liu Q et al., J Biol Chem. 277(6):3850-6 (2002); Dreier et al., J Biol Chem 280(42):35588-97 (2005); and Dreier et al., J Biol Chem. 276(31):29466-78 (2001).


Transcription Activator-Like Effector Nucleases (TALENs)


TALENs represent another format of modular nucleases whereby, as with ZFNs, an engineered DNA binding domain is linked to the Fold nuclease domain, and a pair of TALENs operate in tandem to achieve targeted DNA cleavage. The major difference from ZFNs is the nature of the DNA binding domain and the associated target DNA sequence recognition properties. The TALEN DNA binding domain derives from TALE proteins, which were originally described in the plant bacterial pathogen Xanthomonas sp. TALEs are comprised of tandem arrays of 33-35 amino acid repeats, with each repeat recognizing a single basepair in the target DNA sequence that is typically up to 20 bp in length, giving a total target sequence length of up to 40 bp. Nucleotide specificity of each repeat is determined by the repeat variable diresidue (RVD), which includes just two amino acids at positions 12 and 13. The bases guanine, adenine, cytosine and thymine are predominantly recognized by the four RVDs: Asn-Asn, Asn-Ile, His-Asp and Asn-Gly, respectively. This constitutes a much simpler recognition code than for zinc fingers, and thus represents an advantage over the latter for nuclease design. Nevertheless, as with ZFNs, the protein-DNA interactions of TALENs are not absolute in their specificity, and TALENs have also benefitted from the use of obligate heterodimer variants of the Fold domain to reduce off-target activity.


Additional variants of the Fold domain have been created that are deactivated in their catalytic function. If one half of either a TALEN or a ZFN pair contains an inactive Fold domain, then only single-strand DNA cleavage (nicking) will occur at the target site, rather than a DSB. The outcome is comparable to the use of CRISPR/Cas9/Cpf1 “nickase” mutants in which one of the Cas9 cleavage domains has been deactivated. DNA nicks can be used to drive genome editing by HDR, but at lower efficiency than with a DSB. The main benefit is that off-target nicks are quickly and accurately repaired, unlike the DSB, which is prone to NHEJ-mediated mis-repair.


A variety of TALEN-based systems have been described in the art, and modifications thereof are regularly reported; see, e.g., Boch, Science 326(5959):1509-12 (2009); Mak et al., Science 335(6069):716-9 (2012); and Moscou et al., Science 326(5959):1501 (2009). The use of TALENs based on the “Golden Gate” platform, or cloning scheme, has been described by multiple groups; see, e.g., Cermak et al., Nucleic Acids Res. 39(12):e82 (2011); Li et al., Nucleic Acids Res. 39(14):6315-25 (2011); Weber et al., PLoS One. 6(2):e16765 (2011); Wang et al., J Genet Genomics 41(6):339-47, Epub 2014 May 17 (2014); and Cermak T et al., Methods Mol Biol. 1239:133-59 (2015).


Homing Endonucleases


Homing endonucleases (HEs) are sequence-specific endonucleases that have long recognition sequences (14-44 base pairs) and cleave DNA with high specificity—often at sites unique in the genome. There are at least six known families of HEs as classified by their structure, including LAGLIDADG (SEQ ID NO: 4), GIY-YIG (SEQ ID NO: 5), His-Cis box, H-N-H, PD-(D/E)xK (SEQ ID NO: 6), and Vsr-like that are derived from a broad range of hosts, including eukarya, protists, bacteria, archaea, cyanobacteria and phage. As with ZFNs and TALENs, HEs can be used to create a DSB at a target locus as the initial step in genome editing. In addition, some natural and engineered HEs cut only a single strand of DNA, thereby functioning as site-specific nickases. The large target sequence of HEs and the specificity that they offer have made them attractive candidates to create site-specific DSBs.


A variety of HE-based systems have been described in the art, and modifications thereof are regularly reported; see, e.g., the reviews by Steentoft et al., Glycobiology 24(8):663-80 (2014); Belfort and Bonocora, Methods Mol Biol. 1123:1-26 (2014); Hafez and Hausner, Genome 55(8):553-69 (2012); and references cited therein.


MegaTAL/Tev-mTALEN/MegaTev


As further examples of hybrid nucleases, the MegaTAL platform and Tev-mTALEN platform use a fusion of TALE DNA binding domains and catalytically active HEs, taking advantage of both the tunable DNA binding and specificity of the TALE, as well as the cleavage sequence specificity of the HE; see, e.g., Boissel et al., NAR 42: 2591-2601 (2014); Kleinstiver et al., G3 4:1155-65 (2014); and Boissel and Scharenberg, Methods Mol. Biol. 1239: 171-96 (2015).


In a further variation, the MegaTev architecture is the fusion of a meganuclease (Mega) with the nuclease domain derived from the GIY-YIG homing endonuclease I-TevI (Tev). The two active sites are positioned ˜30 bp apart on a DNA substrate and generate two DSBs with non-compatible cohesive ends; see, e.g., Wolfs et al., NAR 42, 8816-29 (2014). It is anticipated that other combinations of existing nuclease-based approaches will evolve and be useful in achieving the targeted genome modifications described herein.


dCas9-FokI or dCpf1-FokI and Other Nucleases


Combining the structural and functional properties of the nuclease platforms described above offers a further approach to genome editing that can potentially overcome some of the inherent deficiencies. As an example, the CRISPR genome editing system typically uses a single Cas9 endonuclease to create a DSB. The specificity of targeting is driven by a 20 or 22 nucleotide sequence in the guide RNA that undergoes Watson-Crick base-pairing with the target DNA (plus an additional 2 bases in the adjacent NAG or NGG PAM sequence in the case of Cas9 from S. pyogenes). Such a sequence is long enough to be unique in the human genome, however, the specificity of the RNA/DNA interaction is not absolute, with significant promiscuity sometimes tolerated, particularly in the 5′ half of the target sequence, effectively reducing the number of bases that drive specificity. One solution to this has been to completely deactivate the Cas9 or Cpf1 catalytic function—retaining only the RNA-guided DNA binding function—and instead fusing a FokI domain to the deactivated Cas9; see, e.g., Tsai et al., Nature Biotech 32: 569-76 (2014); and Guilinger et al., Nature Biotech. 32: 577-82 (2014). Because Fold must dimerize to become catalytically active, two guide RNAs are required to tether two Fold fusions in close proximity to form the dimer and cleave DNA. This essentially doubles the number of bases in the combined target sites, thereby increasing the stringency of targeting by CRISPR-based systems.


As further example, fusion of the TALE DNA binding domain to a catalytically active HE, such as I-TevI, takes advantage of both the tunable DNA binding and specificity of the TALE, as well as the cleavage sequence specificity of I-TevI, with the expectation that off-target cleavage may be further reduced.


Additional Aspects


Provided herein are nucleic acids, vectors, cells, methods, and other materials for use in ex vivo and in vivo methods for creating permanent changes to the genome by deleting, inserting, or modulating the expression of or function of one or more nucleic acids or exons within or near a target gene or other DNA sequences that encode regulatory elements of the target gene or knocking in a cDNA, expression vector, or minigene, which may be used to treat a medical condition such as, by way of non-limiting example, cancer, inflammatory disease and/or autoimmune disease. Also provided herein are components, kits, and compositions for performing such methods. Also provided are cells produced by such methods.


The following paragraphs are also encompassed by the present disclosure:


1. An isolated nucleic acid encoding a knock-in chimeric antigen receptor (CAR) construct, wherein the knock-in CAR construct comprises a polynucleotide donor template comprising at least a portion of a target gene operably linked to a nucleic acid encoding a chimeric antigen receptor (CAR) comprising: (i) an ectodomain comprising an antigen recognition region; (ii) a transmembrane domain, and (iii) an endodomain comprising at least one costimulatory domain.


2. The isolated nucleic acid of paragraph 1, further comprising a promoter, one or more gene regulatory elements, or a combination thereof.


3. The isolated nucleic acid of paragraph 2, wherein the one or more gene regulatory elements are selected from the group consisting of an enhancer sequence, an intron sequence, a polyadenylation (poly(A)) sequence, and combinations thereof.


4. The isolated nucleic acid of any one of paragraphs 1 to 3, wherein the target gene comprises a gene sequence associated with host versus graft response, a gene sequence associated with graft versus host response, a gene sequence encoding a checkpoint inhibitor, or any combination thereof.


5. The isolated nucleic acid of paragraph 4, wherein the gene sequence associated with a graft versus host response is selected from the group consisting of TRAC, CD3-episolon (CD3ε), and combinations thereof.


6. The isolated nucleic acid of paragraph 4, wherein the gene sequence associated with a host versus graft response is selected from the group consisting of B2M, CIITA, RFX5, and combinations thereof.


7. The isolated nucleic acid of paragraph 4, wherein the gene sequence encoding a checkpoint inhibitor is selected from the group consisting of PD1, CTLA-4, and combinations thereof.


8. The isolated nucleic acid of any one of paragraphs 1 to 3, wherein the target gene comprises a sequence associated with pharmacological modulation of a cell.


9. The isolated nucleic acid of paragraph 8, wherein the target gene is CD52.


10. The isolated nucleic acid of paragraph 8, wherein the modulation is positive or negative.


11. The isolated nucleic acid of paragraph 8, wherein the modulation allows the CAR T cells to survive.


12. The isolated nucleic acid of paragraph 8, wherein the modulation kills the CAR T cells.


13. The isolated nucleic acid of paragraph 1, further comprising a minigene or cDNA.


14. The isolated nucleic acid of paragraph 13, wherein the minigene or cDNA comprises a gene sequence associated with pharmacological modulation of a cell.


15. The isolated nucleic acid of paragraph 14, wherein the gene sequence encodes Her2.


16. The isolated nucleic acid of paragraph 4, wherein the target gene comprises a gene selected from the group consisting of TRAC, CD3ε, B2M, CIITA, RFX5, PD1, CTLA-4, CD52, PPP1R12C, and combinations thereof.


17. The isolated nucleic acid of paragraph 4, wherein the target gene comprises a gene selected from the group consisting of TRAC, B2M and PD1.


18. The isolated nucleic acid of paragraph 4, wherein the target gene comprises two or more genes selected from the group consisting of TRAC, CD3ε, B2M, CIITA, RFX5, PD1, CTLA-4, CD52, PPP1R12C, and combinations thereof.


19. The isolated nucleic acid of paragraph 4, wherein the target gene comprises two or more genes selected from the group consisting of TRAC, B2M and PD1.


20. The isolated nucleic acid of any one of paragraphs 1 to 19, wherein the donor template is either a single or double stranded polynucleotide.


21. The isolated nucleic acid of paragraph 20, wherein the portion of the target gene is selected from the group consisting of TRAC, CD3ε, B2M, CIITA, RFX5, PD1, CTLA-4, CD52, PPP1R12C, and combinations thereof.


22. The isolated nucleic acid of paragraph 20, wherein the portion of the target gene comprises a portion of TRAC, a portion of B2M, and/or a portion of PD1.


23. The isolated nucleic acid of any one of paragraphs 1 to 22, wherein the antigen recognition domain recognizes CD19, BCMA, CD70, or combinations thereof.


24. The isolated nucleic acid of any one of paragraphs 1 to 22, wherein the antigen recognition domain recognizes CD19.


25. The isolated nucleic acid of any one of paragraphs 1 to 22, wherein the antigen recognition domain recognizes CD70.


26. The isolated nucleic acid of any one of paragraphs 1 to 22, wherein the antigen recognition domain recognizes BCMA.


27. The isolated nucleic acid of any one of paragraphs 1 to 26, wherein the antigen recognition domain is a scFV.


28. The isolated nucleic acid of paragraph 27, wherein the scFV is an anti-CD19 scFv encoded by a nucleic acid sequence comprising SEQ ID NO: 1333 or an amino acid sequence comprising SEQ ID NO: 1334.


29. The isolated nucleic acid of paragraph 27, wherein the scFV is an anti-CD70 scFv


1) encoded by a nucleic acid sequence comprising SEQ ID NO: 1475 or an amino acid sequence comprising SEQ ID NO: 1499 or


2) encoded by a nucleic acid sequence comprising SEQ ID NO: 1476 or an amino acid sequence comprising SEQ ID NO: 1500.


30. The isolated nucleic acid of paragraph 27, wherein the scFV is an anti-BCMA scFv


1) encoded by a nucleic acid sequence comprising SEQ ID NO: 1477-1498 or an amino acid sequence comprising SEQ ID NO: 1501-1522 or


2) encoded by a nucleic acid sequence comprising SEQ ID NO: 1485 or an amino acid sequence comprising SEQ ID NO: 1509.


31. The isolated nucleic acid of any one of paragraphs 1 to 30, wherein the costimulatory domain comprises a CD28 co-stimulatory domain or a 4-1BB co-stimulatory domain.


32. The isolated nucleic acid of any one of paragraphs 1 to 31, wherein the endodomain further comprises a CD3-zeta (CD3) domain.


33. The isolated nucleic acid of any one of paragraphs 1 to 32, wherein the ectodomain further comprises a signal peptide.


34. The isolated nucleic acid of any one of paragraphs 1 to 33, wherein the ectodomain further comprises a hinge between the antigen recognition region and the transmembrane domain.


35. The isolated nucleic acid of paragraph 34, wherein the hinge comprises a CD8 hinge region.


36. The isolated nucleic acid of any one of paragraphs 1 to 35, wherein the antigen recognition domain is a single chain variable fragment (scFv), wherein the hinge region comprises a CD8 hinge region, and wherein the endodomain comprises a CD28 costimulatory domain and a CD3ζ domain, or a 4-1BB co-stimulatory domain and a CD3ζ domain.


38. The isolated nucleic acid of any one of paragraphs 1 to 36, wherein the CAR construct has the following structural arrangement from N-terminus to C-terminus: antigen recognition domain scFv+CD8 hinge+transmembrane domain+CD28 costimulatory domain+CD3 domain, or antigen recognition domain scFv+CD8 hinge+transmembrane domain+4-1BB costimulatory domain+CD3ζ domain.


39. The isolated nucleic acid of any of paragraphs 1 to 38, wherein the donor template sequence comprises a sequence selected from the group consisting of SEQ ID NOs: 1387-1422.


40. The isolated nucleic acid of any of paragraphs 1 to 38, wherein the donor template sequence comprises the sequence of SEQ ID NO: 1390.


41. The isolated nucleic acid of any of paragraphs 1 to 38, wherein the donor template sequence comprises a sequence selected from the group consisting of SEQ ID NOs: 1394-1396.


42. The isolated nucleic acid of any of paragraphs 1 to 38, wherein the donor template sequence comprises a sequence selected from the group consisting of SEQ ID NOs: 1397-1422, for example, SEQ ID NOs: 1398, 1401, 1402, 1408, or 1409.


43. A vector comprising the isolated nucleic acid of any one of paragraphs 1 to 42.


44. The vector of paragraph 42, wherein the vector is an AAV.


45. The vector of paragraph 43 or 44, wherein the AAV vector is an AAV6 vector.


46. The vector of paragraph 43 or 44, wherein the vector comprises a DNA sequence selected from the group consisting of SEQ ID NO: 1348-1386.


47. The vector of paragraph 43 or 44, wherein the vector comprises a DNA sequence of SEQ ID NO: 1354.


48. The vector of paragraph 42 or 43, wherein the vector comprises a DNA sequence selected from the group consisting of SEQ ID NO: 1358-1360.


49. The vector of paragraph 42 or 43, wherein the vector comprises a DNA sequence selected from the group consisting of SEQ ID NO: 1362, 1365, 1366, 1372, and 1373.


50. An isolated cell comprising the vector of any of paragraphs 43-49.


51. The isolated cell of paragraph 50, wherein the cell is a T cell.


52. The isolated cell of paragraph 51, wherein the T-cell is a CD4+ T-cell, a CD8+ T-cell, or a combination thereof.


53. One or more guide ribonucleic acids (gRNAs) for editing a gene, the one or more gRNAs selected from the group consisting of:


(a) one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158;


(b) one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506;


(c) one or more gRNAs for editing a CIITA gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 699-890;


(d) one or more gRNAs for editing a CD3E gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 284-408; or


(e) one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274.


54. The one or more gRNAs of paragraph 53, wherein the one or more gRNAs are one or more single-molecule guide RNAs (sgRNAs).


55. The one or more gRNAs or sgRNAs of paragraph 53 or 54, wherein the one or more gRNAs or one or more sgRNAs is one or more modified gRNAs or one or more modified sgRNAs.


56. A ribonucleoprotein particle comprising the one or more gRNAs or sgRNAs of any one of paragraphs 53-55 and one or more site-directed polypeptides.


57. The ribonucleoprotein particle of paragraph 56, wherein the one or more site-directed polypeptides is one or more deoxyribonucleic acid (DNA) endonucleases.


58. The ribonucleoprotein particle of paragraph 57, wherein the one or more DNA endonucleases is a Cas9 or Cpf1 endonuclease; or a homolog thereof, recombination of the naturally occurring molecule, codon-optimized, or modified version thereof, and combinations thereof.


59. The ribonucleoprotein particle of paragraph 57 or 58, wherein the one or more DNA endonucleases is pre-complexed with one or more gRNAs or one or more sgRNAs.


60. A composition comprising the isolated nucleic acid of any one of paragraphs 1-42 and one or more ribonucleoprotein particles of any one of paragraphs 56-59.


61. The composition of paragraph 60, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a TRAC gene.


62. The composition of paragraph 60, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a B2M gene.


63. The composition of paragraph 60, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a PD1 gene.


64. The composition of paragraph 60, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a TRAC gene.


65. The composition of paragraph 60, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a B2M gene.


66. The composition of paragraph 60, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a PD1 gene.


67. The composition of paragraph 60, wherein the target gene is a TRAC gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a TRAC gene.


68. The composition of paragraph 60, wherein the target gene is a B2M gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a B2M gene.


69. The composition of paragraph 60, wherein the target gene is a PD1 gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a PD1 gene.


70. The composition of any one of paragraphs 61-69, wherein the donor template is either a single or double stranded polynucleotide.


71. The composition of any one of paragraphs 60, 61, 64, 67 or 70, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


72. The composition of any one of paragraphs 60, 62, 65, 68 or 70, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


73. The composition of any one of paragraphs 60, 63, 66, 69 or 70, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274.


74. The composition of paragraph 71 or 73, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


75. The composition of paragraph 71 or 72, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274.


76. The composition of paragraph 72 or 73, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


77. A composition comprising the vector of any one of paragraphs 43-49, and one or more ribonucleoprotein particles of any one of paragraphs 56-59.


78. The composition of paragraph 77, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a TRAC gene.


79. The composition of paragraph 77, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a B2M gene.


80. The composition of paragraph 77, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a PD1 gene.


81. The composition of paragraph 77, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a TRAC gene.


82. The composition of paragraph 77, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a B2M gene.


83. The composition of paragraph 77, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a PD1 gene.


84. The composition of paragraph 77, wherein the target gene is a TRAC gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a TRAC gene.


85. The composition of paragraph 77, wherein the target gene is a B2M gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a B2M gene.


86. The composition of paragraph 77, wherein the target gene is a PD1 gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a PD1 gene.


87. The composition of paragraph any one of paragraphs 78-86, wherein the donor template is either a single or double stranded polynucleotide.


88. The composition of any one of paragraphs 77, 78, 81, 84 or 87, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


89. The composition of any one of paragraphs 77, 79, 82, 85 or 87, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


90. The composition of any one of paragraphs 77, 80, 83, 86 or 87, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1275.


91. The composition of paragraph 88 or 90, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


92. The composition of paragraph 88 or 89, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1275.


93. The composition of paragraph 89 or 90, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


94. The composition of any one of paragraphs 77, 78, 81, 84, 87, 88 or 93, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1387 and 1390 and the gRNA is an sgRNA for editing a TRAC gene comprising the sequence of SEQ ID NO: 1342 or 1343.


95. The composition of any one of paragraphs 77, 78, 81, 84, 87, 88 or 93, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1394-1396 and the gRNA is an sgRNA for editing a TRAC gene comprising the sequence of SEQ ID NO: 1342 or 1343.


96. The composition of any one of paragraphs 77, 78, 81, 84, 87, 88 or 93, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1398, 1400, 1401, 1402, 1408, and 1409 and the gRNA is an sgRNA for editing a TRAC gene comprising the sequence of SEQ ID NO: 1342 or 1343.


97. The composition of any one of paragraphs 94-96, further comprising an sgRNA for editing a B2M gene comprising the sequence of SEQ ID NO: 1344 or 1345.


98. The composition of any one of paragraphs 77, 79, 82, 85, 87, 89, 91, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1387 and 1390 and the gRNA is an sgRNA for editing a B2M gene comprising the sequence of SEQ ID NO: 1342 or 1343.


99. The composition of any one of paragraphs 77, 79, 82, 85, 87, 89, 91, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1394 and 1395 and the gRNA is an sgRNA for editing a B2M gene comprising the sequence of SEQ ID NO: 1342 or 1343.


100. The composition of any one of paragraphs 77, 79, 82, 85, 87, 89, 91, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID NOs: 1398 and 1400 and the gRNA is an sgRNA for editing a B2M gene comprising the sequence of SEQ ID NO: 1342 or 1343.


101. An isolated cell comprising the isolated nucleic acid of any one of paragraphs 1-42, and one or more ribonucleoprotein particles of any one of paragraphs 56-59.


102. The isolated cell of paragraph 101, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a TRAC gene.


103. The isolated cell of paragraph 101, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a B2M gene.


104. The isolated cell of paragraph 101, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD19, and the donor template comprises at least a portion of a PD1 gene.


105. The isolated cell of paragraph 101, wherein the target gene is a TRAC gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a TRAC gene.


106. The isolated cell of paragraph 101, wherein the target gene is a B2M gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a B2M gene.


107. The isolated cell of paragraph 101, wherein the target gene is a PD1 gene, the antigen recognition region recognizes CD70, and the donor template comprises at least a portion of a PD1 gene.


108. The isolated cell of paragraph 101, wherein the target gene is a TRAC gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a TRAC gene.


109. The isolated cell of paragraph 101, wherein the target gene is a B2M gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a B2M gene.


110. The isolated cell of paragraph 101, wherein the target gene is a PD1 gene, the antigen recognition region recognizes BCMA, and the donor template comprises at least a portion of a PD1 gene.


111. The isolated cell of any one of paragraphs 102-110, wherein the donor template is either a single or double stranded polynucleotide.


112. The isolated cell of any one of paragraphs 101, 102, 105, 108 or 111, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


113. The isolated cell of any one of paragraphs 101, 103, 106, 109 or 111, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


114. The isolated cell of any one of paragraphs 101, 104, 107, 110 or 111, wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274.


115. The isolated cell of paragraph 112 or 114, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506.


116. The isolated cell of paragraph 112 or 113, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274.


117. The isolated cell of paragraph 113 or 114, wherein the one or more ribonucleoprotein particles further comprises one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158.


118. The isolated cell of any one of paragraphs 101-118, wherein the one or more ribonucleoprotein particles comprises two or more different populations of ribonucleoprotein particles.


119. The isolated cell of paragraph 118, wherein the wherein the one or more ribonucleoprotein particles comprises one or more DNA endonucleases and two or more different populations of ribonucleoprotein particles selected from the group consisting of:


(a) one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 83-158;


(b) one or more gRNAs for editing a B2M gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 458-506;


(c) one or more gRNAs for editing a CIITA gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 699-890 for editing the CIITA gene;


(d) one or more gRNAs for editing a CD3E gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 284-408;


(e) one or more gRNAs for editing a PD1 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1083-1274;


(f) one or more gRNAs for editing a TRAC gene, the one or more gRNAs comprising a spacer sequence comprising the nucleic acid sequence of SEQ ID NO: 1299;


(g) one or more gRNAs for editing a CTLA-4 gene, the one or more gRNAs comprising a spacer sequence comprising the nucleic acid sequence of SEQ ID NO: 1277;


(h) one or more gRNAs for editing a AAVS1 (PPP1R12C) gene the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1301-1302;


(i) one or more gRNAs for editing a CD52 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1303-1304; and


(j) one or more gRNAs for editing a RFX5 gene, the one or more gRNAs comprising a spacer sequence selected from the group consisting of the nucleic acid sequences of SEQ ID NOs: 1305-1307.


120. An isolated cell comprising the isolated nucleic acid of and one of paragraph 1-42 and a first population of one or more ribonucleoprotein particles of any one of paragraphs 56-59, wherein the isolated nucleic acid is inserted into the genome at a locus within or near a first target gene that results is a permanent deletion within or near the first target gene and insertion of the isolated nucleic acid encoding the CAR.


121. The isolated cell of paragraph 120, wherein the isolated cell further comprises a second population of one or more ribonucleoprotein particles of any one of paragraphs 56-59, wherein the first population of one or more ribonucleoprotein particles comprises one or more gRNAs for editing a first target gene and the second population of one or more ribonucleoprotein particles comprises one or more gRNAs for editing a second, different target gene.


122. An isolated cell, expressing a chimeric antigen receptor encoded by the nucleic acid of any one of paragraphs 1-42 and comprising a deletion in one or more genes selected from: TRAC, CD3ε, B2M, CIITA, RFX5, PD1, and CTLA-4.


123. An isolated cell, expressing a chimeric antigen receptor encoded by the nucleic acid of any one of paragraphs 1-42 and comprising a deletion in one or more of TRAC, B2M and PD1.


124. An isolated cell, expressing a chimeric antigen receptor encoded by the nucleic acid of any one of paragraphs 1-42 and comprising a deletion in TRAC.


125. The isolated cell of paragraph 124, further comprising a deletion in B2M.


126. The isolated cell of paragraph 124, further comprising a deletion in B2M and PD1.


127. The isolated cell of any one of paragraphs 101-126, wherein the chimeric antigen receptor is expressed from the TRAC locus.


128. The isolated cell of paragraph 127, wherein the chimeric antigen receptor comprises a sequence selected from the group consisting of SEQ ID NO: 1334, 1499, 1500, 1501, and 1502.


129. The isolated cell of paragraph 127, wherein the chimeric antigen receptor (CAR) comprises a sequence encoding the CAR selected from the group consisting of SEQ ID NO: 1316, 1423, 1424, 1425 and 1426.


130. The isolated cell of paragraph 127, wherein the chimeric antigen receptor (CAR) comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1338, 1449, 1450, 1451 and 1452.


131. An isolated cell transfected with the vector comprising a nucleic acid selected from the group consisting of: SEQ ID Nos: 1348, 1354, 1358, 1359, 1362 and 1364 and further comprising a deletion in one or more genes selected from: TRAC, CD3ε, B2M, CIITA, RFX5, PD1, and CTLA-4.


132. An isolated cell transfected with the vector comprising a nucleic acid selected from the group consisting of: SEQ ID Nos: 1348, 1354, 1358, 1359, 1362 and 1364 and further comprising a deletion in TRAC.


133. An isolated cell transfected with the vector comprising a nucleic acid selected from the group consisting of: SEQ ID Nos: 1348, 1354, 1358, 1359, 1362 and 1364 and further comprising a deletion in TRAC and B2M.


134. An isolated cell transfected with the vector comprising a nucleic acid selected from the group consisting of: SEQ ID Nos: 1348, 1354, 1358, 1359, 1362 and 1364 and further comprising a deletion in TRAC, B2M and PD1.


135. The isolated cell of any one of paragraphs 127-134, wherein the nucleic acid sequence comprises a donor template that is permanently inserted in the TRAC gene, disrupting TRAC gene expression.


136. The isolated cell of paragraph 135, further comprising a deletion in the B2M gene.


137. The isolated cell of paragraph 136, further comprising a deletion in the PD1 gene.


138. The isolated cell of any one of paragraphs 131-137, wherein:


a) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the TRAC target gene resulting a permanent deletion in the TRAC gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence SEQ ID NO: 1342 or 1343 and one or more deoxyribonucleic acid (DNA) endonucleases; and


b) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the B2M target gene resulting a permanent deletion in the B2M gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence of SEQ ID NO: 1344 or 1345 and one or more deoxyribonucleic acid (DNA) endonucleases 139. An isolated cell comprising:

    • a) the isolated nucleic acid of any one of paragraph 1-42, wherein the isolated nucleic acid is inserted into the genome by homologous recombination at a locus within or near a TRAC gene that results is a permanent deletion within or near the TRAC gene;
    • b) a permanent deletion within or near a second target gene, wherein the second target gene is B2M;
    • c) insertion of the isolated nucleic acid encoding the CAR into the TRAC gene, wherein the CAR comprises a CD19 antigen recognition domain; and
    • d) the CAR is expressed on the surface of the cell.


      140. An isolated cell comprising:
    • a) the isolated nucleic acid of any one of paragraphs 1-42, wherein the isolated nucleic acid is inserted into the genome by homologous recombination at a locus within or near a TRAC gene that results is a permanent deletion within or near the TRAC gene;
    • b) a permanent deletion within or near a second target gene, wherein the second target gene is B2M;
    • c) insertion of the isolated nucleic acid encoding the CAR into the TRAC gene, wherein the CAR comprises a CD70 antigen recognition domain; and
    • d) the CAR is expressed on the surface of the cell.


      141. An isolated cell comprising:
    • a) the isolated nucleic acid of any one of paragraphs 1-42, wherein the isolated nucleic acid is inserted into the genome by homologous recombination at a locus within or near a TRAC gene that results is a permanent deletion within or near the TRAC gene;
    • b) a permanent deletion within or near a second target gene, wherein the second target gene is B2M;
    • c) insertion of the isolated nucleic acid encoding the CAR into the TRAC gene, wherein the CAR comprises a BCMA antigen recognition domain; and
    • d) the CAR is expressed on the surface of the cell. 142. The isolated cell of any one of paragraphs 139-141, further comprising a permanent deletion within or near a third target gene, wherein the third target gene is PD1.


      143. The isolated cell of any one of paragraphs 139-142, wherein:


a) the isolated nucleic acid comprises a nucleotide sequence of SEQ ID Nos: 1348, 1354, 1358, 1359, 1362 and 1364;


b) one or more gRNAs comprise a spacer sequence selected from SEQ ID Nos: 83-158 and one or more deoxyribonucleic acid (DNA) endonucleases, effect one or more single-strand breaks or double-strand breaks in the TRAC gene resulting a permanent deletion in the TRAC gene; and


c) one or more gRNAs comprising a spacer sequence selected from SEQ ID Nos: 458-506 and one or more deoxyribonucleic acid (DNA) endonucleases, effect one or more single-strand breaks or double-strand breaks in the B2M gene resulting a permanent deletion in the B2M gene.


144. The isolated cell of paragraph 143, wherein:


a) the isolated nucleic acid comprises a nucleotide sequence is selected from the group consisting of SEQ ID NO: 1348-1357;


b) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the TRAC target gene resulting a permanent deletion in the TRAC target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence SEQ ID NO: 1342 or 1343 and one or more deoxyribonucleic acid (DNA) endonucleases; and


c) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the B2M target gene resulting a permanent deletion in the B2M target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence of SEQ ID NO: 1344 or 1345 and one or more deoxyribonucleic acid (DNA) endonucleases.


145. The isolated cell of paragraph 143, wherein:


a) the isolated nucleic acid comprises a nucleotide sequence is selected from the group consisting of SEQ ID NO: 1358 and 1359;


b) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the TRAC target gene resulting a permanent deletion in the TRAC target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence SEQ ID NO: 1342 or 1343 and one or more deoxyribonucleic acid (DNA) endonucleases; and


c) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the B2M target gene resulting a permanent deletion in the B2M target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence of SEQ ID NO: 1344 or 1345 and one or more deoxyribonucleic acid (DNA) endonucleases.


146. The isolated cell of paragraph 143, wherein:


a) the isolated nucleic acid comprises a nucleotide sequence is selected from the group consisting of SEQ ID NO: 1362 and 1364;


b) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the TRAC target gene resulting a permanent deletion in the TRAC target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence SEQ ID NO: 1342 or 1343 and one or more deoxyribonucleic acid (DNA) endonucleases; and


c) one or more ribonucleoprotein particles effect one or more single-strand breaks or double-strand breaks in the B2M target gene resulting a permanent deletion in the B2M target gene, wherein the ribonucleoprotein particles comprise one or more sgRNAs comprising a sequence of SEQ ID NO: 1344 or 1345 and one or more deoxyribonucleic acid (DNA) endonucleases.


147. A pharmaceutical composition comprising the isolated cell of any one of paragraphs 101-146.


148. A method for producing a gene edited cell, the method comprising the steps of: introducing into the cell (i) the isolated nucleic acid encoding a knock-in chimeric antigen receptor (CAR) construct of any one of paragraphs 1-42, (ii) one or more sgRNA and (iii) one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a first target gene that results in: a) a permanent deletion within or near the first target gene affecting the expression or function of the first target gene, optionally wherein the permanent deletion is in the PAM or sgRNA target sequence, and optionally wherein the permanent deletion is a 20 nucleotide deletion, b) insertion of the CAR construct within or near the first target gene, and, c) expression of the CAR on the surface of a cell.


149. A method for modulating one or more biological activities of a cell, the method comprising the step of:


introducing into the cell (i) the isolated nucleic acid encoding a knock-in chimeric antigen receptor (CAR) construct of any one of paragraphs 1-42, (ii) one or more sgRNA and (iii) one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a first target gene that results in: a) a permanent deletion within or near the first target gene affecting the expression or function of the first target gene, optionally wherein the permanent deletion is in the PAM or sgRNA target sequence, and optionally wherein the permanent deletion is a 20 nucleotide deletion, b) insertion of the CAR construct within or near the first target gene, and, c) expression of the CAR on the surface of a cell.


150. The method of paragraph 148 or 149, wherein the gRNA and endonuclease form a ribonucleoprotein particle.


151. The method of any one of paragraphs 148-150, further comprising the step of introducing into the cell one or more gRNA and one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a second target gene that results in a permanent deletion within or near the second target gene affecting the expression or function of the second target gene.


152. The method of paragraph 151, wherein the gRNA and endonuclease form a ribonucleoprotein particle.


153. The method of any one of paragraphs 148-152, wherein the permanent deletion results in modulating one or more biological activities.


154. The method of paragraph 153, wherein modulating biological activities comprises knocking out a biological activity of the first target gene, the second target gene, optionally a third target gene, or a combination thereof.


155. The method of paragraph 153 or 154, wherein the biological activity is host versus graft response, graft versus host response, immune checkpoint response, immune suppression, or any combination thereof.


156. The method of paragraph 153 or 154, wherein the biological activity is a graft versus host response, and the first target gene, the second target gene, or a combination thereof is selected from the group consisting of TRAC, CD3-epsilon (CD3ε), and combinations thereof.


157. The method of paragraph 153 or 154, wherein the biological activity is a host versus graft response, and the first target gene, the second target gene, or a combination thereof is selected from the group consisting of B2M, CIITA, RFX5, and combinations thereof.


158. The method of paragraph 153 or 154, wherein the biological activity is a checkpoint inhibitor, and the first target gene, the second target gene, or a combination thereof is selected from the group consisting of PD1, CTLA-4, and combinations thereof.


159. The method of paragraph 153 or 154, wherein the biological activity is increased cell survival or enhanced cell viability, and the first target gene, the second target gene, or a combination thereof is selected from the group consisting of TRAC, B2M, PD1, and combinations thereof.


160. The method of paragraph 153 or 154, wherein the gene encodes a sequence modulating pharmacological control of CAR T.


161. The method of paragraph 160, wherein the gene encodes CD52.


162. The method of paragraph 160, wherein the modulation is positive or negative.


163. The method of paragraph 160, wherein the modulation allows the CAR T cells to survive.


164. The method of paragraph 160, wherein the modulation kills the CAR T cells.


165. The method of any one of paragraphs 153, 154, or 163, wherein the first target gene, the second target gene, or a combination thereof comprises a gene selected from the group consisting of TRAC, CD3ε, B2M, CIITA, RFX5, PD1, CTLA-4, CD52, PPP1R12C, and combinations thereof.


166. The method of any one of paragraphs 153, 154, or 163, wherein the first target gene, the second target gene, or a combination thereof comprises two or more genes selected from the group consisting of TRAC, B2M, PD1 and combinations thereof.


167. The method of any one of paragraphs 153, 154, or 163, wherein the first target gene, the second target gene, or a combination thereof comprises TRAC, B2M and PD1.


168. The method of paragraph 153 or 154, wherein the donor template is either a single or double stranded polynucleotide.


169. The method of paragraph 168, wherein the portion of the target gene is selected from the group consisting of TRAC, CD3ε, B2M, CIITA, RFX5, PD1, CTLA-4, CD52, PPP1R12C, and combinations thereof.


170. The method of paragraph 169, wherein the portion of the target gene is selected from the group consisting of TRAC, B2M, PD1 and combinations thereof.


171. The method of paragraph 169, wherein the portion of the target gene comprises a portion of TRAC.


172. The method of paragraph 169, wherein the portion of the target gene comprises a portion of TRAC and/or a portion of B2M.


173. The method of paragraph 169, wherein the portion of the target gene comprises a portion of TRAC, a portion of B2M, and/or a portion of PD1.


174. The method of paragraph 153 or 154, wherein the one or more DNA endonucleases is pre-complexed with one or more gRNAs, optionally one or more sgRNAs.


175. The method of paragraph 153 or 154, wherein the donor template is delivered by a viral vector.


176. The method of paragraph 175, wherein the viral vector is an adeno-associated virus (AAV) vector.


177. The method of paragraph 176, wherein the AAV vector is an AAV6 vector.


178. The method of paragraph 153 or 154, wherein the cell is a primary human T cell.


179. The method of paragraph 178, wherein the primary human T cell is isolated from peripheral blood mononuclear cells (PBMCs).


180. The method of paragraph 178 or 179, wherein the cells are allogeneic.


181. The method of any one of paragraphs 148-180, wherein the one or more DNA endonucleases is a Cas9, or Cpf1 endonuclease; or a homolog thereof, recombination of the naturally occurring molecule, codon-optimized, or modified version thereof, and combinations thereof.


182. The method of paragraph 181, wherein the method comprises introducing into the cell one or more polynucleotides encoding the one or more DNA endonucleases.


183. The method of paragraph 182, wherein the method comprises introducing into the cell one or more ribonucleic acids (RNAs) encoding the one or more DNA endonucleases.


184. The method of paragraph 181 or 182, wherein the one or more polynucleotides or one or more RNAs is one or more modified polynucleotides or one or more modified RNAs.


185. The method of paragraph 184, wherein the DNA endonuclease is a protein or polypeptide.


186. An ex vivo method for treating a patient with a medical condition comprising the steps of:


i) isolating a T cell from the patient;


ii) editing within or near a target gene of the T cell or other DNA sequences that encode regulatory elements of the target gene of the T cell; and


iii) implanting the genome-edited T cell into the patient.


187. An ex vivo method for treating a patient with a medical condition comprising the steps of:


i) isolating a T cell from a donor;


ii) editing within or near a target gene of the T cell or other DNA sequences that encode regulatory elements of the target gene of the T cell; and


iii) implanting the genome-edited T cell into the patient.


188. The method of paragraph 186 or 187, wherein the isolating step comprises: cell differential centrifugation, cell culturing, and combinations thereof.


189. A method for treating a patient with a medical condition comprising the steps of:


i) editing within or near one or more target genes of the T cell, or one or more other DNA sequences that encode regulatory elements of the target gene of the T cell; and


ii) implanting the genome-edited T cell into the patient.


190. The method of any one of paragraphs 186-189, wherein the editing step comprises introducing into the T cell (i) the isolated nucleic acid encoding a knock-in chimeric antigen receptor (CAR) construct of any one of paragraphs 1-42, (ii) one or more gRNA and (iii) one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a first target gene that results in: a) a permanent deletion within or near the first target gene affecting the expression or function of the first target gene, optionally wherein the permanent deletion is in the PAM or sgRNA target sequence, and optionally wherein the permanent deletion is a 20 nucleotide deletion, b) insertion of the CAR construct within or near the first target gene, and, c) expression of the CAR on the surface of a cell.


191. The method of paragraph 190, further comprising the step of introducing into the cell one or more gRNA and one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a second target gene that results in a permanent deletion within or near the second target gene affecting the expression or function of the second target gene.


192. The method of any one of paragraphs 189-191, wherein the implanting step comprises implanting the genome-edited T cell into the patient by transplantation, local injection, or systemic infusion, or combinations thereof.


193. The method of any one of paragraphs 189-192, wherein the T-cell is a CD4+ T-cell, a CD8+ T-cell, or a combination thereof.


194. The method of any one of paragraphs 189-193, wherein the medical condition is cancer.


195. The method of paragraph 194, wherein the cancer is B-cell acute lymphoblastic leukemia (B-ALL), B-cell non-Hodgkin's lymphoma (B-NHL), Chronic lymphocytic leukemia (C-CLL), Hodgkin's lymphoma, T cell lymphoma, T cell leukemia, clear cell renal cell carcinoma (ccRCC), thyroid cancer, nasopharyngeal cancer, non-small cell lung (NSCLC), pancreatic cancer, melanoma, ovarian cancer, glioblastoma, cervical cancer, or multiple myeloma.


196. An in vivo method for treating a patient with a medical condition comprising the step of editing a first target gene in a cell of the patient, or other DNA sequences that encode regulatory elements of the target gene, wherein the editing step comprises introducing into the T cell (i) the isolated nucleic acid encoding a knock-in chimeric antigen receptor (CAR) construct of any one of paragraphs 1-42, (ii) one or more gRNA and (iii) one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a first target gene that results in: a) a permanent deletion within or near the first target gene affecting the expression or function of the first target gene, optionally wherein the permanent deletion is in the PAM or sgRNA target sequence, and optionally wherein the permanent deletion is a 20 nucleotide deletion, b) insertion of the CAR construct within or near the first target gene, and, c) expression of the CAR on the surface of the cell.


197. The method of paragraph 196, further comprising the step of introducing into the cell one or more gRNA and one or more deoxyribonucleic acid (DNA) endonucleases to effect one or more single-strand breaks (SSBs) or double-strand breaks (DSBs) within or near a second target gene that results in a permanent deletion within or near the second target gene affecting the expression or function of the second target gene.


198. The method of paragraph 196 or 197, wherein the T-cell is a CD4+ T-cell, a CD8+ T-cell, or a combination thereof.


199. The method of any one of paragraphs 196-198, wherein the medical condition is cancer.


200. The method of paragraph 180, wherein the cancer is B-cell acute lymphoblastic leukemia (B-ALL), B-cell non-Hodgkin's lymphoma (B-NHL), Chronic lymphocytic leukemia (C-CLL), Hodgkin's lymphoma, T cell lymphoma, T cell leukemia, clear cell renal cell carcinoma (ccRCC), thyroid cancer, nasopharyngeal cancer, non-small cell lung (NSCLC), pancreatic cancer, melanoma, ovarian cancer, glioblastoma, cervical cancer, or multiple myeloma.


201. An isolated nucleic acid comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1348-1357.


202. An isolated nucleic acid comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1358-1359.


203. An isolated nucleic acid comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1361-1364.


204. A method for treating cancer in a subject comprising the steps of administering to a subject a composition comprising the isolated cell of any one of paragraphs 101-146.


205. A method for decreasing tumor volume in a subject comprising the step of administering to a subject a composition comprising the isolated cell of any one of paragraphs 101-146.


206. A method for increasing survival in a subject with cancer comprising the step of administering to a subject a composition comprising the isolated cell of any one of paragraphs 101-146.


207. The composition of any one of paragraphs 60-100, wherein the isolated nucleic acid comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1348-1357, 1358-1359, 1362 and 1364.


208. The composition of any one of paragraphs 60-100 or 207, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID Nos: 1390, 1394-1395, 1398 and 1400 and the gRNA is an sgRNA for editing a TRAC gene having the sequence of SEQ ID NO: 1342.


209. The composition of any one of paragraphs 60-100, 207, or 208, wherein the donor template comprises a sequence selected from the group consisting of SEQ ID Nos: 1390, 1394-1395, 1398 and 1400, the gRNA is an sgRNA for editing a TRAC gene having the sequence of SEQ ID NO: 1342 and the sgRNA for editing a B2M gene having the sequence of SEQ ID NO: 1344.


The term “comprising” or “comprises” is used in reference to compositions, methods, and respective component(s) thereof, that are essential to the invention, yet open to the inclusion of unspecified elements, whether essential or not.


The term “consisting essentially of” refers to those elements required for a given aspect. The term permits the presence of additional elements that do not materially affect the basic and novel or functional characteristic(s) of that aspect of the invention.


The term “consisting of” refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the aspect.


The singular forms “a,” “an,” and “the” include plural references, unless the context clearly dictates otherwise.


Certain numerical values presented herein are preceded by the term “about.” The term “about” is used to provide literal support for the numerical value the term “about” precedes, as well as a numerical value that is approximately the numerical value, that is the approximating unrecited numerical value may be a number which, in the context it is presented, is the substantial equivalent of the specifically recited numerical value. The term “about” means numerical values within +10% of the recited numerical value.


When a range of numerical values is presented herein, it is contemplated that each intervening value between the lower and upper limit of the range, the values that are the upper and lower limits of the range, and all stated values with the range are encompassed within the disclosure. All the possible sub-ranges within the lower and upper limits of the range are also contemplated by the disclosure.


EXAMPLES

The invention will be more fully understood by reference to the following embodiments, which provide illustrative non-limiting aspects of the invention.


The examples describe the use of the CRISPR system as an illustrative genome editing technique to create defined therapeutic genomic deletions, insertions, or replacements, termed “genomic modifications” herein, in or near a target gene that lead to permanent correction of mutations in the genomic locus, or expression at a heterologous locus, that restore target protein activity. Introduction of the defined therapeutic modifications represents a novel therapeutic strategy for the potential amelioration of various medical conditions, as described and illustrated herein.


Example 1—Screening of gRNAs

To identify a large spectrum of gRNAs able to edit the cognate DNA target region, an in vitro transcribed (IVT) gRNA screen was conducted. Spacer sequences were incorporated into a backbone sequence to generate full length sgRNAs. Examples of backbone sequences are shown in Table 1. To generate a list of spacer sequences to be used for gene disruption, protein coding exons were selected for each target gene, particularly those containing the initiating ATG start codon and/or coding for critical protein domains (e.g., DNA binding domains, extracellular domains, etc.). The relevant genomic sequence was submitted for analysis using gRNA design software. The resulting list of gRNAs was narrowed to a list of about ˜200 gRNAs based on uniqueness of sequence (only gRNAs without a perfect match somewhere else in the genome were screened) and minimal predicted off target effects. This set of gRNAs was in vitro transcribed, and transfected using messenger Max into HEK293T cells that constitutively express Cas9. Cells were harvested 48 hours post transfection, the genomic DNA was isolated, and editing efficiency was evaluated using Tracking of Indels by DEcomposition (TIDE) analysis. The results are shown in FIGS. 1-5 and Tables below.


It is conventional in the art to describe a gRNA spacer sequence in the context of a DNA target (e.g., genomic) sequence, which is adject to the PAM sequence. It is understood, however, that the actual gRNA spacer sequence used in the methods and compositions herein is the equivalent of the DNA target sequence. For example, the TRAC gRNA spacer sequence described as including AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76), actual includes the RNA spacer sequence AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152).


TRAC gRNA Screen


For TRAC, genomic segments containing the first three (3) protein coding exons were used as input in the gRNA design software. The genomic segments also included flanking splice site acceptor/donor sequences. Desired gRNAs were those that would lead to insertions or deletions in the coding sequence disrupting the amino acid sequence of TRAC leading to out of frame/loss of function allele(s). All 76 in silico-identified gRNA spacers targeting TRAC were used in an IVT screen. Seventy three (73) yielded measurable data by TIDE analysis. Nine (9) gRNA sequences yielded InDel percentages above 50% that could be suitable for secondary screens.


A homology-dependent assessment of the TRAC gRNA comprising SEQ ID NO: 152 showed that this guide had an indel frequency of less than 0.5% at an off-target site. This data guided selection of this particular TRAC gRNA for further analysis.









TABLE 4







TRAC target sequences, gRNA spacer sequences, and cutting


efficiencies in HEK293T cells













Target
SEQ ID
gRNA Spacer
SEQ ID





Sequence
NO:
Sequence
NO:
Guide Name
Indel %
R2
















GTAAAACCAA
7
GUAAAACCA
83
TRAC
97.7
0.99


GAGGCCACA

AGAGGCCACA

EXON3_T23




G

G









GACTGTGCCT
8
GACUGUGCCU
84
TRAC
88.4
0.946


CTGTTTGACT

CUGUUUGAC

EXON3_T15






U









GTTATGGGCT
9
GUUAUGGGC
85
TRAC
63.5
0.967


TGCATGTCCC

UUGCAUGUCC

EXON3_T7






C









TCTCTCAGCT
10
UCUCUCAGCU
86
TRAC
59.1
0.949


GGTACACGGC

GGUACACGGC

EXON1_T1







CACCAAAGCT
11
CACCAAAGCU
87
TRAC
59
0.96


GCCCTTACCT

GCCCUUACCU

EXON1_T15







GAGAATCAA
12
GAGAAUCAA
88
TRAC
56.5
0.976


AATCGGTGAA

AAUCGGUGA

EXON1_T7




T

AU









ATCCTCCTCC
13
AUCCUCCUCC
89
TRAC
55.5
0.96


TGAAAGTGGC

UGAAAGUGG

EXON3_T16






C









AGCAAGGAA
14
AGCAAGGAA
90
TRAC
54.2
0.897


ACAGCCTGCG

ACAGCCUGCG

EXON1_T9




A

A









TGTGCTAGAC
15
UGUGCUAGA
91
TRAC
53.8
0.973


ATGAGGTCTA

CAUGAGGUC

EXON1_T3






UA









CCGAATCCTC
16
CCGAAUCCUC
92
TRAC
52.1
0.947


CTCCTGAAAG

CUCCUGAAAG

EXON3_T13







CCACTTTCAG
17
CCACUUUCAG
93
TRAC
46.9
0.955


GAGGAGGATT

GAGGAGGAU

EXON3_T19






U









CATCACAGGA
18
CAUCACAGGA
94
TRAC
43.7
0.98


ACTTTCTAAA

ACUUUCUAA

EXON2_T8






A









CGTCATGAGC
19
CGUCAUGAGC
95
TRAC
43.5
0.98


AGATTAAACC

AGAUUAAAC

EXON3_T6






C









TAGGCAGACA
20
UAGGCAGAC
96
TRAC
41.5
0.983


GACTTGTCAC

AGACUUGUC

EXON1_T6






AC









ACCCGGCCAC
21
ACCCGGCCAC
97
TRAC
40.7
0.975


TTTCAGGAGG

UUUCAGGAG

EXON3_T11






G









GCACCAAAGC
22
GCACCAAAGC
98
TRAC
37.6
0.984


TGCCCTTACC

UGCCCUUACC

EXON1_T5







ACCTGGCCAT
23
ACCUGGCCAU
99
TRAC
37.6
0.79


TCCTGAAGCA

UCCUGAAGCA

EXON1_T21







TACCAAACCC
24
UACCAAACCC
100
TRAC
37.4
0.939


AGTCAAACAG

AGUCAAACA

EXON3_T12






G









GACACCTTCT
25
GACACCUUCU
101
TRAC
37.1
0.984


TCCCCAGCCC

UCCCCAGCCC

EXON1_T40







TCTGTTTGAC
26
UCUGUUUGA
102
TRAC
36.6
0.926


TGGGTTTGGT

CUGGGUUUG

EXON3_T14






GU









TCCTCCTCCT
27
UCCUCCUCCU
103
TRAC
32.8
0.98


GAAAGTGGCC

GAAAGUGGC

EXON3_T18






C









AGACTGTGCC
28
AGACUGUGCC
104
TRAC
31.4
0.94


TCTGTTTGAC

UCUGUUUGA

EXON3_T8






C









ATGCAAGCCC
29
AUGCAAGCCC
105
TRAC
30.7
0.986


ATAACCGCTG

AUAACCGCUG

EXON3_T1







GCTTTGAAAC
30
GCUUUGAAA
106
TRAC
29.4
0.979


AGGTAAGAC

CAGGUAAGA

EXON2_T7




A

CA









CAAGAGGCC
31
CAAGAGGCCA
107
TRAC
28.3
0.987


ACAGCGGTTA

CAGCGGUUA

EXON3_T4




T

U









CCATAACCGC
32
CCAUAACCGC
108
TRAC
27.5
0.982


TGTGGCCTCT

UGUGGCCUCU

EXON3_T9






ACAAAACUG









ACAAAACTGT
33
UGCUAGACA
109
TRAC
27.4
0.988


GCTAGACATG

UG

EXON1_T16







TTCGGAACCC
34
UUCGGAACCC
110
TRAC
26.9
0.984


AATCACTGAC

AAUCACUGAC

EXON3_T5







GATTAAACCC
35
GAUUAAACCC
111
TRAC
26.6
0.984


GGCCACTTTC

GGCCACUUUC

EXON3_T2







TCTGTGGGAC
36
UCUGUGGGA
112
TRAC
24.4
0.989


AAGAGGATC

CAAGAGGAU

EXON1_T20




A

CA









GCTGGTACAC
37
GCUGGUACAC
113
TRAC
24.1



GGCAGGGTCA

GGCAGGGUC

EXON1_T22

0.991




A









CTCTCAGCTG
38
CUCUCAGCUG
114
TRAC
23.7
0.99


GTACACGGCA

GUACACGGCA

EXON1_T13







CTGACAGGTT
39
CUGACAGGU
115
TRAC
23.3
0.982


TTGAAAGTTT

UUUGAAAGU

EXON3_T25






UU









AGAGTCTCTC
40
AGAGUCUCUC
116
TRAC
18.9
0.992


AGCTGGTACA

AGCUGGUAC

EXON1_T25






A









CTCGACCAGC
41
CUCGACCAGC
117
TRAC
16.5
0.992


TTGACATCAC

UUGACAUCAC

EXON2_T1







TAAACCCGGC
42
UAAACCCGGC
118
TRAC
12.9
0.991


CACTTTCAGG

CACUUUCAGG

EXON3_T10







GTCAGGGTTC
43
GUCAGGGUU
119
TRAC
12.8
0.992


TGGATATCTG

CUGGAUAUC

EXON1_T27






UG









TTCGTATCTG
44
UUCGUAUCU
120
TRAC
12.8
0.994


TAAAACCAAG

GUAAAACCA

EXON3_T24






AG









CTTCAAGAGC
45
CUUCAAGAGC
121
TRAC
12.5
0.99


AACAGTGCTG

AACAGUGCU

EXON1_T17






G









CTGGATATCT
46
CUGGAUAUC
122
TRAC
12.1
0.992


GTGGGACAA

UGUGGGACA

EXON1_T31




G

AG









AAGTTCCTGT
47
AAGUUCCUG
123
TRAC
11.6
0.991


GATGTCAAGC

UGAUGUCAA

EXON2_T3






GC









GGCAGCTTTG
48
GGCAGCUUU
124
TRAC
11
0.99


GTGCCTTCGC

GGUGCCUUCG

EXON1_T2






C









CTTCTTCCCC
49
CUUCUUCCCC
125
TRAC
10.6
0.993


AGCCCAGGTA

AGCCCAGGUA

EXON1_T33







TTCAAAACCT
50
UUCAAAACCU
126
TRAC
9.4
0.966


GTCAGTGATT

GUCAGUGAU

EXON3 T21






U









TCAGGGTTCT
51
UCAGGGUUC
127
TRAC
9.3
0.973


GGATATCTGT

UGGAUAUCU

EXON1_T18






GU









GTCGAGAAA
52
GUCGAGAAA

TRAC
8.9
0.991


AGCTTTGAAA

AGCUUUGAA
128
EXON2_T4




C

AC









TTAATCTGCT
53
UUAAUCUGC
129
TRAC
8.7
0.993


CATGACGCTG

UCAUGACGCU

EXON3_T26






G









CTGTTTCCTT
54
CUGUUUCCUU
130
TRAC
7.6
0.99


GCTTCAGGAA

GCUUCAGGA

EXON1_T39






A









TGGATTTAGA
55
UGGAUUUAG
131
TRAC
7.3
0.993


GTCTCTCAGC

AGUCUCUCAG

EXON1_T4






C









CTTACCTGGG
56
CUUACCUGGG
132
TRAC
6.7
0.993


CTGGGGAAG

CUGGGGAAG

EXON1_T38




A

A









AGCCCAGGTA
57
AGCCCAGGUA
133
TRAC
6.1
0.994


AGGGCAGCTT

AGGGCAGCU

EXON1_T11






U









GGGACAAGA
58
GGGACAAGA
134
TRAC
5
0.993


GGATCAGGGT

GGAUCAGGG

EXON1_T26




T

UU









TTCTTCCCCA
59
UUCUUCCCCA
135
TRAC
4.9
0.994


GCCCAGGTAA

GCCCAGGUAA

EXON1_T35







TGCCTCTGTT
60
UGCCUCUGUU
136
TRAC
4.9
0.94


TGACTGGGTT

UGACUGGGU

EXON3_T17






U









AGCTGGTACA
61
AGCUGGUAC
137
TRAC
4.3
0.994


CGGCAGGGTC

ACGGCAGGG

EXON1_T8






UC









TGCTCATGAC
62
UGCUCAUGAC
138
TRAC
3.4
0.994


GCTGCGGCTG

GCUGCGGCUG

EXON3_T27







TTTCAAAACC
63
UUUCAAAACC
139
TRAC
2.1
0.965


TGTCAGTGAT

UGUCAGUGA

EXON3_T20






U









ACACGGCAG
64
ACACGGCAGG
140
TRAC
1.4
0.994


GGTCAGGGTT

GUCAGGGUU

EXON1_T14




C

C









AGCTTTGAAA
65
AGCUUUGAA
141
TRAC
1.4
0.993


CAGGTAAGAC

ACAGGUAAG

EXON2_T5






AC









CTGGGGAAG
66
CUGGGGAAG
142
TRAC
1.3
0.994


AAGGTGTCTT

AAGGUGUCU

EXON1_T28




C

UC









TCCTTGCTTC
67
UCCUUGCUUC
143
TRAC
1.2
0.98


AGGAATGGCC

AGGAAUGGC

EXON1_T29






C









AAGCTGCCCT
68
AAGCUGCCCU
144
TRAC
1.1
0.995


TACCTGGGCT

UACCUGGGCU

EXON1_T24







AACAAATGTG
69
AACAAAUGU
145
TRAC
1.1
0.995


TCACAAAGTA

GUCACAAAG

EXON1_T36






UA









AAAGTCAGAT
70
AAAGUCAGA
146
TRAC
0.8
0.995


TTGTTGCTCC

UUUGUUGCU

EXON1_T12






CC









AGCTGCCCTT
71
AGCUGCCCUU
147
TRAC
0.8
0.995


ACCTGGGCTG

ACCUGGGCUG

EXON1_T30







TGGAATAATG
72
UGGAAUAAU
148
TRAC
0.8
0.994


CTGTTGTTGA

GCUGUUGUU

EXON1_T34






GA









ATTTGTTTGA
73
AUUUGUUUG
149
TRAC
0.7
0.996


GAATCAAAAT

AGAAUCAAA

EXON1_T37






AU









AAAGCTGCCC
74
AAAGCUGCCC
150
TRAC
0.5
0.995


TTACCTGGGC

UUACCUGGGC

EXON1_T10







CCAAGAGGCC
75
CCAAGAGGCC
151
TRAC
0.5
0.994


ACAGCGGTTA

ACAGCGGUU

EXON3_T3






A









AGAGCAACA
76
AGAGCAACA
152
TRAC
0.2
0.994


GTGCTGTGGC

GUGCUGUGG

EXON1_T32




C

CC









ATCTGTGGGA
77
AUCUGUGGG
153
TRAC
0.1
0.994


CAAGAGGATC

ACAAGAGGA

EXON1_T19






UC









GGTAAGACA
78
GGUAAGACA
154
TRAC
0.1
0.993


GGGGTCTAGC

GGGGUCUAG

EXON2_T2




C

CC









GTAAGACAG
79
GUAAGACAG
155
TRAC
0.1
0.994


GGGTCTAGCC

GGGUCUAGCC

EXON2_T6




T

U









GCAGGCTGTT
80
GCAGGCUGU
156
TRAC




TCCTTGCTTC

UUCCUUGCUU

EXON1_T23






C









CTTTGAAACA
81
CUUUGAAAC
157
TRAC




GGTAAGACA

AGGUAAGAC

EXON2_T9




G

AG









AGAGGCACA
82
AGAGGCACA
158
TRAC




GTCTCTTCAG

GUCUCUUCAG

EXON3_T22




C

C









In some embodiments, a gRNA comprises the sequence of any one of SEQ ID NOs: 83-158 or targets the sequence of any one of SEQ ID NOs: 7-82.


CDR gRNA Screen


For CD3ε (CD3E), genomic segments containing the five (5) protein coding exons were used as input in the gRNA design software. The genomic segments also included flanking splice site acceptor/donor sequences. Desired gRNAs were those that would lead to insertions or deletions in the coding sequence disrupting the amino acid sequence of CD3E leading to out of frame/loss of function allele(s). One hundred twenty five (125) in silico identified gRNA spacers targeting CD3E were used in an IVT screen. One hundred twenty (120) yielded measurable data by TIDE analysis. Nine (9) gRNA sequences yielded InDel percentages above 50% that could be suitable for secondary screens.









TABLE 5







CD3E target sequences, gRNA spacer sequences, and cutting efficiencies


in HEK293T cells













Target
SEQ ID
gRNA Spacer
SEQ ID





Sequence
NO:
Sequence
NO:
Guide Name
Indel %
R2
















GTCAGAGGAG
159
GUCAGAGGAG
284
CD3E
83.2
0.976


ATTCCTGCCA

AUUCCUGCCA

exon4_T18







AGAGGAGATT
160
AGAGGAGAUU
285
CD3E
61.6
0.955


CCTGCCAAGG

CCUGCCAAGG

exon4_T20







GAACTTTTATC
161
GAACUUUUAU
286
CD3E
58.8
0.984


TCTACCTGA

CUCUACCUGA

exon3_T22







AAGCCTGTGA
162
AAGCCUGUGA
287
CD3E
57.8
0.919


CACGAGGAGC

CACGAGGAGC

exon4_T11







CATCCTACTCA
163
CAUCCUACUC
288
CD3E
54.9
0.978


CCTGATAAG

ACCUGAUAAG

exon1_T14







CTGGATTACCT
164
CUGGAUUACC
289
CD3E
54.4
0.98


CTTGCCCTC

UCUUGCCCUC

exon3_T12







CATGAAACAA
165
CAUGAAACAA
290
CD3E
53.1
0.97


AGATGCAGTC

AGAUGCAGUC

exon1_T18







ATTTCAGATCC
166
AUUUCAGAUC
291
CD3E
51.5
0.964


AGGATACTG

CAGGAUACUG

exon3_T13







TCAGAGGAGA
167
UCAGAGGAGA
292
CD3E
51.3
0.96


TTCCTGCCAA

UUCCUGCCAA

exon4_T12







GCAGTTCTCAC
168
GCAGUUCUCA
293
CD3E
49.6
0.975


ACACTGTGG

CACACUGUGG

exon4_T29







CACAATGATA
169
CACAAUGAUA
294
CD3E
49.1
0.95


AAAACATAGG

AAAACAUAGG

exon3_T28







GTGTGAGAAC
170
GUGUGAGAAC
295
CD3E
48.8
0.84


TGCATGGAGA

UGCAUGGAGA

exon4_T37







GATGTCCACTA
171
GAUGUCCACU
296
CD3E
48
0.93


TGACAATTG

AUGACAAUUG

exon4_T4







ACTCACCTGAT
172
ACUCACCUGA
297
CD3E
45.5
0.959


AAGAGGCAG

UAAGAGGCAG

exon1_T13







CTCTTATCAGG
173
CUCUUAUCAG
298
CD3E
44.1
0.974


TGAGTAGGA

GUGAGUAGGA

exon1_T7







TATCTCTACCT
174
UAUCUCUACC
299
CD3E
43.6
0.764


GAGGGCAAG

UGAGGGCAAG

exon3_T10







ATCCTGGATCT
175
AUCCUGGAUC
300
CD3E
43.5
0.951


GAAATACTA

UGAAAUACUA

exon3_T20







AGATGGAGAC
176
AGAUGGAGAC
301
CD3E
42.4
0.955


TTTATATGCT

UUUAUAUGCU

exon3_T14







CTGCCTCTTAT
177
CUGCCUCUUA
302
CD3E
40.1
0.967


CAGGTGAGT

UCAGGUGAGU

exon1_T5







TATATGCTGGG
178
UAUAUGCUGG
303
CD3E
40
0.972


GAGAAAGAA

GGAGAAAGAA

exon3_T29







AGTGGACATC
179
AGUGGACAUC
304
CD3E
38.8
0.969


TGCATCACTG

UGCAUCACUG

exon4_T24







CAAGCCTGTG
180
CAAGCCUGUG
305
CD3E
38
0.974


ACACGAGGAG

ACACGAGGAG

exon4_T10







GTGGACATCT
181
GUGGACAUCU
306
CD3E
36.9
0.947


GCATCACTGG

GCAUCACUGG

exon4_T13







GATGGAGACT
182
GAUGGAGACU
307
CD3E
36.1
0.973


TTATATGCTG

UUAUAUGCUG

exon3_T5







TCTCACACACT
183
UCUCACACAC
308
CD3E
35.8
0.924


GTGGGGGGT

UGUGGGGGGU

exon4_T21







CAGGCAAAGG
184
CAGGCAAAGG
309
CD3E
35.2
0.817


GGTAAGGCTG

GGUAAGGCUG

exon4_T38







GTTACCTCATA
185
GUUACCUCAU
310
CD3E
35.1
0.978


GTCTGGGTT

AGUCUGGGUU

exon5_T7







CTTCTGGTTTG
186
CUUCUGGUUU
311
CD3E
34.2
0.985


CTTCCTCTG

GCUUCCUCUG

exon3_T33







ATGCAGTTCTC
187
AUGCAGUUCU
312
CD3E
32.3
0.967


ACACACTGT

CACACACUGU

exon4_T30







CCCACGTTACC
188
CCCACGUUAC
313
CD3E
30.4
0.977


TCATAGTCT

CUCAUAGUCU

exon5_T5







TTCCTCCGCAG
189
UUCCUCCGCA
314
CD3E
30.2
0.979


GACAAAACA

GGACAAAACA

exon5_T11







CTGGGCCTCTG
190
CUGGGCCUCU
315
CD3E
30.1
0.987


CCTCTTATC

GCCUCUUAUC

exon1_T12







GGAGATGGAT
191
GGAGAUGGAU
316
CD3E
30.1
0.98


GTGATGTCGG

GUGAUGUCGG

exon4_T14







TGTTCCCAACC
192
UGUUCCCAAC
317
CD3E
29.9
0.977


CAGACTATG

CCAGACUAUG

exon5_T10







ACACGAGGAG
193
ACACGAGGAG
318
CD3E
28.8
0.982


CGGGTGCTGG

CGGGUGCUGG

exon4_T25







TTATATGCTGG
194
UUAUAUGCUG
319
CD3E
28.3
0.98


GGAGAAAGA

GGGAGAAAGA

exon3_T30







TTTCAGATCCA
195
UUUCAGAUCC
320
CD3E
28
0.771


GGATACTGA

AGGAUACUGA

exon3_T17







CATGGAGATG
196
CAUGGAGAUG
321
CD3E
28
0.97


GATGTGATGT

GAUGUGAUGU

exon4_T32







AGATGCAGTC
197
AGAUGCAGUC
322
CD3E
27.5
0.982


GGGCACTCAC

GGGCACUCAC

exon1_T1







TATTATGTCTG
198
UAUUAUGUCU
323
CD3E
27.5
0.988


CTACCCCAG

GCUACCCCAG

exon3_T11







GTTTCCCCTCC
199
GUUUCCCCUC
324
CD3E
27.1
0.984


TTCCTCCGC

CUUCCUCCGC

exon5_T18







TAAAAACATA
200
UAAAAACAUAV
325
CD3E
26.5
0.895


GGCAGTGATG

GGCAGUGAUG

exon3_T25







GGTGGCCACA
201
GGUGGCCACA
326
CD3E
26.1
0.986


ATTGTCATAG

AUUGUCAUAG

exon4_T2







GCATATAAAG
202
GCAUAUAAAG
327
CD3E
25
0.98


TCTCCATCTC

UCUCCAUCUC

exon3_T16







TATTACTGTGG
203
UAUUACUGUG
328
CD3E
25
0.984


TTCCAGAGA

GUUCCAGAGA

exon3_T21







CAACACAATG
204
CAACACAAUG
329
CD3E
24.6
0.963


ATAAAAACAT

AUAAAAACAU

exon3_T26







GTAATCCAGG
205
GUAAUCCAGG
330
CD3E
24.2
0.991


TCTCCAGAAC

UCUCCAGAAC

exon3_T7







CCCAGACTAT
206
CCCAGACUAU
331
CD3E
24.1
0.979


GAGGTAACGT

GAGGUAACGU

exon5_T1







ATAGTGGACA
207
AUAGUGGACA
332
CD3E
24
0.96


TCTGCATCAC

UCUGCAUCAC

exon4_T8







ATCTTCTGGTT
208
AUCUUCUGGU
333
CD3E
23.9
0.981


TGCTTCCTC

UUGCUUCCUC

exon3_T19







TTTTGTCCTGC
209
UUUUGUCCUG
334
CD3E
23.7
0.963


GGAGGAAGG

CGGAGGAAGG

exon5_T15







CTGAGGGCAA
210
CUGAGGGCAA
335
CD3E
22.5
0.989


GAGGTAATCC

GAGGUAAUCC

exon3_T8







TTGACATGCCC
211
UUGACAUGCC
336
CD3E
22.4
0.978


TCAGTATCC

CUCAGUAUCC

exon3_T4







CAGAGGAGAT
212
CAGAGGAGAU
337
CD3E
21.8
0.989


TCCTGCCAAG

UCCUGCCAAG

exon4_T17







TGCTGCTGCTG
213
UGCUGCUGCU
338
CD3E
20.8
0.987


GTTTACTAC

GGUUUACUAC

exon4_T3







GAGGTAACGT
214
GAGGUAACGU
339
CD3E
20.5
0.965


GGGATAGAAA

GGGAUAGAAA

exon5_T20







ACCCAGACTA
215
ACCCAGACUA
340
CD3E
20.3
0.977


TGAGGTAACG

UGAGGUAACG

exon5_T2







CACTGGGGGC
216
CACUGGGGGC
341
CD3E
20
0.987


TTGCTGCTGC

UUGCUGCUGC

exon4_T26







ATCAGGTGAG
217
AUCAGGUGAG
342
CD3E
19.9
0.989


TAGGATGGAG

UAGGAUGGAG

exon1_T15







GGCACTCACT
218
GGCACUCACU
343
CD3E
19
0.988


GGAGAGTTCT

GGAGAGUUCU

exon1_T17







TTTGTCCTGCG
219
UUUGUCCUGC
344
CD3E
18.7
0.977


GAGGAAGGA

GGAGGAAGGA

exon5_T16







TGAGGATCAC
220
UGAGGAUCAC
345
CD3E
18.2
0.771


CTGTCACTGA

CUGUCACUGA

exon3_T15







TTACTTTACTA
221
UUACUUUACU
346
CD3E
18
0.987


AGATGGCGG

AAGAUGGCGG

exon1_T2







TAAAAACATA
222
UAAAAACAUA
347
CD3E
17
0.971


GGCGGTGATG

GGCGGUGAUG

exon3_T1







CTGAAAATTCC
223
CUGAAAAUUC
348
CD3E
16.9
0.779


TTCAGTGAC

CUUCAGUGAC

exon3_T18







TTGTCCTGCGG
224
UUGUCCUGCG
349
CD3E
16.9
0.99


AGGAAGGAG

GAGGAAGGAG

exon5_T21







TCTTCTGGTTT
225
UCUUCUGGUU
350
CD3E
16.5
0.98


GCTTCCTCT

UGCUUCCUCU

exon3_T31







GGGCACTCAC
226
GGGCACUCAC
351
CD3E
15.7
0.989


TGGAGAGTTC

UGGAGAGUUC

exon1_T8







TTCTCACACAC
227
UUCUCACACA
352
CD3E
15.4
0.967


TGTGGGGGG

CUGUGGGGGG

exon4_T31







CGGGTGCTGG
228
CGGGUGCUGG
353
CD3E
14.8
0.986


CGGCAGGCAA

CGGCAGGCAA

exon4_T19







AGGTAACGTG
229
AGGUAACGUG
354
CD3E
14.7
0.982


GGATAGAAAT

GGAUAGAAAU

exon5_T12







CTGTTACTTTA
230
CUGUUACUUU
355
CD3E
14.6
0.986


CTAAGATGG

ACUAAGAUGG

exon1_T9







CCTCTCCTTGT
231
CCUCUCCUUG
356
CD3E
13.7
0.984


TTTGTCCTG

UUUUGUCCUG

exon5_T17







TAGTGGACAT
232
UAGUGGACAU
357
CD3E
13.5
0.978


CTGCATCACT

CUGCAUCACU

exon4_T15







GGACTGTTACT
233
GGACUGUUAC
358
CD3E
12.2
0.99


TTACTAAGA

UUUACUAAGA

exon1_T6







ACTGAAGGAA
234
ACUGAAGGAA
359
CD3E
11.9
0.966


TTTTCAGAAT

UUUUCAGAAU

exon3_T27







CCATGAAACA
235
CCAUGAAACA
360
CD3E
11.5
0.987


AAGATGCAGT

AAGAUGCAGU

exon1_T16







GAGATGGAGA
236
GAGAUGGAGA
361
CD3E
11.3
0.986


CTTTATATGC

CUUUAUAUGC

exon3_T2







TTTTCAGAATT
237
UUUUCAGAAU
362
CD3E
11
0.993


GGAGCAAAG

UGGAGCAAAG

exon3_T23







TCATAGTCTGG
238
UCAUAGUCUG
363
CD3E
10.5
0.984


GTTGGGAAC

GGUUGGGAAC

exon5_T14







CCGCAGGACA
239
CCGCAGGACA
364
CD3E
10.3
0.985


AAACAAGGAG

AAACAAGGAG

exon5_T13







TCTGGGTTGGG
240
UCUGGGUUGG
365
CD3E
9.5
0.991


AACAGGTGG

GAACAGGUGG

exon5_T22







ACACAGACAC
241
ACACAGACAC
366
CD3E
9.1
0.926


GTGAGTTTAT

GUGAGUUUAU

exon2_T1







GCCAGCAGAC
242
GCCAGCAGAC
367
CD3E
9
0.987


TTACTACTTC

UUACUACUUC

exon1_T3







TAGTCTGGGTT
243
UAGUCUGGGU
368
CD3E
9
0.99


GGGAACAGG

UGGGAACAGG

exon5_T19







CGAACTTTTAT
244
CGAACUUUUA
369
CD3E
8.7
0.983


CTCTACCTG

UCUCUACCUG

exon3_T24







CGCTCCTCGTG
245
CGCUCCUCGU
370
CD3E
8
0.987


TCACAGGCT

GUCACAGGCU

exon4_T9







CTACTGGAGC
246
CUACUGGAGC
371
CD3E
8
0.972


AAGAATAGAA

AAGAAUAGAA

exon4_T28







CGTTACCTCAT
247
CGUUACCUCA
372
CD3E
7.9
0.984


AGTCTGGGT

UAGUCUGGGU

exon5_T4







AGATAAAAGT
248
AGAUAAAAGU
373
CD3E
7.8
0.969


TCGCATCTTC

UCGCAUCUUC

exon3_T3







AAGGCCAAGC
249
AAGGCCAAGC
374
CD3E
7.8
0.989


CTGTGACACG

CUGUGACACG

exon4_T5







TGGCGGCAGG
250
UGGCGGCAGG
375
CD3E
7.7
0.985


CAAAGGGGTA

CAAAGGGGUA

exon4_T34







AGGGCATGTC
251
AGGGCAUGUC
376
CD3E
7.4
0.925


AATATTACTG

AAUAUUACUG

exon3_T6







TCGTGTCACAG
252
UCGUGUCACA
377
CD3E
7.4
0.98


GCTTGGCCT

GGCUUGGCCU

exon4_T16







TGCAGTTCTCA
253
UGCAGUUCUC
378
CD3E
7.3
0.973


CACACTGTG

ACACACUGUG

exon4_T23







GGGGGGTGGG
254
GGGGGGUGGG
379
CD3E
7
0.975


GTGGGGAGAG

GUGGGGAGAG

exon4_T41







GATGAGGATG
255
GAUGAGGAUG
380
CD3E
6.7
0.991


ATAAAAACAT

AUAAAAACAU

exon3_T32







CATGCAGTTCT
256
CAUGCAGUUC
381
CD3E
6.4
0.987


CACACACTG

UCACACACUG

exon4_T35







ACGTGGGATA
257
ACGUGGGAUA
382
CD3E
6.3
0.987


GAAATGGGCC

GAAAUGGGCC

exon5_T9







TACCACCTGA
258
UACCACCUGA
383
CD3E
5.3
0.94


AAATGAAAAA

AAAUGAAAAA

exon2_T4







TGGCAGGAAT
259
UGGCAGGAAU
384
CD3E
5
0.989


CTCCTCTGAC

CUCCUCUGAC

exon4_T7







CTCACACACTG
260
CUCACACACU
385
CD3E
5
0.975


TGGGGGGTG

GUGGGGGGUG

exon4_T33







GTGACACGAG
261
GUGACACGAG
386
CD3E
4.9
0.988


GAGCGGGTGC

GAGCGGGUGC

exon4_T6







CAGTTCTCACA
262
CAGUUCUCAC
387
CD3E
4.9
0.971


CACTGTGGG

ACACUGUGGG

exon4_T40







TGCCATAGTAT
263
UGCCAUAGUA
388
CD3E
4.6
0.984


TTCAGATCC

UUUCAGAUCC

exon3_T9







TCCAGAAGTA
264
UCCAGAAGUA
389
CD3E
4.3
0.989


GTAAGTCTGC

GUAAGUCUGC

exon1_T4







GGTGCTGGCG
265
GGUGCUGGCG
390
CD3E
4.3
0.971


GCAGGCAAAG

GCAGGCAAAG

exon4_T36







TCCCACGTTAC
266
UCCCACGUUA
391
CD3E
4.3
0.992


CTCATAGTC

CCUCAUAGUC

exon5_T3







CACAGTGTGT
267
CACAGUGUGU
392
CD3E
3.9
0.986


GAGAACTGCA

GAGAACUGCA

exon4_T27







CGACTGCATCT
268
CGACUGCAUC
393
CD3E
3.8
0.989


TTGTTTCAT

UUUGUUUCAU

exon1_T11







GGGTGCTGGC
269
GGGUGCUGGC
394
CD3E
3.8
0.994


GGCAGGCAAA

GGCAGGCAAA

exon4_T42







GAGGAGCGGG
270
GAGGAGCGGG
395
CD3E
3.3
0.994


TGCTGGCGGC

UGCUGGCGGC

exon4_T45







TTGTTTTGTCC
271
UUGUUUUGUC
396
CD3E
3.2
0.99


TGCGGAGGA

CUGCGGAGGA

exon5_T8







CTCCTTGTTTT
272
CUCCUUGUUU
397
CD3E
3.1
0.99


GTCCTGCGG

UGUCCUGCGG

exon5_T6







CCGACTGCATC
273
CCGACUGCAU
398
CD3E
1.9
0.991


TTTGTTTCA

CUUUGUUUCA

exon1_T10







TGTTTCCTTTT
274
UGUUUCCUUU
399
CD3E
1.9
0.92


TTCATTTTC

UUUCAUUUUC

exon2_T2







TTCCTTTTTTC
275
UUCCUUUUUU
400
CD3E
1.5
0.94


ATTTTCAGG

CAUUUUCAGG

exon2_T3







AGGCTGTGGA
276
AGGCUGUGGA
401
CD3E
1.2
0.992


GTCCAGTCAG

GUCCAGUCAG

exon4_T22







TGGGGGGTGG
277
UGGGGGGUGG
402
CD3E
0.9
0.991


GGTGGGGAGA

GGUGGGGAGA

exon4_T44







ACACTGTGGG
278
ACACUGUGGG
403
CD3E
0.3
0.992


GGGTGGGGTG

GGGUGGGGUG

exon4_T47







CACACTGTGG
279
CACACUGUGG
404
CD3E
0.2
0.992


GGGGTGGGGT

GGGGUGGGGU

exon4_T43







GTGGGGGGTG
280
GUGGGGGGUG
405
CD3E
0
0.993


GGGTGGGGAG

GGGUGGGGAG

exon4_T46







ACACACTGTG
281
ACACACUGUG
406
CD3E
0
0.992


GGGGGTGGGG

GGGGGUGGGG

exon4_T48







GCACCCGCTCC
282
GCACCCGCUC
407
CD3E




TCGTGTCAC

CUCGUGUCAC

exon4_T1







GAGCAAGAAT
283
GAGCAAGAAU
408
CD3E




AGAAAGGCCA

AGAAAGGCCA

exon4_T39









In some embodiments, a gRNA comprises the sequence of any one of SEQ ID NOs: 284-408 or targets the sequence of any one of SEQ ID NOs: 159-283.


B2M gRNA Screen


For B2M, genomic segments containing the first three (3) protein coding exons were used as input in the gRNA design software. The genomic segments also included flanking splice site acceptor/donor sequences. Desired gRNAs were those that would lead to insertions or deletions in the coding sequence disrupting the amino acid sequence of B2M leading to out of frame/loss of function allele(s). All forty nine (49) in silico-identified gRNA spacers targeting B2M were used in an IVT screen. All gRNAs yielded measurable data by TIDE analysis. Eight (8) gRNA sequences yielded InDel percentages above 50% that could be suitable for secondary screens.


A homology-dependent assessment of the B2M gRNA comprising SEQ ID NO: 466 showed that this guide had an indel frequency of less than 0.5% at an off-target site. This data guided selection of this particular B2M gRNA for further analysis.









TABLE 6







B2M target sequences, gRNA spacer sequences, and cutting efficiencies


in HEK293T cells













Target
SEQ ID

SEQ ID





Sequence
NO:
gRNA Spacer
NO:
Guide Name
Indel %
R2
















TCCTGAAGCTG
409
UCCUGAAGC
458
B2M
89.5
0.924


ACAGCATTC

UGACAGCAU

EXON1_T13






UC









CAGTAAGTCA
410
CAGUAAGUC
459
B2M
80.4
0.966


ACTTCAATGT

AACUUCAAU

EXON2_T9






GU









GGCCGAGATG
411
GGCCGAGAU
460
B2M
70.7
0.99


TCTCGCTCCG

GUCUCGCUC

EXON1_T2






CG









ACAAAGTCAC
412
ACAAAGUCA
461
B2M
65.5
0.972


ATGGTTCACA

CAUGGUUCA

EXON2_T23






CA









CGCGAGCACA
413
CGCGAGCAC
462
B2M




GCTAAGGCCA

AGCUAAGGC

EXON1_T11
60.3
0.972




CA









CATACTCATCT
414
CAUACUCAU
463
B2M
59.9
0.989


TTTTCAGTG

CUUUUUCAG

EXON2_T24






UG









ACTCTCTCTTT
415
ACUCUCUCU
464
B2M
57.1
0.96


CTGGCCTGG

UUCUGGCCU

EXON1_T19






GG









CTCGCGCTACT
416
CUCGCGCUA
465
B2M
54.8
0.812


CTCTCTTTC

CUCUCUCUU

EXON1_T12






UC









GCTACTCTCTC
417
GCUACUCUC
466
B2M
45.9
0.867


TTTCTGGCC

UCUUUCUGG

EXON1_T20






CC









TCTCTCCTACC
418
UCUCUCCUA
467
B2M
43.5
0.968


CTCCCGCTC

CCCUCCCGCU

EXON1_T15






C









CAGCCCAAGA
419
CAGCCCAAG
468
B2M
42.7
0.988


TAGTTAAGTG

AUAGUUAAG

EXON2_T5






UG









TCACGTCATCC
420
UCACGUCAU
469
B2M
39.8
0.974


AGCAGAGAA

CCAGCAGAG

EXON2_T17






AA









TTACCCCACTT
421
UUACCCCAC
470
B2M
32.7
0.977


AACTATCTT

UUAACUAUC

EXON2_T11






UU









GGCCACGGAG
422
GGCCACGGA
471
B2M
32.1
0.99


CGAGACATCT

GCGAGACAU

EXON1_T8






CU









CTTACCCCACT
423
CUUACCCCA
472
B2M
31.9
0.984


TAACTATCT

CUUAACUAU

EXON2_T7






CU









GGCATACTCAT
424
GGCAUACUC
473
B2M
31.7
0.985


CTTTTTCAG

AUCUUUUUC

EXON2_T15






AG









TATAAGTGGA
425
UAUAAGUGG
474
B2M
31.6
0.991


GGCGTCGCGC

AGGCGUCGC

EXON1_T1






GC









GCCCGAATGC
426
GCCCGAAUG
475
B2M
30.5
0.99


TGTCAGCTTC

CUGUCAGCU

EXON1_T10






UC









GAAGTTGACTT
427
GAAGUUGAC
476
B2M
30.4
0.98


ACTGAAGAA

UUACUGAAG

EXON2_T19






AA









GAGGAAGGAC
428
GAGGAAGGA
477
B2M
28.9
0.993


CAGAGCGGGA

CCAGAGCGG

EXON1_T18






GA









AAGTGGAGGC
429
AAGUGGAGG
478
B2M
27.1
0.983


GTCGCGCTGG

CGUCGCGCU

EXON1_T4






GG









ACTCACGCTG
430
ACUCACGCU
479
B2M
22.3
0.992


GATAGCCTCC

GGAUAGCCU

EXON1_T7






CC









GAGTAGCGCG
431
GAGUAGCGC
480
B2M
20.8
0.97


AGCACAGCTA

GAGCACAGC

EXON1_T5






UA









AGGGTAGGAG
432
AGGGUAGGA
481
B2M
19.9
0.993


AGACTCACGC

GAGACUCAC

EXON1_T9






GC









TTCAGACTTGT
433
UUCAGACUU
482
B2M
18.9
0.991


CTTTCAGCA

GUCUUUCAG

EXON2_T21






CA









CACAGCCCAA
434
CACAGCCCA
483
B2M
18.6
0.991


GATAGTTAAG

AGAUAGUUA

EXON2_T6






AG









TTGGAGTACCT
435
UUGGAGUAC
484
B2M
18.1
0.99


GAGGAATAT

CUGAGGAAU

EXON2_T26






AU









AAGGACCAGA
436
AAGGACCAG
485
B2M
17.4
0.994


GCGGGAGGGT

AGCGGGAGG

EXON1_T16






GU









AGAGGAAGGA
437
AGAGGAAGG
486
B2M
17.4
0.992


CCAGAGCGGG

ACCAGAGCG

EXON1_T17






GG









AAGTCAACTTC
438
AAGUCAACU
487
B2M
15.2
0.981


AATGTCGGA

UCAAUGUCG

EXON2_T2






GA









AGTGGAGGCG
439
AGUGGAGGC
488
B2M
14.2
0.995


TCGCGCTGGC

GUCGCGCUG

EXON1_T3






GC









TGGAGTACCT
440
UGGAGUACC
489
B2M
11.7
0.98


GAGGAATATC

UGAGGAAUA

EXON2_T12






UC









ACAGCCCAAG
441
ACAGCCCAA
490
B2M
11.5
0.995


ATAGTTAAGT

GAUAGUUAA

EXON2_T4






GU









CGTGAGTAAA
442
CGUGAGUAA
491
B2M
10.4
0.99


CCTGAATCTT

ACCUGAAUC

EXON2_T3






UU









TGGAGAGAGA
443
UGGAGAGAG
492
B2M
9.2
0.993


ATTGAAAAAG

AAUUGAAAA

EXON2_T28






AG









ATACTCATCTT
444
AUACUCAUC
493
B2M
8
0.988


TTTCAGTGG

UUUUUCAGU

EXON2_T25






GG









AGTCACATGG
445
AGUCACAUG
494
B2M
6.4
0.99


TTCACACGGC

GUUCACACG

EXON2_T1






GC









CACGCGTTTAA
446
CACGCGUUU
495
B2M
5.2
0.99


TATAAGTGG

AAUAUAAGU

EXON1_T6






GG









CTCAGGTACTC
447
CUCAGGUAC
496
B2M
5
0.99


CAAAGATTC

UCCAAAGAU

EXON2_T8






UC









TTTGACTTTCC
448
UUUGACUUU
497
B2M
4.8
0.991


ATTCTCTGC

CCAUUCUCU

EXON2_T27






GC









ACCCAGACAC
449
ACCCAGACA
498
B2M
4.7
0.992


ATAGCAATTC

CAUAGCAAU

EXON2_T13






UC









TGGGCTGTGA
450
UGGGCUGUG
499
B2M
4.4
0.993


CAAAGTCACA

ACAAAGUCA

EXON2_T22






CA









CTGAATCTTTG
451
CUGAAUCUU
500
B2M
3
0.993


GAGTACCTG

UGGAGUACC

EXON2_T14






UG









TTCCTGAATTG
452
UUCCUGAAU
501
B2M
3
0.992


CTATGTGTC

UGCUAUGUG

EXON2_T16






UC









ACTTGTCTTTC
453
ACUUGUCUU
502
B2M
2.8
0.992


AGCAAGGAC

UCAGCAAGG

EXON2_T10






AC









TTCCTGAAGCT
454
UUCCUGAAG
503
B2M
2.5
0.994


GACAGCATT

CUGACAGCA

EXON1_T14






UU









GCATACTCATC
455
GCAUACUCA
504
B2M
2.4
0.988


TTTTTCAGT

UCUUUUUCA

EXON2_T20






GU









TCCTGAATTGC
456
UCCUGAAUU
505
B2M
1.9
0.99


TATGTGTCT

GCUAUGUGU

EXON2_T18






CU









TCATAGATCG
457
UCAUAGAUC
506
B2M
1.5
0.992


AGACATGTAA

GAGACAUGU

EXON3_T1






AA









In some embodiments, a gRNA comprises the sequence of any one of SEQ ID NOs: 458-506 or targets the sequence of any one of SEQ ID NOs: 409-457.


CIITA gRNA Screen


For CIITA, genomic segments containing the ATG exon downstream of the Type 3 promoter, the Type IV promoter/alternative exon 1, and the next three (3) downstream exons (here termed exon3-exon5) were used as input into the gRNA design software (see Muhlethaler-Mottet et al., 1997. EMBO J. 10, 2851-2860 for CIITA gene annotation). The genomic segments included protein coding regions and flanked splicing acceptor/donor sites as well as potential gene expression regulatory elements. Desired gRNAs were those that would lead to insertions or deletions in the coding sequence disrupting the amino acid sequence of CIITA leading to out of frame/loss of function allele(s). Only gRNAs without a perfect match elsewhere in the genome were screened. From a total of −274 gRNA spacers targeting CIITA (identified in silico), one hundred ninety six (196) gRNA spacers were chosen for IVT screening. One hundred eighty (180) sgRNAs yielded measurable data by TIDE analysis. Eighty one (81) gRNA sequences yielded InDel percentages above 50% that could be suitable for secondary screens.









TABLE 7







CIITA target sequences, gRNA spacer sequences, and cutting efficiencies


in HEK293T cells













Target
SEQ ID
gRNA Spacer
SEQ ID





Sequence
NO:
Sequence
NO:
Guide Name
Indel %
R2
















CTGGGGCCGC
507
CCUGGGGCCG
699
CIITA
93.4
0.992


GGCAAGTCTG

CGGCAAGUC

PIV_T19






UG









CTCCAGTCGGT
508
CUCCAGUCG
700
CIITA
90.4
0.978


TCCTCACAG

GUUCCUCAC

PIV_T22






AG









AGAGGTCTTG
509
AGAGGUCUU
701
CIITA
88.6
0.974


GATTCCTGCT

GGAUUCCUG

PIV_T60






CU









GCCCTGCCGGT
510
GCCCUGCCG
702
CIITA
88.4
0.943


CCTTTTCAG

GUCCUUUUC

PIV_T20






AG









AGACTCCGGG
511
AGACUCCGG
703
CIITA P3_T27
87.5
0.99


AGCTGCTGCC

GAGCUGCUG








CC









GTCACCTACCG
512
GUCACCUAC
704
CIITA
87.1
0.97


CTGTTCCCC

CGCUGUUCC

PIV_T25






CC









GCCTGGCTCCA
513
GCCUGGCUC
705
CIITA P3_T38
86.9
0.992


CGCCCTGCT

CACGCCCUGC








U









CTGGGACTCTC
514
CUGGGACUC
706
CIITA
86.1
0.99


CCCGAAGTG

UCCCCGAAG

PIV_T23






UG









GAGCTGCCAC
515
GAGCUGCCA
707
CIITA PIV_T7
84.9
0.99


AGACTTGCCG

CAGACUUGC








CG









CTTGGATGCCC
516
CUUGGAUGC
708
CIITA
84.4
0.969


CAGGCAGTT

CCCAGGCAG

PIV_T52






UU









TCTGCAAGTCC
517
UCUGCAAGU
709
CIITA
84.4
0.988


TGAGTTGCA

CCUGAGUUG

PIV_T58






CA









GGGATACCGG
518
GGGAUACCG
710
CIITA
83.8
0.924


AAGAGACCAG

GAAGAGACC

EXON3_T23






AG









GGTCACCTACC
519
GGUCACCUA
711
CIITA PIV_T6
83.2
0.899


GCTGTTCCC

CCGCUGUUC








CC









ACAATGCTCA
520
ACAAUGCUC
712
CIITA
83.1
0.943


GTCACCTCAC

AGUCACCUC

EXON3_T14






AC









GGAGCCCGGG
521
GGAGCCCGG
713
CIITA
82.8
0.86


GAACAGCGGT

GGAACAGCG

PIV_T56






GU









GGCCACTGTG
522
GGCCACUGU
714
CIITA
82.5
0.929


AGGAACCGAC

GAGGAACCG

PIV_T12






AC









TGGAGATGCC
523
UGGAGAUGC
715
CIITA
82.3
0.966


AGCAGAAGTT

CAGCAGAAG

EXON5_T8






UU









ATAGGACCAG
524
AUAGGACCA
716
CIITA
82
0.977


ATGAAGTGAT

GAUGAAGUG

EXON5_T12






AU









CTTCTGAGCTG
525
CUUCUGAGC
717
CIITA P3_T11
81.6
0.964


GGCATCCGA

UGGGCAUCC








GA









TCCTACCTGTC
526
UCCUACCUG
718
CIITA P3_T18
81.2
0.961


AGAGCCCCA

UCAGAGCCC








CA









GCCCAGAAAA
527
GCCCAGAAA
719
CIITA
81
0.928


GGACAATCAA

AGGACAAUC

EXON4_T22






AA









GAGGTGGTTT
528
GAGGUGGUU
720
CIITA
80.2
0.943


GCCACTTTCA

UGCCACUUU

PIV_T41






CA









GAAGCTGAGG
529
GAAGCUGAG
721
CIITA P3_T35
80
0.942


GCACGAGGAG

GGCACGAGG








AG









GGCTTATGCCA
530
GGCUUAUGC
722
CIITA
79.8
0.938


ATATCGGTG

CAAUAUCGG

EXON4_T1






UG









CTCCTCTGATG
531
CUCCUCUGA
723
CIITA
79.7
0.941


CTGGCCCTA

UGCUGGCCC

PIV_T46






UA









GGATACCGGA
532
GGAUACCGG
724
CIITA
79.3
0.872


AGAGACCAGA

AAGAGACCA

EXON3_T25






GA









GGACAAGCTC
533
GGACAAGCU
725
CIITA
78.8
0.976


CCTGCAACTC

CCCUGCAAC

PIV_T51






UC









CATCCATGGA
534
CAUCCAUGG
726
CIITA
78.5
0.929


AGGTACCTGA

AAGGUACCU

PIV_T33






GA









TAGCTCAGTTA
535
UAGCUCAGU
727
CIITA
77.1
0.962


GCTCATCTC

UAGCUCAUC

PIV_T27






UC









GATATTGGCAT
536
GAUAUUGGC
728
CIITA
75.5
0.931


AAGCCTCCC

AUAAGCCUC

EXON4_T7






CC









TAGTGATGAG
537
UAGUGAUGA
729
CIITA P3_T21
74.8
0.945


GCTAGTGATG

GGCUAGUGA








UG









GAAGTGGCAT
538
GAAGUGGCA
730
CIITA
74.3
0.965


CCCAACTGCC

UCCCAACUG

PIV_T28






CC









GCTCAGTTAGC
539
GCUCAGUUA
731
CIITA
74.2
0.985


TCATCTCAG

GCUCAUCUC

PIV_T43






AG









AGGTGATGAA
540
AGGUGAUGA
732
CIITA
73.9
0.871


GAGACCAGGG

AGAGACCAG

EXON4_T25






GG









GAGGCCACCA
541
GAGGCCACC
733
CIITA
73.3
0.987


GCAGCGCGCG

AGCAGCGCG

PIV_T26






CG









TTCTAGGGGCC
542
UUCUAGGGG
734
CIITA
73.3
0.867


CCAACTCCA

CCCCAACUCC

EXON3_T29






A









AGTCTCCTCTG
543
AGUCUCCUC
735
CIITA
72.3
0.925


TAACCCCTA

UGUAACCCC

PIV_T44






UA









AAGTGGCAAA
544
AAGUGGCAA
736
CIITA PIV_T3
72.2
0.947


CCACCTCCGA

ACCACCUCCG








A









TTTTACCTTGG
545
UUUUACCUU
737
CIITA P3_T8
71.7
0.968


GGCTCTGAC

GGGGCUCUG








AC









GGTCCATCTGG
546
GGUCCAUCU
738
CIITA
71.5
0.881


TCATAGAAG

GGUCAUAGA

EXON3_T6






AG









GAGCAACCAA
547
GAGCAACCA
739
CIITA
71.1
0.887


GCACCTACTG

AGCACCUAC

PIV_T32






UG









TCGTGCCCTCA
548
UCGUGCCCU
740
CIITA P3_T28
70.6
0.96


GCTTCCCCA

CAGCUUCCCC








A









ACTTCTGATAA
549
ACUUCUGAU
741
CIITA
70.4
0.939


AGCACGTGG

AAAGCACGU

PIV_T17






GG









ATGGAGTTGG
550
AUGGAGUUG
742
CIITA
68.7
0.983


GGCCCCTAGA

GGGCCCCUA

EXON3_T30






GA









AGCCCAGAAA
551
AGCCCAGAA
743
CIITA
68.6
0.805


AGGACAATCA

AAGGACAAU

EXON4_T21






CA









TAGGGGCCCC
552
UAGGGGCCC
744
CIITA
68.5
0.77


AACTCCATGG

CAACUCCAU

EXON3_T20






GG









GTGGCACACT
553
GUGGCACAC
745
CIITA
68
0.938


GTGAGCTGCC

UGUGAGCUG

EXON3_T24






CC









GAAGCACCTG
554
GAAGCACCU
746
CIITA
66.6
0.695


AGCCCAGAAA

GAGCCCAGA

EXON4_T27






AA









GTCAGAGCCC
555
GUCAGAGCC
747
CIITA P3_T16
65.9
0.959


CAAGGTAAAA

CCAAGGUAA








AA









GCTCCAGGTA
556
GCUCCAGGU
748
CIITA
65.8
0.856


GCCACCTTCT

AGCCACCUU

EXON3_T16






CU









CTTTCACGGTT
557
CUUUCACGG
749
CIITA
65.6
0.963


GGACTGAGT

UUGGACUGA

PIV_T18






GU









GCCACTTCTGA
558
GCCACUUCU
750
CIITA PIV_T4
65.4
0.955


TAAAGCACG

GAUAAAGCA








CG









AATCCCTCAG
559
AAUCCCUCA
751
CIITA
64.5
0.866


GTACCTTCCA

GGUACCUUC

PIV_T61






CA









GTCTGTGGCA
560
GUCUGUGGC
752
CIITA PIV_T1
64.4
0.981


GCTCGTCCGC

AGCUCGUCC








GC









ACACTGTGAG
561
ACACUGUGA
753
CIITA
63.5
0.891


CTGCCTGGGA

GCUGCCUGG

EXON3_T38






GA









AAAGTGGCAA
562
AAAGUGGCA
754
CIITA PIV_T2
61.9
0.973


ACCACCTCCG

AACCACCUCC








G









AGGCATCCTTG
563
AGGCAUCCU
755
CIITA P3_T32
61.6
0.95


GGGAAGCTG

UGGGGAAGC








UG









ACTCAGTCCA
564
ACUCAGUCC
756
CIITA
61.5
0.964


ACCGTGAAAG

AACCGUGAA

PIV_T11






AG









AGGGACCTCTT
565
AGGGACCUC
757
CIITA
61.1
0.796


GGATGCCCC

UUGGAUGCC

PIV_T55






CC









AGCAAGGCTA
566
AGCAAGGCU
758
CIITA
60.7
0.839


GGTTGGATCA

AGGUUGGAU

EXON5_T4






CA









GCCCTTGATTG
567
GCCCUUGAU
759
CIITA
60.4
0.876


TCCTTTTCT

UGUCCUUUU

EXON4_T15






CU









GGAAGGTGAT
568
GGAAGGUGA
760
CIITA
59.8
0.7


GAAGAGACCA

UGAAGAGAC

EXON4_T26






CA









ACCACGTGCTT
569
ACCACGUGC
761
CIITA
59.1
0.962


TATCAGAAG

UUUAUCAGA

PIV_T30






AG









ACCTTGGGGCT
570
ACCUUGGGG
762
CIITA P3_T17
58.6
0.972


CTGACAGGT

CUCUGACAG








GU









AGGTAGGACC
571
AGGUAGGAC
763
CIITA P3_T22
58.2
0.956


CAGCAGGGCG

CCAGCAGGG








CG









GGGCATCCGA
572
GGGCAUCCG
764
CIITA P3_T2
58
0.96


AGGCATCCTT

AAGGCAUCC








UU









CAGTGGCCAG
573
CAGUGGCCA
765
CIITA
57.6
0.804


CCCCACTTCG

GCCCCACUUC

PIV_T36






G









CCCAGCCAGG
574
CCCAGCCAG
766
CIITA P3_T39
57.5
0.966


CAGCAGCTCC

GCAGCAGCU








CC









GGCATCCGAA
575
GGCAUCCGA
767
CIITA P3_T10
57
0.855


GGCATCCTTG

AGGCAUCCU








UG









GCCTGGGACT
576
GCCUGGGAC
768
CIITA
56.6
0.889


CTCCCCGAAG

UCUCCCCGA

PIV_T24






AG









CACTGTGAGG
577
CACUGUGAG
769
CIITA
56
0.876


AACCGACTGG

GAACCGACU

PIV_T15






GG









AAAAGAACTG
578
AAAAGAACU
770
CIITA
55.9
0.968


CGGGGAGGCG

GCGGGGAGG

PIV_T66






CG









TGAGCATTGTC
579
UGAGCAUUG
771
CIITA
55.4
0.954


TTCCCTCCC

UCUUCCCUCC

EXON3_T31






C









CCTCAGGTACC
580
CCUCAGGUA
772
CIITA
54.7
0.853


TTCCATGGA

CCUUCCAUG

PIV_T45






GA









CACACTGTGA
581
CACACUGUG
773
CIITA
54.5
0.94


GCTGCCTGGG

AGCUGCCUG

EXON3_T36






GG









CTTCTCCAGCC
582
CUUCUCCAG
774
CIITA
54
0.885


AGGTCCATC

CCAGGUCCA

EXON3_T17






UC









GGAAGAGACC
583
GGAAGAGAC
775
CIITA
53.5
0.958


AGAGGGAGGA

CAGAGGGAG

EXON3_T44






GA









AGCCAGGCAA
584
AGCCAGGCA
776
CIITA P3_T1
53.4
0.972


CGCATTGTGT

ACGCAUUGU








GU









AAGGCTAGGT
585
AAGGCUAGG
777
CIITA
52.6
0.878


TGGATCAGGG

UUGGAUCAG

EXON5_T6






GG









CCTGGGACTCT
586
CCUGGGACU
778
CIITA PIV_T9
52.3
0.745


CCCCGAAGT

CUCCCCGAA








GU









ACAGTGTGCC
587
ACAGUGUGC
779
CIITA
51.6
0.938


ACCATGGAGT

CACCAUGGA

EXON3_T4






GU









GGCTAGGTTG
588
GGCUAGGUU
780
CIITA
50.4
0.91


GATCAGGGAG

GGAUCAGGG

EXON5_T11






AG









CTCCAAGGCA
589
CUCCAAGGC
781
CIITA
50.3
0.975


TGAGACTTTG

AUGAGACUU

PIV_T67






UG









GCCCCTAGAA
590
GCCCCUAGA
782
CIITA
50.1
0.936


GGTGGCTACC

AGGUGGCUA

EXON3_T2






CC









CTGACAGGTA
591
CUGACAGGU
783
CIITA P3_T19
48.3
0.952


GGACCCAGCA

AGGACCCAG








CA









GCAGGGCTCTT
592
GCAGGGCUC
784
CIITA
47.9
0.963


GCCACGGCT

UUGCCACGG

PIV_T21






CU









GAGCCCCAAG
593
GAGCCCCAA
785
CIITA P3_T9
47.6
0.958


GTAAAAAGGC

GGUAAAAAG








GC









GCTATTCACTC
594
GCUAUUCAC
786
CIITA
47.4
0.965


CTCTGATGC

UCCUCUGAU

PIV_T39






GC









CATCGCTGTTA
595
CAUCGCUGU
787
CIITA
46.7
0.703


AGAAGCTCC

UAAGAAGCU

EXON3_T1






CC









GGGTGTGGTC
596
GGGUGUGGU
788
CIITA
46.2
0.956


ATGGTAACAC

CAUGGUAAC

PIV_T53






AC









AAGTGGCATC
597
AAGUGGCAU
789
CIITA
45.9
0.968


CCAACTGCCT

CCCAACUGCC

PIV_T63






U









GGGAAGCTGA
598
GGGAAGCUG
790
CIITA P3_T36
45.8
0.965


GGGCACGAGG

AGGGCACGA








GG









CTTCTATGACC
599
CUUCUAUGA
791
CIITA
45.5
0.892


AGATGGACC

CCAGAUGGA

EXON3_T11






CC









CTCCAGGTAG

CUCCAGGUA

CIITA




CCACCTTCTA
600
GCCACCUUC
792
EXON3_T7
45.2
0.857




UA









GGAAGCTGAG
601
GGAAGCUGA
793
CIITA P3_T37 
45
0.86


GGCACGAGGA

GGGCACGAG








GA









CAATGCTCAGT
602
CAAUGCUCA
794
CIITA
44.7
0.95


CACCTCACA

GUCACCUCA

EXON3_T27






CA









CTTTCCCGGCC
603
CUUUCCCGG
795
CIITA P3_T14
43.7
0.931


TTTTTACCT

CCUUUUUAC








CU









GCTGAACTGG
604
GCUGAACUG
796
CIITA
43.4
0.923


TCGCAGTTGA

GUCGCAGUU

EXON4_T3






GA









TTGCAGATCAC
605
UUGCAGAUC
797
CIITA
43.1
0.982


TTGCCCAAG

ACUUGCCCA

PIV_T49






AG









CTCCTCCCTCT
606
CUCCUCCCUC
798
CIITA
42.4
0.872


GGTCTCTTC

UGGUCUCUU

EXON3_T42






C









TTCCTACACAA
607
UUCCUACAC
799
CIITA P3_T3
42.3
0.95


TGCGTTGCC

AAUGCGUUG








CC









TTGGGGAAGC
608
UUGGGGAAG
800
CIITA P3_T34
42
0.975


TGAGGGCACG

CUGAGGGCA








CG









TCCAGGTAGC
609
UCCAGGUAG
801
CIITA
41.4
0.746


CACCTTCTAG

CCACCUUCU

EXON3_T9






AG









TGAAGTGATC
610
UGAAGUGAU
802
CIITA
39.3
0.974


GGTGAGAGTA

CGGUGAGAG

EXON5_T1






UA









CCTCTTTCCAA
611
CCUCUUUCC
803
CIITA
39.1
0.711


CACCCTGTG

AACACCCUG

EXON3_T33






UG









ACCTCTGAAA
612
ACCUCUGAA
804
CIITA
38.9
0.981


AGGACCGGCA

AAGGACCGG

PIV_T10






CA









GTGAGGAACC
613
GUGAGGAAC
805
CIITA
38.2
0.969


GACTGGAGGC

CGACUGGAG

PIV_T42






GC









GGGCCATGTG
614
GGGCCAUGU
806
CIITA




CCCTCGGAGG

GCCCUCGGA

PIV_T62
37.5
0.976




GG









AGGCTAGGTT
615
AGGCUAGGU
807
CIITA
37.1
0.951


GGATCAGGGA

UGGAUCAGG

EXON5_T7






GA









TTCCCGGCCTT
616
UUCCCGGCC
808
CIITA P3_T13
36.5
0.983


TTTACCTTG

UUUUUACCU








UG









CAGAGGTCTT
617
CAGAGGUCU
809
CIITA




GGATTCCTGC

UGGAUUCCU

PIV_T48
36.1
0.976




GC









ATAGAAGTGG
618
AUAGAAGUG
810
CIITA
36.1
0.979


TAGAGGCACA

GUAGAGGCA

EXON3_T41






CA









TTCTGGGAGG
619
UUCUGGGAG
811
CIITA
35.9
0.947


AAAAGTCCCT

GAAAAGUCC

EXON4_T13






CU









TCTGACAGGT
620
UCUGACAGG
812
CIITA P3_T7
34.8
0.981


AGGACCCAGC

UAGGACCCA








GC









GCAGTTGATG
621
GCAGUUGAU
813
CIITA
34.8
0.937


GTGTCTGTGT

GGUGUCUGU

EXON4_T19






GU









CCTCACAGGG
622
CCUCACAGG
814
CIITA
34.4
0.952


TGTTGGAAAG

GUGUUGGAA

EXON3_T26






AG









GACCGGCAGG
623
GACCGGCAG
815
CIITA
34.3
0.943


GCTCTTGCCA

GGCUCUUGC

PIV_T47






CA









TACCGGAAGA
624
UACCGGAAG
816
CIITA
32.7
0.982


GACCAGAGGG

AGACCAGAG

EXON3_T28






GG









TGGGCATCCG
625
UGGGCAUCC
817
CIITA P3_T4
32.5
0.983


AAGGCATCCT

GAAGGCAUC








CU









GAGGAGGGGC
626
GAGGAGGGG
818
CIITA P3_T25
32.1
0.982


TGCCAGACTC

CUGCCAGAC








UC









GAAATTTCCTT
627
GAAAUUUCC
819
CIITA
31.6
0.955


CTTCATCCA

UUCUUCAUC

EXON4_T23






CA









AGATTGAGCT
628
AGAUUGAGC
820
CIITA
31
0.946


CTACTCAGGT

UCUACUCAG

EXON3_T3






GU









CAGCTCACAG
629
CAGCUCACA
821
CIITA
30.7
0.968


TGTGCCACCA

GUGUGCCAC

EXON3_T15






CA









CTACCACTTCT
630
CUACCACUU
822
CIITA
30.1
0.987


ATGACCAGA

CUAUGACCA

EXON3_T12






GA









CACCTCAAAG
631
CACCUCAAA
823
CIITA
29.2
0.972


TCTCATGCCT

GUCUCAUGC

PIV_T68






CU









AGGCTGTTGTG
632
AGGCUGUUG
824
CIITA
28.2
0.9


TGACATGGA

UGUGACAUG

EXON4_T14






GA









TCTGGTCATAG
633
UCUGGUCAU
825
CIITA
27.5
0.979


AAGTGGTAG

AGAAGUGGU

EXON3_T34






AG









AGTGTGCCAC
634
AGUGUGCCA
826
CIITA
27.3
0.961


CATGGAGTTG

CCAUGGAGU

EXON3_T18






UG









CAGTGTGCCA
635
CAGUGUGCC
827
CIITA
26.5
0.979


CCATGGAGTT

ACCAUGGAG

EXON3_T10






UU









CACACAACAG
636
CACACAACA
828
CIITA
25.4
0.834


CCTGCTGAAC

GCCUGCUGA

EXON4_T12






AC









GACTCTCCCCG
637
GACUCUCCCC
829
CIITA
24.5
0.963


AAGTGGGGC

GAAGUGGGG

PIV_T13






C









CAGGGCTCTTG
638
CAGGGCUCU
830
CIITA
24.4
0.958


CCACGGCTG

UGCCACGGC

PIV_T64






UG









AGGAGGGGCT
639
AGGAGGGGC
831
CIITA P3_T29
24
0.989


GCCAGACTCC

UGCCAGACU








CC









TGGTTTGCCAC
640
UGGUUUGCC
832
CIITA PIV_T8
24
0.99


TTTCACGGT

ACUUUCACG








GU









TTTCTCAAAGT
641
UUUCUCAAA
833
CIITA
23.1
0.947


AGAGCACAT

GUAGAGCAC

EXON5_T10






AU









ACTTGCCGCG
642
ACUUGCCGC
834
CIITA
22
0.991


GCCCCAGAGC

GGCCCCAGA

PIV_T50






GC









TCAGTCACCTC
643
UCAGUCACC
835
CIITA
21.1
0.985


ACAGGGTGT

UCACAGGGU

EXON3_T22






GU









AGGTGCTTCCT
644
AGGUGCUUC
836
CIITA
21
0.979


CACCGATAT

CUCACCGAU

EXON4_T2






AU









TGGCACACTGT
645
UGGCACACU
837
CIITA
20.9
0.968


GAGCTGCCT

GUGAGCUGC

EXON3_T32






CU









TGCCTGGCTCC
646
UGCCUGGCU
838
CIITA P3_T40
20.7
0.988


ACGCCCTGC

CCACGCCCUG








C









CAGCAGGCTG
647
CAGCAGGCU
839
CIITA
20.6
0.981


TTGTGTGACA

GUUGUGUGA

EXON4_T10






CA









GCTCCCGCGC
648
GCUCCCGCGC
840
CIITA
20.5
0.994


GCGCTGCTGG

GCGCUGCUG

PIV_T54






G









CATAGAAGTG
649
CAUAGAAGU
841
CIITA
20
0.962


GTAGAGGCAC

GGUAGAGGC

EXON3_T19






AC









CAGGGGCCAT
650
CAGGGGCCA
842
CIITA
19.3
0.984


GTGCCCTCGG

UGUGCCCUC

PIV_T38






GG









CTCTCACCGAT
651
CUCUCACCG
843
CIITA
18.2
0.981


CACTTCATC

AUCACUUCA

EXON5_T2







AGCTTCCCCAA
652
AGCUUCCCC
844
CIITA P3_T12
16.7
0.987


GGATGCCTT

AAGGAUGCC








UU









GACCTCTGAA
653
GACCUCUGA
845
CIITA PIV_T5
16.6
0.988


AAGGACCGGC

AAAGGACCG








GC









TGCCCTTGATT
654
UGCCCUUGA
846
CIITA
16.6
0.911


GTCCTTTTC

UUGUCCUUU

EXON4_T11






UC









AGGCTGTGTG
655
AGGCUGUGU
847
CIITA P3_T23
16.4
0.987


CTTCTGAGCT

GCUUCUGAG








CU









CAGGTGGGCC
656
CAGGUGGGC
848
CIITA
16.1
0.987


CTCCTCCCTC

CCUCCUCCCU

EXON3_T39






C









AGGGAGGCTT
657
AGGGAGGCU
849
CIITA
15.8
0.981


ATGCCAATAT

UAUGCCAAU

EXON4_T5






AU









AAACCACCTC
658
AAACCACCU
850
CIITA
15.5
0.165


CGAGGGCACA

CCGAGGGCA

PIV_T31






CA









AAATTTCCTTC
659
AAAUUUCCU
851
CIITA
14.3
0.964


TTCATCCAA

UCUUCAUCC

EXON4_T24






AA









CAGTTGATGGT
660
CAGUUGAUG
852
CIITA
13.3
0.985


GTCTGTGTC

GUGUCUGUG

EXON4_T17






UC









CCGGGAGCTG
661
CCGGGAGCU
853
CIITA P3_T33
13.2
0.992


CTGCCTGGCT

GCUGCCUGG








CU









GAAGAGATTG
662
GAAGAGAUU
854
CIITA
12.4
0.986


AGCTCTACTC

GAGCUCUAC

EXON3_T8






UC









TGGTGTCTGTG
663
UGGUGUCUG
855
CIITA
12.4
0.959


TCGGGTTCT

UGUCGGGUU

EXON4_T8






CU









AGGCCACCAG
664
AGGCCACCA
856
CIITA
12.1
0.995


CAGCGCGCGC

GCAGCGCGC

PIV_T14






GC









CCCACTTCGGG
665
CCCACUUCG
857
CIITA
11.3
0.978


GAGAGTCCC

GGGAGAGUC

PIV_T29






CC









GAGGCTGTGT
666
GAGGCUGUG
858
CIITA P3_T24
11.1
0.991


GCTTCTGAGC

UGCUUCUGA








GC









CGGGCTCCCG
667
CGGGCUCCC
859
CIITA
10.8
0.993


CGCGCGCTGC

GCGCGCGCU

PIV_T34






GC









TTTCCCGGCCT
668
UUUCCCGGC
860
CIITA P3_T20
9.7
0.992


TTTTACCTT

CUUUUUACC








UU









AGCTGAGGGG
669
AGCUGAGGG
861
CIITA
8.8
0.981


TGGGGGATAC

GUGGGGGAU

EXON3_T37






AC









CCGGTCCTTTT
670
CCGGUCCUU
862
CIITA
8.6
0.984


CAGAGGTCT

UUCAGAGGU

PIV_T37






CU









AAGCAAGGCT
671
AAGCAAGGC
863
CIITA
8
0.965


AGGTTGGATC

UAGGUUGGA

EXON5_T3






UC









TGATTGTGTGA
672
UGAUUGUGU
864
CIITA
7.7
0.974


GTTGGTCTC

GAGUUGGUC

EXON5_T5






UC









ATGGTGTCTGT
673
AUGGUGUCU
865
CIITA
6.9
0.943


GTCGGGTTC

GUGUCGGGU

EXON4_T6






UC









AGGCAGCAGC
674
AGGCAGCAG
866
CIITA P3_T15
6.5
0.986


TCCCGGAGTC

CUCCCGGAG








UC









AGCCCCAAGG
675
AGCCCCAAG
867
CIITA P3_T6
5.8
0.995


TAAAAAGGCC

GUAAAAAGG








CC









TGCTTGGTTGC
676
UGCUUGGUU
868
CIITA
5.8
0.994


TCCACAGCC

GCUCCACAG

PIV_T59






CC









ATCTGCAAGTC
677
AUCUGCAAG
869
CIITA
5.1
0.995


CTGAGTTGC

UCCUGAGUU

PIV_T40






GC









ATTGTGTAGG
678
AUUGUGUAG
870
CIITA P3_T5
4.6
0.993


AATCCCAGCC

GAAUCCCAG








CC









GGCAGGGCTC
679
GGCAGGGCU
871
CIITA
4.2
0.985


TTGCCACGGC

CUUGCCACG

PIV_T16






GC









TCCGGGAGCT
680
UCCGGGAGC
872
CIITA P3_T30
3.9
0.993


GCTGCCTGGC

UGCUGCCUG








GC









GGCATCCTTGG
681
GGCAUCCUU
873
CIITA P3_T26
3.6
0.99


GGAAGCTGA

GGGGAAGCU








GA









TATGACCAGA
682
UAUGACCAG
874
CIITA
3.5
0.991


TGGACCTGGC

AUGGACCUG

EXON3_T13






GC









AGGGCTCTTGC
683
AGGGCUCUU
875
CIITA
2.9
0.959


CACGGCTGG

GCCACGGCU

PIV_T35






GG









CAATCTCTTCT
684
CAAUCUCUU
876
CIITA
1.5
0.99


TCTCCAGCC

CUUCUCCAG

EXON3_T40






CC









ACCCAGCAGG
685
ACCCAGCAG
877
CIITA P3_T31
0.7
0.995


GCGTGGAGCC

GGCGUGGAG








CC









CTTTTCTGCCC
686
CUUUUCUGC
878
CIITA
0.2
0.993


AACTTCTGC

CCAACUUCU

EXON5_T9






GC









AGCTCAGTTA
687
AGCUCAGUU
879
CIITA




GCTCATCTCA

AGCUCAUCU

PIV_T57






CA









AGGGAAAAAG
688
AGGGAAAAA
880
CIITA




AACTGCGGGG

GAACUGCGG

PIV_T65






GG









GAGATTGAGC
689
GAGAUUGAG
881
CIITA




TCTACTCAGG

CUCUACUCA

EXON3_T5






GG









GAGTTGGGGC
690
GAGUUGGGG
882
CIITA




CCCTAGAAGG

CCCCUAGAA

EXON3_T21






GG









TAGAAGTGGT
691
UAGAAGUGG
883
CIITA




AGAGGCACAG

UAGAGGCAC

EXON3_T35






AG









AGAAGTGGTA
692
AGAAGUGGU
884
CIITA




GAGGCACAGG

AGAGGCACA

EXON3_T43






GG









CGGAAGAGAC
693
CGGAAGAGA
885
CIITA




CAGAGGGAGG

CCAGAGGGA

EXON3_T45






GG









TCAACTGCGA
694
UCAACUGCG
886
CIITA




CCAGTTCAGC

ACCAGUUCA

EXON4_T4






GC









TGTCTGTGTCG
695
UGUCUGUGU
887
CIITA




GGTTCTGGG

CGGGUUCUG

EXON4_T9






GG









GATTGTCCTTT
696
GAUUGUCCU
888
CIITA




TCTGGGCTC

UUUCUGGGC

EXON4_T16






UC









AAAAGTCCCTT
697
AAAAGUCCC
889
CIITA




GGATGAAGA

UUGGAUGAA

EXON4_T18






GA









TGGAAGGTGA
698
UGGAAGGUG
890
CIITA




TGAAGAGACC

AUGAAGAGA

EXON4_T20






CC









In some embodiments, a gRNA comprises the sequence of any one of SEQ ID NOs: 699-890 or targets the sequence of any one of SEQ ID NOs: 507-698.


PD1 gRNA Screen


For PDCD1 (PD1), genomic segments containing the first three (3) protein coding exons were used as input in the gRNA design software. The genomic segments also included flanking splice site acceptor/donor sequences. Desired gRNAs were those that would lead to insertions or deletions in the coding sequence disrupting the amino acid sequence of PDCD1 leading to out of frame/loss of function allele(s). One hundred ninety two (192) in silico identified gRNA spacers targeting PDCD1 were used in an IVT screen. One hundred ninety (190) yielded measurable data by TIDE analysis. Forty (40) gRNA sequences yielded InDel percentages above 50% that could be suitable for secondary screens.









TABLE 8







PD1 target sequences, gRNA spacer sequences, and cutting efficiencies in


HEK293T cells














SEQ ID
gRNA Spacer
SEQ ID





Target Sequence
NO:
Sequence
NO:
Guide Name
Indel %
R2
















TGTCTGGGGAGT
891
UGUCUGGGGAG
1083
PD1
94.7
0.96


CTGAGAGA

UCUGAGAGA

EXON2_T84







ACTGCTCAGGCG
892
ACUGCUCAGGC
1084
PD1
84.4
0.977


GAGGTGAGCGG

GGAGGUGAG

EXON1_T40







CGCAGATCAAA
893
CGCAGAUCAAA
1085
PD1
83.1
0.894


GAGAGCCTG

GAGAGCCUG

EXON2_T51







CTGCAGCTTCTC
894
CUGCAGCUUCU
1086
PD1
82.4
0.9


CAACACAT

CCAACACAU

EXON2_T57







GCCCTGGCCAGT
895
CGCCUUCUCCA
1087
PD1
80.8
0.961


CGTCTGGGCGG

CUGCUCAGG

EXON1_T23







CAGCGGCACCTA
896
CAGCGGCACCU
1088
PD1
77.7
0.928


CCTCTGTG

ACCUCUGUG

EXON2_T50







CTTCTCCACTGC
897
ACGACUGGCCA
1089
PD1
77.2
0.919


TCAGGCGGAGG

GGGCGCCUG

EXON1_T29







GTTGGAGAAGCT
898
GUUGGAGAAGC
1090
PD1
76.7
0.92


GCAGGTGA

UGCAGGUGA

EXON2_T94







CGTGTCACACAA
899
CGUGUCACACA
1091
PD1
71.4
0.842


CTGCCCAA

ACUGCCCAA

EXON2_T33







CAGTGGAGAAG
900
GGAGAAGGCGG
1092
PD1
70.3
0.924


GCGGCACTCTGG

CACUCUGGU

EXON1_T19







CGCCTGAGCAGT
901
GCUCACCUCCG
1093
PD1
66.6
0.885


GGAGAAGGCGG

CCUGAGCAG

EXON1_T37







CCCTTCGGTCAC
902
CCCUUCGGUCA
1094
PD1
66.2
0.867


CACGAGCA

CCACGAGCA

EXON2_T14







GGCGCCCTGGCC
903
UCUUAGGUAGG
1095
PD1
65.8
0.804


AGTCGTCTGGG

UGGGGUCGG

EXON1_T7







GTCTGGGCGGTG
904
CGACUGGCCAG
1096
PD1
65.5
0.856


CTACAACTGGG

GGCGCCUGU

EXON1_T3







GGAGAAGGCGG
905
CGGUGCUACAA
1097
PD1
65.1
0.945


CACTCTGGTGGG

CUGGGCUGG

EXON1_T13







TGCCGCCTTCTC
906
CUCAGGCGGAG
1098
PD1
63.4
0.876


CACTGCTCAGG

GUGAGCGGA

EXON1_T32







GGAGTCTGAGA
907
GGAGUCUGAGA
1099
PD1
63.4
0.86


GATGGAGAG

GAUGGAGAG

EXON2_T86







GCCCACGACACC
908
GCCCACGACAC
1100
PD1
62.2
0.859


AACCACCA

CAACCACCA

EXON3_T17







CCAGGGAGATG
909
CCAGGGAGAUG
1101
PD1
60.6
0.87


GCCCCACAG

GCCCCACAG

EXON2_T70







GCTCACCTCCGC
910
AGGCGCCCUGG
1102
PD1
60.2
0.858


CTGAGCAGTGG

CCAGUCGUC

EXON1_T25







GCAGATCAAAG
911
GCAGAUCAAAG
1103
PD1
58.4
0.701


AGAGCCTGC

AGAGCCUGC

EXON2_T52







GGAGAAGCTGC
912
GGAGAAGCUGC
1104
PD1
58.4
0.88


AGGTGAAGG

AGGUGAAGG

EXON2_T99







CATGAGCCCCAG
913
CAUGAGCCCCA
1105
PD1
58.1
0.908


CAACCAGA

GCAACCAGA

EXON2_T56







TGGAAGGGCAC
914
UGGAAGGGCAC
1106
PD1
58.1
0.786


AAAGGTCAG

AAAGGUCAG

EXON3_T36







GAGCCTGCGGGC
915
GAGCCUGCGGG
1107
PD1
57.9
0.75


AGAGCTCA

CAGAGCUCA

EXON2_T72







CGCCCACGACAC
916
CGCCCACGACA
1108
PD1
56
0.855


CAACCACC

CCAACCACC

EXON3_T8







TGGAGAAGGCG
917
GAGAAGGCGGC
1109
PD1
55.6
0.743


GCACTCTGGTGG

ACUCUGGUGV

EXON1_T20







TCCAGGCATGCA
918
CAGUGGAGAAG
1110
PD1
55.5
0.725


GATCCCACAGGV

GCGGCACUC

EXON1_T28







GACAGCGGCAC
919
GACAGCGGCAC
1111
PD1
53.6
0.794


CTACCTCTG

CUACCUCUG

EXON2_T44







GAGAAGGCGGC
920
GGGCGGUGCUA
1112
PD1
52.7
0.864


ACTCTGGTGGGG

CAACUGGGC

EXON1_T18







GCTTGTCCGTCT
921
GCUUGUCCGUC
1113
PD1
52.5
0.584


GGTTGCTG

UGGUUGCUG

EXON2_T37







CCTCTGTGGGGC
922
CCUCUGUGGGG
1114
PD1
52.2
0.787


CATCTCCC

CCAUCUCCC

EXON2_T66







TGCAGATCCCAC
923
CUUCUCCACUG
1115
PD1
52.1
0.862


AGGCGCCCTGG

CUCAGGCGG

EXON1_T30







CACTCTGGTGGG
924
UGGAGAAGGCG
1116
PD1
51.8
0.854


GCTGCTCCAGG

GCACUCUGG

EXON1_T36







GCAGTTGTGTGA
925
GCAGUUGUGUG
1117
PD1
51.3
0.553


CACGGAAG

ACACGGAAG

EXON2_T25







TGTAGCACCGCC
926
UGUAGCACCGC
1118
PD1
51.1
0.93


CAGACGACTGG

CCAGACGAC

EXON1_T1







GGCCATCTCCCT
927
GGCCAUCUCCC
1119
PD1
50.9
0.86


GGCCCCCA

UGGCCCCCA

EXON2_T88







CCTGCTCGTGGT
928
CCUGCUCGUGG
1120
PD1
50.8
0.914


GACCGAAG

UGACCGAAG

EXON2_T13







GGGGTTCCAGGG
929
GGGGUUCCAGG
1121
PD1
50.8
0.74


CCTGTCTG

GCCUGUCUG

EXON2_T78







GGCCAGGATGGT
930
CGUCUGGGCGG
1122
PD1
50.7
0.715


TCTTAGGTAGG

UGCUACAAC

EXON1_T9







TCAGGCGGAGGT
931
GGCCAGGAUGG
1123
PD1
48.8
0.913


GAGCGGAAGGG

UUCUUAGGU

EXON1_T26







TCTGGTTGCTGG
932
UCUGGUUGCUG
1124
PD1
48.7
0.76


GGCTCATG

GGGCUCAUG

EXON2_T69







CTTCTCCCCAGC
933
CUUCUCCCCAG
1125
PD1
48.7
0.9


CCTGCTCG

CCCUGCUCG

EXON2_T73







CGACTGGCCAGG
934
GGUAGGUGGG
1126
PD1
48.4
0.868


GCGCCTGTGGG

GUCGGCGGUC

EXON1_T11







TTCTCTCTGGAA
935
UUCUCUCUGGA
1127
PD1
48.2
0.969


GGGCACAA

AGGGCACAA

EXON3_T31







CCTGGCCGTCAT
936
CCUGGCCGUCA
1128
PD1
48.1
0.789


CTGCTCCC

UCUGCUCCC

EXON3_T33







CTCCGCCTGAGC
937
UGCAGAUCCCA
1129
PD1
47.2
0.948


AGTGGAGAAGG

CAGGCGCCC

EXON1_T38







CGTTGGGCAGTT
938
CGUUGGGCAGU
1130
PD1
45.9
0.934


GTGTGACA

UGUGUGACA

EXON2_T30







GGATGGTTCTTA
939
GUCUGGGCGGU
1131
PD1
45.6
0.91


GGTAGGTGGGG

GCUACAACU

EXON1_T17







GGTTCTTAGGTA
940
CUACAACUGGG
1132
PD1
45.4
0.917


GGTGGGGTCGG

CUGGCGGCC

EXON1_T35







CGGTCACCACGA
941
CGGUCACCACG
1133
PD1
45.3
0.917


GCAGGGCT

AGCAGGGCU

EXON2_T34







GCCTGTGGGATC
942
UGGCGGCCAGG
1134
PD1
45.2
0.968


TGCATGCCTGG

AUGGUUCUU

EXON1_T27







CACCTACCTAAG
943
GGCGCCCUGGC
1135
PD1
44
0.827


AACCATCCTGG

CAGUCGUCU

EXON1_T10







AGGCGCCCTGGC
944
AGGAUGGUUCU
1136
PD1
43.7
0.962


CAGTCGTCTGG

UAGGUAGGU

EXON1_T4







GCGTGACTTCCA
945
GCGUGACUUCC
1137
PD1
42.9
0.941


CATGAGCG

ACAUGAGCG

EXON2_T6







ACGACTGGCCAG
946
CUCCGCCUGAG
1138
PD1
42.8
0.925


GGCGCCTGTGG

CAGUGGAGA

EXON1_T24







AGGGCCCGGCG
947
AGGGCCCGGCG
1139
PD1
42.3
0.902


CAATGACAG

CAAUGACAG

EXON2_T17







TGGCGGCCAGG
948
GCCUGUGGGAU
1140
PD1
42.1
0.928


ATGGTTCTTAGG

CUGCAUGCC

EXONLT14







GGTGACAGGTGC
949
GGUGACAGGUG
1141
PD1
41.5
0.807


GGCCTCGG

CGGCCUCGG

EXON2_T27







GCCCTGCTCGTG
950
GCCCUGCUCGU
1142
PD1
40.3
0.877


GTGACCGA

GGUGACCGA

EXON2_T4







CAGTTCCAAACC
951
CAGUUCCAAAC
1143
PD1
40.1
0.908


CTGGTGGT

CCUGGUGGU

EXON3_T15







CGATGTGTTGGA
952
CGAUGUGUUGG
1144
PD1
39.6
0.926


GAAGCTGC

AGAAGCUGC

EXON2_T54







GTGTCACACAAC
953
GUGUCACACAA
1145
PD1
38.6
0.907


TGCCCAAC

CUGCCCAAC

EXON2_T26







CAGGATGGTTCT
954
GCCCUGGCCAG
1146
PD1
38.4
0.964


TAGGTAGGTGG

UCGUCUGGG

EXON1_T21







CCGGGCTGGCTG
955
CCGGGCUGGCU
1147
PD1
37.6
0.838


CGGTCCTC

GCGGUCCUC

EXON2_T38







GCTGCGGTCCTC
956
GCUGCGGUCCU
1148
PD1
37.6
0.897


GGGGAAGG

CGGGGAAGG

EXON2_T67







CGGGCTGGCTGC
957
CGGGCUGGCUG
1149
PD1
36.3
0.813


GGTCCTCG

CGGUCCUCG

EXON2_T36







CGCCTTCTCCAC
958
ACCGCCCAGAC
1150
PD1
36.1
0.487


TGCTCAGGCGG

GACUGGCCA

EXON1_T33







ACAGCGGCACCT
959
ACAGCGGCACC
1151
PD1
35.8
0.864


ACCTCTGT

UACCUCUGU

EXON2_T42







CAAGCTGGCCGC
960
CAAGCUGGCCG
1152
PD1
35.3
0.945


CTTCCCCG

CCUUCCCCG

EXON2_T31







CTCAGCTCACCC
961
CUCAGCUCACC
1153
PD1
34.7
0.89


CTGCCCCG

CCUGCCCCG

EXON2_T77







ATGTGGAAGTCA
962
AUGUGGAAGUC
1154
PD1
34.6
0.935


CGCCCGTT

ACGCCCGUU

EXON2_T1







GAGATGGAGAG
963
GAGAUGGAGA
1155
PD1
34.4
0.885


AGGTGAGGA

GAGGUGAGGA

EXON2_T89







GAAGGTGGCGTT
964
GAAGGUGGCGU
1156
PD1
32.4
0.976


GTCCCCTT

UGUCCCCUU

EXON2_T15







TGACACGGAAG
965
UGACACGGAAG
1157
PD1
32.4
0.876


CGGCAGTCC

CGGCAGUCC

EXON2_T18







ACCCTGGTGGTT
966
ACCCUGGUGGU
1158
PD1
31.3
0.465


GGTGTCGT

UGGUGUCGU

EXON3_T7







CTTCCACATGAG
967
CUUCCACAUGA
1159
PD1
31.1
0.962


CGTGGTCA

GCGUGGUCA

EXON2_T21







CCCTGCTCGTGG
968
CCCUGCUCGUG
1160
PD1
30.5
0.965


TGACCGAA

GUGACCGAA

EXON2_T5







AGATGGAGAGA
969
AGAUGGAGAG
1161
PD1
29.9
0.896


GGTGAGGAA

AGGUGAGGAA

EXON2_T98







TCCTGGCCGTCA
970
UCCUGGCCGUC
1162
PD1
29.9
0.802


TCTGCTCC

AUCUGCUCC

EXON3_T22







GGACCCAGACTA
971
GGACCCAGACU
1163
PD1
29.8
0.819


GCAGCACC

AGCAGCACC

EXON3_T26







TGACGTTACCTC
972
UGACGUUACCU
1164
PD1
29
0.822


GTGCGGCC

CGUGCGGCC

EXON3_T2







CTGAGAGATGG
973
CUGAGAGAUGG
1165
PD1
27.8
0.89


AGAGAGGTG

AGAGAGGUG

EXON2_T81







GATGGAGAGAG
974
GAUGGAGAGA
1166
PD1
27.2
0.956


GTGAGGAAG

GGUGAGGAAG

EXON2_T82







CACCAGGGTTTG
975
CACCAGGGUUU
1167
PD1
25.9
0.896


GAACTGGC

GGAACUGGC

EXON3_T24







GCAGGGCTGGG
976
GCAGGGCUGGG
1168
PD1
25.2
0.966


GAGAAGGTG

GAGAAGGUG

EXON2_T96







GGCTCAGCTCAC
977
GGCUCAGCUCA
1169
PD1
24.8
0.955


CCCTGCCC

CCCCUGCCC

EXON2_T106







AACTGGGCTGGC
978
CACCUACCUAA
1170
PD1
23.9
0.969


GGCCAGGATGG

GAACCAUCC

EXON1_T34







AGCAGGGCTGG
979
AGCAGGGCUGG
1171
PD1
23.8
0.807


GGAGAAGGT

GGAGAAGGU

EXON2_T85







ACATGAGCGTGG
980
ACAUGAGCGUG
1172
PD1
23.7
0.984


TCAGGGCC

GUCAGGGCC

EXON2_T41







TCGGTCACCACG
981
UCGGUCACCAC
1173
PD1
23.5
0.954


AGCAGGGC

GAGCAGGGC

EXON2_T28







GGGCCCTGACCA
982
GGGCCCUGACC
1174
PD1
23.3
0.976


CGCTCATG

ACGCUCAUG

EXON2_T22







CGTCTGGGCGGT
983
CACCGCCCAGA
1175
PD1
23.2
0.967


GCTACAACTGG

CGACUGGCC

EXON1_T2







CTGGCTGCGGTC
984
CUGGCUGCGGU
1176
PD1
22.8
0.963


CTCGGGGA

CCUCGGGGA

EXON2_T39







TTTGTGCCCTTC
985
UUUGUGCCCUU
1177
PD1
22.4
0.87


CAGAGAGA

CCAGAGAGA

EXON3_T38







AGGATGGTTCTT
986
CGCCUGAGCAG
1178
PD1
22.2
0.968


AGGTAGGTGGG

UGGAGAAGG

EXONLT16







GGTGCTGCTAGT
987
GGUGCUGCUAG
1179
PD1
22.1
0.937


CTGGGTCC

UCUGGGUCC

EXON3_T16







GGCACTTCTGCC
988
GGCACUUCUGC
1180
PD1
21.6
0.926


CTTCTCTC

CCUUCUCUC

EXON3_T37







ACAAAGGTCAG
989
ACAAAGGUCAG
1181
PD1
20.9
0.895


GGGTTAGGA

GGGUUAGGA

EXON3_T40







TTCTGCCCTTCT
990
UUCUGCCCUUC
1182
PD1
20.5
0.951


CTCTGGAA

UCUCUGGAA

EXON3_T42







CATGTGGAAGTC
991
CAUGUGGAAGU
1183
PD1
20.3
0.979


ACGCCCGT

CACGCCCGU

EXON2_T2







GTGCGGCCTCGG
992
GUGCGGCCUCG
1184
PD1
20.2
0.99


AGGCCCCG

GAGGCCCCG

EXON2_T40







GATCTGCGCCTT
993
GAUCUGCGCCU
1185
PD1
20
0.977


GGGGGCCA

UGGGGGCCA

EXON2_T49







GGGCGGTGCTAC
994
CACUCUGGUGG
1186
PD1
18.4
0.981


AACTGGGCTGG

GGCUGCUCC

EXON1_T8







GAGGTGAGGAA
995
GAGGUGAGGA
1187
PD1
18.2
0.963


GGGGCTGGG

AGGGGCUGGG

EXON2_T105







ACGGAAGCGGC
996
ACGGAAGCGGC
1188
PD1
18.1
0.986


AGTCCTGGC

AGUCCUGGC

EXON2_T35







CTGGAAGGGCA
997
CUGGAAGGGCA
1189
PD1
18.1
0.963


CAAAGGTCA

CAAAGGUCA

EXON3_T32







GAGGGGCTGGG
998
GAGGGGCUGGG
1190
PD1
17.5
0.94


GTGGGCTGT

GUGGGCUGU

EXON3_T44







ACTTCCACATGA
999
ACUUCCACAUG
1191
PD1
17.4
0.984


GCGTGGTC

AGCGUGGUC

EXON2_T10







GGTCACCACGAG
1000
GGUCACCACGA
1192
PD1
17.4
0.989


CAGGGCTG

GCAGGGCUG

EXON2_T55







CGCCTTGGGGGC
1001
CGCCUUGGGGG
1193
PD1
17.2
0.933


CAGGGAGA

CCAGGGAGA

EXON2_T103







AGCCGGCCAGTT
1002
AGCCGGCCAGU
1194
PD1
17.1
0.972


CCAAACCC

UCCAAACCC

EXON3_T12







TGCGGCCCGGGA
1003
UGCGGCCCGGG
1195
PD1
16.6
0.954


GCAGATGA

AGCAGAUGA

EXON3_T23







CCCGAGGACCGC
1004
CCCGAGGACCG
1196
PD1
16.1
0.96


AGCCAGCC

CAGCCAGCC

EXON2_T63







GTAACGTCATCC
1005
GUAACGUCAUC
1197
PD1
15.6
0.957


CAGCCCCT

CCAGCCCCU

EXON3_T25







GGTGTCGTGGGC
1006
GGUGUCGUGGG
1198
PD1
15.3
0.982


GGCCTGCT

CGGCCUGCU

EXON3_T14







ATCTCTCAGACT
1007
AUCUCUCAGAC
1199
PD1
14.4
0.988


CCCCAGAC

UCCCCAGAC

EXON2_T48







GGTAGGTGGGGT
1008
GGAUGGUUCUU
1200
PD1
13.7
0.973


CGGCGGTCAGG

AGGUAGGUG

EXON1_T12







AGGTGCCGCTGT
1009
AGGUGCCGCUG
1201
PD1
13.5
0.982


CATTGCGC

UCAUUGCGC

EXON2_T11







TGGGATGACGTT
1010
UGGGAUGACGU
1202
PD1
13.2
0.964


ACCTCGTG

UACCUCGUG

EXON3_T1







TCACCCTGAGCT
1011
UCACCCUGAGC
1203
PD1
12.5
0.974


CTGCCCGC

UCUGCCCGC

EXON2_T62







CGGCCAGTTCCA
1012
CGGCCAGUUCC
1204
PD1
12.1
0.97


AACCCTGG

AAACCCUGG

EXON3_T20







GCTCAGCTCACC
1013
GCUCAGCUCAC
1205
PD1
12
0.148


CCTGCCCC

CCCUGCCCC

EXON2_T90







CGGGCAGAGCTC
1014
CGGGCAGAGCU
1206
PD1
10.9
0.98


AGGGTGAC

CAGGGUGAC

EXON2_T58







GGTGCCGCTGTC
1015
GGUGCCGCUGU
1207
PD1
10.7
0.987


ATTGCGCC

CAUUGCGCC

EXON2_T12







GCAGCCTGGTGC
1016
GCAGCCUGGUG
1208
PD1
10.7
0.95


TGCTAGTC

CUGCUAGUC

EXON3_T19







TGGAACTGGCCG
1017
UGGAACUGGCC
1209
PD1
10.6
0.974


GCTGGCCT

GGCUGGCCU

EXON3_T27







GAGCAGGGCTG
1018
GAGCAGGGCUG
1210
PD1
10.3
0.97


GGGAGAAGG

GGGAGAAGG

EXON2_T100







CACGAGCAGGG
1019
CACGAGCAGGG
1211
PD1
10.2
0.977


CTGGGGAGA

CUGGGGAGA

EXON2_T95







GGACCGCAGCC
1020
GGACCGCAGCC
1212
PD1
10
0.97


AGCCCGGCC

AGCCCGGCC

EXON2_T74







CAGGGCTGGGG
1021
CAGGGCUGGGG
1213
PD1
10
0.956


AGAAGGTGG

AGAAGGUGG

EXON2_T97







CCCCTTCGGTCA
1022
CCCCUUCGGUC
1214
PD1
9.8
0.993


CCACGAGC

ACCACGAGC

EXON2_T8







ATCTGCTCCCGG
1023
AUCUGCUCCCG
1215
PD1
9.8
0.982


GCCGCACG

GGCCGCACG

EXON3_T5







CTTCTGCCCTTC
1024
CUUCUGCCCUU
1216
PD1
9.7
0.992


TCTCTGGA

CUCUCUGGA

EXON3_T46







AGCTTGTCCGTC
1025
AGCUUGUCCGU
1217
PD1
9.6
0.995


TGGTTGCT

CUGGUUGCU

EXON2_T19







CCTCGGAGGCCC
1026
CCUCGGAGGCC
1218
PD1
9.3
0.933


CGGGGCAG

CCGGGGCAG

EXON2_T76







AGGCGGCCAGCT
1027
AGGCGGCCAGC
1219
PD1
9.1
0.991


TGTCCGTC

UUGUCCGUC

EXON2_T9







AGGGTTTGGAAC
1028
AGGGUUUGGA
1220
PD1
9.1
0.965


TGGCCGGC

ACUGGCCGGC

EXON3_T6







AGAGCCTGCGG
1029
AGAGCCUGCGG
1221
PD1
8.8
0.984


GCAGAGCTC

GCAGAGCUC

EXON2_T59







CAACCACCAGG
1030
CAACCACCAGG
1222
PD1
8.8
0.967


GTTTGGAAC

GUUUGGAAC

EXON3_T21







TCTGGAAGGGCA
1031
UCUGGAAGGGC
1223
PD1
8.8
0.984


CAAAGGTC

ACAAAGGUC

EXON3_T28







GGCCTCGGAGGC
1032
GGCCUCGGAGG
1224
PD1
8.6
0.969


CCCGGGGC

CCCCGGGGC

EXON2_T102







AGAGCTCAGGGT
1033
AGAGCUCAGGG
1225
PD1
8.4
0.087


GACAGGTG

UGACAGGUG

EXON2_T93







CGGTGCTACAAC
1034
UCCAGGCAUGC
1226
PD1
8.3
0.985


TGGGCTGGCGG

AGAUCCCAC

EXON1_T22







CAGCCTGGTGCT
1035
CAGCCUGGUGC
1227
PD1
8.2
0.977


GCTAGTCT

UGCUAGUCU

EXON3_T29







GGAGATGGCCCC
1036
GGAGAUGGCCC
1228
PD1
8.1
0.089


ACAGAGGT

CACAGAGGU

EXON2_T60







AAAGGTCAGGG
1037
AAAGGUCAGGG
1229
PD1
8.1
0.987


GTTAGGACG

GUUAGGACG

EXON3_T18







CAAAGGTCAGG
1038
CAAAGGUCAGG
1230
PD1
7.8
0.983


GGTTAGGAC

GGUUAGGAC

EXON3_T34







CTGGTGGTTGGT
1039
CUGGUGGUUGG
1231
PD1
7.7
0.984


GTCGTGGG

UGUCGUGGG

EXON3_T30







CCCGGGAGCAG
1040
CCCGGGAGCAG
1232
PD1
7.5
0.986


ATGACGGCC

AUGACGGCC

EXON3_T10







CGGAGAGCTTCG
1041
CGGAGAGCUUC
1233
PD1
7.3
0.994


TGCTAAAC

GUGCUAAAC

EXON2_T3







CACGAAGCTCTC
1042
CACGAAGCUCU
1234
PD1
7
0.993


CGATGTGT

CCGAUGUGU

EXON2_T7







CCCCTGCCCCGG
1043
CCCCUGCCCCG
1235
PD1
7
0.992


GGCCTCCG

GGGCCUCCG

EXON2_T83







GGGCTGGGGAG
1044
GGGCUGGGGAG
1236
PD1
6.7
0.974


AAGGTGGGG

AAGGUGGGG

EXON2_T101







GAGAGAGGTGA
1045
GAGAGAGGUG
1237
PD1
6.6
0.982


GGAAGGGGC

AGGAAGGGGC

EXON2_T92







GGGGGGTTCCAG
1046
GGGGGGUUCCA
1238
PD1
6.5
0.963


GGCCTGTC

GGGCCUGUC

EXON2_T68







TGGTGTCGTGGG
1047
UGGUGUCGUGG
1239
PD1
6.2
0.983


CGGCCTGC

GCGGCCUGC

EXON3_T13







AGGGCTGGGGA
1048
AGGGCUGGGGA
1240
PD1
5.5
0.992


GAAGGTGGG

GAAGGUGGG

EXON2_T91







GGTGCGGCCTCG
1049
GGUGCGGCCUC
1241
PD1
5.3
0.99


GAGGCCCC

GGAGGCCCC

EXON2_T64







AGCCCCTCACCC
1050
AGCCCCUCACC
1242
PD1
5.3
0.99


AGGCCAGC

CAGGCCAGC

EXON3_T41







CTCAGGCGGAG
1051
GGUUCUUAGGU
1243
PD1
5.2
0.99


GTGAGCGGAAG

AGGUGGGGU

EXON1_T39




G











AGCGGCAGTCCT
1052
AGCGGCAGUCC
1244
PD1
5.2
0.981


GGCCGGGC

UGGCCGGGC

EXON2_T43







GGGCACAAAGG
1053
GGGCACAAAGG
1245
PD1
5.2
0.99


TCAGGGGTT

UCAGGGGUU

EXON3_T35







CAGCTTGTCCGT
1054
CAGCUUGUCCG
1246
PD1
5.1
0.996


CTGGTTGC

UCUGGUUGC

EXON2_T16







CCTGGGTGAGGG
1055
CCUGGGUGAGG
1247
PD1
4.8
0.995


GCTGGGGT

GGCUGGGGU

EXON3_T45







CGACACCAACCA
1056
CGACACCAACC
1248
PD1
4.7
0.992


CCAGGGTT

ACCAGGGUU

EXON3_T9







CGGAAGCGGCA
1057
CGGAAGCGGCA
1249
PD1
4.4
0.995


GTCCTGGCC

GUCCUGGCC

EXON2_T46







TTGGAACTGGCC
1058
UUGGAACUGGC
1250
PD1
4.3
0.989


GGCTGGCC

CGGCUGGCC

EXON3_T11







GGAGAAGGTGG
1059
GGAGAAGGUG
1251
PD1
4.2
0.989


GGGGGTTCC

GGGGGGUUCC

EXON2_T80







ACCGCCCAGACG
1060
CAGGAUGGUUC
1252
PD1
4.1
0.984


ACTGGCCAGGG

UUAGGUAGG

EXON1_T5







GAGAAGGTGGG
1061
GAGAAGGUGG
1253
PD1
3.8
0.987


GGGGTTCCA

GGGGGUUCCA

EXON2_T65







CTGGCCGGCTGG
1062
CUGGCCGGCUG
1254
PD1
3.5
0.991


CCTGGGTG

GCCUGGGUG

EXON3_T43







CTACAACTGGGC
1063
UGCCGCCUUCU
1255
PD1
3.2
0.981


TGGCGGCCAGG

CCACUGCUC

EXON1_T15







TCTTAGGTAGGT
1064
AACUGGGCUGG
1256
PD1
3.1
0.98


GGGGTCGGCGG

CGGCCAGGA

EXON1_T31







GGGGGTTCCAGG
1065
GGGGGUUCCAG
1257
PD1
3.1
0.993


GCCTGTCT

GGCCUGUCU

EXON2_T75







CACCGCCCAGAC
1066
UCAGGCGGAGG
1258
PD1
2.9
0.979


GACTGGCCAGG

UGAGCGGAA

EXON1_T6







CTCTTTGATCTG
1067
CUCUUUGAUCU
1259
PD1
2.5
0.979


CGCCTTGG

GCGCCUUGG

EXON2_T32







GCCGGGCTGGCT
1068
GCCGGGCUGGC
1260
PD1
2.5
0.996


GCGGTCCT

UGCGGUCCU

EXON2_T53







AGGTGCGGCCTC
1069
AGGUGCGGCCU
1261
PD1
2.2
0.989


GGAGGCCC

CGGAGGCCC

EXON2_T61







TGATCTGCGCCT
1070
UGAUCUGCGCC
1262
PD1
2.1
0.997


TGGGGGCC

UUGGGGGCC

EXON2_T45







CAGACTCCCCAG
1071
CAGACUCCCCA
1263
PD1
2
0.992


ACAGGCCC

GACAGGCCC

EXON2_T104







CAGCAACCAGA
1072
CAGCAACCAGA
1264
PD1
1.9
0.996


CGGACAAGC

CGGACAAGC

EXON2_T24







TCTCTTTGATCT
1073
UCUCUUUGAUC
1265
PD1
1.9
0.994


GCGCCTTG

UGCGCCUUG

EXON2_T29







TTGTGCCCTTCC
1074
UUGUGCCCUUC
1266
PD1
1.9
0.993


AGAGAGAA

CAGAGAGAA

EXON3_T39







AGTCCTGGCCGG
1075
AGUCCUGGCCG
1267
PD1
1.4
0.996


GCTGGCTG

GGCUGGCUG

EXON2_T79







AGAGAGGTGAG
1076
AGAGAGGUGA
1268
PD1
1.2
0.993


GAAGGGGCT

GGAAGGGGCU

EXON2_T87







GCTCTCTTTGAT
1077
GCUCUCUUUGA
1269
PD1
1
0.992


CTGCGCCT

UCUGCGCCU

EXON2_T20







CAGGGTGACAG
1078
CAGGGUGACAG
1270
PD1
0.8
0.993


GTGCGGCCT

GUGCGGCCU

EXON2_T47







GCCTCGGAGGCC
1079
GCCUCGGAGGC
1271
PD1
0.2
0.993


CCGGGGCA

CCCGGGGCA

EXON2_T71







CTCTCTTTGATC
1080
CUCUCUUUGAU
1272
PD1
0.1
0.994


TGCGCCTT

CUGCGCCUU

EXON2_T23







GACGTTACCTCG
1081
GACGUUACCUC
1273
PD1




TGCGGCCC

GUGCGGCCC

EXON3_T3







AACCCTGGTGGT
1082
AACCCUGGUGG
1274
PD1




TGGTGTCG

UUGGUGUCG

EXON3_T4









In some embodiments, a gRNA comprises the sequence of any one of SEQ ID NOs: 1083-1275 or comprises a sequence that targets the sequence of any one of SEQ ID NOs: 891-1082.


PD1 Screen in SpCas9/HEK293T Cells and T Cells


Five (5) PD1 gRNAs were selected for further analysis in HEK293T cells and T cells. Three out of the five guides performed better (higher indel percentage) than the positive control (PD1 control). Surprisingly, the guide producing the highest indel percentage (editing frequency) (Guide 2) did not produce the greatest level of PD1 protein expression knockdown (compared to Guides 3-5—see Table 9).









TABLE 9







PD1 gRNA spacer sequences














SEQ ID
Indel
Indel
PD1+



gRNA sequence
NO:
HEK
T cell
T cells





Cas9 only




44.7%





PD1 control
CGCCCACGACACCAACCACC
1108
56.0%
70.7%
19.0%





Guide 1
UGUCUGGGGAGUCUGAGAGA
1083
94.7%
86.4%
31.7%





Guide 2
ACUGCUCAGGCGGAGGUGAG
1084
84.4%
99.5%
44.4%





Guide 3
CGCAGAUCAAAGAGAGCCUG
1085
83.1%
60.3%
4.76%





Guide 4
CUGCAGCUUCUCCAACACAU
1086
82.4%
92.7%
0.24%





Guide 5
GCCCUGGCCAGUCGUCUGGG
1146
80.8%
99.0%
0.31%









A homology-dependent assessment of the PD1 gRNAs of Table 9 showed that PD1 Guide 5 (comprising SEQ ID NO: 1276) had an indel frequency of 20% at an off-target site, while PD1 Guide 4 (SEQ ID NO: 1086) had an indel frequency of less than 2.0% at an off-target site. This data guided selection of PD1 Guide 4 for further analysis.


CTLA-4 Screen in T Cells


One (1) million T cells were electroporated with 1000 pmol gRNA and 200 pmol Cas9 protein. 48-72 hours post-EP, cells were stimulated with a PMA/ionomycin cocktail solution and simultaneously stained with CTLA4 antibody (1:100 dilution, Biolegend #349907). Four (4) hours post-stimulation, cells were collected for FACS analysis. Two different donors were used (Donor 46 and Donor 13). Protein expression was measured by flow cytometry. The results are shown in Table 10. Use of Guide 5 (with spacer SEQ ID NO: 1292) consistently resulted in the lowest protein expression (e.g., 8.6%). Use of Guide 2 (with spacer SEQ ID NO: 1290) and Guide 9 (with spacer SEQ ID NO: 1297) also resulted in low protein expression (11.9% and 12.2%, respectively).









TABLE 10







CTLA-4 target and gRNA spacer sequences





















Donor46



Target
Spacer
PAM
CCTop
Donor46
Donor13
Protein



Sequence
Sequence
(NGG)
(Raw) *
Indel (%)
Indel (%)
(%)

















CTLA-4
TGCCCAGGT
UGCCCAGG
GGG
−157
85.6
73.1
9.08


Control
AGTATGGCG
UAGUAUGG








GT (SEQ ID
CGGU (SEQ








NO: 1277)
ID NO: 1288)










Guide 1
ACACCGCTC
ACACCGCU
TGG
−662
93.5
91.1
57.6



CCATAAAGC
CCCAUAAA








CA (SEQ ID
GCCA (SEQ








NO: 1278)
ID NO: 1289)










Guide 2
TGGCTTGCC
UGGCUUGC
CGG
−1537.8
89.4
85.6
11.9



TTGGATTTC
CUUGGAUU








AG (SEQ ID
UCAG (SEQ








NO: 1279)
ID NO: 1290)










Guide 3
GCACAAGGC
GCACAAGG
TGG
−5276.6
90.8
81.7
17.3



TCAGCTGAA
CUCAGCUG








CC (SEQ ID
AACC (SEQ








NO: 1280)
ID NO: 1291)










Guide 4
TTCCATGCT
UUCCAUGC
TGG
−967.3
77.7
42.2
21.3



AGCAATGCA
UAGCAAUG








CG (SEQ ID
CACG (SEQ








NO: 1281)
ID NO: 1292)










Guide 5
GCACGTGGC
GCACGUGG
TGG
−2387.2
91.9
82.9
8.6



CCAGCCTGC
CCCAGCCU








TG (SEQ ID
GCUG (SEQ








NO: 1282)
ID NO: 1293)










Guide 6
GTGGTACTG
GUGGUACU
AGG
−1048.4
85.1
51.5
27.6



GCCAGCAGC
GGCCAGCA








CG (SEQ ID
GCCG (SEQ








NO: 1283)
ID NO: 1294)










Guide 7
GTGTGTGAG
GUGUGUGA
AGG
−1299.5
93.9
59.1
14.6



TATGCATCT
GUAUGCAU








CC (SEQ ID
CUCC (SEQ








NO: 1284)
ID NO: 1295)










Guide 8
AGGACTGAG
AGGACUGA
CGG
−1624.6
76.1
64.4
12.2



GGCCATGGA
GGGCCAUG








CA (SEQ ID
GACA (SEQ








NO: 1285)
ID NO: 1296)










Guide 9
TCCTTGCAG
UCCUUGCA
GGG
−242.2
95.5
90.9
12.2



CAGTTAGTT
GCAGUUAG








CG (SEQ ID
UUCG (SEQ








NO: 1286)
ID NO: 1297)










Guide
TCAGAATCT
UCAGAAUC
TGG
−516.9
93.6
54.1
37.9


10
GGGCACGGT
UGGGCACG








TC (SEQ ID
GUUC (SEQ








NO: 1287)
ID NO: 1298)









Example 2—Gene Knockout at Genotypic and Phenotypic Levels in Cells

This example demonstrates efficient knockout by CRISPR/Cas9 of Graft vs. Host (GVH) or Host vs. Graft (HVG) or Immune checkpoint genes at the genotypic and phenotypic levels in primary human T cells.


Primary human T cells were isolated from peripheral blood (AllCells, Alameda, Calif.) using EasySep Direct Human T Cell Isolation Kit (Stemcell Technologies, Vancouver, Canada). The cells were plated at 0.5×106 cells/mL in large flasks. Human T-Activator CD3/CD28 Dynabeads (Thermo Fisher Scientific, Waltham, Mass.) were resuspended and washed with PBS prior to adding to the cells. The cells were incubated with Human T-Activator CD3/CD28 Dynabeads (Thermo Fisher Scientific, Waltham, Mass.) at a bead-to-cell ratio of 1:1 in X-vivo 15 hematopoietic serum-free medium (Thermo Fisher Scientific, Waltham, Mass.) supplemented with 5% human serum (Sigma-Aldrich, St. Louis, Mo.), 50 ng/mL human recombinant IL-2 (Peprotech, Rocky Hill, N.J.), and 10 ng/mL human recombinant IL-7 (Thermo Fisher Scientific, Waltham, Mass.). After 3 days, the cells were transferred to a 15 mL tube and the beads were removed by placing the tube on a magnet for 5 mins. Cells were then transferred, pelleted and plated at 0.5×106 cells/mL.


Three (3) days after beads were removed, T cells were electroporated using the 4D-Nucleofector (program E0115) (Lonza, Walkersville, Md.) and Human T Cells Nucleofector Kit (Lonza, Walkersville, Md.). The nucleofection mix contained the Nucleofector Solution, 106 cells, 1 μM Cas9 (Feldan, Québec, Canada), and 5 μM 2′-O-methyl 3′ phosphorothioate (MS) modified sgRNA (TriLink BioTechonologies, San Diego, Calif.) (As described in Hendel et al., 2015: PMID: 26121415). The MS modification was incorporated at three nucleotides at both the 5′ and 3′ ends. To allow for stable Cas9:sgRNA ribonucleoproteins (RNPs) formation, Cas9 was pre-incubated with sgRNAs in a Cas9:sgRNA molar ratio of 1:5 at 37° C. for 10 min prior to adding the nucleofection mix. For multiplex editing experiments, 1 μM (final concentration) each of Cas9 pre-complexed individually with sgRNAs was added to the electroporation buffer mix. Typical controls for each experiment included: non-electroporated cells, one mock treatment without the RNPs, one treatment with Cas9 alone and one treatment with MS modified AAVS1 sgRNA to monitor transfection efficiency. Following nucleofection, the cells were incubated at 37° C. for 4-7 days and analyzed by flow cytometry for surface protein expression and Tracking of InDels by Decomposition (TIDE) for insertions or deletions (InDels) on genomic DNA.


TIDE is a web tool to rapidly assess genome editing by CRISPR/Cas9 of target locus determined by a guide RNA (gRNA or sgRNA). Based on quantitative sequence trace data from two standard capillary sequencing reactions, the TIDE software quantifies the editing efficacy and identifies the predominant types of insertions and deletions (InDels) in the DNA of a targeted cell pool.


This example and the following example tested sgRNAs delivered by RNP. The sgRNA sequence comprise a 20 nucleotide spacer sequence (indicated in each example) followed by a backbone sequence. Table 11 lists target sequences specific to the indicated gene that were used as sgRNAs in synthetic and modified form that when complexed with Cas9 protein produced the indicated InDel % in primary human T cells. Table 11 lists InDel frequencies for synthetic and/modified sgRNA sequences (delivered as RNPs) targeting the indicated genes and target sequences in primary human T cells.


Examples of backbone sequences are shown in Table 1.









Table 11







Indel frequencies















% InDel in






T Cells



SEQ ID


(Synthetic



NO:
Gene
Target Sequence
Guides)
















76
TRAC
AGAGCAACAGTGCTGTGGCC
72







1299
TRAC
GGCTCTCGGAGAATGACGAG
61







962
PD1
ATGTGGAAGTCACGCCCGTT
25







916
PD1
CGCCCACGACACCAACCACC
53







1300
PD1
CGACTGGCCAGGGCGCCTGT
48.4







1277
CTLA4
TGCCCAGGTAGTATGGCGGT
40







417
B2M
GCTACTCTCTCTTTCTGGCC
91







1301
AAVS1
GGGGCCACTAGGGACAGGAT
75







1302
AAVS1
GCCAGTAGCCAGCCCCGTCC
40







546
CIITA
GGTCCATCTGGTCATAGAAG
81







1303
CD52
TTACCTGTACCATAACCAGG
83







1304
CD52
CCTACTCACCATCAGCCTCC
87







226
CD3E
GGGCACTCACTGGAGAGTTC
67







222
CD3E
TAAAAACATAGGCGGTGATG
68







1305
RFX5
TACCTCGGAGCCTCTGAAGA
88







1306
RFX5
TGTGCTCTTCCAGGTGGTTG
87







1307
RFX5
ATCAAAGCTCGAAGGCTTGG
70










Example 3—Editing TCR Components in Cells

This example demonstrates the in vitro functional consequences in primary human T cells of editing TCR components (TCRa and CD3c). The results of which are shown in FIGS. 6A and 6B.


For flow cytometry experiments, approximately 0.5×106 to 1×106 RNP transfected cells were removed from culture 4-6 days post electroporation and transferred to a clean Eppendorf tube. Cells were pelleted by centrifugation at 1,200 rpm for 5 min and resuspended in 100 μL FACS buffer (0.5% BSA/PBS). To stain the cells, appropriate antibody cocktail was added to the sample, followed by incubation for 10-15 min at room temperature. UltraComp eBeads (Ebioscience, San Diego, Calif.) were used for preparing compensation controls along with the specific conjugated antibody when necessary. The compensation beads were stained at 1:100 with individual specific primary antibody used in the experiment for about 5 min. Stained samples (including compensation controls) were washed with 1 mL FACS buffer, centrifuged at 1,200 rpm, and aspirated to remove the buffer. Compensation beads were resuspended in 200 μL FACS buffer and passed through a 5 mL FACS tube with a cell strainer cap (Corning Inc., Corning, N.Y.). Cell samples were resuspended in 200 μL FACS buffer containing 1:1000 7AAD (Thermo Fisher Scientific, Waltham, Mass.), and passed through a 5 mL FACS tube with a cell strainer cap. Samples were then examined on NovoCyte ACEA 3000 flow cytometer (ACEA Biosciences, San Diego, Calif.) using the automatic compensation software and data was analyzed on Flowjo10.1r5. Antibodies used include BV510 anti-human CD3 (UCHT1, BioLegend, San Diego, Calif.), PE anti-human TCRαβ (BW242/412, Miltenyi Biotec, Auburn, Calif.), PE/Cy7 anti-human CD8 (SK1, BioLegend, San Diego, Calif.), and APC/Cy7 anti-human CD4 (RPA-T4, BioLegend, San Diego, Calif.).


Without being bound by theory, the reason for disrupting TCR in therapeutic T cells was that these T cells would not signal through upstream stimuli to the TCR, and thus not react with recipient peptides/antigens, but would maintain their ability to respond to downstream TCR signaling even after TCR knock-out. Phytohemagglutanin (PHA) and phorbol myristate acetate (PMA)/Ionomycin are two commonly used stimulation regimens for in vitro T cell activation, but they act through distinct mechanisms. PHA is a mitogenic lectin that activates the cells by crosslinking the TCR/CD3 complex as well as other glycosylated membrane proteins. On the contrary, PMA/Ionomycin stimulates T cells by directly activating TCR downstream pathways, bypassing the need for surface receptor stimulation. Therefore, TCR/CD3 deficient T cells were expected to react to PMA/Ionomycin but not to PHA.


To assess the function of TCR ablated T cells, primary human T cells were edited with CRISPR/Cas9 to disrupt TCR components TCRα or CD3ε, treated with the two stimulation regimens, and tested for activation, proliferation, degranulation, and cytokine production using a series of assays described below. Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting AAVS1 (GGGGCCACTAGGGACAGGAT (SEQ ID NO: 1301)), TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76)), or CD3E (GGGCACTCACTGGAGAGTTC (SEQ ID NO: 226)). Six (6) days post transfection, cells were stained for CD3E and the percentage of cells with low or absent levels of CD3E were assessed by flow cytometry. The results showed that transfection with Cas9:TRAC sgRNA or Cas9:CD3E sgRNA largely reduced surface presentation of CD3. The CD3 population in Cas9:TRAC sgRNA and Cas9:CD3E sgRNA transfected cells was 89% and 81%, respectively, whereas the percentage were 10% and 5% in Cas9 only or Cas9:AAVS1 sgRNA transfected cells. This confirmed that the CRISPR/Cas9 edited cells had deficient TCR/CD3 complexes. These cells served as inputs for the assessment in the subsequent assay experiments. The gRNAs used in this Example comprise the following spacer sequences: AAVS1 gRNA spacer (GGGGCCACUAGGGACAGGAU (SEQ ID NO: 1308)), TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)), and CD3E gRNA spacer (GGGCACUCACUGGAGAGUUC (SEQ ID NO: 351)).


CD69 Activation Assay


CD69 is a surrogate marker of T-cell responsiveness to mitogen and antigen stimulus and is used as a measure of T-cell activation. 7 days post transfection, cells were stimulated with either PHA-L (Ebioscience, San Diego, Calif.) or PMA/Ionomycin and grown for additional 2 days. Cells were then stained with APC mouse anti-human CD69 antibody (L78, BD Biosciences, San Jose, Calif.) and the levels of CD69 were assayed by flow cytometry (FIG. 6A). Control cells that received neither PHA nor PMA/Ionomycin treatment had little CD69 expression, suggesting there was no T-cell activation. Cells with intact TCR/CD3 complexes (Mock transfected[−], Cas9 alone, and Cas9:AAVS1 sgRNA transfected groups) displayed induced expression of CD69 after either PHA or PMA/Ionomycin treatment albeit to varying degrees. In contrast, neither cells treated with Cas9:TRAC (targeting AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76)), nor cells treated with Cas9: CD3E (targeting GGGCACTCACTGGAGAGTTC (SEQ ID NO: 226)), showed induced CD69 expression after PHA treatment, indicating that the TCR/CD3E complex was disrupted within these cells. However, both treatment groups exhibited strong expression of CD69 after PMA/Ionomycin treatment (FIG. 6A). This demonstrated that the TCR/CD3 deficient T cells show blunted responses to TCR agonists, but retained ability to be activated with signals downstream of the TCR.


CFSE Proliferation Assay


To further examine cell proliferation in TCR/CD3 deficient cells, the response to PHA and PMA/Ionomycin in the TCR/CD3 deficient cells was assessed. Carboxyfluorescein succinimidyl ester (CFSE) is a cell-permeant fluorescein-based dye used for monitoring lymphocyte proliferation. After transfection, the cells were labeled with 500 nM CFSE for 15 min at 37° C. After washing, cells were plated in serum and cytokine free media for 4 days. CFSE levels were measured by flow cytometry in the FITC channel (FIG. 6A). Control cells that received neither PHA nor PMA/Ionomycin treatment showed CFSE intensity expected of non-divided cells. Both PHA and PMA/Ionomycin treatment caused a shift in CFSE intensity in Mock transfected cells (Cas9 alone) and Cas9:AAVS1 sgRNA transfected groups, indicating cell proliferation is stimulated in cells with cell surface TCR and CD3. As expected, Cas9:TRAC sgRNA (targeting AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76)), and Cas9:CD3E sgRNA (targeting GGGCACTCACTGGAGAGTTC (SEQ ID NO: 226)) transfected cells did not exhibit cell proliferation after PHA treatment, but exhibited strong proliferation after PMA/Ionomycin treatment. This result was consistent with our previous observation, Cas9:TRAC sgRNA and Cas9:CD3E sgRNA treatment disrupts cell signaling through the TCR/CD3 complex.


Flow Cytometry Evaluation of CD107a and Intracellular Cytokines


Two other T cell activation events, degranulation and cytokine production, were also examined using flow cytometry. The transfected cells were either untreated, PHA or PMA treated in serum and cytokine free media. Concurrently, cells were incubated with Golgi Plug (BD Biosciences, San Jose, Calif.), Golgi Stop (BD Biosciences, San Jose, Calif.) and PE-Cy7 anti-human CD107a antibody (H4A3, Biolegend, San Diego, Calif.). Four (4) hours post treatment, cells were surface stained with the following antibodies anti-human CD3 (UCHT1, BioLegend, San Diego, Calif.), PE/Cy7 anti-human CD8 (SK1, BioLegend, San Diego, Calif.), and APC/Cy7 anti-human CD4 (RPA-T4, BioLegend, San Diego, Calif.) and fixed and permeabilized using BD Cytofix/Cytoperm Plus kit (BD Biosciences, San Jose, Calif.). Finally, cells were stained for intracellular cytokines with FITC anti-human TNFα antibody (Mab 11, Biolegend, San Diego, Calif.), APC mouse anti-human IFNγ antibody (25723.11, BD Biosciences, San Jose, Calif.), and PE rat anti-human IL-2 antibody (MQ1-17H12, BD Biosciences, San Jose, Calif.), washed, and analyzed by flow cytometry.


Surface expressed CD107a is a marker for CD8+ T cell degranulation following stimulation. Control cells that had received neither PHA nor PMA/Ionomycin treatment showed minimal surface expression of CD107. Both PHA and PMA/Ionomycin treatments induced CD107a expression in mock transfected, Cas9 alone, and Cas9:AAVS1 sgRNA transfected groups. Again, TCRα or CD3E deficient cells showed base levels of CD107a expression after PHA treatment but largely increased levels of CD107a expression after PMA/Ionomycin treatment (FIG. 6B). This demonstrated that PMA/Ionomycin, but not PHA, was able to induce degranulation in TCR/CD3 deficient cells.


Similarly, enhanced levels of intracellular cytokine TNF, IFNγ, and IL-2 were observed after either PHA or PMA/Ionomycin treatment in the mock transfected, Cas9 alone, and Cas9:AAVS1 sgRNA transfected cells (FIG. 6B).


Taken together, these experiments demonstrated that the TCR/CD3 complex is disrupted in the gene edited cells with signaling downstream of the TCR remaining intact in TCR/CD3 deficient cells, as indicated by cell proliferation, degranulation and effector cytokine production.


Example 4—Editing MHC II Components in Cells

This example demonstrates the in vitro functional consequences in primary human T cells of editing MHC II components (CIITA or RFX5). The results are shown in FIG. 7.


Primary human T cells were transfected with RNP containing synthetic sgRNAs targeting AAVS1 (GGGGCCACTAGGGACAGGAT (SEQ ID NO: 1301)), B2M (GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417)), CIITA (GGTCCATCTGGTCATAGAAG (SEQ ID NO: 546)), RFX5-1 (TACCTCGGAGCCTCTGAAGA (SEQ ID NO: 1305)), RFX5-5 (TGTGCTCTTCCAGGTGGTTG (SEQ ID NO: 1306)), and RFX5-10 (ATCAAAGCTCGAAGGCTTGG (SEQ ID NO: 1307)). 4-6 days post transfection cells were treated with PMA/ionomycin overnight and surface levels of MHC-II were assessed by flow cytometry (Tu39, PE-Cy7 conjugate, Biolegend). The amount of MHC-II induction (assessed by median fluorescent intensity [MFI]) per test sample was normalized to the amount of MHC-II present on control (AAVS1) transfected cells (FIG. 7). The percentage of MHC-II+ cells remaining post transfection and PMA/ionomycin induction is indicated in the left panel. Data are from 4 or 3 biological donors for single or dual sgRNA(s) transfected cells, respectively. Statistical significance was assessed using ANOVA with Tukey post hoc correction.


In addition, RNPs containing Cas9 and sgRNAs targeting CIITA or RFX5 diminish surface levels of MHC-II in induced primary human T cells.


The gRNAs used in this Example comprise the following spacer sequences: AAVS1 gRNA spacer (GGGGCCACUAGGGACAGGAU (SEQ ID NO: 1308)); B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)); CIITA gRNA spacer (GGUCCAUCUGGUCAUAGAAG (SEQ ID NO: 738)), RFX5-1 gRNA spacer (UACCUCGGAGCCUCUGAAGA (SEQ ID NO: 1309)), RFX5-5 gRNA spacer (UGUGCUCUUCCAGGUGGUUG (SEQ ID NO: 1310)), and RFX5-10 gRNA spacer (AUCAAAGCUCGAAGGCUUGG (SEQ ID NO: 1311)).


Example 5—Editing Immune Checkpoint Components in Cells

Primary human T cells were transfected with RNP containing synthetic sgRNAs targeting PD-1 (CGCCCACGACACCAACCACC (SEQ ID NO: 916) and comprising the spacer sequence of SEQ ID NO: 1108) or control. 4-6 days post transfection cells were treated with PMA/ionomycin, and surface levels of PD-1 were assessed by flow cytometry (EH12.2H7, BV421 conjugate, Biolegend). The amount of PD1 induction (assessed by median fluorescent intensity [MFI]) per test sample was normalized to the amount of PD1 present in untreated control transfected cells. Data are from 3 biological donors for single or dual sgRNA(s) transfected cells, respectively. Statistical significance was assessed using Student's t test.


In addition, RNPs containing Cas9 and sgRNAs targeting PD1 diminish surface levels of PD1 in induced primary human T cells.


Example 6—Multiplex Editing in Cells

This example demonstrates efficient multiplex editing and target protein knock out in primary human T cells. The results are shown in FIG. 8.


Primary human T cells were transfected with RNP containing synthetic sgRNAs targeting the indicated genes. For the knockout of 2 or more genes and their protein products in the same cell (multiplex editing), 1 μM (final concentration) each of Cas9 pre-complexed individually with sgRNAs was added to the nucleofection mix. Surface levels of the indicated proteins were measured by flow cytometry 4-6 days after transfection. Antibodies used include BV510 anti-human CD3 (UCHT1, BioLegend, San Diego, Calif.), PE anti-human TCRαβ (BW242/412, Miltenyi Biotec, Auburn, Calif.), APC anti-human B2M (2M2, Biolegend), FITC anti-human CD52 (097, Biolegend). Each symbol is data from an individual biological donor where test RNP treated cells are compared to control RNP treated cells. Statistical significance was assessed by Student's t test.


Guides used in this example are listed below with the respective target and spacer sequences:











TRAC



(SEQ ID NO: 76)



AGAGCAACAGTGCTGTGGCC;






(SEQ ID NO: 152)



AGAGCAACAGUGCUGUGGCC






B2M



(SEQ ID NO: 417)



GCTACTCTCTCTTTCTGGCC;






(SEQ ID NO: 466)



GCUACUCUCUCUUUCUGGCC






CD3ε



(SEQ ID NO: 226)



GGGCACTCACTGGAGAGTTC;






(SEQ ID NO: 351)



GGGCACUCACUGGAGAGUUC;






CD52



(SEQ ID NO: 1303)



TTACCTGTACCATAACCAGG






(SEQ ID NO: 1312)



UUACCUGUACCAUAACCAGG






CIITA



(SEQ ID NO: 546)



GGTCCATCTGGTCATAGAAG






(SEQ ID NO: 738)



GGUCCAUCUGGUCAUAGAAG






AAVS1



(SEQ ID NO: 1301)



GGGGCCACTAGGGACAGGAT






(SEQ ID NO: 1308)



GGGGCCACUAGGGACAGGAU






In order to assess the feasibility of triple knockout using CRISPR/Cas9, primary T cells (5×106) were transfected with pre-formed RNPs targeting three separate genes: TRAC, B2M, and CIITA. RNP containing sgRNAs targeting AAVS1 served as a negative control. After 4 days, cells were split into two halves: one half was treated with anti-CD3/anti-B2M biotin antibodies and subsequently purified using Streptavidin Microbeads (Miltenyi Biotec, Cambridge, Mass.), and the other half remained untreated. Purified (pur) and unpurified (un) cells were both analyzed by TIDE. TIDE analysis showed that this approach produced a triple knockout InDel frequency of −36% compared to the control group, proving, at the DNA level, that it is possible to knockout three genes simultaneously using Cas9:sgRNA RNPs in a single experiment (FIG. 15).


In addition, the data in FIG. 15 demonstrates that efficient single, double, and triple gene knockout can be obtained in primary human T cells transfected with Cas9:synthetic sgRNA (RNPs).


Example 7—HDR-Mediated Transgene Insertion in Cells

This example demonstrates efficient transgene insertion in primary human T cells via homology directed repair (HDR) by Cas9:sgRNA RNP-mediated double-stranded genomic DNA breaks with an AAV6 donor DNA template.


Primary human T cells were isolated and activated with anti-CD3/CD28 beads as described in Example 2. Beads were removed after 3 days. On day 4, T cells (5×106) were electroporated with Cas9 alone or Cas9:AAVS1 sgRNA (targeting GGGGCCACTAGGGACAGGAT (SEQ ID NO: 1301)) RNP. 45 min post transfection, 1×106 of the Cas9 treated or the RNP treated cells were either mock transduced (control), transduced with an AAV6-MND-GFP viral vector with AAVS1 homology arms with lengths of either 400 (HA 400) or 700 (HA700) bp flanking the MND-GFP cassette (FIG. 10). Transduction with AAV6 was performed at an MOI of 50,000 viral genomes/cell. As a negative control, cells were transfected with RNP containing sgRNA targeting the B2M gene (targeting GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417)). As the AAV6-MND-GFP virus does not contain homology around the B2M genomic cut sight, any integration observed in B2M RNP treated cells would be the result of non-HDR mediated insertion. While GFP expression was observed after cutting with AAVS1, none was observed above background with use of the B2M guide, indicating the absence of non-HDR mediated insertion.


To assess the efficiency of AAV6/RNP-mediated HDR, a PCR analysis (FIG. 11) was performed. Forward and reverse primers flanking the RNP cut sites were used to amplify the region of 2.3 kb. PCR products were separated on an agarose gel. A band of 4 kb indicates an insertion of the MND-GFP sequence (1.7 kb) into the locus as a result of HDR. Only in the presence of RNP targeting the AAVS1 locus was the 4 kb band evident, indicating successful insertion of the transgene by HDR. MND-GFP constructs containing 700 bp of flanking homology arms to the AAVS1 locus (HA700) appeared to lead to more efficient HDR than with homology arms of 400 bp (HA400). These data demonstrate the feasibility of performing targeting transgene insertion into primary human T cells by Cas9: sgRNA RNPs and AAV6 delivered donor DNA template. The gRNAs used in this Example comprise the following spacer sequences: AAVS1 gRNA spacer (GGGGCCACUAGGGACAGGAU (SEQ ID NO: 1308)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


Example 8—HDR-Mediated Concurrent Transgene Insertion in Cells

This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double stranded break induction) and AAV6 delivered donor template to facilitate HDR in primary human T cells.


Primary human T cells were activated with CD3/CD28 magnetic beads (as above). Three days later activation beads were removed. The next day 5×106 cells were electroporated with RNP complexes with sgRNAs targeting either AAVS1 (1 RNP), TRAC+B2M (2 separately complexed RNPs), or TRAC+B2M+AAVS1 (3 separately complexed RNPs). 1 hr post electroporation, cells were infected with −/+AAV6-MND-GFP viral vector with AAVS1 homology arms with lengths of 700 bp flanking the MND-GFP cassette (AAV6 (HA700-GFP) (FIG. 11). 7 days post manipulation cells were analyzed by flow cytometry by staining with the following antibodies PE anti-human TCRαβ (BW242/412, Miltenyi Biotech, Auburn, Calif.), APC anti-human B2M (2M2, Biolegend), and GFP detection. Cells treated with RNPs targeting TRAC+B2M showed loss of TRAC and B2M surface expression but no GFP expression in either single or double knockout cells when infected with AAV6-HA700-GFP. When TRAC+B2M treated cells are also electroporated with RNP targeting AAVS1 along with AAV6-HA700-GFP, GFP expression was evident in both single knock-out and double knock-out cells, indicative of HDR-mediated site specific insertion of the MND-GFP transgene. Finally, AAVS1 single RNP transfected cells showed high levels of transgene expression, but no loss of TCR or B2M surface expression. The same experiment was repeated with activated T cells isolated from 3 distinct biological donors (FIG. 12). The data show that high efficiency transgene insertion by Cas9:sgRNA RNP induced double stranded break and subsequent HDR from an AAV6 delivered DNA template (containing homology to the cut site) can occur with concurrent knockout of up to 2 target genes with subsequent loss of surface protein expression at the single cell level.


Guides used in this example target the following sequences:











(SEQ ID NO: 76)










TRAC:
AGAGCAACAGTGCTGTGGCC












(SEQ ID NO: 417)










B2M:
GCTACTCTCTCTTTCTGGCC












(SEQ ID NO: 1301)










AAVS1:
GGGGCCACTAGGGACAGGAT






sgRNA sequences used herein: TRAC SEQ ID NO: 686, B2M SEQ ID NO: 688 and AAVS1 SEQ ID NO: 690, and can be modified as follows: TRAC SEQ ID NO: 685, B2M SEQ ID NO: 687 and AAVS1 SEQ ID NO: 689. The gRNAs used in this Example comprise the following spacer sequences: AAVS1 gRNA spacer (GGGGCCACUAGGGACAGGAU (SEQ ID NO: 1308)); TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


Example 9—CRISPR/Cas9 Mediated Knockout of TCR and MHC I Components and Expression of Chimeric Antigen Receptor Constructs

This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of the TCR and MHC I and express a chimeric antigen receptor targeting CD19+ cancers.


Schematic depiction of CRISPR/Cas9 generated allogeneic CAR-T cells is shown in FIG. 13A and FIG. 13B.


CRISPR/Cas9 was used to disrupt (knockout [KO]) the coding sequence of the TCRα constant region gene (TRAC). This disruption leads to loss of function of the TCR and renders the gene edited T cell non-alloreactive and suitable for allogeneic transplantation, minimizing the risk of graft versus host disease. The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template containing right and left homology arms to the TRAC locus flanking a chimeric antigen receptor cassette (−/+ regulatory elements for gene expression). To reduce host versus graft (host vs CAR-T) and allow for persistence of the allogeneic CAR-T product, the B2M gene was disrupted by CRISPR/Cas9 components. Together, these genome edits result in a T cell with surface expression of a CAR (expressed from the TRAC locus) targeting CD19+ cancers along with loss of the TCR and MHC I, to reduce GVH and HVG disease, respectively.


Schematics of the AAV vector genome carrying donor templates to facilitate targeted genomic insertion of CAR expression cassettes by HDR of Cas9-evoked site specific DNA double stranded breaks are shown in FIG. 14.









TABLE 12







Donor Template Component Sequences










SEQ ID


Length


NO:
Sequence
Domain Name
(bp)













1313
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGA
Left ITR (5′
145



GGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTT
ITR)




GCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAG





AGGGAGTGGCCAACTCCATCACTAGGGGTTCCT







1576
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCC
Left ITR (5′
130



GCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAG
ITR) (alternate)




TGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTC





CATCACTAGGGGTTCCT







1314
AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTG
Right ITR (3′
145



CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGC
ITR)




CCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTG





AGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA







1577
AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTG
Right ITR (3′
141



CGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGG
ITR)(alternate)




TCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTG





AGCGAGCGAGCGCGCAGCTGCCTGCAGG







1315
GGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTT
pMND
451



ATGGGGATCCGAACAGAGAGACAGCAGAATATGGGCC





AAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCT





CAGGGCCAAGAACAGTTGGAACAGCAGAATATGGGCC





AAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCT





CAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCCG





CCCTCAGCAGTTTCTAGAGAACCATCAGATGTTTCCAG





GGTGCCCCAAGGACCTGAAATGACCCTGTGCCTTATTT





GAACTAACCAATCAGTTCGCTTCTCGCTTCTGTTCGCG





CGCTTCTGCTCCCCGAGCTCTATATAAGCAGAGCTCGT





TTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACG





CTGTTTTGACCTCCATAGAAGACACCGACTCTAGAG







1316
ATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTT
FMC63-28Z
1518



CCTCATCCAGCGTTCTTGCTGATCCCCGATATTCAGAT
(FMC63-




GACTCAGACCACCAGTAGCTTGTCTGCCTCACTGGGAG
CD8[tm]-




ACCGAGTAACAATCTCCTGCAGGGCAAGTCAAGACAT
CD28[co-




TAGCAAATACCTCAATTGGTACCAGCAGAAGCCCGAC
stimulatory




GGAACGGTAAAACTCCTCATCTATCATACGTCAAGGTT
domain]-CD3z)




GCATTCCGGAGTACCGTCACGATTTTCAGGTTCTGGGA





GCGGAACTGACTATTCCTTGACTATTTCAAACCTCGAG





CAGGAGGACATTGCGACATATTTTTGTCAACAAGGTAA





TACCCTCCCTTACACTTTCGGAGGAGGAACCAAACTCG





AAATTACCGGGTCCACCAGTGGCTCTGGGAAGCCTGG





CAGTGGAGAAGGTTCCACTAAAGGCGAGGTGAAGCTC





CAGGAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCAAA





GCCTCTCTGTAACGTGCACAGTGAGTGGTGTATCATTG





CCTGATTATGGCGTCTCCTGGATAAGGCAGCCCCCGCG





AAAGGGTCTTGAATGGCTTGGGGTAATATGGGGCTCA





GAGACAACGTATTATAACTCCGCTCTCAAAAGTCGCTT





GACGATAATAAAAGATAACTCCAAGAGTCAAGTTTTC





CTTAAAATGAACAGTTTGCAGACTGACGATACCGCTAT





ATATTATTGTGCTAAACATTATTACTACGGCGGTAGTT





ACGCGATGGATTATTGGGGGCAGGGGACTTCTGTCAC





AGTCAGTAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCC





AGCCAAACCGACCACGACTCCCGCCCCGCGCCCTCCG





ACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT





CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTG





TTCATACGAGGGGCTTGGACTTCGCTTGTGATATTTAC





ATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT





GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGA





ATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTAC





ATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAA





AACATTACCAACCCTATGCCCCCCCACGAGACTTCGCT





GCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGCGCAG





ACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA





TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGAC





GTGCTTGATAAACGCCGGGGGAGAGACCCGGAAATGG





GGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGACT





CTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCC





TACTCAGAAATAGGTATGAAGGGCGAACGACGACGGG





GAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTAC





GGCAACCAAAGATACGTACGATGCACTGCATATGCAG





GCCCTGCCTCCCAGA







1317
GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGG
2A
66



CTGGAGACGTGGAGGAGAACCCTGGACCT







1318
ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGG
EGFP
720



TGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGG





CCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGAT





GCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCAC





CACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGA





CCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTAC





CCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGC





CATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCT





TCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGT





GAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAG





CTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCC





TGGGGCACAAGCTGGAGTACAACTACAACAGCCACAA





CGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC





AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACG





GCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACAC





CCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACC





ACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCC





CAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTC





GTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGC





TGTACAAGTAA







1319
AATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGG
pA
49



TTTTTTGTGTG







1320
GAAGCCCAGAGCAGGGCCTTAGGGAAGCGGGACCCTG
AAVS1-LHA
700



CTCTGGGCGGAGGAATATGTCCCAGATAGCACTGGGG





ACTCTTTAAGGAAAGAAGGATGGAGAAAGAGAAAGG





GAGTAGAGGCGGCCACGACCTGGTGAACACCTAGGAC





GCACCATTCTCACAAAGGGAGTTTTCCACACGGACACC





CCCCTCCTCACCACAGCCCTGCCAGGACGGGGCTGGCT





ACTGGCCTTATCTCACAGGTAAAACTGACGCACGGAG





GAACAATATAAATTGGGGACTAGAAAGGTGAAGAGCC





AAAGTTAGAACTCAGGACCAACTTATTCTGATTTTGTT





TTTCCAAACTGCTTCTCCTCTTGGGAAGTGTAAGGAAG





CTGCAGCACCAGGATCAGTGAAACGCACCAGACGGCC





GCGTCAGAGCAGCTCAGGTTCTGGGAGAGGGTAGCGC





AGGGTGGCCACTGAGAACCGGGCAGGTCACGCATCCC





CCCCTTCCCTCCCACCCCCTGCCAAGCTCTCCCTCCCAG





GATCCTCTCTGGCTCCATCGTAAGCAAACCTTAGAGGT





TCTGGCAAGGAGAGAGATGGCTCCAGGAAATGGGGGT





GTGTCACCAGATAAGGAATCTGCCTAACAGGAGGTGG





GGGTTAGACCCAATATCAGGAGACTAGGAAGGAGGAG





GCCTAAGGATGGGGCTTTTCTGTCACCA







1321
ACTGTGGGGTGGAGGGGACAGATAAAAGTACCCAGAA
AAVS1-RHA
700



CCAGAGCCACATTAACCGGCCCTGGGAATATAAGGTG





GTCCCAGCTCGGGGACACAGGATCCCTGCAGGCAGCA





AACATGCTGTCCTGAAGTGGACATAGGGGCCCGGGTT





GGAGGAAGAAGACTAGCTGAGCTCTCGGACCCCTGGA





AGATGCCATGACAGGGGGCTGGAAGAGCTAGCACAGA





CTAGAGAGGTAAGGGGGGTAGGGGAGCTGCCCAAATG





AAAGGAGTGAGAGGTGACCCGAATCCACAGGAGAACG





GGGTGTCCAGGCAAAGAAAGCAAGAGGATGGAGAGG





TGGCTAAAGCCAGGGAGACGGGGTACTTTGGGGTTGT





CCAGAAAAACGGTGATGATGCAGGCCTACAAGAAGGG





GAGGCGGGACGCAAGGGAGACATCCGTCGGAGAAGG





CCATCCTAAGAAACGAGAGATGGCACAGGCCCCAGAA





GGAGAAGGAAAAGGGAACCCAGCGAGTGAAGACGGC





ATGGGGTTGGGTGAGGGAGGAGAGATGCCCGGAGAGG





ACCCAGACACGGGGAGGATCCGCTCAGAGGACATCAC





GTGGTGCAGCGCCGAGAAGGAAGTGCTCCGGAAAGAG





CATCCTTGGGCAGCAACACAGCAGAGAGCAAGGGGAA





GAGGGAGTGGAGGAAGACGGAACCTGAAGGAGGCGG





C







1322
GAAGATCCTATTAAATAAAAGAATAAGCAGTATTATT
TRAC-LHA
500



AAGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGC
(500 bp)




CAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCCTC





TTGGCCAAGATTGATAGGTTGTGCCTGTCCCTGAGTCC





CAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTATTT





CCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCCAC





AGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACTCC





AGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCATGT





CCTAACCCTGATCCTCTTGTCCCACAGATATCCAGAAC





CCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAATC





CAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATT





CTCAAACAAATGTGTCACAAAGTAAGGATTCTGATGTG





TATATCACAGACAAAACTGTGCTAGACATGAGGTCTAT





GGACTTCA







1323
TGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTT
TRAC-RHA
500



CAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCA
(500 bp)




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGT





TTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCT





CTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTC





TCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTA





AGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATG





ACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG





AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGA





GTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCT





TACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAA





GTTGCCTCTCCTTATTTCrCCCTGTCTGCCAAAAAATCT





TTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCAT





TAACCC







1324
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTA
TRAC-LHA
678



TATCGAGTAAACGGTAGTGCTGGGGCTTAGACGCAGG
(680 bp)




TGTTCTGATTTATAGTTCAAAACCTCTATCAATGAGAG





AGCAATCTCCTGGTAATGTGATAGATTTCCCAACTTAA





TGCCAACATACCATAAACCTCCCATTCTGCTAATGCCC





AGCCTAAGTTGGGGAGACCACTCCAGATTCCAAGATG





TACAGTTTGCTTTGCTGGGCCTTTTTCCCATGCCTGCCT





TTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAA





GATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGT





AGCCCTGGATTTCAGGTTTCCTTGAGTGGCAGGCCAGG





CCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGG





CCAAGATTGATAGCTTGTGCCTGTCCCTCAGTCCCAGT





CCATCACGAGCAGCTGGTTTCTAAGATGCTATTTCCCG





TATAAAGCATGAGACCGTGACTTGCCAGCCCCACAGA





GCCCCGCCCTTGTCCATCACTGGCATCTGGACTCCAGC





CTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCT





AACCCTGATCCTCTTGTCCCACAGATATCCAGAACCCT





GACCCTGCCGTGTACCAGCTGAGAGACTCTAAATC







1325
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTA
TRAC-LHA
800



TATCGAGTAAACGGTAGTGCTGGGGCTTAGACGCAGG
(800 bp)




TGTTCTGATTTATAGTTCAAAACCTCTATCAATGAGAG





AGCAATCTCCTGGTAATGTGATAGATTTCCCAACTTAA





TGCCAACATACCATAAACCTCCCATTCTGCTAATGCCC





AGCCTAAGTTGGGGAGACCACTCCAGATTCCAAGATG





TACAGTTTGCTTTGCTGGGCCTTTTTCCCATGCCTGCCT





TTACTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAA





GATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGT





AGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGG





CCTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGG





CCAAGATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGT





CCATCACGAGCAGCTGGTTTCTAAGATGCTATTTCCCG





TATAAAGCATGAGACCGTGACTTGCCAGCCCCACAGA





GCCCCGCCCTTGTCCATCACTGGCATCTGGACTCCAGC





CTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCT





AACCCTGATCCTCTTGTCCCACAGATATCCAGAACCCT





GACCCTGCCGTGTACCAGCTGAGAGACTCTAAATCCAG





TGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCA





AACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATA





TCACAGACAAAACTGTGCTAGACATGAGGTCTATGGA





CTTCA







1326
TGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTT
TRAC-RHA
804



CAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCA
(800 bp)




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGT





TTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCT





CTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTC





TCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTA





AGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATG





ACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG





AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGA





GTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCT





TACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAA





GTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCT





TTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCAT





TAACCCACCAATCACTGATTGTGCCGGCACATGAATGC





ACCAGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATG





AGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTGGGG





GAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTC





AGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACA





GCTACCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG





AAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG





CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCT





CAATGAGAAAGG







1327
TAATCCTCCGGCAAACCTCTGTTTCCTCCTCAAAAGGC
TRAC-LHA
1000



AGGAGGTCGGAAAGAATAAACAATGAGAGTCACATTA
(1000 bp)




AAAACACAAAATCCTACGGAAATACTGAAGAATGAGT





CTCAGCACTAAGGAAAAGCCTCCAGCAGCTCCTGCTTT





CTGAGGGTGAAGGATAGACGCTGTGGCTCTGCATGAC





TCACTAGCACTCTATCACGGCCATATTCTGGCAGGGTC





AGTGGCTCCAACTAACATTTGTTTGGTACTTTACAGTTT





ATTAAATAGATGTTTATATGGAGAAGCTCTCATTTCTT





TCTCAGAAGAGCCTGGCTAGGAAGGTGGATGAGGCAC





CATATTCATTTTGCAGGTGAAATTCCTGAGATGTAAGG





AGCTGCTGTGACTTGCTCAAGGCCTTATATCGAGTAAA





CGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGATTTA





TAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTG





GTAATGTGATAGATTTCCCAACTTAATGCCAACATACC





ATAAACCTCCCATTCTGCTAATGCCCAGCCTAAGTTGG





GGAGACCACTCCAGATTCCAAGATGTACAGTTTGCTTT





GCTGGGCCTTTTTCCCATGCCTGCCTTTACTCTGCCAGA





GTTATATTGCTGGGGTTTTGAAGAAGATCCTATTAAAT





AAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTTC





AGGTTTCCTTGAGTGGCAGGCCAGGCCTGGCCGTGAAC





GTTCACTGAAATCATGGCCTCTTGGCCAAGATTGATAG





CTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAG





CTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAG





ACCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTC





CATCACTGGCATCTGGACTCCAGCCTGGGTTGGGGCAA





AGAGGGAAATGAGATCATGTCCTAACCCTGATCCTCTT





GTCCCACAGATATC







1328
CCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGAT
TRAC-RHA
999



TCTCAAACAAATGTGTCACAAAGTAAGGATTCTGATGT
(1000 bp)




GTATATCACAGACAAAACTGTGCTAGACATGAGGTCT





ATGGACTTCAAGAGCAACAGTGCTGTGGCCTGGAGCA





ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAAC





AGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGG





TAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTG





CTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCA





ATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCT





TATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAAC





AGTGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGG





GAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGAGGG





CACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTG





CCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCT





CTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCT





CTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCAG





CTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCA





CCAATCACTGATTGTGCCGGCACATGAATGCACCAGGT





GTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG





TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCA





TCTGTCAGCTGGGAAAAGTCCAAATAACTTCAGATTGG





AATGTGTTTTAACTCAGGGTTGAGAAAACAGCTACCTT





CAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATG





CTACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGA





GGACCCTATAGAGGCCTGGGACAGGAGCTCAATGAGA





AAGGAGAAGAGCAGCAGGCATGAGTTGAATGAAGGA





GGCAGGGCCGGGTCACAGGG







1578
TGTTTGGTACTTTACAGTTTATTAAATAGATGTTTATAT
TRAC-LHA
800



GGAGAAGCTCTCATTTCTTTCTCAGAAGAGCCTGGCTA
used in CTX-




GGAAGGTGGATGAGGCACCATATTCATTTTGCAGGTG
139.1




AAATTCCTGAGATGTAAGGAGCTGCTGTGACTTGCTCA





AGGCCTTATATCGAGTAAACGGTAGTGCTGGGGCTTAG





ACGCAGGTGTTCTGATTTATAGTTCAAAACCTCTATCA





ATGAGAGAGCAATCTCCTGGTAATGTGATAGATTTCCC





AACTTAATGCCAACATACCATAAACCTCCCATTCTGCT





AATGCCCAGCCTAAGTTGGGGAGACCACTCCAGATTCC





AAGATGTACAGTTTGCTTTGCTGGGCCTTTTTCCCATGC





CTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTG





AAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTA





TTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAG





GCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCC





TCTTGGCCAAGATTGATAGCTTGTGCCTGTCCCTGAGT





CCCAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTAT





TTCCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCC





ACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACT





CCAGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCAT





GTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGA





ACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA





TC







1579
TGTTTGGTACTTTACAGTTTATTAAATAGATGTTTATAT
TRAC-LHA




GGAGAAGCTCTCATTTCTTTCTCAGAAGAGCCTGGCTA
used in CTX-




GGAAGGTGGATGAGGCACCATATTCATTTTGCAGGTG
139.2




AAATTCCTGAGATGTAAGGAGCTGCTGTGACTTGCTCA





AGGCCTTATATCGAGTAAACGGTAGTGCTGGGGCTTAG





ACGCAGGTGTTCTGATTTATAGTTCAAAACCTCTATCA





ATGAGAGAGCAATCTCCTGGTAATGTGATAGATTTCCC





AACTTAATGCCAACATACCATAAACCTCCCATTCTGCT





AATGCCCAGCCTAAGTTGGGGAGACCACTCCAGATTCC





AAGATGTACAGTTTGCTTTGCTGGGCCTTTTTCCCATGC





CTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTG





AAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTA





TTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAG





GCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCC





TCTTGGCCAAGATTGATAGCTTGTGCCTGTCCCTGAGT





CCCAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTAT





TTCCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCC





ACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACT





CCAGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCAT





GTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGA





ACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA





TCCAGTGACAAGTCTGTCTGCC







1580
TGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTT
TRAC-RHA




CAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCA
used in CTX-




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGT
139.2




TTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCT





CTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTC





TCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTA





AGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATG





ACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG





AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGA





GTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCT





TACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAA





GTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCT





TTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCAT





TAACCCACCAATCACTGATTGTGCCGGCACATGAATGC





ACCAGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATG





AGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTGGGG





GAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTC





AGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACA





GCTACCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG





AAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG





CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCT





CAATGAGAAAGG







1581
TGTTTGGTACTTTACAGTTTATTAAATAGATGTTTATAT
TRAC-LHA




GGAGAAGCTCTCATTTCTTTCTCAGAAGAGCCTGGCTA
(841 bp) used in




GGAAGGTGGATGAGGCACCATATTCATTTTGCAGGTG
CTX-139.3




AAATTCCTGAGATGTAAGGAGCTGCTGTGACTTGCTCA





AGGCCTTATATCGAGTAAACGGTAGTGCTGGGGCTTAG





ACGCAGGTGTTCTGATTTATAGTTCAAAACCTCTATCA





ATGAGAGAGCAATCTCCTGGTAATGTGATAGATTTCCC





AACTTAATGCCAACATACCATAAACCTCCCATTCTGCT





AATGCCCAGCCTAAGTTGGGGAGACCACTCCAGATTCC





AAGATGTACAGTTTGCTTTGCTGGGCCTTTTTCCCATGC





CTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTTTG





AAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTA





TTAAGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAG





GCCAGGCCTGGCCGTGAACGTTCACTGAAATCATGGCC





TCTTGGCCAAGATTGATAGCTTGTGCCTGTCCCTGAGT





CCCAGTCCATCACGAGCAGCTGGTTTCTAAGATGCTAT





TTCCCGTATAAAGCATGAGACCGTGACTTGCCAGCCCC





ACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACT





CCAGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCAT





GTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAGA





ACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA





TCCAGTGACAAGTCTGTCTGACTATTCACCGATTTTGA





TTCTC







1582
ATTCACCGATTTTGATTCTCAAACAAATGTGTCACAAA
TRAC-RHA




GTAAGGATTCTGATGTGTATATCACAGACAAAACTGTG
(905 bp) used in




CTAGACATGAGGTCTATGGACTTCAAGAGCAACAGTG
CTX-139.3




CTGTGGCCTGGAGCAACAAATCTGACTTTGCATGTGCA





AACGCCTTCAACAACAGCATTATTCCAGAAGACACCTT





CTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCG





CAGGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGC





CCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCTGAT





TGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC





TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCC





AGAGAATGACACGGGAAAAAAGCAGATGAAGAGAAG





GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCT





CCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTG





TTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCC





CTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCC





AAAAAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCA





GTCACTCATTAACCCACCAATCACTGATTGTGCCGGCA





CATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAAA





AGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTC





TAGTTGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCC





AAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT





GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAG





GGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT





ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGA





CAGGAGCTCAATGAGAAAGG







1329
TTTTGTAAAGAATATAGGTAAAAAGTGGCATTTTTTCT
CD3E-LHA
700



TTGGATTTAATTCTTATGGATTTAAGTCAACATGTATTT
(700 bp)




TCAAGCCAACAAGTTTTGTTAATAAGATGGCTGCACCC





TGCTGCTCCATGCCAGATCCACCACACAGAAAGCAAA





TGTTCAGTGCATCTCCCTCTTCCTGTCAGAGCTTATAGA





GGAAGGAAGACCCCGCAATGTGGAGGCATATTGTATT





ACAATTACTTTTAATGGCAAAAACTGCAGTTACTTTTG





TGCCAACCTACTACATGGTCTGGACAGCTAAATGTCAT





GTATTTTTCATGGCCCCTCCAGGTATTGTCAGAGTCCTC





TTGTTTGGCCTTCTAGGAAGGCTGTGGGACCCAGCTTT





CTTCAACCAGTCCAGGTGGAGGCCTCTGCCTTGAACGT





TTCCAAGTGAGGTAAAACCCGCAGGCCCAGAGGCCTC





TCTACTTCCTGTGTGGGGTTCAGAAACCCTCCTCCCCTC





CCAGCCTCAGGTGCCTGCTTCAGAAAATGGTGAGTCTC





TCTCTTATAAAGCCCTCCTTTTTCATCCTAGCATTGGGA





ACAATGGCCCCAGGGTCCTTATCTCTAGCAGATGTTTT





GAAAAAGTCATCTGTTTTGCTTTTTTTCCAGAAGTAGT





AAGTCTGCTGGCCTCCGCCATCTTAGTAAAGTAACAGT





CCCATGAAACAAAG







1330
GTGAGTAGGATGGAGTGGAAAGGGTGGTGTGTCTCCA
CD3E-RHA
700



GACCGCTGGAAGGCTTACAGCCTTACCTGGCACTGCCT
(700 bp)




AGTGGCACCAAGGAGCCTCATTTACCAGATGTAAGGA





ACTGTTTGTGCTATGTTAGGGTGAGGGATTAGAGCTGG





GGACTAAAGAAAAAGATAGGCCACGGGTGCCTGGGAG





AGCGTTCGGGGAGCAGGCAAAGAAGAGCAGTTGGGGT





GATCATAGCTATTGTGAGCAGAGAGGTCTCGCTACCTC





TAAGTACGAGCTCATTCCAACTTACCCAGCCCTCCAGA





ACTAACCCAAAAGAGACTGGAAGAGCGAAGCTCCACT





CCTTGTTTTGAAGAGACCAGATACTTGCGTCCAAACTC





TGCACAGGGCATATATAGCAATTCACTATCTTTGAGAC





CATAAAACGCCTCGTAATTTTTAGTCCTTTTCAAGTGA





CCAACAACTTTCAGTTTATTTCATTTTTTTGAAGCAAGA





TGGATTATGAATTGATAAATAACCAAGAGCATTTCTGT





ATCTCATATGAGATAAATAATACCAAAAAAAGTTGCC





ATTTATTGTCAGATACTGTGTAAAGAAAAAATTATTTA





GACGTGTTAACTGGTTTAATCCTACTTCTGCCTAGGAA





GGAAGGTGTTATATCCTCTTTTTAAAATTCTTTTTAATT





TTGACTATATAAACTGATAA







1331
GGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGC
EF1a
1178



CCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAA





TTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAAC





TGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCC





CGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTC





GCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAG





AACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTG





GCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATT





ACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAG





CTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTT





GCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAG





GCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCT





GGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAG





TCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGAC





GCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCC





AAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCG





GGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTT





CGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAAT





CGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTG





GTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTG





GGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGA





GCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGA





GCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGC





GGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCG





TCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCG





GGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTT





GGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTAT





GCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTG





AAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTG





GAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTC





AAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTT





CAGGTGTCGTGA












FMC63-28Z (FMC63-CD8[tm]-CD28[co-stimulatory domain]-CD3z) Component Sequences










1332
ATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTT
GM-CSF signal




CCTCATCCAGCGTTCTTGCTGATCCCC
peptide






1598
MLLLVTSLLLCELPHPAFLLIP
GM-CSF signal





peptide






1333
GATATTCAGATGACTCAGACCACCAGTAGCTTGTCTGC
Anti-CD19 scFv




CTCACTGGGAGACCGAGTAACAATCTCCTGCAGGGCA





AGTCAAGACATTAGCAAATACCTCAATTGGTACCAGC





AGAAGCCCGACGGAACGGTAAAACTCCTCATCTATCA





TACGTCAAGGTTGCATTCCGGAGTACCGTCACGATTTT





CAGGTTCTGGGAGCGGAACTGACTATTCCTTGACTATT





TCAAACCTCGAGCAGGAGGACATTGCGACATATTTTTG





TCAACAAGGTAATACCCTCCCTTACACTTTCGGAGGAG





GAACCAAACTCGAAATTACCGGGTCCACCAGTGGCTCT





GGGAAGCCTGGCAGTGGAGAAGGTTCCACTAAAGGCG





AGGTGAAGCTCCAGGAGAGCGGCCCCGGTCTCGTTGC





CCCCAGTCAAAGCCTCTCTGTAACGTGCACAGTGAGTG





GTGTATCATTGCCTGATTATGGCGTCTCCTGGATAAGG





CAGCCCCCGCGAAAGGGTCTTGAATGGCTTGGGGTAA





TATGGGGCTCAGAGACAACGTATTATAACTCCGCTCTC





AAAAGTCGCTTGACGATAATAAAAGATAACTCCAAGA





GTCAAGTTTTCCTTAAAATGAACAGTTTGCAGACTGAC





GATACCGCTATATATTATTGTGCTAAACATTATTACTA





CGGCGGTAGTTACGCGATGGATTATTGGGGGCAGGGG





ACTTCTGTCACAGTCAGTAGT







1334
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKP
CD19 scFv




DGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE
amino acid




DIATYFCQQGNTLPYTFGGGTKLEITGSTSGSGKPGSGEG
sequence





STKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVS

Linker




WIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSK
underlined




SQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQ





GTSVTVSS







1335

GCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACC

CD8a




GACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTC
transmembrane +




CCACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAG
5′ Linker




GCATGCCGACCCGCCGCCGGGGGTGCTGTTCATACGA
(underlined)




GGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT





CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACT





CGTTATTACTTTGTATTGTAATCACAGGAATCGC







1599
TTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGAC
CD8a




TCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCG
transmembrane




CCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGA
(without linker)




CCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGG





ACTTCGCTTGTGATATTTACATTTGGGCTCCGTTGGCG





GGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTATTACT





TTGTATTGTAATCACAGGAATCGC







1600
FVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA
CD8a




GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCN
transmembrane




HRNR







1336
TCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAA
CD28 co-




TATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATT
stimulatory




ACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTAC





AGGTCC







1601
SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYR
CD28 co-




S
stimulatory






1337
CGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCAT
CD3z




ATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAA





TTTGGGACGCCGCGAGGAGTATGACGTGCTTGATAAA





CGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACCCC





GAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACT





CCAGAAGGATAAGATGGCGGAGGCCTACTCAGAAATA





GGTATGAAGGGCGAACGACGACGGGGAAAAGGTCAC





GATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAG





ATACGTACGATGCACTGCATATGCAGGCCCTGCCTCCC





AGA







1602
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
CD3z peptide




RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM





KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR







1338
MLLLVTSLLLCELPHPAFLLIPDIQMTQTTSSLSASLGDRV
FMC63-28Z




TISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVP
(FMC63-




SRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGG
CD8[tm]-




GTKLEITGSTSGSGKPGSGEGSTKGEVKLQESGPGLVAPS
CD28[co-




QSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGS
stimulatory




ETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYY
domain]-CD3z)




CAKHYYYGGSYAMDYWGQGTSVTVSSAAAFVPVFLPA
Amino Acid





KPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG

CD8a





LDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSR

transmembrane




LLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVK
underlined




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE





RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR









CTX-131 (SEQ ID NO: 1348) contains a CAR (FMC63-CD8[tm]-CD28[co-stimulatory domain]-CD3z) construct (SEQ ID NO: 1316) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by the MND promoter and is translationally linked by a picornavirus 2A sequence to any potential downstream transcript (GFP is shown in this example). CTX-131 contains homology arms flanking a genomic Cas9/sgRNA target site in the AAVS1 locus. CTX-132 (SEQ ID NO: 1349) is the same version of this construct, but lacking homology arms to AAVS1.


CTX-133 (SEQ ID NO: 1350) contains a CAR (FMC63-CD8[tm]-CD28[co-stimulatory domain]-CD3z) construct (SEQ ID NO: 1316) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by the EF1a promoter and is translationally linked by a picornavirus 2A sequence to any potential downstream transcript (GFP is shown in this example). CTX-133 contains homology arms flanking a genomic Cas9/sgRNA target site in the TRAC locus. CTX-134 (SEQ ID NO: 1351) is the same version of this construct, but lacking homology arms to TRAC. CTX-138 (SEQ ID NO: 1354) is a version of CTX-133 lacking the 2A-GFP sequence, and the 500 bp flanking homology arms are replaced with 800 bp flanking homology arms. CTX-139 (SEQ ID NO: 1355) is a version of CTX-138 where the TRAC left homology arm was replaced with a 678 bp homology arm (TRAC-LHA (680 bp)).


CTX-140 (SEQ ID NO: 1356) contains a CAR (FMC63-CD8[tm]-CD28[co-stimulatory domain]-CD3z) construct (SEQ ID NO: 1316) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by endogenous TCR regulatory elements and is translationally linked by a picornavirus 2A sequence to any potential upstream TCRα transcript. CTX-140 contains homology arms flanking a genomic Cas9/sgRNA target site in the TRAC locus (distinct from CTX-133, CTX-138, and CTX-139). CTX-141 (SEQ ID NO: 1357) is the same version of the CTX-140 construct and is also translationally linked to any potential downstream sequence by an additional 2A sequence (GFP is shown in this example).


CTX-139.1 construct (SEQ ID NO: 1583) is a similar version of the CTX-139 construct however the left homology arm (LHA) sequence is replaced with an alternate 800 bp TRAC-LHA, creating a larger deletion upon homologous recombination. CTX-139.2 is similar to CTX139.1 but with an extended 20 bp LHA and 105 bp RHA that brings homologous sequence closer to the Exon1_T7 guide cut site but is missing the Exon1_T7 guide target sequence. CTX-139.3 is similar to CTX-139.2 with an additional 21 bp added to the LHA and 20 bp added to the RHA. CTX-139.2 contains all the Exon1_T7 guide target sequence but has a mutation in the corresponding PAM sequence.


CTX-135 (SEQ ID NO: 1352) contains a CAR (FMC63-CD8[tm]-CD28[co-stimulatory domain]-CD3z) construct (SEQ ID NO: 1316) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by endogenous CD3E regulator elements and is translationally linked by a picornavirus 2A sequence to any potential downstream transcript (GFP is shown in this example). CTX-135 contains 700 bp homology arms flanking a genomic Cas9/sgRNA target site in the CD3E locus. CTX-136 (SEQ ID NO: 1353) is a version of CTX-135 but lacking homology arms to CD3E.


CRISPR/Cas9 Mediated Knockout of TCR and MHC I Components, Expression of Chimeric Antigen Receptor (CAR) Constructs, and Retained Effector Function


This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of TCR and MHC I, that express a chimeric antigen receptor targeting CD19+ cancers, and that retain T cell effector function.


Transgene insertion in primary human T cells via homology directed repair (HDR) and concurrent gene knockout by Cas9:sgRNA RNA was performed as described above in Examples 8 and 9. Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76)), B2M1 (GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417)), or AAVS1 (GGGGCCACTAGGGACAGGAT (SEQ ID NO: 1301)). The gRNAs used in this Example comprise the following spacer sequences: AAVS1 gRNA spacer (GGGGCCACUAGGGACAGGAU (SEQ ID NO: 1308)); TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


T cell staining was performed as described above in Example 3 with a modification in which the cells were stained with anti-mouse Fab2 antibody labeled with biotin (115-065-006, Jackson ImmunoRes) at a dilution of 1:5 for 30 minutes at 4° C. The cells were then washed and stained with a streptavidin conjugate. The flow cytometry results are shown in FIGS. 17A & 17B.


The ability of the engineered cells to lyse Raji lymphoma cells and to produce interferon gamma (IFNg or IFNγ) was then analyzed using a cell kill assay and ELISA. Briefly, the cell kill assay and ELISA were performed using black walled 96 well plates, 100 ug Staurosporine (Fisher 1285100U), Cell Stimulation Cocktail (PMA) (Fisher 501129036), Trypan Blue (Fisher 15250061), PBS, and Raji media (10% Heat-Inactivated Fetal Bovine Serum (Sigma F4135-500 ML, 15L115)) and RPMI 1640 (Life Technologies 61870036)) or K562 Media (10% Heat-Inactivated Fetal Bovine Serum (Sigma F4135-500 ML, 15L115) and IMDM (Life Technologies 12440061).


T-cells and CAR-T samples were re-suspended in the appropriate RPMI/10% FBS to a dilution of 4.0×105/100 μL, and Luciferase expressing cells were re-suspended at 1.0×105/100 μL. After re-suspension, all samples were plated at a final volume of 200 μL per well as shown. Plates were incubated overnight, and after 24 hours, plates were spun down for 10 minutes. Thirty (30) μL of the top supernatant media was collected for use in the IFNγ ELISA (RD Systems SIF50) on a new plate. The remaining plate volume was then used in the Luciferase Assay (Perkin Elmer 6RT0665).


T cells expressing an anti-CD19 CAR construct either from the AAVS1 locus (AAVS1 RNP+CTX-131) or from the TRAC locus (TRAC RNP+CTX-138) were able to lyse the Raji lymphoma cells in a coculture assay (FIG. 16A, left panel). The CAR-T cells, but not CAR negative controls, were able to produce Interferon gamma (IFNγ or IFNg) in the presence of Raji lymphoma cells (FIG. 16A, right panel). Anti-CD19 CAR-T cells generated by CRISPR/AAV did not produce IFNγ when cocultured with K562 cells, a cell line negative for CD19 expression. When K562 were produced to overexpress CD19, and cocultured with CAR-T cells expressing anti-CD19 CAR from either from the AAVS1 locus (AAVS1 RNP+CTX-131) or from the TRAC locus (TRAC RNP+CTX-138), the CAR-T expressing cells induced IFNγ production. FIG. 16B (left panel) show that CAR-T cells expressing anti-CD19 CAR do not induce IFNγ in K562 cells lacking CD19. However, IFNγ levels of CAR-T cells expressing anti-CD19 CAR are stimulated in K562 cells expressing CD19 (FIG. 16B, right panel).



FIG. 17A demonstrates that single cells engineered to express a CAR construct and to lack surface expression of TCR and B2M did so only when the cells were treated with RNPs to TRAC and B2M and infected with AAV6 (CTX-138) that delivers a donor template containing a CAR construct flanked by homologous sequence to the TRAC locus mediated site specific integration and expression of the CAR construct. Normal proportions of CD4 and CD8 T cells that were CAR+ TCRB2Mwere observed, as shown in FIG. 17B and FIG. 17C. The engineered cells remained viable 8 days post electroporation and AAV6 infection, as shown in FIG. 17D.



FIGS. 18A and 18B demonstrate that the engineered cells produced and increased level of production of interferon gamma (IFNg or IFNγ) only in cells made to express an anti-CD19 CAR integrated in the TRAC locus with or without knockout of B2M when T cells were cocultured with CD19-expressing K562 cells. FIG. 18C demonstrates increased IFNγ production in co-cultures of CD19+ Raji lymphoma cell line and T cells treated as indicated.


CAR Expression Using rAAV Constructs with Different TRAC sgRNAs


This example describes the effect of donor design and guide selection on CAR expression in allogeneic human T cells that lack expression of TCR and MHC I, and express a chimeric antigen receptor. Cells were prepared using the following sgRNAs: TRAC gRNA spacer “EXON1_T32”: AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152); sgRNA (SEQ ID NO: 1345); TRAC gRNA spacer “Exon1_T7” (GAGAAUCAAAAUCGGUGAAU (SEQ ID NO: 88); sgRNA (SEQ ID NO: 1588), and rAAV constructs show in the table below.


The homology arms used in AAV constructs can be designed to more efficiently pair with gRNAs and/or induce a deletion or mutation in the targeted gene locus (e.g.: TRAC locus) following transgene insertion. For example, the homology arms can be designed to flank one or more spacer sequences that results in the deletion of the spacer sequence(s) following transgene insertion by HDR (e.g.: CTX-138). Alternatively, homology arms can be designed with alterations in the TRAC sequence that result in base pair changes, generating mutations in the PAM or spacer sequences. Specific guide design, paired with a particular guide RNA can improve CAR expression.









TABLE 12.1







Construct design and effect of transgene insertion on TRAC gene












Donor template
SEQ ID
LHA
LHA SEQ
RHA
RHA SEQ


(LHA-RHA)
NO:
(bp)
ID NO:
(bp)
ID NO:





CTX-138
1354
800
1325
800
1326


CTX-139
1355
678
1324
800
1326


CTX-139.1
1583
800
1578
800
1326


CTX-139.2
1584
820
1579
905
1580


CTX-139.3
1585
841
1581
925
1582
















TABLE 12.1A







CAR expression following transgene insertion










Donor

Guide:
Guide:


template
Effect of
EXON1 T32
EXON1 T7


(LHA-RHA)
HDR on TRAC locus
SEQ ID NO:
SEQ ID NO:





CTX-138
20 bp deletion spanning
55%
9.5%



Exon1_T32 target sequence




CTX-139
141 bp deletion spanning
54%
30%



Exon1_T32 & Exon1_T7





target sequence




CTX-139.1
141 bp deletion spanning
n.a.
19%



Exon1_T32 & Exon1_T7





target sequence




CTX-139.2
20 bp deletion spanning
n.a.
50%



Exon1_T7 target sequence




CTX-139.3
0 bp deletion; mutates PAM
n.a.
54%



sequence 3′ of Exon1_T7





target sequence;





(1 nucleotide change in PAM)









Example 10—Analysis of On-Target Indel Profiles in T Cells

On-target amplicon analysis was conducted the TRAC and B2M locus following gene editing using the following guides:











B2M spacer:



(SEQ ID NO: 466)



GCUACUCUCUCUUUCUGGCC;






(SEQ ID NO: 1343



sgRNA






TRAC spacer:



(SEQ ID NO: 152)



AGAGCAACAGUGCUGUGGCC;






(SEQ ID NO: 1345)



sgRNA






Following gene editing, on-target amplicon analysis was conducted around the TRAC and B2M locus in TRAC−/B2M−/anti-CD19 CAR+ cells.


An initial PCR was performed using the 2× Kapa HiFi Hotstart Mastermix (Kapa Biosystems, Wilmington, Mass.). 50 ng of input gDNA was combined with 300 nM of each primer. The TRAC_F and TRAC_R primers were paired for the TRAC locus, and the B2M_F and B2M_R primers were paired to amplify the B2M locus (Table ##).









TABLE 12.2





Primers for TRAC and B2M amplicon library


preparation
















TRAC_F
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGcgtgta



ccagctgagagact





TRAC_R
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGatgct



gttgttgaaggcgtt





B2M_F
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGgggcat



tcctgaagctgaca





B2M_R
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGttgga



gaagggaagtcacgg









Analysis of the B2M locus in a population of T cells following gene editing to produce TRAC/B2M/CAR+ T cells results in the following indel frequencies and edited gene sequences at the B2M locus (deletions as dashes and insertions in bold).











TABLE 12.3





SEQ




ID

Fre-


NO:
Gene edited sequence
quency

















1560
CGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCT-
16.2%



GCCTGGAGGCTATCCAGCGTGAGTCTCTCCTACCCTCC




CGCT






1561
CGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTC--
6.3%



GCCTGGAGGCTATCCAGCGTGAGTCTCTCCTACCCTC




CCGCT






1562
CGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTT---
4.7%



--CTGGAGGCTATCCAGCGTGAGTCTCTCCTACCCTCC




CGCT






1563
CGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTG
2.2%




GATAGCCTGGAGGCTATCCAGCGTGAGTCTCTCCTAC





CCTCCCGCT
2.1%





1564
CGTGGCCTTAGCTGTGCTCGC-----------------




--------GCTATCCAGCGTGAGTCTCTCCTACCCTCC




CGCT






1565
CGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTG
2.1%



TGGCCTGGAGGCTATCCAGCGTGAGTCTCTCCTACCC




TCCCGCT









Analysis of the TRAC locus in a population of T cells following gene editing to produce TRAC/B2M/CAR+ T cells results in the following indel frequencies and edited gene sequences at the TRAC locus in T cells without a CAR insertion (deletions as dashes and insertions in bold).











TABLE 12.4





SEQ




ID

Fre-


NO:
Gene edited sequence
quency

















1566
AA---------------------GAGCAACAAATCT
16.4%



GACT






1567
AAGAGCAACAGTGCTGT-
16.0%



GCCTGGAGCAACAAATCTGACT






1568
AAGAGCAACAGTG-------CTGGAGCAACAAATCT
7.5%



GACT






1569
AAGAGCAACAGT------
7.0%



GCCTGGAGCAACAAATCTGACT






1570
AAGAGCAACAGTG----------------------C
1.6%



TGACT






1571
AAGAGCAACAGTGCTGTGGGCCTGGAGCAACAAATC
2.5%



TGACT






1572
AAGAGCAACAGTGC--
2.2%



TGGCCTGGAGCAACAAATCTGACT






1573
AAGAGCAACAGTGCTGTGTGCCTGGAGCAACAAATC
2.0%



TGACT









Example 11—Production of Site-Specific Allogeneic CD19 CAR-T Cells by CRISPR-Cas9 for B-Cell Malignancies

CRISPR/Cas9 technologies have been applied to develop anti CD19 allogeneic chimeric antigen receptor T cells (CAR-T) with reduced potential for graft vs. host disease (GVHD), and reduced rejection potential for the treatment of CD19 positive malignancies. The efficiency of the CRISPR/Cas9 system enables rapid production of homogeneous CAR-T product from prescreened healthy donors and thus can potentially be developed as an “off-the-shelf” therapy for efficient delivery to patients. Autologous CAR-T therapeutics targeting CD19 have shown impressive responses in B-cell malignancies but currently require significant individualized manufacturing efforts and can suffer from manufacturing failures. In addition, these autologous CAR-Ts are produced using retrovirus or lentivirus, for which the variable nature of integration can lead to a heterogeneous product. Allogeneic or “off-the-shelf” CAR-T products with site-specific CAR integration generated with gene editing technologies may address some of these significant challenges seen for autologous products.


CRISPR-Cas9 technology was utilized in primary human T cells to produce allogeneic CAR-T cells by multiplexed genome editing. A robust system for site-specific integration of CAR and concurrent multiplexed gene editing in single T cells has been developed by utilizing homology-directed repair (HDR) with Cas9 ribonucleoprotein (RNP) and an AAV6-delivered donor template.


With CRISPR/Cas9 editing technology, high frequency knockout of the constant region of the TCRα gene (TRAC) with ˜98% reduction of TCR surface expression in human primary T-cells from healthy donors, which aims to significantly impair graft-versus-host disease (GVHD), was achieved. High frequency knockout of the β-2-microglobulin (B2M) gene could also be obtained, which aims to increase persistence in patients, potentially leading to increased potency overall. TRAC/B2M double knockout frequencies have been obtained in ˜80% of T cells without any subsequent antibody-based purification or enrichment. Human T cells expressing a CD19-specific CAR from within a disrupted TRAC locus, produced by homology-directed repair using an AAV6-delivered donor template, along with knockout of the B2M gene have been consistently produced at a high efficiency. This site-specific integration of the CAR protects against the potential outgrowth of CD3+CAR+ cells, further reducing the risk of GVHD, while also reducing the risk of insertional mutagenesis associated with retroviral or lentiviral delivery mechanisms. These engineered allogeneic CAR-T cells show CD19-dependent T-cell cytokine secretion and potent CD19-specific cancer cell lysis.


We are able to use genome editing with the CRISPR-Cas9 system to efficiently create an allogeneic or “off-the-shelf” CAR-T cell product (e.g.: TC1) that demonstrates potent and specific anticancer effects for patients with CD19-expressing human cancers. More specifically, and as demonstrated herein the production of allogeneic anti-CD19 CAR-T product (FIG. 40) that exhibits high efficiency editing (e.g., greater than 50% TRAC/B2M/anti-CD19CAR+ T cells efficiency) (FIG. 39), CD19-specific effector functions (FIG. 35 and FIG. 41), kills CD19+ leukemia or lymphoma cells in vitro and in vivo (FIG. 35 and FIG. 42), and does not proliferate in the absence of cytokines (FIG. 23). In addition, the off-target profile is consistent with results from other gene-edited T cell therapeutics in development.


Example 12—Dose Escalation Study to Determine the Efficacy of CAR-T Cells in the Subcutaneous Raji Human Burkett's Lymphoma Tumor Xenograft Model in NOG Mice

In this example, the efficacy of CAR-T cells against the subcutaneous Raji Human Burkett's Lymphoma tumor xenograft model in NOG mice was evaluated. Transgene insertion in primary human T cells via homology directed repair (HDR) and concurrent gene knockout by Cas9:sgRNA RNA was performed as described above in Examples 8-10 to produce cells lacking TCR and B2M surface expression and to concurrently express an anti-CD19 CAR construct (TRAC/B2MCD19CAR+ cells). Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76) and B2M1 (GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417)). The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template (CTX-138; SEQ ID NO: 675) containing right and left homology arms to the TRAC locus flanking a chimeric antigen receptor cassette (−/+ regulatory elements for gene expression). The resulting modified T cells (TC1) are TRAC/B2MCD19CAR+. The ability of the modified TRAC/B2MCD19CAR+ T cells to ameleriote disease caused by a CD19+ lymphoma cell line (Raji) was evaluated in NOG mice using methods employed by Translational Drug Development, LLC (Scottsdale, Ariz.). In brief, 12, 5-8 week old female, CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. On Day 1 mice received a subcutaneous inoculation of 5×106 Raji cells/mouse. The mice were further divided into 3 treatment groups as shown in Table 13. On Day 8 (7 days post inoculation with the Raji cells), treatment group 2 and group 3 received a single 200 μl intravenous dose of TRAC/B2MCD19CAR+ cells (TC1) according to Table 13. The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).









TABLE 13







Treatment groups










Group
Raji Cells (s.c.)
TC1 Treatment (i. v.)
N













1
5 × 106 cells/mouse
None
4


2
5 × 106 cells/mouse
5 × 106 cells/mouse
4


3
5 × 106 cells/mouse
1 × 107 cells/mouse
4









Tumor volume and body weight was measured and individual mice were euthanized when tumor volume was ≥500 mm3.


By Day 18, the data show a statistically significant decrease in the tumor volume in response to TC1 cells as compared to untreated mice (FIG. 19). The effect on tumor volume was dose-dependent (Table 14); mice receiving higher doses of TC1 cells showed significantly reduced tumor volume when compared to mice receiving either a lower dose of TC1 cells or no treatment. An increase in survival was also observed in the treated group (Table 14).









TABLE 14







Tumor response and survival












Tumor volume
Tumor volume
Survival



Group
(Day 18)
(Day 20)
(Days)
N





1
379.6 ± 67.10
  482 ± 47.37
20-22
4


2
214.0 ± 20.73
372.2 ± 78.21
25
4


3
107.5 ± 7.33*
 157.1 ± 10.62**
27
4





(end of study)





p = 0.007 compared to control (Group 1)


**p = 0.0005 compared to control (Group 1)






In addition to CT1 described above, additional modified T cells expressing a chimeric antigen receptor (CAR) comprising an extracellular domain comprising an anti-CD19 scFv and further comprising a double knock-out of the TRAC and B2M genes are contemplated for use this and other examples described herein. In certain embodiments the TRAC/B2MCD19CAR+ cells, the TRAC deletion may be accomplished using any one of the TRAC spacer sequences described herein. In certain embodiments of the TRAC/B2MCD19CAR+ cells, the 132M deletion may be accomplished using any one of the B2M spacer sequences described herein.


Example 13—Assessment of CAR-T Cells Efficacy in Intravenous Disseminated Models in NOG Mice

Intravenous Disseminated Raji Human Burkett's Lymphoma Tumor Xenograft Model


The Intravenous Disseminated Model (Disseminated Model) using the Raji Human Burkett's Lymphoma tumor cell line in NOG mice was used in this example to further demonstrate the efficacy of TRAC/B2MCD19CAR+ cells. Generation of the TRAC/B2MCD19CAR+ cells (TC1) used in this model was described in the Examples above and evaluated in the Disseminated Model using methods employed by Translations Drug Development, LLC (Scottsdale, Ariz.) and described herein. In brief, 24, 5-8 week old female CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. At the start of the study, the mice were divided into 5 treatment groups as shown in Table 15. On Day 1 mice in Groups 2-5 received an intravenous injection of 0.5×106 Raji cells/mouse. The mice were inoculated intravenously to model disseminated disease. On Day 8 (7 days post injection with the Raji cells), treatment Groups 3-5 received a single 200 μl intravenous dose of TC1 cells per Table 15.









TABLE 15







Treatment groups










Group
Raji Cells (i.v.)
TC1 Treatment (i.v.)
N





1
None
None
8


2
0.5 × 106 cells/mouse
None
4


3
0.5 × 106 cells/mouse
1 × 106 cells/mouse
4




(~0.5 × 106 CAR-T+ cells)



4
0.5 × 106 cells/mouse
2 × 106 cells/mouse
4




(~1.0 × 106 CAR-T+ cells)



5
0.5 × 106 cells/mouse
4 × 106 cells/mouse
4




(~2.0 × 106 CAR-T+ cells)









During the course of the study mice were monitored daily and body weight was measured two times weekly. A significant endpoint was the time to peri-morbidity and the effect of T-cell engraftment was also assessed. The percentage of animal mortality and time to death were recorded for every group in the study. Mice were euthanized prior to reaching a moribund state. Mice may be defined as moribund and sacrificed if one or more of the following criteria were met:


Loss of body weight of 20% or greater sustained for a period of greater than 1 week;


Tumors that inhibit normal physiological function such as eating, drinking, mobility and ability to urinate and or defecate;


Prolonged, excessive diarrhea leading to excessive weight loss (>20%); or


Persistent wheezing and respiratory distress.


Animals were also considered moribund if there was prolonged or excessive pain or distress as defined by clinical observations such as: prostration, hunched posture, paralysis/paresis, distended abdomen, ulcerations, abscesses, seizures and/or hemorrhages.


Similar to the subcutaneous xenograph model (Example 12), the Disseminated Model revealed a statistically significant survival advantage in mice treated with TRAC/B2MCD19CAR+ cells (TC1) as shown in FIG. 20, p<0.0001. The effect of TC1 treatment on survival in the disseminated model was also dose dependent (Table 16).









TABLE 16







Animal survival














Max
Median



Raji
TC1
survival
survival


Group
Cells (i.v.)
Treatment (i.v.)
(days)
(days)





1
No
No
Max
Max


2
Yes
No
20
20


3
Yes
1 × 106 cells/mouse
21
21


4
Yes
2 × 106 cells/mouse
25
25


5
Yes
4 × 106 cells/mouse
32
26









A second experiment was run using the Intravenous Disseminated model described above.


On Day 1 mice in Groups 2-4 received an intravenous injection of 0.5×106 Raji cells/mouse. The mice were inoculated intravenously to model disseminated disease. On Day 4 (3 days post injection with the Raji cells), treatment Groups 2-4 received a single 200 μl intravenous dose of TC1 cells per Table 17.









TABLE 17







Treatment groups










Group
Raji Cells (i.v.)
TC1 Treatment (i.v.)
N





1
0.5 × 106 cells/mouse
None
6


2
0.5 × 106 cells/mouse
0.6 × 106 CAR+ cells/mouse
7


3
0.5 × 106 cells/mouse
1.2 × 106 CAR+ cells/mouse
5


4
0.5 × 106 cells/mouse
2.4 × 106 CAR+ cells/mouse
5









Again, the Disseminated Model revealed a statistically significant survival advantage in mice treated with TRAC/B2MCD19CAR+ cells (TC1) as shown in FIG. 42A, p=0.0016. The effect of TC1 treatment on survival in the disseminated model was also dose dependent (Table 18).









TABLE 18







Animal survival















Max
Median




Raji Cells
TC1 Treatment
survival
survival
Signif-


Group
(i.v.)
(i.v.)
(days)
(days)
icance





1
Yes
No
20
20



2
Yes
0.6 × 106 CAR+
35
27
p = 0.005




cells/mouse





3
Yes
1.2 × 106 CAR+
39
37
p = 0.016




cells/mouse





4
Yes
2.4 × 106 CAR+
49
46
p = 0.016




cells/mouse









Evaluation of Splenic Response to TC1 Treatment


The spleen was collected from mice 2-3 weeks following Raji injection and the tissue was evaluated by flow cytometry for the persistence of TC1 cells and eradication of Raji cells in the spleen.


Flow Cytometry Analysis Procedure


The Spleen was transferred to 3 mL of 1×DPBS CMF in a C tube and dissociated using the MACS Octo Dissociator. The sample was transferred through a 100 micron screen into a 15 mL conical tube, centrifuged (1700 rpm, 5 minutes, ART with brake) and resuspended in 1 mL of 1×DPBS CMF for counting using the Guava PCA. Bone marrow was centrifuged and resuspended in 1 mL of 1×DPBS CMF for counting using the Guava PCA. Cells were resuspended at a concentration of 10×106 cells/mL in 1×DPBS CMF for flow cytometry staining.


Specimens (50 μL) were added to 1 mL 1× Pharm Lyse and incubated for 10-12 minutes at room temperature (RT). Samples were centrifuged and then washed once with 1× DPBS CMF. Samples were resuspended in 50 μL of 1×DPBS and incubated with Human and Mouse TruStain for 10-15 minutes at RT. The samples were washed once with 1 mL 1× DPBS CMF and resuspend in 50 μL of 1×DPBS CMF for staining. Surface antibodies were added and the cells incubated for 15-20 minutes in the dark at RT and then washed with 1 mL 1×DPBS CMF. Then samples were resuspended in 125 μL of 1×DPBS CMF for acquisition on the flow cytometer.


Cells were stained with the following surface antibody panel:















TABLE 19





FITC
PE
APC
C3
APCCy7
V421
V510







huCD3
huCD45
huCD19
7AAD
CD8
CD4
mCD45


(UCHT1)
(HI30)
(HIB19)

(SK1)
(RPA-T4)
(30-F11)









Cell populations were determined by electronic gating (P1=total leukocytes) on the basis of forward versus side scatter. Compensation to address spill over from one channel to another was performed upon initial instrument set up using Ultra Comp Beads from Thermo Fisher. The flow cytometer was set to collect 10,000 CD45+ events in each tube. Flow cytometric data acquisition was performed using the FACSCantoll™ flow cytometer. Data was acquired using BO FACSDiva™ software (version 6.1.3 or 8.0.1). Flow cytometry data analysis was in the form of Flow Cytograms, which are graphical representations generated to measure relative percentages for each cell type.


This example demonstrates that following TC1 cell treatment, the therapeutically beneficial TRAC/B2MCD19CAR+ cells persist in the spleen and selectively eradicate Raji cells from the tissue (FIG. 21A). In addition, treatment with TC1 cells do not exhibit Raji induced increase in cell mass (FIG. 21B). Further, FIG. 22 shows that the remaining human cells in spleens of mice treated with TRAC/B2MCD19CAR+ cells are CD8+. These CD8+ T cells are also CD3 negative proving that persistent T cells in this model remain TCR/CD3 negative and are thus edited.


Intravenous Disseminated Nalm-6 Human Acute Lymphoblastic Leukemia Tumor Xenograft Model


The Intravenous Disseminated Model (Disseminated Model) using the Nalm-6 Human Acute Lymphoblastic Leukemia tumor cell line in NOG mice was used in this example to further demonstrate the efficacy of TRAC/B2MCD19CAR+ cells. Generation of the TRAC/B2MCD19CAR+ cells (TC1) used in this model was described in the Examples above and evaluated in the Disseminated Model using methods employed by Translations Drug Development, LLC (Scottsdale, Ariz.) and described herein. In brief, 24, 5-8 week old female CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. At the start of the study, the mice were divided into 5 treatment groups as shown in Table 20. On Day 1 mice in Groups 2-4 received an intravenous injection of 0.5×106 Nalm6 cells/mouse. The mice were inoculated intravenously to model disseminated disease. On Day 4 (3 days post injection with the Nalm6 cells), treatment Groups 2-4 received a single 200 μl intravenous dose of TC1 cells per Table 20.









TABLE 20







Treatment groups










Group
Nalm6 Cells (i.v.)
TC1 Treatment (i.v.)
N





1
0.5 × 106 cells/mouse
None
6


2
0.5 × 106 cells/mouse
1 × 106 CAR+ cells/mouse
6


3
0.5 × 106 cells/mouse
2 × 106 CAR+ cells/mouse
6


4
0.5 × 106 cells/mouse
4 × 106 CAR+ cells/mouse
6









During the course of the study mice were monitored daily and body weight was measured two times weekly as described above.


Similar to the Raji intravenous disseminated model (above), the Nalm6 Model also showed a statistically significant survival advantage in mice treated with TRAC/B2MCD19CAR+ cells (TC1) as shown in FIG. 42B, p=0.0004. The effect of TC1 treatment on survival in the Nalm6 disseminated model was also dose dependent (Table 21).









TABLE 21







Animal survival














TC1
Max
Median




Nalm6
Treatment
survival
Survival
Signif-


Group
Cells (i.v.)
(i.v.)
(days)
(days)
icance





2
Yes
No
31
  25.5



3
Yes
1 × 106 CAR+
32
31
p = 0.03




cells/mouse





4
Yes
2 × 106 CAR+
38
36
p = 0.0004




cells/mouse





5
Yes
4 × 106 CAR+
52
46
p = 0.0004




cells/mouse









Example 14—TC1 Proliferation is Cytokine Dependent

The production of the TRAC/B2MCD19CAR+ cells, TC1, may result in unwanted off-target editing that could generate cells with adverse properties. One of these adverse properties could be uncontrolled cell growth. In this experiment, we assessed the ability of TC1 cells to grow in the absence of cytokines and/or serum.


1×106 TC1 cells were plated ˜2 weeks post production (Day 0). The number of viable cells were enumerated 7 and 14 days post plating in either full media, 5% human serum without cytokines (IL-2 and IL-7), or base media lacking serum and cytokines. No cells were detected at 14 days plated in the cultures that lacked cytokines suggesting that any potential off-target effects due to genome editing did not bestow growth factor independent growth/proliferation to TC1 cells. The TC1 cells only proliferated in the presence of cytokines (e.g. full media that contains cytokines) and did not proliferate in the presence of serum alone as shown in FIG. 23. Thus, in vivo, the TC1 cells would likely not grow in the absence of cytokine, growth factor or antigen stimulation due to any off-target genome editing.


Example 15—CRISPR/Cas9 Mediated Knockout of TCR and MHC I Components and Expression of CD70 Chimeric Antigen Receptor Constructs

This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of TCR, or TCR and MHC I, and express a chimeric antigen receptor targeting CD70+ cancers.


A schematic depiction of CRISPR/Cas9 generated allogeneic CAR-T cells is shown in FIG. 24A.


Similar to Example 9 above, CRISPR/Cas9 was used to disrupt (knockout [KO]) the coding sequence of the TCRα constant region gene (TRAC). This disruption leads to loss of function of TCR and renders the gene edited T cell non-alloreactive and suitable for allogeneic transplantation, minimizing the risk of graft versus host disease (GVHD). The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template containing right and left homology arms to the TRAC locus flanking a chimeric antigen receptor cassette (−/+ regulatory elements for gene expression). To reduce host versus graft (HVG) (e.g.: host vs CAR-T) and allow for persistence of the allogeneic CAR-T product, the B2M gene was also disrupted using CRISPR/Cas9 components. Together, these genome edits result in a T cell with surface expression of a CAR (expressed from the TRAC locus) targeting CD70+ cancers along with loss of the TCR and MHC I, to reduce GVHD and HVG, respectively. The T cell can be referred to as a TRAC/B2MCD70CAR+ cell.


For certain experiments, described in the following examples, single knock-out TRAC-CD70 CAR+ cells were also produced and tested.


A schematic of DNA plasmid constructs for production of recombinant AAV virus carrying donor templates to facilitate targeted genomic insertion of CAR expression cassettes by HDR of Cas9-evoked site specific DNA double stranded breaks is shown in FIG. 24B.









TABLE 22







Donor Template Component Sequences









SEQ




ID

Length


NO:
Domain Name
(bp)












1313
Left ITR (5′ ITR)
145


1314
Right ITR (3′ ITR)
145


1423
CD70A CAR
1518


1424
CD70B CAR
1518


1319
pA
49


1325
TRAC-LHA (800 bp)
800


1326
TRAC-RHA (800 bp)
804


1331
EF1a
1178









CTX-142 and CTX-145 are derived from CTX-138 but the CAR has been modified to comprise anti-human CD70 scFV coding regions (FIG. 24B) instead of anti-CD19 scFV coding regions; in addition, the CAR is modified to comprise an alternate signal peptide (e.g.: CD8; MALPVTALLLPLALLLHAARP (SEQ ID NO: 1586)) as compared to the CAR encoded by CTX-138. CTX-142 and CTX-145 are derived from CTX-138 but with the anti-CD19 scFv coding regions replaced with anti-human CD70 scFv coding regions (FIG. 24B). CTX-142 and CTX-145 differ in the orientation of the antiCD70 scFv variable heavy (VH) and variable light (VL) chains. CTX-142 (SEQ ID NO: 1358) contains an anti-CD70 CAR construct (antiCD70A: CD8[signal peptide]-VL-linker-VH-CD8[tm]-CD28[co-stimulatory domain]-CD3z) (SEQ ID NO: 1423) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by the EF1a promoter. The scFv is constructed such that the VL chain is amino terminal to the VH chain. CTX-142 (SEQ ID NO: 1358) also contains 800 bp homology arms flanking a genomic Cas9/sgRNA target site in the TRAC locus. CTX-145 (SEQ ID NO: 1359) is similar to CTX-142, however the antiCD70 CAR construct (contains an antiCD70 CAR construct (antiCD70B: CD8[signal peptide]-VH-linker-VL-CD8[tm]-CD28[co-stimulatory domain]-CD3z) (SEQ ID NO: 1424) switched the orientation of the VH and VL chains, the VH is amino terminal to the VL.


Anti CD70 CAR T cells were produced with CRISPR/Cas9 and AAV components as described (herein). Transgene insertion in primary human T cells via homology directed repair (HDR) and concurrent gene knockout by Cas9:sgRNA RNA was performed as described above in Examples 8 and 9. Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76); comprising sgRNA (SEQ ID NO: 1343) and B2M1 (GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417); comprising sgRNA (SEQ ID NO: 1345). The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


sgRNA sequences can be modified as follows: TRAC SEQ ID NO: 1342, B2M SEQ ID NO: 1345.


The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template (CTX-142 or CTX-145).


Example 16—HDR-Mediated Concurrent Transgene Insertion in Cells to Generate TRAC-CD70CAR+ and TRAC-B2M-CD70CAR+ Cells

This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double stranded break induction) and AAV6 delivered donor template (CTX-142 or CTX-145) containing a CD70 CAR construct in primary human T cells.


Primary human T cells were activated with CD3/CD28 magnetic beads (as described previously in Example 2). Three days later activation beads were removed. The next day cells were electroporated with RNP complexes including sgRNAs targeting either TRAC alone, or TRAC+B2M (2 separately complexed RNPs). 7 days post manipulation, cells were analyzed by flow cytometry, as previously described herein and in Example 2.


Guides used in this example target:











TRAC:



(SEQ ID NO: 76)



AGAGCAACAGTGCTGTGGCC;



and






(SEQ ID NO: 1343)



comprise TRAC sgRNA






B2M:



(SEQ ID NO: 417)



GCTACTCTCTCTTTCTGGCC;



and






(SEQ ID NO: 1345)



comprise B2M sgRNA






The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


sgRNA sequences can be modified as follows: TRAC SEQ ID NO: 1342, B2M SEQ ID NO: 1344.



FIG. 25A shows that cells treated with TRAC sgRNA containing RNP and CTX-145 AAV6 produced higher levels of expression of a CAR construct, while cells treated with a TRAC sgRNA RNP and CTX-142 AAV6 were not as effective at producing CD70 CAR expressing cells. FIG. 25B demonstrates normal proportions of CD4/CD8 T cell subsets maintained in the TRAC negative CAR+ fraction from cells treated with TRAC sgRNA containing RNP and CTX-145 AAV6, suggesting that the expression of a genetically engineered anti CD70 CAR T cell affects the proportion of T cell subsets.


In addition, cells infected with AAV6 encoding CTX-145 alone do not express high levels of anti CD70 CAR. A double stranded break induced by a TRAC sgRNA containing RNP and subsequent repair by HDR using CTX-145 donor template is required for surface expression of anti CD70 CAR (FIG. 26). Thus, the CTX-145 construct is only expressed following integration into the TRAC gene and would not be expressed in cells that were not treated with both the TRAC RNP and AAV vector.



FIG. 27 demonstrates successful production of single human T cells lacking TCR and B2M surface expression with concurrent expression of the CD70 CAR from an integrated transgene in the TRAC locus using the methods described above (TCR−/B2M-CD70CAR+).


The percentage of cells expressing CD70 was tracked during the production of CD70 CAR-T cells. At day 0 a small percentage of T cells express CD70 and are mostly CD4+(FIG. 36A). These percentages are consistent 4 days post electroporation/infection with AAV6 except in cells that become CD70CAR+. CD70CAR+ cultures lack cells expressing CD70. The high frequency of CD70CAR+ cells along with the lack of CD70 expression in antiCD70-CAR+ cultures suggests that CD70+ T cells serve as targets of antiCD70-CART cells which leads to the fratricide of CD70+ T cells along with the expansion of antiCD70-CAR-T cells (FIG. 36B—Top panel corresponds to CD70− cells from FIG. 36A; Bottom panel corresponds to CD70+ cells from FIG. 36A).


Example 17—Generation of CD70 Expressing Cell Lines

K562 cells were infected with lentiviral particles encoding a human CD70 cDNA under the control of the EF1 a promoter as a well as a puromycin expression cassette (Genecopoeia). Cells were selected in 2 mg/mL puromycin for 4-7 days and assayed for CD70 surface expression using an Alexa fluor 647 conjugated anti-CD70 antibody (Biolegend, 355115). FIG. 28A demonstrates high surface expression of CD70 on CD70 overexpressing K562 cells (CD70+K562) compared to parental K562 cells and comparable expression levels to native CD70 expressed on the Raji cell line.


A panel of other cell lines was also tested for CD70 surface expression using flow cytometry: Nalm6 (lymphoid), 293 (embryonic kidney), ACHN (renal), Caki-2 (renal), Raji (lymphoid), Caki-1 (renal), A498 (renal), and 786-0 (renal). The results are shown in FIG. 28B. Raji, Caki-1 and A498 cell lines exhibited the highest levels of CD70 surface expression in this assay. These cell lines and the CD70 expressing K562 cells can be used to evaluate effector function and specificity of TCR−/anti-CD70 CAR+ and TCR−/B2M−/anti-CD70 CAR+.


Example 18—Evaluation of Effector Function in CRISPR/Cas9 Modified T Cells Expressing a CD70 Chimeric Antigen Receptor (CAR)

Interferon Gamma Stimulation by Genetically Engineered T Cells Expressing a CD70 CAR


The ability of the engineered cells to produce interferon gamma (IFNγ) in a target cell was analyzed using an ELISA assay, as described above and in Example 10.


The specificity of genetically modified T cells expressing a CD70 CAR integrated into the TRAC gene, was evaluated in an in vitro ELISA assay. IFNγ from supernatants of cell co-cultures was measured. Only TRAC/anti-CD70 CAR+ cells secrete high levels of IFNγ when cultured with CD70+K562. IFNγ secretion was not detected when TRAC/anti-CD70 CAR+ cells were cultured with K562 cells that were not engineered to overexpress surface CD70 (FIG. 5A) (at a 4:1 CAR-T cell to target ratio).


Similarly, the TRAC/anti-CD70CAR+ cells only stimulated IFNγ CD70+ Raji cells, but not the CD70-Nalm6 cells (FIG. 29B) (at a 2:1 CAR-T cell to target ratio). TRAC/anti-CD70 CAR+ T cells did not secrete detectable levels of IFNγ when cultured by themselves in the absence of target cells (FIG. 29C).


GranzymeB Assay


To further assess the effector functions of TRAC−/anti-CD70CAR+ cells, intracellular GranzymeB levels in target cells were measured in a surrogate cell lysis assay. Target cells that are GranzymeB+ had perforin containing membrane pores formed and subsequent injection of GranzymeB through the pores to initiate apoptosis by the TRAC−/anti-CD70CAR+ cells. The GranToxiLux assay was performed with either Raji cells (CD70 positive cells) or Nalm6 cells (CD70 negative cells) according to the manufacturer's instructions (Oncoimmunin Inc.). Fluorescently labeled target cells were co-cultured at a 2:1 ratio with test T cells (e.g.: TRAC/anti-CD70CAR+:Target cells) in GranzymbeB substrate for 2 hrs at 37° C. Cells were then washed and % of target cells positive for GranzymbeB activity was quantitated by flow cytometry. Other control test cells were also evaluated at similar ratios (unedited T cells (TRC+) and TRAC T cells). FIG. 29B shows efficient GranzymeB insertion and activity by TRAC/anti-CD70CAR+ cells only in Raji cells (CD70+) and not in Nalm6 cells (CD70). The other control cells tested did not induce GranzymeB insertion and activity in any target cell type. Thus, TRAC/anti-CD70CAR+ cells can induce lysis of CD70 positive target cells.


Cell Kill Assay in Adherent Renal Cell Carcinoma—in the Context of CD28 Co-Stim


To assess the ability of CRISPR/Cas9 modified T cells expressing a CD70 CAR to kill CD70 expressing adherent renal cell carcinoma (RRC) derived cell lines, a cell killing assay was devised. Adherent cells were seeded in 96-well plates at 50,000 cells per well and left overnight at 37° C. The next day T cells were added to the wells containing target cells at a 2:1 ratio. After the indicated incubation period, T cells were removed from the culture by aspiration and 100 μL Cell titer-Glo (Promega) was added to each well of the plate to assess the number of remaining viable cells. The amount of light emitted per well was then quantified using a plate reader. TRACCD70CAR+ cells induced potent cell killing of renal cell carcinoma derived cell lines after a 72 hr co-incubation (FIG. 30A), while control test cells (control T cells: TCR+ or TRAC−) had no effect. As expected, the TRACCD70CAR+ cells did not exhibit any ability to lyse a CD70 negative human embryonic kidney derived cell line (HEK293 or 293). Staurosporine (Tocris) was used as a positive control to show that the levels of cell killing induced by a small molecule was comparable between the 3 target cell types tested. These results demonstrate that cell lysis induced by TRACCD70CAR+ cell is specific toward target cells expressing surface CD70. In addition, CRISPR/Cas9 modified T cells expressing a CD70 CAR exhibited potent cell lysis of a series of CD70 expressing renal cell carcinoma derived cell lines (FIGS. 30B and 30C).


Evaluation of Costimulatory Domains 41Bb and CD28 in Anti-CD70 CAR T Cells


CTX145b (SEQ ID NO: 1360) is derived from CTX145 where CD28[co-stimulatory domain] has been replaced by 41BB[co-stimulatory domain](FIG. 61). The 4-1BB domain sequence is









(nucleotide-SEQ ID NO: 1339)


AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGAG





ACCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCCAG





AAGAAGAAGAAGGAGGATGTGAACTG;





(amino acid-SEQ ID NO: 1340)


KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL.






Efficient Creation of TRAC, B2M Double Knockout Anti-41BB-CD70 CAR-T Cells


This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double-stranded break induction) and AAV6 delivered donor template (CTX-145b (SEQ ID NO: 1360)) containing a CD70 CAR construct in primary human T cells. The production of allogenic human T cells is as described in Example 16. The high efficiency is similar when using AAV6 delivered donor template CTX-145 (SEQ ID NO: 1359) and CTX145b (89.7% CAR+ cells using CTX-145 v. 88.6% CAR+ cells using CTX-145b, compared to 2.38% CAR+ cells with control (no donor template)).



FIG. 62 demonstrates normal proportions of CD4/CD8 T cell subsets maintained in the TRAC−/B2M−/anti-CD70(4-1BB co-stim) CAR+ fraction from cells treated with TRAC and B2M sgRNA containing RNPs and CTX-145b AAV6, suggesting that the expression of a genetically engineered T cells expressing an anti-CD70 CAR that has a 4-1BB co-stimulatory domain does not affect significantly the proportion of T cell subsets.


Efficient Production of PD1, TRAC, B2M Triple Knockout Anti-CD70 CAR-T Cells, with a 4-1BB or a CD28 Costimulatory Domain


This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double stranded break induction) and AAV6 delivered donor template (CTX-145 or CTX-145b) containing an anti-CD70 CAR construct in primary human T cells. The production of allogenic human T cells is as described in Example 24, where CTX-138 was replaced by CTX-145 (CD28 co-stim) or CTX-145b (4-1BB co-stim).


The high efficiency was similar when using AAV6-delivered donor template (compare CTX-145 and CTX145b) (FIG. 63). 80% of the engineered T cells expressed the anti-CD70 CAR having the CD28 co-stim domain, wherein 82% expressed the anti-CD70 CAR having the 4-1BB co-stim domain.



FIG. 64 shows that normal proportions of CD4/CD8 T cell subsets were maintained in the PD1−/TRAC−/B2M−/anti-CD70 CAR+ fraction from cells treated with PD1, TRAC and B2M sgRNA containing RNPs and CTX-145b AAV6, suggesting that expression of an anti-CD70 CAR that has a 4-1BB co-stimulatory domain in genetically engineered T cells does not affect significantly the proportion of T cell subsets.


Cell Kill Assay in Adherent Renal Cell Carcinoma


To assess the ability of CRISPR/Cas9 modified T cells expressing an anti-CD70 CAR to kill CD70 expressing adherent renal cell carcinoma (RRC) derived cell lines, a cell killing assay was devised as described above. TRAC−/B2M−/anti-CD70 CAR+ cells demonstrated potent cell killing of renal cell carcinoma derived cell lines (A498 cells) after 24 hours co-incubation (FIG. 65), in the context of both costimulatory domains CD28 and 41BB, compared to control test cells (control T cells: TCR+). PD1−/TRAC−/B2M−/anti-CD70 CAR+ cells induced similar potent cell killing of A498 cells with the 4-1BB costimulatory domain (compared to double KO cells), but lower potency with CD28 costimulatory domain (FIG. 65).



FIG. 66 shows that TRAC−/B2M−/anti-CD70 (4-1BB or CD28) CAR+ cells and PD1−/TRAC−/B2M−/anti-CD70 (4-1BB or CD28) CAR+ cells induced potent cell killing of CD70 expressing adherent renal cell carcinoma (RRC) derived cell line, ACHN at a 3:1 ratio T cell:target cell.


Example 19—Anti-BCMA CAR T Cells

CRISPR/Cas9 Mediated Knockout of TCR and MHC I Components and Expression of BCMA Chimeric Antigen Receptor Constructs


This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of TCR, or TCR and MHC I, and express a chimeric antigen receptor targeting BCMA+ cancers.


A schematic depiction of CRISPR/Cas9 generated allogeneic CAR-T cells is shown in FIG. 31A.


Similar to Example 9 and 15 above, CRISPR/Cas9 was used to disrupt (knockout [KO]) the coding sequence of the TCRα constant region gene (TRAC). This disruption leads to loss of function of TCR and renders the gene edited T cell non-alloreactive and suitable for allogeneic transplantation, minimizing the risk of graft versus host disease (GVHD). The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template containing right and left homology arms to the TRAC locus flanking a chimeric antigen receptor cassette (−/+ regulatory elements for gene expression). To reduce host versus graft (HVG) (e.g.: host vs CAR-T) and allow for persistence of the allogeneic CAR-T product, the B2M gene was also disrupted using CRISPR/Cas9 components. Together, these genome edits result in a T cell with surface expression of a CAR (expressed from the TRAC locus) targeting BCMA+ cancers along with loss of the TCR and MHC I, to reduce GVHD and HVG, respectively. The T cell can be referred to as a TRAC/B2M/anti-BCMA CAR+ cell.


For certain experiments, described in the following examples, single knock-out TRAC-BCMA CAR+ cells were also produced and tested.


A schematic of DNA plasmid constructs for production of recombinant AAV virus carrying donor templates to facilitate targeted genomic insertion of CAR expression cassettes by HDR of Cas9-evoked site specific DNA double stranded breaks is shown in FIG. 31B.









TABLE 23







Donor Template Component Sequences









SEQ




ID
Domain
Length


NO:
Name
(bp)












1313
Left ITR (5′ ITR)
145


1314
Right ITR (3′ ITR)
145


1425
BCMA-1 CAR
1512


1426
BCMA-2 CAR
1512


1317
2A
66


1318
EGFP
720


1319
pA
49


1325
TRAC-LHA (800 bp)
800


1326
TRAC-RHA (800 bp)
804


1331
EF1a
1178









CTX-153 (SEQ ID NO: 1362) and CTX-155 (SEQ ID NO: 1364) are derived from CTX-145 but with the anti-CD70 scFv coding region of CTX-145 is replaced with anti-human BCMA scFv coding region (FIG. 31B and FIG. 14). CTX-152 (SEQ ID NO: 1361) and CTX-154 (SEQ ID NO: 1363) differs from CTX-153 and CTX-155, respectively, by the addition of the picornavirus 2A and GFP sequences. CTX-152, CTX-153, CTX-154, and CTX-155, all contain homology arms flanking a genomic Cas9/sgRNA target site in the TRAC locus. CTX-152 and CTX-153 contain 800 bp homology arms, while CTX-154 (SEQ ID NO: 1363) and CTX-155 contain 500 bp homology arms (FIG. 31B). CTX-152 (SEQ ID NO: 1361) and CTX-154 differ from each other in the orientation of the anti-BCMA scFv variable heavy (VH) and variable light (VL) chains. CTX-152 (SEQ ID NO: 1361) contains an anti-BCMA CAR construct (anti-BCMA (nucleotide sequence (SEQ ID NO: 1425); amino acid sequence (SEQ ID NO: 1451)): CD8[signal peptide]-VH-linker-VL-CD8[tm]-CD28[co-stimulatory domain]-CD3z) with a synthetic 3′ poly adenylation sequence (pA) whose expression is driven by the EF1α promoter. The scFv is constructed such that the VH chain is amino terminal to the VL chain. CTX-154 is similar to CTX-152, however the anti-BCMA CAR construct (contains an anti-BCMA CAR construct (anti-BCMA (nucleotide sequence (SEQ ID NO: 1426); amino acid sequence (SEQ ID NO: 1452): CD8[signal peptide]-VL-linker-VH-CD8[tm]-CD28[co-stimulatory domain]-CD3z) switched the orientation of the VH and VL chains, the VL is amino terminal to the VH.


The VH and VL chains that were used to construct the anti-BCMA scFvs are BCMA_VH1 (SEQ ID NO: 1523) and BCMA_VL1 (SEQ ID NO: 1525), respectively. These chains were derived from mouse antibodies. A humanized version of the VH sequence have been constructed (SEQ ID NO: 1524) and two humanized versions of the VL sequence have been constructed (SEQ ID NOs: 1526 and 1527). These were used to construct humanized anti-BCMA constructs scFv BCMA-3, scFv BCMA-4, scFv BCMA-5 and scFv BCMA-6 (SEQ ID NOs: 1503-1506) using the method described above. Any one of these scFvs can be used to construct CAR constructs as described previously. The humanized scFv CAR constructs have the linker sequence of GGGGSGGGGSGGGGS (SEQ ID NO: 1341).


Additional anti-BCMA scFvs were constructed using the method described above. For example, VH and VL chains BCMA_VH2 (SEQ ID NO: 1528) and BCMA_VL2 (SEQ ID NO: 1529) can be used to construct anti-BCMA scFvs. These variable chains were used to construct the anti-BCMA constructs scFv BCMA-7 (VH-VL; SEQ ID NO: 1507) and scFv BCMA-8 (VL-VH; SEQ ID NO: 1508). Any one of these scFvs can be used to construct CAR constructs as described previously.


In another example, the VH and VL chains BCMA_VH3 (SEQ ID NO: 1530) and BCMA_VL3 (SEQ ID NO: 1531) were used to construct anti-BCMA scFvs. Specifically, these variable chains were used to construct the anti-BCMA constructs scFv BCMA-9 (VH-VL; SEQ ID NO: 1513) and scFv BCMA-10 (VL-VH; SEQ ID NO: 1514). Any one of these scFvs can be used to construct CAR constructs as described previously. Anti BCMA CAR T cells were produced with CRISPR/Cas9 and AAV components as described (herein). Transgene insertion in primary human T cells via homology directed repair (HDR) and concurrent gene knockout by Cas9:sgRNA RNA was performed as described above in Examples 8 and 9. Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76); sgRNA (SEQ ID NO: 1343) and B2M1 (GCTACTCTCTCTTTCTGGCC (SEQ ID NO: 417); sgRNA (SEQ ID NO: 1345).


sgRNA sequences can be modified as follows: TRAC SEQ ID NO: 1342, B2M SEQ ID NO: 1344.


The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template (CTX-152, or CTX-154).


High Efficiency Multi-Editing by CRISPR/Cas9 to Produce Anti-BCMA CAR-T Cells


Multi-editing resulted in decreased surface expression of TCR and MHC-I, as well as high CAR expression. More than 60% T-cells possessed all three (TCR−/β2M−/anti-BCMA CAR+) or four (TCR−/β2M−/PD1−/anti-BCMA CAR+) desired modifications (FIG. 58A). Similar editing efficiencies were observed with double or triple knockouts. The CD4/CD8 ratios remained similar in multi-edited anti-BCMA CAR-T cells (FIG. 58B). Multi-edited anti-BCMA CAR-T cells remained dependent on cytokines for growth following multi-CRISPR/Cas9 editing (FIG. 58C).


The following gRNA spacer sequences were used in this example:











(SEQ ID NO: 152)










TRAC:
AGAGCAACAGUGCUGUGGCC












(SEQ ID NO: 466)










B2M:
GCUACUCUCUCUUUCUGGCC












(SEQ ID NO: 1086)










PD1:
CUGCAGCUUCUCCAACACAU






The donor template used in this example was SEQ ID NO: 1408 (LHA to RHA of CTX-166), which includes the anti-BCMA CAR comprising SEQ ID NO: 1434.


Multi-Edited Anti-BCMA CAR-T Cells Show Improved Anti-Cancer Properties


Anti-BCMA CAR-T cells efficiently and selectively killed the BCMA-expressing MM cell line MM.1S in a 4-hour cell kill assay, while sparing the BCMA-negative leukemic line K562 (FIG. 59A). Differences in response were notable at the lower T cell concentrations between double and triple knockout multi-edits. The cells also selectively secreted the T cell activation cytokines, IFNγ and IL-2, which are upregulated in response to induction only by BCMA+MM.1S cells (FIG. 59B).


PD1 KO Reduces Expression of Lag3 Exhaustion Marker in Long-Term In Vitro Culture


No change in Lag3 exhaustion marker was observed between double (TCR−/β2M−/anti-BCMA CAR+) or triple (TCR−/β2M−/PD1−/anti-BCMA CAR+) KO anti-BCMA CAR-T cells after 1 week in culture. However, following four (4) weeks in culture, Lag3 expression was reduced in the triple KO anti-BCMA CAR-T cells indicating that the cells with the PD1 KO were less exhausted.









TABLE 24







Example BCMA Constructs














Construct
Donor
CAR
CAR
scFv
scFv



SEQ
Template
SEQ
SEQ
SEQ
SEQ



ID
(nucleic
ID
ID
ID
ID



NO:
acid)
NO:
NO:
NO:
NO:



(nucleic
LHA to
(nucleic
(amino
(nucleic
(amino


Constructs*
acid)
RHA
acid)
acid)
acid)
acid)
















CTX-152
1361
1397
1425
1451
1477
1501


CTX-153
1362
1398
1425
1451
1477
1501


CTX-154
1363
1399
1426
1452
1478
1502


CTX-155
1364
1400
1426
1452
1478
1502


CTX-160
1365
1401
1427
1453
1479
1503


CTX-161
1367
1403
1429
1455
1480
1504


CTX-162
1368
1404
1430
1456
1481
1505


CTX-163
1369
1405
1431
1457
1482
1506


CTX-164
1370
1406
1432
1458
1483
1507


CTX-165
1371
1407
1433
1459
1484
1508


CTX-166
1372
1408
1434
1460
1485
1509


CTX-167
1374
1410
1436
1462
1486
1510


CTX-168
1375
1411
1437
1463
1487
1511


CTX-169
1376
1412
1438
1464
1488
1512


CTX-170
1377
1413
1439
1465
1489
1513


CTX-171
1378
1414
1440
1466
1490
1514


CTX-172
1379
1415
1441
1467
1491
1515


CTX-173
1380
1416
1442
1468
1492
1516


CTX-174
1381
1417
1443
1469
1493
1517


CTX-175
1382
1418
1444
1470
1494
1518


CTX-176
1383
1419
1445
1471
1495
1519


CTX-177
1384
1420
1446
1472
1496
1520


CTX-178
1385
1421
1447
1473
1497
1521


CTX-179
1386
1422
1448
1474
1498
1522









It should be understood that for any one of the constructs provided in Table 24, the scFv fragment of the CAR may be substituted with any other scFv fragment listed in Table 24.


Example 20—HDR-Mediated Concurrent Transgene Insertion in Cells to Generate TRAC-B2M-BCMA CAR+ Cells

This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double stranded break induction) and AAV6 delivered donor template (CTX-152 or CTX-154) containing a BCMA CAR construct in primary human T cells.


Primary human T cells were activated with CD3/CD28 magnetic beads (as described previously in Example 2). Three days later activation beads were removed. The next day cells were electroporated with RNP complexes including sgRNAs targeting TRAC or B2M (2 separately complexed RNPs). 7 days post manipulation, cells were analyzed by flow cytometry, as previously described herein and in Example 2.


Guides used in this example target:











TRAC:



(SEQ ID NO: 76)



AGAGCAACAGTGCTGTGGCC;



and 






(SEQ ID NO: 686)



compriseTRAC sgRNA






B2M:



(SEQ ID NO: 417)



GCTACTCTCTCTTTCTGGCC;



and






(SEQ ID NO: 688)



comprise B2M sgRNA






The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)).


sgRNA sequences can be modified as follows: TRAC SEQ ID NO: 1342, B2M SEQ ID NO: 1345.


FACS analysis demonstrated that 77% of T cells were TRAC−, B2M− following treatment with TRAC sgRNA contain RNP and B2M sgRNA containing RNP (FIG. 32—top panels). In addition, the gene edited cells expressed the CAR construct as evidenced by positive GFP expression and recombinant BCMA binding (FIG. 32—bottom panels).



FIG. 32 demonstrates successful production of single human T cells lacking TCR and B2M surface expression with concurrent expression of the BCMA CAR from an integrated transgene in the TRAC locus using the methods described above (TCR−/B2M-BCMA CAR+).


Example 21—Evaluation of Effector Function in CRISPR/Cas9 Modified T Cells Expressing a BCMA Chimeric Antigen Receptor (CAR)

Cell Kill Assay in BCMA Expressing Cells


To assess the ability of TRAC/B2M/anti-BCMA CAR+ T cells to kill suspension cell lines a flow cytometry based cell killing assay was designed. The TRAC/B2M/anti-BCMA CAR+ T cells (see Example 19 for Table of CARs used) were co-cultured with cells of the BCMA-expressing RPMI8226 (ATCC Cat #ATCC-155) human plasmacytoma target cell line, cells of the BCMA-expressing U-266 cell line, or cells of the K562 cell line, which do not express BCMA (collectively referred to as the “target cells”. The target cells were labeled with 5 μM efluor670 (eBiosciences), washed and incubated in co-cultures with the TRAC/B2M/anti-BCMA CAR+ T cells at varying ratios (from 0.1:1 to 8:1 T cells to target cells) at 50,000 target cells per well of a U-bottom 96-well plate overnight. The next day wells were washed, media was replaced with 200 μL of media containing a 1:500 dilution of 5 mg/mL DAPI (Molecular Probes) (to enumerate dead/dying cells). Finally, 25 μL of CountBright beads (Life Technologies) was added to each well. Cells were then processed by flow cytometry.


Target cells per μL were then calculated from analyzed flow cytometry data:

Cells/μL=((number of live target cell events)/(number of bead events))×((Assigned bead count of lot (beads/50 μL))/(volume of sample))


Total target cells were calculated by multiplying cells/μL×the total volume of cells.


The percent cell lysis was then calculated with the following equation:

% Cell lysis=(1−((Total Number of Target Cells in Test Sample)/(Total Number of Target Cells in Control Sample))×100



FIG. 33A, FIG. 45B, and FIG. 46B (left graph) show that TRAC−/B2M−/anti-BCMA CAR+ T cells selectively killed RPMI 8226 cells at low T cell to BCMA-expressing target cell ratios; FIG. 46A (left graph) shows that TRAC−/B2M−/anti-BCMA CAR+ T cells selectively killed U-266 cells (ATCC® TIB-196™); and FIG. 46C (left graph) shows that TRAC−/B2M−/anti-BCMA CAR+ T cells showed no specific toxicity toward K562 cells (which lack BCMA expression). The results indicate that the CRISPR/Cas9 modified T cells described herein, induce potent cell lysis in BCMA expressing plasmacytoma cell line.


Interferon Gamma Stimulation by Genetically Engineered T Cells Expressing a BCMA CAR


The ability of the engineered cells to produce interferon gamma (IFNγ) in a target cell was analyzed using an ELISA assay, as described above and in Example 10 and 18.


The specificity of genetically modified T cells expressing an anti-BCMA CAR integrated into the TRAC gene, was evaluated in an in vitro ELISA assay. IFNγ from supernatants of cell co-cultures was measured. RPMI8226 cells were cultured with genetically engineered T cells expressing the anti-BCMA CAR, or controls. FIG. 33B demonstrates that TRAC/B2M/anti-BCMA CAR+ T cells (cells expressing CTX152 or CTX154) secrete higher levels of IFNγ when cultured with RPMI8226 (ATCC Cat #ATCC-155) cells as compared to T cells that do not express the anti-BCMA CAR (no RNP/AAV) (at a 0.2:1, 1:1, 2:1, and 4:1 CAR-T cell to target ratio). Similarly, FIG. 46B (right graph) and FIG. 47B demonstrate that TRAC/B2M/anti-BCMA CAR+ T cells secrete higher levels of IFNγ when cultured with RPMI8226 (ATCC Cat #ATCC-155) cells as compared to the controls. FIG. 46A (right graph) shows that TRAC/B2M/anti-BCMA CAR+ T cells also secrete higher levels of IFNγ when cultured with U-266 cells. By contrast, FIG. 46C (right graph) and FIG. 47A show that TRAC/B2M/anti-BCMA CAR+ T cells do not secrete IFNγ when cultured with K562 cells (cells that do not express BCMA). Thus, not only do the anti-BCMA CAR T cells of the present disclosure produce IFNγ, they do so specifically in the presence of BCMA-expressing cells.


Example 22—Assessment of HDR Frequencies in CD19 CAR-T Cells Produced by CRISPR-Cas9

A droplet digital PCR (ddPCR) assay was designed to measure the efficiency of integration of the CAR construct (CTX-138) into the TRAC locus. The primers and probes used in the ddPCR assay are shown in Table 25. SEQ ID NO: 1554-1556 were used to detect integration of the CAR construct, and SEQ ID NOs: 1557-1559 were used to amplify a control reference genomic region.


Forty (40) ng of genomic DNA was used in ddPCR reactions, droplets generated and then run in a thermocycler under the conditions shown in Table 26 and Table 27.


The percentage of cells that stained CD19 CAR+ by flow cytometry was plotted against the percentage of cells that were positive for an integrated CAR construct from 4 healthy donor TRAC−B2M−CAR-T cells (FIG. 34). The ddPCR results show a strong correlation between CD19 CAR expression and HDR frequency (R2=0.88), indicating that we achieved site-specific integration and high expression levels of the CD19 CAR construct into the TRAC locus of T cells using CRISPR gene editing.









TABLE 25







Primers and Probes used in ddPCR assay













SEQ





ID


Primers/Probes
Sequence
Locus
NO:





EH_TRAC_dPCR_F5
AGAAGGATAAGATGGCGGAGG
TRAC
1554





EH_TRAC_dPCR_R5
GCTTTCTGGCGTCCTTAGAA
TRAC
1555





EH_TRAC_Probe_3end_2
TCTACCCTCTCATGGCCTAGAAGG
TRAC
1556





EH_control_1kb_F1
TGGAGTGATTAGGAACATGAGCT
Control
1557





EH_control_1kb_R1
AAGCTCAAGCACTTCTAGTTAGAAAC
Control
1558





EH_control_1kb_probe_1
ATTCCACCCCACCTTCACTAAG
Control
1559
















TABLE 26







PCR mixture











1X














2X Droplet PCR Supermix
12.5



Forward Primer (18 uM)
1.25



Reverse Primer (18 uM)
1.25



Probe (5 uM)
1.25



Forward Primer (18 uM)
1.25



Reverse Primer (18 uM)
1.25



Probe (5 uM)
1.25



H2O




Mix volume
20

















TABLE 27







PCR conditions











Duration


# Cycles
Temp
of Cycle













1
95 C.
10
min


40
90 C.
30
sec



59 C.
1
min



72 C.
3
min


1
98 C.
10
min









1
 4 C.
forever









Example 23—Evaluation of Effector Function of TRAC−/B2M−/Anti-CD19 CAR+ T Cells on a B-ALL Cell Line

In this example the effector functions of TRAC−/B2M−/anti-CD19 CAR+ T cells when co-cultured with the Nalm6 human B-ALL cell line were assessed.


GranzymeB Assay


To further assess the effector functions of TRAC−/B2M−/anti-CD19 CAR+ T cells, intracellular GranzymeB levels in target cells were measured in a surrogate cell lysis assay. GranzymeB secretion was assessed as described in Example 18. TRAC−/B2M−/anti-CD19 CAR+ T cells or control cells were cocultured with the Nalm6 cell line. As shown in FIG. 35A, TRAC−/B2M−/anti-CD19 CAR+ T cells co-cultured with the Nalm6 human B-ALL cell line at a 4:1 ratio exhibit efficient GranzymeB insertion indicating that TRAC−/B2M−/anti-CD19 CAR+ T cells can induce lysis of the CD19 positive Nalm6 B-ALL cell line.


Interferon Gamma Stimulation by Genetically Engineered T Cells Expressing a CD19 CAR


The ability of the engineered cells to produce interferon gamma (IFNγ) in a target cell was analyzed using an ELISA assay, as herein and in Example 10.


IFNγ from supernatants of cell co-cultures was measured. TRAC/B2M/anti-CD19 CAR+ T cells secrete high levels of IFNγ when cultured with CD19 positive Nalm6 cells, as shown in FIG. 35B.


Cell Kill Assay for Suspension Cell Lines


To assess the ability of TRAC/B2M/anti-CD19 CAR+ T cells to kill suspension cell lines a flow cytometry based cell killing assay was designed. Cells were co-cultured with the Nalm6 human B-cell acute lymphoblastic leukemia (B-ALL) target cell line. The Nalm6 target cells were labeled with 5 μM efluor670 (eBiosciences), washed and incubated in co-cultures with T cells at varying ratios (from 0.1:1 to 8:1 T cells to target cells) at 50,000 target cells per well of a U-bottom 96-well plate overnight. The next day wells were washed, media was replaced with 200 μL of media containing a 1:500 dilution of 5 mg/mL DAPI (Molecular Probes) (to enumerate dead/dying cells). Finally, 25 μL of CountBright beads (Life Technologies) was added to each well. Cells were then processed by flow cytometry.


Cells per μL were then calculated from analyzed flow cytometry data:

Cells/μL=((number of live target cell events)/(number of bead events))×((Assigned bead count of lot (beads/50 μL))/(volume of sample))


Total cells were calculated by multiplying cells/μL×the total volume of cells.


The percent cell lysis was then calculated with the following equation:

% Cell lysis=(1-((Total Number of target Cells in Test Sample)/(Total Number of Target Cells in Control Sample))×100.



FIG. 35C shows that TRAC−/B2M−/anti-CD19 CAR+ T cells selectively killed Nalm6 cells at low T to target cell ratios. The results indicate that the CRISPR/Cas9 modified T cells described herein, induce potent cell lysis in CD19 expressing acute lymphoblastic leukemia cell line.


Example 24—Creation of PD1, B2M, TRAC Triple Knockout Anti-CD19 CAR-T Cells

This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of the TCR, MHC I, and PD1 and express a chimeric antigen receptor targeting CD19+ cancers.


CRISPR/Cas9 and AAV6 were used as above (see for example, Examples 8-10 and 12) to create human T cells that lack expression of the TCR, B2M and PD1 with concomitant expression from the TRAC locus using a CAR construct targeting CD19 (CTX-138; SEQ ID NO: 675). In this example activated T cells were electroporated with 3 distinct RNP complexes containing sgRNAs targeting TRAC (e.g.: SEQ ID NO: 76), B2M (e.g.: SEQ ID NO: 417 and PD1 (CTGCAGCTTCTCCAACACAT (SEQ ID NO: 916)). The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)); and PD1 gRNA spacer (CUGCAGCUUCUCCAACACAU (SEQ ID NO: 1086)). About 1 week post electroporation cells were either left untreated or treated with PMA/ionomycin overnight. The next day cells were processed for flow cytometry. FIG. 58A shows that only cells treated with PD1 sgRNA containing RNP do not upregulate PD1 surface levels in response to an overnight treatment of PMA/ionomycyin.


Example 25—Efficacy of CD70 CAR+ T Cells: The Subcutaneous Renal Cell Carcinoma Tumor Xenograft Model in NOG Mice

NOG mice were injected subcutaneously with 5×106 A498 renal cell carcinoma cells. At day 10 post inoculation mice were either left untreated or injected intravenously (I.V.) with a therapeutic dose of 1×107 or 2×107 anti-CD70 CAR-T cells. Tumor volumes were measured every 2 days for the duration of the study (31 days). Injection of anti-CD70 CART cells lead to decreased tumor volumes at both doses (FIG. 37). These data show that anti-CD70 CART cells can regress CD70+ kidney cancer tumors in vivo.


Transgene insertion in primary human T cells via homology directed repair (HDR) and concurrent gene knockout by Cas9:sgRNA RNA was performed as described above in Example 16 to produce cells lacking TCR surface expression and to concurrently express an anti-CD70 CAR construct (TRAC/anti-CD70CAR+ cells). Primary human T cells were first electroporated with Cas9 or Cas9:sgRNA RNP complexes targeting TRAC (AGAGCAACAGTGCTGTGGCC (SEQ ID NO: 76); TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)). The DNA double stranded break at the TRAC locus was repaired by homology directed repair with an AAV6-delivered DNA template (CTX-145; SEQ ID NO: 1359) containing right and left homology arms to the TRAC locus flanking a chimeric antigen receptor cassette (−/+ regulatory elements for gene expression). The resulting modified T cells are TRAC/anti-CD70CAR+. The ability of the modified TRAC/anti-CD70CAR+ T cells to ameliorate disease caused by a CD70+ renal carcinoma cell line was evaluated in NOG mice using methods employed by Translational Drug Development, LLC (Scottsdale, Ariz.). In brief, twelve (12), 5-8 week old female, CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. On Day 1 mice received a subcutaneous inoculation of 5×106A498 renal carcinoma cells/mouse. The mice were further divided into 3 treatment groups as shown in Table 26. On Day 10 (9 days post inoculation with the A498 cells), treatment group 2 and group 3 received a single 200 μl intravenous dose of TRAC/anti-CD70CAR+ cells according to Table 26.









TABLE 28







Treatment groups










Group
A498 cells
T cell treatment (i.v.)
N





1
5 × 106 cells/mouse
None
8


2
5 × 106 cells/mouse
1 × 107 cells/mouse
3


3
5 × 106 cells/mouse
2 × 107 cells/mouse
3









Tumor volumes were measured every 2 days. By Day 18 treatment with the anti-CD70 CART cells at both doses began to show a decrease in tumor volume (FIG. 37). Tumor volume continues to decrease for the duration of the study. These data demonstrate that anti-CD70 CART cells can regress CD70+ kidney cancer tumors in vivo.


Example 26.—Anti-BCMA CAR Expression and Cytotoxicity

Allogeneic anti-BCMA CAR T cells were generated as described above. Anti-BCMA CAR expression was measured by determining the percent of cells that bound biotinylated BCMA subsequently detected by FACS using streptavidin-APC (FIG. 47).


Anti-BCMA CAR constructs were then evaluated for their ability to kill RPMI-8226 cells. All Anti-BCMA CAR T cells with ≥10% expression were potently cytotoxic towards effector cells, while allogeneic T cells lacking a CAR showed little cytotoxicity (FIG. 48).


Example 27.—Cell Health Maintenance Post Gene Editing

Allogenic anti-CD19 CAR T cells were generated as described above. At 21 days post gene editing, the following protocol was used to stain cells for expression of the indicated marker:


Stain cells with the following antibody for 30 min at 4° C.


Anti-mouse Fab2 biotin 115-065-006 (Jackson ImmunoRes) 1:5


Wash cells 1× with FACS buffer.


Add 1 μg of normal mouse IGG (Peprotech 500-M00) to 100 μL of cells for 10 min at RT.


Wash cells 1× with FACS buffer and resuspend in 100 μL of FACS buffer.


Stain cells with the following cocktail for 15 min at RT.


The antibodies used in this Example are as follows:














TABLE 29





Antibody
Clone
Fluor
Catalogue #
Dilution
For 1







CD4
RPA-T4
BV510
300545
1:100
1 uL





(Biolegend)




CD8
SK1
BV605
344741
1:100
1 uL





(Biolegend)




CD45RA
HI100
APC-CY7
304128
1:100
1 uL





(Biolegend)




CCR7
G043H7
Pacific Blue
353210
1:100
1 uL





(Biolegend)




PD1
EH12.2H7
PE
329906
1:100
1 uL





(Biolegend)




LAG3
11C3C65
PE-Cy7
369310
1:100
1 uL





(Biolegend)




CD57
HCD57
FITC
322306
1:100
1 uL





(Biolegend)




Streptavidin

APC
17-4317-82
1:100
1 uL





(eBioscience)









This data shows that health of TRAC−/B2M−/anti-CD19+CAR T cells is maintained at day 21 post gene editing (the cells behave as normal (unedited) cells).


Example 28.—Comparison of TCR Genotype in Gene Edited Cells Pre- and Post-Enrichment

TRAC−/B2M−/anti-CD19+CAR T cells (TC1) cells were produced and were depleted using TCRab antibodies and the Prodigy System (Miltenyi Biotech). Purities of >99.5% TCRab cells in the total population were achieved from starting inputs of 95.5% TCRab− cells.


Example 29.—Allogeneic Anti-BCMA CAR T Cell Targeting

This example demonstrates the generation of an allogeneic anti-BCMA CAR-T cells using CRISPR/Cas9 genome editing. High efficiency editing was attained with over 60% of the cells harboring the three desired edits. The CAR-T cells maintain a normal CD4/CD8 ratio, as well as characteristic cytokine dependency, suggesting neither abnormal tonic signaling from CAR insertion nor transformation due to the editing process have occurred. The CAR-T cells selectively killed BCMA cells and secreted T cell activation cytokines following encounter with BCMA-expressing cells. The CAR-T cells eradicated MM cells in a subcutaneous RPMI-8226 tumor xenograft model, confirming potent activity in vivo.


High Efficiency Genome Editing by CRISPR/Cas9


TRAC/B2M/anti-BCMA CAR+ cells were generated using the methods described in Example 19. FIG. 52A shows a FACS plot of (32M and TRAC expression one week following gene editing (left) and a representative FACS plot of CAR expression following knock-in to the TRAC locus (right). FIG. 52B is a graph showing decreased surface expression of both TCR and MHC-I following gene editing. Combined with a high CAR expression, this leads to more than 60% cells with all desired modifications (TCR−/β2M−/anti-BCMA CAR+).


T Cell CD4+/CD8+ Ratio Following Editing


At two weeks post gene editing, the following protocol was used to stain TCR−/β2M−/anti-BCMA CAR+ cells for expression of the indicated marker:


Stain cells with the following antibody for 30 min at 4° C.


Recombinant biotinylated human BCMA (Acro Biosystems Cat: #BC7-H82F0 at a concentration of 100 nM


Wash cells 1× with FACS buffer and resuspend in 100 μL of FACS buffer.


Stain cells with the following cocktail for 15 min at RT.


The antibodies used in this Example were CD4 and CD8 (See Table 27). This data showed that the edited T cells had the same CD4+/CD8+ ratio as unedited T cells. (data not shown).


Two weeks following editing and anti-BCMA CAR knock-in, serum and/or cytokines were removed from the growth media. As expected, in the absence of cytokines no further proliferation of T-cells was observed (FIG. 53). Additionally, T-cells showed reduced proliferation following prolonged in vitro culture.


Allogeneic Anti-BCMA CAR T Cells Show Potent and Specific Activity In Vitro


To assess the ability of TRAC/B2M/anti-BCMA CAR+ T cells to selectively kill a BCMA expressing multiple myeloma cell line (MM.1S), a flow cytometry based cell killing assay was designed, similar to the assay described in Example 21. The TRAC/B2M/anti-BCMA CAR+ T cells (see Example 19 for Table of CARs used) were co-cultured with cells of the BCMA-expressing MM.1S multiple myeloma cell line or cells of the K562 cell line, which do not express BCMA (collectively referred to as the “target cells”).


Target cells per μL were then calculated from analyzed flow cytometry data:

Cells/μL=((number of live target cell events)/(number of bead events))×((Assigned bead count of lot (beads/50 μL))/(volume of sample))


Total target cells were calculated by multiplying cells/μL×the total volume of cells.


The percent cell lysis was then calculated with the following equation:

% Cell lysis=(1−((Total Number of Target Cells in Test Sample)/(Total Number of Target Cells in Control Sample))×100.



FIG. 54A shows that TRAC−/B2M−/anti-BCMA CAR+ T cells selectively killed MM.1S cells but showed no specific toxicity toward K562 cells (which lack BCMA expression). The results indicate that the CRISPR/Cas9 modified T cells described herein, induce potent cell lysis in a BCMA-expressing multiple myeloma cell line.


The ability of the engineered TRAC−/B2M−/anti-BCMA CAR+ T cells to produce interferon gamma (IFNγ) and IL-2 in response to target cells was analyzed using an ELISA assay, as described above and in Examples, 10, 18, and 21.


The specificity of genetically modified T cells expressing an anti-BCMA CAR integrated into the TRAC gene, was evaluated in an in vitro ELISA assay. IFNγ and IL-2 from supernatants of cell co-cultures was measured. MM.1S cells were cultured with genetically engineered T cells expressing the anti-BCMA CAR, or controls. FIG. 54B demonstrates that TRAC/B2M/anti-BCMA CAR+ T cells (cells expressing CTX166) secrete higher levels of IFNγ and IL-2 when cultured with MM.1S cells as compared to T cells that do not express the anti-BCMA CAR (unedited T cells). By contrast, the TRAC/B2M/anti-BCMA CAR+ T cells do not secrete IFNγ or IL-2 when cultured with K562 cells (cells that do not express BCMA).


The cell kill assay was repeated with the addition of the multiple myeloma cell line H929, which expresses higher levels of BCMA compared to MM.1S (FIG. 54C). FIG. 54D shows that accelerated kill of the H929 cells was observed compared to the MM1s cells (D). The cell kill efficiency is shown using a ratio of 1:1 effector to T cell.


Thus, not only do the anti-BCMA CAR T cells of the present disclosure produce IFNγ and IL-2, they do so specifically in the presence of BCMA-expressing cells.


Allogeneic Anti-BCMA CAR T Cells Show Potent Activity In Vivo


In this example, the efficacy of CAR-T cells against the subcutaneous RPMI-8226 tumor xenograft model in NOG mice was evaluated. In brief, 12, 5-8 week old female, CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. On Day 1 mice received a subcutaneous inoculation of 10×106 RPMI-8226 cells/mouse. The mice were further divided into two treatment group. Ten (10) days post inoculation with RPMI-8226 cells, the first treatment group (N=5) received a single 200 μl intravenous dose of 10×106 edited TRAC/B2M/anti-BCMA CAR+ T cells, and the second treatment group (N=5) received a single 200 μl intravenous dose of 20×106 edited TRAC/B2M/anti-BCMA CAR+ T cells.


Tumor volume and body weight was measured and individual mice were euthanized when tumor volume was ≥500 mm3. By Day 18, the data show a statistically significant decrease in the tumor volume in response to TRAC/B2M/anti-BCMA CAR+ T cells as compared to untreated mice (FIG. 55).


PD1, B2M, TRAC Triple Knockout Anti-BCMA CAR-T Cells


This example describes the production by CRISPR/Cas9 and AAV6 of allogeneic human T cells that lack expression of the TCR, MHC I, and PD1 and express a chimeric antigen receptor targeting BCMA+ cancers.


CRISPR/Cas9 and AAV6 were used as above (see for example, Examples 8-10 and 12) to create human T cells that lack expression of the TCR, B2M and PD1 with concomitant expression from the TRAC locus using a CAR construct targeting BCMA (SEQ ID NO: 1434). In this example activated T cells were electroporated with 3 distinct RNP complexes containing sgRNAs targeting TRAC (e.g., TRAC gRNA spacer SEQ ID NO: 152), B2M (e.g., B2M gRNA spacer SEQ ID NO: 466) and PD1 (e.g., PD1 gRNA spacer SEQ ID NO: 1086). About 1 week post electroporation cells were either left untreated or treated with PMA/ionomycin overnight. The next day cells were processed for flow cytometry. FIG. 38 shows that only cells treated with PD1 sgRNA containing RNP do not upregulate PD1 surface levels in response to an overnight treatment of PMA/ionomycyin.


Example 30.—Allogeneic Anti-CD70 CAR T Cell Targeting

High Efficiency CRISPR/Cas9 Gene Editing to Produce Allogeneic Anti-CD70 CAR-T Cells


This example demonstrates efficient transgene insertion and concurrent gene knockout by Cas9:sgRNA RNP (for double stranded break induction) and AAV6 delivered donor template containing a CD70 CAR construct (SEQ ID NO: 1424) in primary human T cells. The experiments described here are similar to those described in Example 16.


Primary human T cells were activated with CD3/CD28 magnetic beads (as described previously in Example 2). Three days later activation beads were removed. The next day cells were electroporated with RNP complexes including sgRNAs targeting either TRAC alone, or TRAC+B2M (two separately complexed RNPs). Seven days post manipulation, cells were analyzed by flow cytometry, as previously described herein and in Example 2.


Guides used in this example target:











TRAC:



(SEQ ID NO: 76)



AGAGCAACAGTGCTGTGGCC;






(SEQ ID NO: 686)



TRAC sgRNA






B2M:



(SEQ ID NO: 417)



GCTACTCTCTCTTTCTGGCC;






(SEQ ID NO: 688)



TRAC sgRNA.






The gRNAs used in this Example comprise the following spacer sequences: TRAC gRNA spacer (AGAGCAACAGUGCUGUGGCC (SEQ ID NO: 152)); and B2M gRNA spacer (GCUACUCUCUCUUUCUGGCC (SEQ ID NO: 466)). FIG. 56A shows that high editing rates were achieved at the TRAC and (32M loci resulting in decreased surface expression of TCR and MHC-I. Highly efficient site-specific integration and expression of the anti-CD70 CAR from the TRAC locus was also detected. Data are from three healthy donors. FIG. 56B shows that production of allogeneic anti-CD70 CAR-T cells (TCR-β2M-CAR+) preserves CD4 and CD8 proportions.


Anti-CD70 CAR-T Cells Kill Multiple Myeloma Cells


To assess the ability of TRAC/B2M/anti-CD70 CAR+ T cells to kill a CD70-expressing multiple myeloma cell line (MM.1S), a flow cytometry-based cell killing assay was designed, similar to the assay described in Examples 21 and 29. The TRAC/B2M/anti-CD70 CAR+ T cells were co-cultured with cells of the BCMA-expressing MM.1s multiple myeloma cell line. FIG. 57 shows that allogeneic anti-CD70 CAR-T cells (TCR-β2M-CAR+) show potent cytotoxicity against the CD70+MM.1S multiple myeloma-derived cell line.


Example 31.—Comparison of Anti-BCMA (CD28) CAR and Anti-BCMA (4-1BB) CAR

CAR Expression


Allogeneic TRAC−/B2M−/anti-BCMA CAR T+ cells were generated, as described above, having either a CD28 co-stimulatory domain (encoded by CTX-160 or CTX-166) or a 4-1BB co-stimulatory domain (encoded by CTX160b or CTX166b). Anti-BCMA CAR expression was measured by determining the percent of cells that bound biotinylated BCMA subsequently detected by FACS using streptavidin-APC (FIG. 67). Greater than 60% of the cells expressed the CAR at the cell surface.


Cytotoxicity


To assess the ability of the same TRAC/B2M/anti-BCMA (CD28 v. 4-1BB) CAR+ T cells to selectively kill a BCMA expressing multiple myeloma cell line (MM.1S), a flow cytometry based cell killing assay was designed, similar to the assay described in Example 21. The TRAC/B2M/anti-BCMA CAR+ T cells were co-cultured with cells of the BCMA-expressing MM.1S multiple myeloma cell line.


Target cells per μL were then calculated from analyzed flow cytometry data:

Cells/μL=((number of live target cell events)/(number of bead events))×((Assigned bead count of lot (beads/50 μL))/(volume of sample))


Total target cells were calculated by multiplying cells/μL×the total volume of cells.


The percent cell lysis was then calculated with the following equation:

% Cell lysis=(1−((Total Number of Target Cells in Test Sample)/(Total Number of Target Cells in Control Sample))×100.



FIG. 68 shows that all TRAC−/B2M−/anti-BCMA CAR+ T cells killed MM.1S cells. The results indicate that the CRISPR/Cas9 modified T cells described herein, induce potent cell lysis in a BCMA-expressing multiple myeloma cell line.


Interferon Gamma Secretion


The ability of the engineered TRAC−/B2M−/anti-BCMA (CD28 v. 4-1BB) CAR+ T cells to produce interferon gamma (IFNγ) in response to target cells was analyzed using an ELISA assay, as described above and in Examples, 10, 18, and 21.


The specificity of genetically modified T cells was evaluated in an in vitro ELISA assay. IFNγ from supernatants of cell co-cultures was measured. MM.1S cells were cultured with genetically engineered T cells expressing the anti-BCMA CAR, or controls. FIG. 69 demonstrates that all TRAC/B2M/anti-BCMA CAR+ T cells secrete higher levels of IFNγ when cultured with MM.1S cells as compared to T cells that do not express the anti-BCMA CAR (unedited T cells). By contrast, the TRAC/B2M/anti-BCMA CAR+ T cells do not secrete IFNγ or IL-2 when cultured with K562 cells (cells that do not express BCMA).


Thus, not only do the anti-BCMA CAR T cells of the present disclosure produce IFNγ, they do so specifically in the presence of BCMA-expressing cells.


Cell Kill Assay


To assess the ability of TRAC/B2M/anti-BCMA (4-1BB) CAR+ T cells to kill suspension cell lines, a flow cytometry-based cell killing assay was designed. The TRAC/B2M/anti-BCMA CAR+ T cells were co-cultured with cells of the BCMA-expressing RPMI-8226 (ATCC Cat #ATCC-155) human plasmacytoma target cell line, cells of the BCMA-expressing U-266 cell line, cells of the multiple myeloma cell line H929, or cells of the K562 cell line, which do not express BCMA (collectively referred to as the “target cells”. The target cells were labeled with 5 μM efluor670 (eBiosciences), washed and incubated in co-cultures with the TRAC/B2M/anti-BCMA CAR+ T cells at varying ratios (from 0.1:1 to 8:1 T cells to target cells) at 50,000 target cells per well of a U-bottom 96-well plate overnight. The next day wells were washed, media was replaced with 200 μL of media containing a 1:500 dilution of 5 mg/mL DAPI (Molecular Probes) (to enumerate dead/dying cells). Finally, 25 μL of CountBright beads (Life Technologies) was added to each well. Cells were then processed by flow cytometry.


Target cells per μL were then calculated from analyzed flow cytometry data:

Cells/μL=((number of live target cell events)/(number of bead events))×((Assigned bead count of lot (beads/50 μL))/(volume of sample))


Total target cells were calculated by multiplying cells/μL×the total volume of cells.


The percent cell lysis was then calculated with the following equation:

% Cell lysis=(1−((Total Number of Target Cells in Test Sample)/(Total Number of Target Cells in Control Sample))×100



FIG. 70 shows that TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells selectively killed RPMI 8226 cells, U-266 cells, and H929 cells, with no specific toxicity toward K562 cells (which lack BCMA expression). The results indicate that the CRISPR/Cas9 modified T cells induce potent cell lysis in BCMA expressing plasmacytoma cell line.


Interferon Gamma and IL-2 Stimulation


The ability of the TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells to produce interferon gamma (IFNγ) in a target cell was analyzed using an ELISA assay, as described above and in Example 10 and 18.


The specificity of genetically modified T cells expressing an anti-BCMA CAR integrated into the TRAC gene, was evaluated in an in vitro ELISA assay. IFNγ and IL-2 from supernatants of cell co-cultures was measured. Target RPMI-8226, U2261, H929, or K562 cells were cultured with genetically engineered T cells expressing the anti-BCMA CAR, or controls. FIGS. 73 and 74 demonstrates that TRAC/B2M/anti-BCMA CAR+ T cells secrete higher levels of IFNγ (FIG. 71) and IL-2 (FIG. 72) when cultured with each of the target cell lines, as compared to T cells that do not express the anti-BCMA CAR (no RNP) (at a 0.5:1, 1:1, 1.5:1, 2:1, and 2.5:1 CAR-T cell to target ratio), with the exception of the K562 cell line. Thus, not only do the TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells of the present disclosure produce IFNγ and IL-2, they do so specifically in the presence of BCMA-expressing cells.


Similar studies as above were repeated using TRAC−/B2M−/anti-BCMA (4-1BB) CAR+ T cells compared to TRAC−/B2M−/PD-1-/anti-BCMA (4-1BB) CAR+ T cells. The edited cells were assayed with MM.1S cells or K562 cells for cytotoxicity, IFN-γ stimulation, and IL-2 stimulation. The results are depicted in FIG. 74, showing that the edited cells induce potent cell lysis specifically in the BCMA-expressing K562 cell line, and they produce IFNγ and IL-2 specifically in the presence of BCMA-expressing cells (FIG. 74).


Example 32—In Vivo Tumor Model for Anti-BCMA CAR in Context of PD-1 Knockout

The efficacy of TRAC−/B2M−/anti-BCMA (CD28 co-stim) CAR+ T cells and TRAC−/B2M−/PD-1−/anti-BCMA (CD28 co-stim) CAR+ T cells against the subcutaneous RPMI-8226 tumor xenograft model in NOG mice was evaluated. In brief, thirty five (35), 5-8 week old female, CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. On Day 1 mice received a subcutaneous inoculation of 10×106 RPMI-8226 cells/mouse. Ten (10) days post inoculation with RPMI-8226 cells, the mice were divided into 6 treatment groups (N=5) and dosed as indicated in Table 30.












TABLE 30





Group
CAR T Cell
# of T Cells injected
N







1
N/A
N/A
4


2
TRAC-/B2M-/PD1-/CTX160
1 × 107 cells/mouse
4


3
TRAC-/B2M-/CTX160
1 × 107 cells/mouse
4


4
TRAC-/B2M-/CTX160
2 × 107 cells/mouse
N


5
TRAC-/B2M-/PD1-/CTX166
1 × 107 cells/mouse
4


6
TRAC-/B2M-/CTX166
1 × 107 cells/mouse
4


7
TRAC-/B2M-/CTX166
2 × 107 cells/mouse
4









Tumor volume and body weight was measured and individual mice were euthanized when tumor volume was ≥500 mm3. By Day 18, the data show a statistically significant decrease in the tumor volume in response to TRAC−/B2M−/anti-BCMA (CD28 co-stim) CAR+ T cells and TRAC−/B2M−/PD-1−/anti-BCMA (CD28 co-stim) CAR+ T cells as compared to untreated mice (FIG. 73).


Example 33—Efficacy of TRAC−/B2M−/Anti-CD70 CAR+ T Cells or TRAC−/B2M−/PD1-/Anti-CD70 CAR+ T Cells, with CD28 or 41BB Costimulatory Domains: The Subcutaneous Renal Cell Carcinoma Tumor Xenograft Model in NOG Mice

NOG mice were injected subcutaneously with 5×106 A498 renal cell carcinoma cells. When tumors reached ˜150 mm3, mice were either left untreated or injected intravenously (I.V.) with a therapeutic dose of 1×107 anti-CD70 CAR-T cells. Tumor volumes were measured every 2 days for the duration of the study. Injection of anti-CD70 CART cells lead to decreased tumor volumes (FIG. 75) before the tumors grow again. These data show that TRAC−/B2M- or TRAC−/B2M−/PD1-anti-CD70 CAR+ T cells, with CD28 or 41BB costimulatory domains, have similar anti-tumor activity against CD70+ kidney cancer tumors in vivo.


The anti-CD70 CAR+ T cells were generated as described above in Example 18. Furthermore the in vivo study was conducted similarly to the one described in Example 25. The ability of the modified TRAC/B2M- or TRAC−/B2M−/PD1-anti-CD70CAR+ T cells, with CD28 or 41BB co-stimulatory domains, to ameliorate disease caused by a CD70+ renal carcinoma cell line was evaluated in NOG mice using methods employed by Translational Drug Development, LLC (Scottsdale, Ariz.). In brief, 5-8 week old females, CIEA NOG (NOD.Cg-PrkdcscidI12rgtm1Sug/JicTac) mice were individually housed in ventilated microisolator cages, maintained under pathogen-free conditions, 5-7 days prior to the start of the study. On Day 1 mice received a subcutaneous inoculation of 5×106A498 renal carcinoma cells/mouse. The mice were further divided into 5 treatment groups as shown in Table 31. When tumors reach ˜150 mm3, treatment groups 2, 3, 4 and 5 received a single 200 μl intravenous dose of TRAC/anti-CD70CAR+ cells according to Table 31.









TABLE 31







Treatment groups










Group
A498 cells
T cell treatment (i.v.)
N





1
5 × 106
None
12 



cells/mouse




2. CD28, TRAC-B2M-
5 × 106
1 × 107 cells/mouse
5



cells/mouse




3. CD28, TRAC-B2M-PD1-
5 × 106
1 × 107 cells/mouse
5



cells/mouse




4. 41BB, TRAC-, B2M-
5 × 106
1 × 107 cells/mouse
5



cells/mouse




5. 41BB, TRAC-, B2M-, PD1-
5 × 106
1 × 107 cells/mouse
5



cells/mouse









Tumor volumes were measured every 2 days. These data demonstrate that TRAC−/B2M- or TRAC−/B2M−/PD1-anti-CD70 CAR+ T cells, with CD28 or 41BB costimulatory domains, have similar anti-tumor activity against CD70+ kidney cancer tumors in vivo.



FIG. 75 is a graph depicting similar decrease in tumor volume (mm3) following treatment of NOG mice that were injected subcutaneously with A498 renal cell carcinoma cell lines with TRAC−/B2M- or TRAC−/B2M−/PD1-anti-CD70 CAR+ T cells, with CD28 or 41BB costimulatory domains. All Groups of NOG mice were injected with 5×106 cells/mouse. Group 1 received no T cell treatment. Mice in Group 2 were treated intravenously with 1×107 cell/mouse of TRAC−/B2M− anti-CD70 CAR+ T cells, with CD28 costimulatory domain, when tumors reached ˜150 mm3. Mice in Group 3 were treated intravenously with 2×107 cell/mouse of TRAC−/B2M−/PD1-anti-CD70 CAR+ T cells, with CD28 costimulatory domain, when tumors reached ˜150 mm3. Mice in Group 3 were treated intravenously with 1×107 cell/mouse of TRAC−/B2M− anti-CD70 CAR+ T cells, with 41BB costimulatory domain, when tumors reached ˜150 mm3. Mice in Group 4 were treated intravenously with 2×107 cell/mouse of TRAC−/B2M−/PD1-anti-CD70 CAR+ T cells, with 41BB costimulatory domain, when tumors reached ˜150 mm3









TABLE 32







Modified sgRNAs









SEQ ID

SEQUENCE (*: indicates a nucleotide with a 2′-O′methyl


NO:
DESCRIPTION
phosphorothioate modification)





1342
TRAC modified
A*G*A*GCAACAGUGCUGUGGCCGUUUUAGAGCUAGAAAUAGCAA



sgRNA
GUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACC




GAGUCGGUGCU*U*U*U





1343
TRAC
AGAGCAACAGUGCUGUGGCCGUUUUAGAGCUAGAAAUAGCAAGU



unmodified
UAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGA



sgRNA
GUCGGUGCUUUU





1344
B2M modified
G*C*U*ACUCUCUCUUUCUGGCCGUUUUAGAGCUAGAAAUAGCAA



sgRNA
GUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACC




GAGUCGGUGCU*U*U*U





1345
B2M unmodified
GCUACUCUCUCUUUCUGGCCGUUUUAGAGCUAGAAAUAGCAAGU



sgRNA
UAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGA




GUCGGUGCUUUU





1346
AAVS1
G*G*G*GCCACUAGGGACAGGAUGUUUUAGAGCUAGAAAUAGCA



modified sgRNA
AGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCAC




CGAGUCGGUGCU*U*U*U





1347
AAVS1
GGGGCCACUAGGGACAGGAUGUUUUAGAGCUAGAAAUAGCAAGU



unmodified
UAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGA



sgRNA
GUCGGUGCUUUU





1574
PD1 modified
C*U*G*CAGCUUCUCCAACACAUGUUUUAGAGCUAGAAAUAGCAA



sgRNA
GUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACC




GAGUCGGUGCU*U*U*U





1575
PD1 unmodified
CUGCAGCUUCUCCAACACAUGUUUUAGAGCUAGAAAUAGCAAGU



sgRNA
UAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGA




GUCGGUGCUUUU





1587
TRAC modified
G*A*G*AAUCAAAAUCGGUGAAUGUUUUAGAGCUAGAAAUAGCA



sgRNA
AGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCAC




CGAGUCGGUGCU*U*U*U





1588
TRAC
GAGAAUCAAAAUCGGUGAAUGUUUUAGAGCUAGAAAUAGCAAG



unmodified
UUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCG



sgRNA
AGUCGGUGCUUUU
















TABLE 33







Constructs



















CAR

scFv





LHA to
CAR
Amino
scFv
Amino




rAAV
RHA
Nucleotide
Acid
Nucleotide
Acid



Description
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39








Name
SEQ ID NOs.

















CTX-131
Anti-CD19
1348
1387
1316
1338
1333
1334



(GFP)








CTX-132
Anti-CD19
1349

1316
1338
1333
1334



(GFP)








CTX-133
Anti-CD19
1350
1388
1316
1338
1333
1334



(GFP)








CTX-134
Anti-CD19
1351

1316
1338
1333
1334



(GFP)








CTX-135
Anti-CD19
1352
1389
1316
1338
1333
1334



(GFP)








CTX-136
Anti-CD19
1353

1316
1338
1333
1334



(GFP)








CTX-138
Anti-CD19
1354
1390
1316
1338
1333
1334



(no GFP)








CTX-139
Anti-CD19
1355
1391
1316
1338
1333
1334



(no GFP)








CTX-
Anti-CD19

1583
1316
1338
1333
1334


139.1
(no GFP)








CTX-
Anti-CD19

1584
1316
1338
1333
1334


139.2
(no GFP)








CTX-
Anti-CD19

1585
1316
1338
1333
1334


139.3
(no GFP)








CTX 140
Anti-CD19
1356
1392
1316
1338
1333
1334



(no GFP)








CTX-141
Anti-CD19
1357
1393
1316
1338
1333
1334



(no GFP)








CTX-142
Anti-CD70
1358
1394
1423
1449
1475
1499



(CD70A, no









GFP)








CTX-145
Anti-CD70
1359
1395
1424
1450
1476
1500



(CD70B, no









GFP)








CTX-145b
Anti-CD70
1360
1396
1275
1276
1476
1500



(4-1BB)








CTX-152
Anti-BCMA
1361
1397
1425
1451
1477
1501



(BCMA-1,









GFP)








CTX-153
Anti-BCMA
1362
1398
1425
1451
1477
1501



(BCMA-1,









no GFP)








CTX-154
Anti-BCMA
1363
1399
1426
1452
1478
1502



(BCMA-2,









GFP)








CTX-155
Anti-BCMA
1364
1400
1426
1452
1478
1502



(BCMA-2,









no GFP)








CTX-160
Anti-BCMA
1365
1401
1427
1453
1479
1503


CTX-160b
Anti-BCMA
1366
1402
1428
1454
1479
1503



(4-1BB)








CTX-161
Anti-BCMA
1367
1403
1429
1455
1480
1504


CTX-162
Anti-BCMA
1368
1404
1430
1456
1481
1505


CTX-163
Anti-BCMA
1369
1405
1431
1457
1482
1506


CTX-164
Anti-BCMA
1370
1406
1432
1458
1483
1507


CTX-165
Anti-BCMA
1371
1407
1433
1459
1484
1508


CTX-166
Anti-BCMA
1372
1408
1434
1460
1485
1509


CTX-166b
Anti-BCMA
1373
1409
1435
1461
1485
1509



(4-1BB)








CTX-167
Anti-BCMA
1374
1410
1436
1462
1486
1510


CTX-168
Anti-BCMA
1375
1411
1437
1463
1487
1511


CTX-169
Anti-BCMA
1376
1412
1438
1464
1488
1512


CTX-170
Anti-BCMA
1377
1413
1439
1465
1489
1513


CTX-171
Anti-BCMA
1378
1414
1440
1466
1490
1514


CTX-172
Anti-BCMA
1379
1415
1441
1467
1491
1515


CTX-173
Anti-BCMA
1380
1416
1442
1468
1492
1516


CTX-174
Anti-BCMA
1381
1417
1443
1469
1493
1517


CTX-175
Anti-BCMA
1382
1418
1444
1470
1494
1518


CTX-176
Anti-BCMA
1383
1419
1445
1471
1495
1519


CTX-177
Anti-BCMA
1384
1420
1446
1472
1496
1520


CTX-178
Anti-BCMA
1385
1421
1447
1473
1497
1521


CTX-179
Anti-BCMA
1386
1422
1448
1474
1498
1522
















TABLE 34







rAAV Sequences









SEQ




ID




NO:
Description
Sequence





1348
CTX-131
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAAGC




CCAGAGCAGGGCCTTAGGGAAGCGGGACCCTG




CTCTGGGCGGAGGAATATGTCCCAGATAGCAC




TGGGGACTCTTTAAGGAAAGAAGGATGGAGAA




AGAGAAAGGGAGTAGAGGCGGCCACGACCTGG




TGAACACCTAGGACGCACCATTCTCACAAAGG




GAGTTTTCCACACGGACACCCCCCTCCTCACC




ACAGCCCTGCCAGGACGGGGCTGGCTACTGGC




CTTATCTCACAGGTAAAACTGACGCACGGAGG




AACAATATAAATTGGGGACTAGAAAGGTGAAG




AGCCAAAGTTAGAACTCAGGACCAACTTATTC




TGATTTTGTTTTTCCAAACTGCTTCTCCTCTT




GGGAAGTGTAAGGAAGCTGCAGCACCAGGATC




AGTGAAACGCACCAGACGGCCGCGTCAGAGCA




GCTCAGGTTCTGGGAGAGGGTAGCGCAGGGTG




GCCACTGAGAACCGGGCAGGTCACGCATCCCC




CCCTTCCCTCCCACCCCCTGCCAAGCTCTCCC




TCCCAGGATCCTCTCTGGCTCCATCGTAAGCA




AACCTTAGAGGTTCTGGCAAGGAGAGAGATGG




CTCCAGGAAATGGGGGTGTGTCACCAGATAAG




GAATCTGCCTAACAGGAGGTGGGGGTTAGACC




CAATATCAGGAGACTAGGAAGGAGGAGGCCTA




AGGATGGGGCTTTTCTGTCACCAGCCACTAGT




GGCCGCCAGTGTGATGGATATCTGCAGAATTC




GCCCTTATGGGGATCCGAACAGAGAGACAGCA




GAATATGGGCCAAACAGGATATCTGTGGTAAG




CAGTTCCTGCCCCGGCTCAGGGCCAAGAACAG




TTGGAACAGCAGAATATGGGCCAAACAGGATA




TCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGG




GCCAAGAACAGATGGTCCCCAGATGCGGTCCC




GCCCTCAGCAGTTTCTAGAGAACCATCAGATG




TTTCCAGGGTGCCCCAAGGACCTGAAATGACC




CTGTGCCTTATTTGAACTAACCAATCAGTTCG




CTTCTCGCTTCTGTTCGCGCGCTTCTGCTCCC




CGAGCTCTATATAAGCAGAGCTCGTTTAGTGA




ACCGTCAGATCGCCTGGAGACGCCATCCACGC




TGTTTTGACCTCCATAGAAGACACCGACTCTA




GAGGGACCATGCTTCTTTTGGTTACGTCTCTG




TTGCTTTGCGAACTTCCTCATCCAGCGTTCTT




GCTGATCCCCGATATTCAGATGACTCAGACCA




CCAGTAGCTTGTCTGCCTCACTGGGAGACCGA




GTAACAATCTCCTGCAGGGCAAGTCAAGACAT




TAGCAAATACCTCAATTGGTACCAGCAGAAGC




CCGACGGAACGGTAAAACTCCTCATCTATCAT




ACGTCAAGGTTGCATTCCGGAGTACCGTCACG




ATTTTCAGGTTCTGGGAGCGGAACTGACTATT




CCTTGACTATTTCAAACCTCGAGCAGGAGGAC




ATTGCGACATATTTTTGTCAACAAGGTAATAC




CCTCCCTTACACTTTCGGAGGAGGAACCAAAC




TCGAAATTACCGGGTCCACCAGTGGCTCTGGG




AAGCCTGGCAGTGGAGAAGGTTCCACTAAAGG




CGAGGTGAAGCTCCAGGAGAGCGGCCCCGGTC




TCGTTGCCCCCAGTCAAAGCCTCTCTGTAACG




TGCACAGTGAGTGGTGTATCATTGCCTGATTA




TGGCGTCTCCTGGATAAGGCAGCCCCCGCGAA




AGGGTCTTGAATGGCTTGGGGTAATATGGGGC




TCAGAGACAACGTATTATAACTCCGCTCTCAA




AAGTCGCTTGACGATAATAAAAGATAACTCCA




AGAGTCAAGTTTTCCTTAAAATGAACAGTTTG




CAGACTGACGATACCGCTATATATTATTGTGC




TAAACATTATTACTACGGCGGTAGTTACGCGA




TGGATTATTGGGGGCAGGGGACTTCTGTCACA




GTCAGTAGTGCTGCTGCCTTTGTCCCGGTATT




TCTCCCAGCCAAACCGACCACGACTCCCGCCC




CGCGCCCTCCGACACCCGCTCCCACCATCGCC




TCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGA




GGGGCTTGGACTTCGCTTGTGATATTTACATT




TGGGCTCCGTTGGCGGGTACGTGCGGCGTCCT




TTTGTTGTCACTCGTTATTACTTTGTATTGTA




ATCACAGGAATCGCTCAAAGCGGAGTAGGTTG




TTGCATTCCGATTACATGAATATGACTCCTCG




CCGGCCTGGGCCGACAAGAAAACATTACCAAC




CCTATGCCCCCCCACGAGACTTCGCTGCGTAC




AGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGA




CGCTCCGGCATATCAGCAAGGACAGAATCAGC




TGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAA




AGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGA




AATAGGTATGAAGGGCGAACGACGACGGGGAA




AAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCA




TATGCAGGCCCTGCCTCCCAGAGGAAGCGGAG




CTACTAACTTCAGCCTGCTGAAGCAGGCTGGA




GACGTGGAGGAGAACCCTGGACCTATGGTGAG




CAAGGGCGAGGAGCTGTTCACCGGGGTGGTGC




CCATCCTGGTCGAGCTGGACGGCGACGTAAAC




GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA




GGGCGATGCCACCTACGGCAAGCTGACCCTGA




AGTTCATCTGCACCACCGGCAAGCTGCCCGTG




CCCTGGCCCACCCTCGTGACCACCCTGACCTA




CGGCGTGCAGTGCTTCAGCCGCTACCCCGACC




ACATGAAGCAGCACGACTTCTTCAAGTCCGCC




ATGCCCGAAGGCTACGTCCAGGAGCGCACCAT




CTTCTTCAAGGACGACGGCAACTACAAGACCC




GCGCCGAGGTGAAGTTCGAGGGCGACACCCTG




GTGAACCGCATCGAGCTGAAGGGCATCGACTT




CAAGGAGGACGGCAACATCCTGGGGCACAAGC




TGGAGTACAACTACAACAGCCACAACGTCTAT




ATCATGGCCGACAAGCAGAAGAACGGCATCAA




GGTGAACTTCAAGATCCGCCACAACATCGAGG




ACGGCAGCGTGCAGCTCGCCGACCACTACCAG




CAGAACACCCCCATCGGCGACGGCCCCGTGCT




GCTGCCCGACAACCACTACCTGAGCACCCAGT




CCGCCCTGAGCAAAGACCCCAACGAGAAGCGC




GATCACATGGTCCTGCTGGAGTTCGTGACCGC




CGCCGGGATCACTCTCGGCATGGACGAGCTGT




ACAAGTAATAATAAAATAAAATCGCTATCCAT




CGAAGATGGATGTGTGTTGGTTTTTTGTGTGA




CTGTGGGGTGGAGGGGACAGATAAAAGTACCC




AGAACCAGAGCCACATTAACCGGCCCTGGGAA




TATAAGGTGGTCCCAGCTCGGGGACACAGGAT




CCCTGGAGGCAGCAAACATGCTGTCCTGAAGT




GGACATAGGGGCCCGGGTTGGAGGAAGAAGAC




TAGCTGAGCTCTCGGACCCCTGGAAGATGCCA




TGACAGGGGGCTGGAAGAGCTAGCACAGACTA




GAGAGGTAAGGGGGGTAGGGGAGCTGCCCAAA




TGAAAGGAGTGAGAGGTGACCCGAATCCACAG




GAGAACGGGGTGTCCAGGCAAAGAAAGCAAGA




GGATGGAGAGGTGGCTAAAGCCAGGGAGACGG




GGTACTTTGGGGTTGTCCAGAAAAACGGTGAT




GATGCAGGCCTACAAGAAGGGGAGGCGGGACG




CAAGGGAGACATCCGTCGGAGAAGGCCATCCT




AAGAAACGAGAGATGGCACAGGCCCCAGAAGG




AGAAGGAAAAGGGAACCCAGCGAGTGAAGACG




GCATGGGGTTGGGTGAGGGAGGAGAGATGCCC




GGAGAGGACCCAGACACGGGGAGGATCCGCTC




AGAGGACATCACGTGGTGCAGCGCCGAGAAGG




AAGTGCTCCGGAAAGAGCATCCTTGGGCAGCA




ACACAGCAGAGAGCAAGGGGAAGAGGGAGTGG




AGGAAGACGGAACCTGAAGGAGGCGGCGGTAA




CCACGTGCGGACCGAGGCTGCAGCGTCGTCCT




CCCTAGGAACCCCTAGTGATGGAGTTGGCCAC




TCCCTCTCTGCGCGCTCGCTCGCTCACTGAGG




CCGGGCGACCAAAGGTCGCCCGACGCCCGGGC




TTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGC




GCGCAGCTGCCTGCAGG





1349
CTX-132
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTACTAG




TGGCCGCCAGTGTGATGGATATCTGCAGAATT




CGCCCTTATGGGGATCCGAACAGAGAGACAGC




AGAATATGGGCCAAACAGGATATCTGTGGTAA




GCAGTTCCTGCCCCGGCTCAGGGCCAAGAACA




GTTGGAACAGCAGAATATGGGCCAAACAGGAT




ATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAG




GGCCAAGAACAGATGGTCCCCAGATGCGGTCC




CGCCCTCAGCAGTTTCTAGAGAACCATCAGAT




GTTTCCAGGGTGCCCCAAGGACCTGAAATGAC




CCTGTGCCTTATTTGAACTAACCAATCAGTTC




GCTTCTCGCTTCTGTTCGCGCGCTTCTGCTCC




CCGAGCTCTATATAAGCAGAGCTCGTTTAGTG




AACCGTCAGATCGCCTGGAGACGCCATCCACG




CTGTTTTGACCTCCATAGAAGACACCGACTCT




AGAGGGACCATGCTTCTTTTGGTTACGTCTCT




GTTGCTTTGCGAACTTCCTCATCCAGCGTTCT




TGCTGATCCCCGATATTCAGATGACTCAGACC




ACCAGTAGCTTGTCTGCCTCACTGGGAGACCG




AGTAACAATCTCCTGCAGGGCAAGTCAAGACA




TTAGCAAATACCTCAATTGGTACCAGCAGAAG




CCCGACGGAACGGTAAAACTCCTCATCTATCA




TACGTCAAGGTTGCATTCCGGAGTACCGTCAC




GATTTTCAGGTTCTGGGAGCGGAACTGACTAT




TCCTTGACTATTTCAAACCTCGAGCAGGAGGA




CATTGCGACATATTTTTGTCAACAAGGTAATA




CCCTCCCTTACACTTTCGGAGGAGGAACCAAA




CTCGAAATTACCGGGTCCACCAGTGGCTCTGG




GAAGCCTGGCAGTGGAGAAGGTTCCACTAAAG




GCGAGGTGAAGCTCCAGGAGAGCGGCCCCGGT




CTCGTTGCCCCCAGTCAAAGCCTCTCTGTAAC




GTGCACAGTGAGTGGTGTATCATTGCCTGATT




ATGGCGTCTCCTGGATAAGGCAGCCCCCGCGA




AAGGGTCTTGAATGGCTTGGGGTAATATGGGG




CTCAGAGACAACGTATTATAACTCCGCTCTCA




AAAGTCGCTTGACGATAATAAAAGATAACTCC




AAGAGTCAAGTTTTCCTTAAAATGAACAGTTT




GCAGACTGACGATACCGCTATATATTATTGTG




CTAAACATTATTACTACGGCGGTAGTTACGCG




ATGGATTATTGGGGGCAGGGGACTTCTGTCAC




AGTCAGTAGTGCTGCTGCCTTTGTCCCGGTAT




TTCTCCCAGCCAAACCGACCACGACTCCCGCC




CCGCGCCCTCCGACACCCGCTCCCACCATCGC




CTCTCAACCTCTTAGTCTTCGCCCCGAGGCAT




GCCGACCCGCCGCCGGGGGTGCTGTTCATACG




AGGGGCTTGGACTTCGCTTGTGATATTTACAT




TTGGGCTCCGTTGGCGGGTACGTGCGGCGTCC




TTTTGTTGTCACTCGTTATTACTTTGTATTGT




AATCACAGGAATCGCTCAAAGCGGAGTAGGTT




GTTGCATTCCGATTACATGAATATGACTCCTC




GCCGGCCTGGGCCGACAAGAAAACATTACCAA




CCCTATGCCCCCCCACGAGACTTCGCTGCGTA




CAGGTCCCGAGTGAAGTTTTCCCGAAGCGCAG




ACGCTCCGGCATATCAGCAAGGACAGAATCAG




CTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGA




AAGAATCCCCAAGAAGGACTCTACAATGAACT




CCAGAAGGATAAGATGGCGGAGGCCTACTCAG




AAATAGGTATGAAGGGCGAACGACGACGGGGA




AAAGGTCACGATGGCCTCTACCAAGGGTTGAG




TACGGCAACCAAAGATACGTACGATGCACTGC




ATATGCAGGCCCTGCCTCCCAGAGGAAGCGGA




GCTACTAACTTCAGCCTGCTGAAGCAGGCTGG




AGACGTGGAGGAGAACCCTGGACCTATGGTGA




GCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG




CCCATCCTGGTCGAGCTGGACGGCGACGTAAA




CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCG




AGGGCGATGCCACCTACGGCAAGCTGACCCTG




AAGTTCATCTGCACCACCGGCAAGCTGCCCGT




GCCCTGGCCCACCCTCGTGACCACCCTGACCT




ACGGCGTGCAGTGCTTCAGCCGCTACCCCGAC




CACATGAAGCAGCACGACTTCTTCAAGTCCGC




CATGCCCGAAGGCTACGTCCAGGAGCGCACCA




TCTTCTTCAAGGACGACGGCAACTACAAGACC




CGCGCCGAGGTGAAGTTCGAGGGCGACACCCT




GGTGAACCGCATCGAGCTGAAGGGCATCGACT




TCAAGGAGGACGGCAACATCCTGGGGCACAAG




CTGGAGTACAACTACAACAGCCACAACGTCTA




TATCATGGCCGACAAGCAGAAGAACGGCATCA




AGGTGAACTTCAAGATCCGCCACAACATCGAG




GACGGCAGCGTGCAGCTCGCCGACCACTACCA




GCAGAACACCCCCATCGGCGACGGCCCCGTGC




TGCTGCCCGACAACCACTACCTGAGCACCCAG




TCCGCCCTGAGCAAAGACCCCAACGAGAAGCG




CGATCACATGGTCCTGCTGGAGTTCGTGACCG




CCGCCGGGATCACTCTCGGCATGGACGAGCTG




TACAAGTAATAATAAAATAAAATCGCTATCCA




TCGAAGATGGATGTGTGTTGGTTTTTTGTGTG




GGTAACCACGTGCGGACCGAGGCTGCAGCGTC




GTCCTCCCTAGGAACCCCTAGTGATGGAGTTG




GCCACTCCCTCTCTGCGCGCTCGCTCGCTCAC




TGAGGCCGGGCGACCAAAGGTCGCCCGACGCC




CGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAG




CGAGCGCGCAGCTGCCTGCAGG





1350
CTX-133
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAAGA




TCCTATTAAATAAAAGAATAAGCAGTATTATT




AAGTAGCCCTGCATTTCAGGTTTCCTTGAGTG




GCAGGCCAGGCCTGGCCGTGAACGTTCACTGA




AATCATGGCCTCTTGGCCAAGATTGATAGCTT




GTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATA




AAGCATGAGACCGTGACTTGCCAGCCCCACAG




AGCCCCGCCCTTGTCCATCACTGGCATCTGGA




CTCCAGCCTGGGTTGGGGCAAAGAGGGAAATG




AGATCATGTCCTAACCCTGATCCTCTTGTCCC




ACAGATATCCAGAACCCTGACCCTGCCGTGTA




CCAGCTGAGAGACTCTAAATCCAGTGACAAGT




CTGTCTGCCTATTCACCGATTTTGATTCTCAA




ACAAATGTGTCACAAAGTAAGGATTCTGATGT




GTATATCACAGACAAAACTGTGCTAGACATGA




GGTCTATGGACTTCAGGCTCCGGTGCCCGTCA




GTGGGCAGAGCGCACATCGCCCACAGTCCCCG




AGAAGTTGGGGGGAGGGGTCGGCAATTGAACC




GGTGCCTAGAGAAGGTGGCGCGGGGTAAACTG




GGAAAGTGATGTCGTGTACTGGCTCCGCCTTT




TTCCCGAGGGTGGGGGAGAACCGTATATAAGT




GCAGTAGTCGCCGTGAACGTTCTTTTTCGCAA




CGGGTTTGCCGCCAGAACACAGGTAAGTGCCG




TGTGTGGTTCCCGCGGGCCTGGCCTCTTTACG




GGTTATGGCCCTTGCGTGCCTTGAATTACTTC




CACTGGCTGCAGTACGTGATTCTTGATCCCGA




GCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA




GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGT




GCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGG




CCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCC




ATTTAAAATTTTTGATGACCTGCTGCGACGCT




TTTTTTCTGGCAAGATAGTCTTGTAAATGCGG




GCCAAGATCTGCACACTGGTATTTCGGTTTTT




GGGGCCGCGGGCGGCGACGGGGCCCGTGCGTC




CCAGCGCACATGTTCGGCGAGGCGGGGCCTGC




GAGCGCGGCCACCGAGAATCGGACGGGGGTAG




TCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGG




CCTCGCGCCGCCGTGTATCGCCCCGCCCTGGG




CGGCAAGGCTGGCCCGGTCGGCACCAGTTGCG




TGAGCGGAAAGATGGCCGCTTCCCGGCCCTGC




TGCAGGGAGCTCAAAATGGAGGACGCGGCGCT




CGGGAGAGCGGGCGGGTGAGTCACCCACACAA




AGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGC




TTCATGTGACTCCACGGAGTACCGGGCGCCGT




CCAGGCACCTCGATTAGTTCTCGAGCTTTTGG




AGTACGTCGTCTTTAGGTTGGGGGGAGGGGTT




TTATGCGATGGAGTTTCCCCACACTGAGTGGG




TGGAGACTGAAGTTAGGCCAGCTTGGCACTTG




ATGTAATTCTCCTTGGAATTTGCCCTTTTTGA




GTTTGGATCTTGGTTCATTCTCAAGCCTCAGA




CAGTGGTTCAAAGTTTTTTTCTTCCATTTCAG




GTGTCGTGACCACCATGCTTCTTTTGGTTACG




TCTCTGTTGCTTTGCGAACTTCCTCATCCAGC




GTTCTTGCTGATCCCCGATATTCAGATGACTC




AGACCACCAGTAGCTTGTCTGCCTCACTGGGA




GACCGAGTAACAATCTCCTGCAGGGCAAGTCA




AGACATTAGCAAATACCTCAATTGGTACCAGC




AGAAGCCCGACGGAACGGTAAAACTCCTCATC




TATCATACGTCAAGGTTGCATTCCGGAGTACC




GTCACGATTTTCAGGTTCTGGGAGCGGAACTG




ACTATTCCTTGACTATTTCAAACCTCGAGCAG




GAGGACATTGCGACATATTTTTGTCAACAAGG




TAATACCCTCCCTTACACTTTCGGAGGAGGAA




CCAAACTCGAAATTACCGGGTCCACCAGTGGC




TCTGGGAAGCCTGGCAGTGGAGAAGGTTCCAC




TAAAGGCGAGGTGAAGCTCCAGGAGAGCGGCC




CCGGTCTCGTTGCCCCCAGTCAAAGCCTCTCT




GTAACGTGCACAGTGAGTGGTGTATCATTGCC




TGATTATGGCGTCTCCTGGATAAGGCAGCCCC




CGCGAAAGGGTCTTGAATGGCTTGGGGTAATA




TGGGGCTCAGAGACAACGTATTATAACTCCGC




TCTCAAAAGTCGCTTGACGATAATAAAAGATA




ACTCCAAGAGTCAAGTTTTCCTTAAAATGAAC




AGTTTGCAGACTGACGATACCGCTATATATTA




TTGTGCTAAACATTATTACTACGGCGGTAGTT




ACGCGATGGATTATTGGGGGCAGGGGACTTCT




GTCACAGTCAGTAGTGCTGCTGCCTTTGTCCC




GGTATTTCTCCCAGCCAAACCGACCACGACTC




CCGCCCCGCGCCCTCCGACACCCGCTCCCACC




ATCGCCTCTCAACCTCTTAGTCTTCGCCCCGA




GGCATGCCGACCCGCCGCCGGGGGTGCTGTTC




ATACGAGGGGCTTGGACTTCGCTTGTGATATT




TACATTTGGGCTCCGTTGGCGGGTACGTGCGG




CGTCCTTTTGTTGTCACTCGTTATTACTTTGT




ATTGTAATCACAGGAATCGCTCAAAGCGGAGT




AGGTTGTTGCATTCCGATTACATGAATATGAC




TCCTCGCCGGCCTGGGCCGACAAGAAAACATT




ACCAACCCTATGCCCCCCCACGAGACTTCGCT




GCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGA




ATCAGCTGTATAACGAACTGAATTTGGGACGC




CGCGAGGAGTATGACGTGCTTGATAAACGCCG




GGGGAGAGACCCGGAAATGGGGGGTAAACCCC




GAAGAAAGAATCCCCAAGAAGGACTCTACAAT




GAACTCCAGAAGGATAAGATGGCGGAGGCCTA




CTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGG




TTGAGTACGGCAACCAAAGATACGTACGATGC




ACTGCATATGCAGGCCCTGCCTCCCAGAGGAA




GCGGAGCTACTAACTTCAGCCTGCTGAAGCAG




GCTGGAGACGTGGAGGAGAACCCTGGACCTAT




GGTGAGCAAGGGCGAGGAGCTGTTCACCGGGG




TGGTGCCCATCCTGGTCGAGCTGGACGGCGAC




GTAAACGGCCACAAGTTCAGCGTGTCCGGCGA




GGGCGAGGGCGATGCCACCTACGGCAAGCTGA




CCCTGAAGTTCATCTGCACCACCGGCAAGCTG




CCCGTGCCCTGGCCCACCCTCGTGACCACCCT




GACCTACGGCGTGCAGTGCTTCAGCCGCTACC




CCGACCACATGAAGCAGCACGACTTCTTCAAG




TCCGCCATGCCCGAAGGCTACGTCCAGGAGCG




CACCATCTTCTTCAAGGACGACGGCAACTACA




AGACCCGCGCCGAGGTGAAGTTCGAGGGCGAC




ACCCTGGTGAACCGCATCGAGCTGAAGGGCAT




CGACTTCAAGGAGGACGGCAACATCCTGGGGC




ACAAGCTGGAGTACAACTACAACAGCCACAAC




GTCTATATCATGGCCGACAAGCAGAAGAACGG




CATCAAGGTGAACTTCAAGATCCGCCACAACA




TCGAGGACGGCAGCGTGCAGCTCGCCGACCAC




TACCAGCAGAACACCCCCATCGGCGACGGCCC




CGTGCTGCTGCCCGACAACCACTACCTGAGCA




CCCAGTCCGCCCTGAGCAAAGACCCCAACGAG




AAGCGCGATCACATGGTCCTGCTGGAGTTCGT




GACCGCCGCCGGGATCACTCTCGGCATGGACG




AGCTGTACAAGTAATAATAAAATAAAATCGCT




ATCCATCGAAGATGGATGTGTGTTGGTTTTTT




GTGTGTGGAGCAACAAATCTGACTTTGCATGT




GCAAACGCCTTCAACAACAGCATTATTCCAGA




AGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCT




TCAGGAATGGCCAGGTTCTGCCCAGAGCTCTG




GTCAATGATGTCTAAAACTCCTCTGATTGGTG




GTCTCGGCCTTATCCATTGCCACCAAAACCCT




CTTTTTACTAAGAAACAGTGAGCCTTGTTCTG




GCAGTCCAGAGAATGACACGGGAAAAAAGCAG




ATGAAGAGAAGGTGGCAGGAGAGGGCACGTGG




CCCAGCCTCAGTCTCTCCAACTGAGTTCCTGC




CTGCCTGCCTTTGCTCAGACTGTTTGCCCCTT




ACTGCTCTTCTAGGCCTCATTCTAAGCCCCTT




CTCCAAGTTGCCTCTCCTTATTTCTCCCTGTC




TGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCGGTAACC




ACGTGCGGACCGAGGCTGCAGCGTCGTCCTCC




CTAGGAACCCCTAGTGATGGAGTTGGCCACTC




CCTCTCTGCGCGCTCGCTCGCTCACTGAGGCC




GGGCGACCAAAGGTCGCCCGACGCCCGGGCTT




TGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGC




GCAGCTGCCTGCAGG





1351
CTX-134
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGGCTC




CGGTGCCCGTCAGTGGGCAGAGCGCACATCGC




CCACAGTCCCCGAGAAGTTGGGGGGAGGGGTC




GGCAATTGAACCGGTGCCTAGAGAAGGTGGCG




CGGGGTAAACTGGGAAAGTGATGTCGTGTACT




GGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAA




CCGTATATAAGTGCAGTAGTCGCCGTGAACGT




TCTTTTTCGCAACGGGTTTGCCGCCAGAACAC




AGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCT




GGCCTCTTTACGGGTTATGGCCCTTGCGTGCC




TTGAATTACTTCCACTGGCTGCAGTACGTGAT




TCTTGATCCCGAGCTTCGGGTTGGAAGTGGGT




GGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCC




CCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCC




TGGGCGCTGGGGCCGCCGCGTGCGAATCTGGT




GGCACCTTCGCGCCTGTCTCGCTGCTTTCGAT




AAGTCTCTAGCCATTTAAAATTTTTGATGACC




TGCTGCGACGCTTTTTTTCTGGCAAGATAGTC




TTGTAAATGCGGGCCAAGATCTGCACACTGGT




ATTTCGGTTTTTGGGGCCGCGGGCGGCGACGG




GGCCCGTGCGTCCCAGCGCACATGTTCGGCGA




GGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGC




TCTGGTGCCTGGCCTCGCGCCGCCGTGTATCG




CCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCG




GCACCAGTTGCGTGAGCGGAAAGATGGCCGCT




TCCCGGCCCTGCTGCAGGGAGCTCAAAATGGA




GGACGCGGCGCTCGGGAGAGCGGGCGGGTGAG




TCACCCACACAAAGGAAAAGGGCCTTTCCGTC




CTCAGCCGTCGCTTCATGTGACTCCACGGAGT




ACCGGGCGCCGTCCAGGCACCTCGATTAGTTC




TCGAGCTTTTGGAGTACGTCGTCTTTAGGTTG




GGGGGAGGGGTTTTATGCGATGGAGTTTCCCC




ACACTGAGTGGGTGGAGACTGAAGTTAGGCCA




GCTTGGCACTTGATGTAATTCTCCTTGGAATT




TGCCCTTTTTGAGTTTGGATCTTGGTTCATTC




TCAAGCCTCAGACAGTGGTTCAAAGTTTTTTT




CTTCCATTTCAGGTGTCGTGACCACCATGCTT




CTTTTGGTTACGTCTCTGTTGCTTTGCGAACT




TCCTCATCCAGCGTTCTTGCTGATCCCCGATA




TTCAGATGACTCAGACCACCAGTAGCTTGTCT




GCCTCACTGGGAGACCGAGTAACAATCTCCTG




CAGGGCAAGTCAAGACATTAGCAAATACCTCA




ATTGGTACCAGCAGAAGCCCGACGGAACGGTA




AAACTCCTCATCTATCATACGTCAAGGTTGCA




TTCCGGAGTACCGTCACGATTTTCAGGTTCTG




GGAGCGGAACTGACTATTCCTTGACTATTTCA




AACCTCGAGCAGGAGGACATTGCGACATATTT




TTGTCAACAAGGTAATACCCTCCCTTACACTT




TCGGAGGAGGAACCAAACTCGAAATTACCGGG




TCCACCAGTGGCTCTGGGAAGCCTGGCAGTGG




AGAAGGTTCCACTAAAGGCGAGGTGAAGCTCC




AGGAGAGCGGCCCCGGTCTCGTTGCCCCCAGT




CAAAGCCTCTCTGTAACGTGCACAGTGAGTGG




TGTATCATTGCCTGATTATGGCGTCTCCTGGA




TAAGGCAGCCCCCGCGAAAGGGTCTTGAATGG




CTTGGGGTAATATGGGGCTCAGAGACAACGTA




TTATAACTCCGCTCTCAAAAGTCGCTTGACGA




TAATAAAAGATAACTCCAAGAGTCAAGTTTTC




CTTAAAATGAACAGTTTGCAGACTGACGATAC




CGCTATATATTATTGTGCTAAACATTATTACT




ACGGCGGTAGTTACGCGATGGATTATTGGGGG




CAGGGGACTTCTGTCACAGTCAGTAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACA




CCCGCTCCCACCATCGCCTCTCAACCTCTTAG




TCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTC




GCTTGTGATATTTACATTTGGGCTCCGTTGGC




GGGTACGTGCGGCGTCCTTTTGTTGTCACTCG




TTATTACTTTGTATTGTAATCACAGGAATCGC




TCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGA




CAAGAAAACATTACCAACCCTATGCCCCCCCA




CGAGACTTCGCTGCGTACAGGTCCCGAGTGAA




GTTTTCCCGAAGCGCAGACGCTCCGGCATATC




AGCAAGGACAGAATCAGCTGTATAACGAACTG




AATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGG




GGGGTAAACCCCGAAGAAAGAATCCCCAAGAA




GGACTCTACAATGAACTCCAGAAGGATAAGAT




GGCGGAGGCCTACTCAGAAATAGGTATGAAGG




GCGAACGACGACGGGGAAAAGGTCACGATGGC




CTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGC




CTCCCAGAGGAAGCGGAGCTACTAACTTCAGC




CTGCTGAAGCAGGCTGGAGACGTGGAGGAGAA




CCCTGGACCTATGGTGAGCAAGGGCGAGGAGC




TGTTCACCGGGGTGGTGCCCATCCTGGTCGAG




CTGGACGGCGACGTAAACGGCCACAAGTTCAG




CGTGTCCGGCGAGGGCGAGGGCGATGCCACCT




ACGGCAAGCTGACCCTGAAGTTCATCTGCACC




ACCGGCAAGCTGCCCGTGCCCTGGCCCACCCT




CGTGACCACCCTGACCTACGGCGTGCAGTGCT




TCAGCCGCTACCCCGACCACATGAAGCAGCAC




GACTTCTTCAAGTCCGCCATGCCCGAAGGCTA




CGTCCAGGAGCGCACCATCTTCTTCAAGGACG




ACGGCAACTACAAGACCCGCGCCGAGGTGAAG




TTCGAGGGCGACACCCTGGTGAACCGCATCGA




GCTGAAGGGCATCGACTTCAAGGAGGACGGCA




ACATCCTGGGGCACAAGCTGGAGTACAACTAC




AACAGCCACAACGTCTATATCATGGCCGACAA




GCAGAAGAACGGCATCAAGGTGAACTTCAAGA




TCCGCCACAACATCGAGGACGGCAGCGTGCAG




CTCGCCGACCACTACCAGCAGAACACCCCCAT




CGGCGACGGCCCCGTGCTGCTGCCCGACAACC




ACTACCTGAGCACCCAGTCCGCCCTGAGCAAA




GACCCCAACGAGAAGCGCGATCACATGGTCCT




GCTGGAGTTCGTGACCGCCGCCGGGATCACTC




TCGGCATGGACGAGCTGTACAAGTAATAATAA




AATAAAATCGCTATCCATCGAAGATGGATGTG




TGTTGGTTTTTTGTGTGGGTAACCACGTGCGG




ACCGAGGCTGCAGCGTCGTCCTCCCTAGGAAC




CCCTAGTGATGGAGTTGGCCACTCCCTCTCTG




CGCGCTCGCTCGCTCACTGAGGCCGGGCGACC




AAAGGTCGCCCGACGCCCGGGCTTTGCCCGGG




CGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGC




CTGCAGG





1352
CTX-135
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTTTTGT




AAAGAATATAGGTAAAAAGTGGCATTTTTTCT




TTGGATTTAATTCTTATGGATTTAAGTCAACA




TGTATTTTCAAGCCAACAAGTTTTGTTAATAA




GATGGCTGCACCCTGCTGCTCCATGCCAGATC




CACCACACAGAAAGCAAATGTTCAGTGCATCT




CCCTCTTCCTGTCAGAGCTTATAGAGGAAGGA




AGACCCCGCAATGTGGAGGCATATTGTATTAC




AATTACTTTTAATGGCAAAAACTGCAGTTACT




TTTGTGCCAACCTACTACATGGTCTGGACAGC




TAAATGTCATGTATTTTTCATGGCCCCTCCAG




GTATTGTCAGAGTCCTCTTGTTTGGCCTTCTA




GGAAGGCTGTGGGACCCAGCTTTCTTCAACCA




GTCCAGGTGGAGGCCTCTGCCTTGAACGTTTC




CAAGTGAGGTAAAACCCGCAGGCCCAGAGGCC




TCTCTACTTCCTGTGTGGGGTTCAGAAACCCT




CCTCCCCTCCCAGCCTCAGGTGCCTGCTTCAG




AAAATGGTGAGTCTCTCTCTTATAAAGCCCTC




CTTTTTCATCCTAGCATTGGGAACAATGGCCC




CAGGGTCCTTATCTCTAGCAGATGTTTTGAAA




AAGTCATCTGTTTTGCTTTTTTTCCAGAAGTA




GTAAGTCTGCTGGCCTCCGCCATCTTAGTAAA




GTAACAGTCCCATGAAACAAAGATGCTTCTTT




TGGTTACGTCTCTGTTGCTTTGCGAACTTCCT




CATCCAGCGTTCTTGCTGATCCCCGATATTCA




GATGACTCAGACCACCAGTAGCTTGTCTGCCT




CACTGGGAGACCGAGTAACAATCTCCTGCAGG




GCAAGTCAAGACATTAGCAAATACCTCAATTG




GTACCAGCAGAAGCCCGACGGAACGGTAAAAC




TCCTCATCTATCATACGTCAAGGTTGCATTCC




GGAGTACCGTCACGATTTTCAGGTTCTGGGAG




CGGAACTGACTATTCCTTGACTATTTCAAACC




TCGAGCAGGAGGACATTGCGACATATTTTTGT




CAACAAGGTAATACCCTCCCTTACACTTTCGG




AGGAGGAACCAAACTCGAAATTACCGGGTCCA




CCAGTGGCTCTGGGAAGCCTGGCAGTGGAGAA




GGTTCCACTAAAGGCGAGGTGAAGCTCCAGGA




GAGCGGCCCCGGTCTCGTTGCCCCCAGTCAAA




GCCTCTCTGTAACGTGCACAGTGAGTGGTGTA




TCATTGCCTGATTATGGCGTCTCCTGGATAAG




GCAGCCCCCGCGAAAGGGTCTTGAATGGCTTG




GGGTAATATGGGGCTCAGAGACAACGTATTAT




AACTCCGCTCTCAAAAGTCGCTTGACGATAAT




AAAAGATAACTCCAAGAGTCAAGTTTTCCTTA




AAATGAACAGTTTGCAGACTGACGATACCGCT




ATATATTATTGTGCTAAACATTATTACTACGG




CGGTAGTTACGCGATGGATTATTGGGGGCAGG




GGACTTCTGTCACAGTCAGTAGTGCTGCTGCC




TTTGTCCCGGTATTTCTCCCAGCCAAACCGAC




CACGACTCCCGCCCCGCGCCCTCCGACACCCG




CTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGG




TGCTGTTCATACGAGGGGCTTGGACTTCGCTT




GTGATATTTACATTTGGGCTCCGTTGGCGGGT




ACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAA




AGCGGAGTAGGTTGTTGCATTCCGATTACATG




AATATGACTCCTCGCCGGCCTGGGCCGACAAG




AAAACATTACCAACCCTATGCCCCCCCACGAG




ACTTCGCTGCGTACAGGTCCCGAGTGAAGTTT




TCCCGAAGCGCAGACGCTCCGGCATATCAGCA




AGGACAGAATCAGCTGTATAACGAACTGAATT




TGGGACGCCGCGAGGAGTATGACGTGCTTGAT




AAACGCCGGGGGAGAGACCCGGAAATGGGGGG




TAAACCCCGAAGAAAGAATCCCCAAGAAGGAC




TCTACAATGAACTCCAGAAGGATAAGATGGCG




GAGGCCTACTCAGAAATAGGTATGAAGGGCGA




ACGACGACGGGGAAAAGGTCACGATGGCCTCT




ACCAAGGGTTGAGTACGGCAACCAAAGATACG




TACGATGCACTGCATATGCAGGCCCTGCCTCC




CAGAGGAAGCGGAGCTACTAACTTCAGCCTGC




TGAAGCAGGCTGGAGACGTGGAGGAGAACCCT




GGACCTATGGTGAGCAAGGGCGAGGAGCTGTT




CACCGGGGTGGTGCCCATCCTGGTCGAGCTGG




ACGGCGACGTAAACGGCCACAAGTTCAGCGTG




TCCGGCGAGGGCGAGGGCGATGCCACCTACGG




CAAGCTGACCCTGAAGTTCATCTGCACCACCG




GCAAGCTGCCCGTGCCCTGGCCCACCCTCGTG




ACCACCCTGACCTACGGCGTGCAGTGCTTCAG




CCGCTACCCCGACCACATGAAGCAGCACGACT




TCTTCAAGTCCGCCATGCCCGAAGGCTACGTC




CAGGAGCGCACCATCTTCTTCAAGGACGACGG




CAACTACAAGACCCGCGCCGAGGTGAAGTTCG




AGGGCGACACCCTGGTGAACCGCATCGAGCTG




AAGGGCATCGACTTCAAGGAGGACGGCAACAT




CCTGGGGCACAAGCTGGAGTACAACTACAACA




GCCACAACGTCTATATCATGGCCGACAAGCAG




AAGAACGGCATCAAGGTGAACTTCAAGATCCG




CCACAACATCGAGGACGGCAGCGTGCAGCTCG




CCGACCACTACCAGCAGAACACCCCCATCGGC




GACGGCCCCGTGCTGCTGCCCGACAACCACTA




CCTGAGCACCCAGTCCGCCCTGAGCAAAGACC




CCAACGAGAAGCGCGATCACATGGTCCTGCTG




GAGTTCGTGACCGCCGCCGGGATCACTCTCGG




CATGGACGAGCTGTACAAGTAATAATAAAATA




AAATCGCTATCCATCGAAGATGGATGTGTGTT




GGTTTTTTGTGTGGTGAGTAGGATGGAGTGGA




AAGGGTGGTGTGTCTCCAGACCGCTGGAAGGC




TTACAGCCTTACCTGGCACTGCCTAGTGGCAC




CAAGGAGCCTCATTTACCAGATGTAAGGAACT




GTTTGTGCTATGTTAGGGTGAGGGATTAGAGC




TGGGGACTAAAGAAAAAGATAGGCCACGGGTG




CCTGGGAGAGCGTTCGGGGAGCAGGCAAAGAA




GAGCAGTTGGGGTGATCATAGCTATTGTGAGC




AGAGAGGTCTCGCTACCTCTAAGTACGAGCTC




ATTCCAACTTACCCAGCCCTCCAGAACTAACC




CAAAAGAGACTGGAAGAGCGAAGCTCCACTCC




TTGTTTTGAAGAGACCAGATACTTGCGTCCAA




ACTCTGCACAGGGCATATATAGCAATTCACTA




TCTTTGAGACCATAAAACGCCTCGTAATTTTT




AGTCCTTTTCAAGTGACCAACAACTTTCAGTT




TATTTCATTTTTTTGAAGCAAGATGGATTATG




AATTGATAAATAACCAAGAGCATTTCTGTATC




TCATATGAGATAAATAATACCAAAAAAAGTTG




CCATTTATTGTCAGATACTGTGTAAAGAAAAA




ATTATTTAGACGTGTTAACTGGTTTAATCCTA




CTTCTGCCTAGGAAGGAAGGTGTTATATCCTC




TTTTTAAAATTCTTTTTAATTTTGACTATATA




AACTGATAAGGTAACCACGTGCGGACCGAGGC




TGCAGCGTCGTCCTCCCTAGGAACCCCTAGTG




ATGGAGTTGGCCACTCCCTCTCTGCGCGCTCG




CTCGCTCACTGAGGCCGGGCGACCAAAGGTCG




CCCGACGCCCGGGCTTTGCCCGGGCGGCCTCA




GTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG





1353
CTX-136
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTATGCT




TCTTTTGGTTACGTCTCTGTTGCTTTGCGAAC




TTCCTCATCCAGCGTTCTTGCTGATCCCCGAT




ATTCAGATGACTCAGACCACCAGTAGCTTGTC




TGCCTCACTGGGAGACCGAGTAACAATCTCCT




GCAGGGCAAGTCAAGACATTAGCAAATACCTC




AATTGGTACCAGCAGAAGCCCGACGGAACGGT




AAAACTCCTCATCTATCATACGTCAAGGTTGC




ATTCCGGAGTACCGTCACGATTTTCAGGTTCT




GGGAGCGGAACTGACTATTCCTTGACTATTTC




AAACCTCGAGCAGGAGGACATTGCGACATATT




TTTGTCAACAAGGTAATACCCTCCCTTACACT




TTCGGAGGAGGAACCAAACTCGAAATTACCGG




GTCCACCAGTGGCTCTGGGAAGCCTGGCAGTG




GAGAAGGTTCCACTAAAGGCGAGGTGAAGCTC




CAGGAGAGCGGCCCCGGTCTCGTTGCCCCCAG




TCAAAGCCTCTCTGTAACGTGCACAGTGAGTG




GTGTATCATTGCCTGATTATGGCGTCTCCTGG




ATAAGGCAGCCCCCGCGAAAGGGTCTTGAATG




GCTTGGGGTAATATGGGGCTCAGAGACAACGT




ATTATAACTCCGCTCTCAAAAGTCGCTTGACG




ATAATAAAAGATAACTCCAAGAGTCAAGTTTT




CCTTAAAATGAACAGTTTGCAGACTGACGATA




CCGCTATATATTATTGTGCTAAACATTATTAC




TACGGCGGTAGTTACGCGATGGATTATTGGGG




GCAGGGGACTTCTGTCACAGTCAGTAGTGCTG




CTGCCTTTGTCCCGGTATTTCTCCCAGCCAAA




CCGACCACGACTCCCGCCCCGCGCCCTCCGAC




ACCCGCTCCCACCATCGCCTCTCAACCTCTTA




GTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGG




CGGGTACGTGCGGCGTCCTTTTGTTGTCACTC




GTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATT




ACATGAATATGACTCCTCGCCGGCCTGGGCCG




ACAAGAAAACATTACCAACCCTATGCCCCCCC




ACGAGACTTCGCTGCGTACAGGTCCCGAGTGA




AGTTTTCCCGAAGCGCAGACGCTCCGGCATAT




CAGCAAGGACAGAATCAGCTGTATAACGAACT




GAATTTGGGACGCCGCGAGGAGTATGACGTGC




TTGATAAACGCCGGGGGAGAGACCCGGAAATG




GGGGGTAAACCCCGAAGAAAGAATCCCCAAGA




AGGACTCTACAATGAACTCCAGAAGGATAAGA




TGGCGGAGGCCTACTCAGAAATAGGTATGAAG




GGCGAACGACGACGGGGAAAAGGTCACGATGG




CCTCTACCAAGGGTTGAGTACGGCAACCAAAG




ATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGAGGAAGCGGAGCTACTAACTTCAG




CCTGCTGAAGCAGGCTGGAGACGTGGAGGAGA




ACCCTGGACCTATGGTGAGCAAGGGCGAGGAG




CTGTTCACCGGGGTGGTGCCCATCCTGGTCGA




GCTGGACGGCGACGTAAACGGCCACAAGTTCA




GCGTGTCCGGCGAGGGCGAGGGCGATGCCACC




TACGGCAAGCTGACCCTGAAGTTCATCTGCAC




CACCGGCAAGCTGCCCGTGCCCTGGCCCACCC




TCGTGACCACCCTGACCTACGGCGTGCAGTGC




TTCAGCCGCTACCCCGACCACATGAAGCAGCA




CGACTTCTTCAAGTCCGCCATGCCCGAAGGCT




ACGTCCAGGAGCGCACCATCTTCTTCAAGGAC




GACGGCAACTACAAGACCCGCGCCGAGGTGAA




GTTCGAGGGCGACACCCTGGTGAACCGCATCG




AGCTGAAGGGCATCGACTTCAAGGAGGACGGC




AACATCCTGGGGCACAAGCTGGAGTACAACTA




CAACAGCCACAACGTCTATATCATGGCCGACA




AGCAGAAGAACGGCATCAAGGTGAACTTCAAG




ATCCGCCACAACATCGAGGACGGCAGCGTGCA




GCTCGCCGACCACTACCAGCAGAACACCCCCA




TCGGCGACGGCCCCGTGCTGCTGCCCGACAAC




CACTACCTGAGCACCCAGTCCGCCCTGAGCAA




AGACCCCAACGAGAAGCGCGATCACATGGTCC




TGCTGGAGTTCGTGACCGCCGCCGGGATCACT




CTCGGCATGGACGAGCTGTACAAGTAATAATA




AAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGGGTAACCACGTGCG




GACCGAGGCTGCAGCGTCGTCCTCCCTAGGAA




CCCCTAGTGATGGAGTTGGCCACTCCCTCTCT




GCGCGCTCGCTCGCTCACTGAGGCCGGGCGAC




CAAAGGTCGCCCGACGCCCGGGCTTTGCCCGG




GCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTG




CCTGCAGG





1354
CTX-138
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGCTTCTTTTGGTTAC




GTCTCTGTTGCTTTGCGAACTTCCTCATCCAG




CGTTCTTGCTGATCCCCGATATTCAGATGACT




CAGACCACCAGTAGCTTGTCTGCCTCACTGGG




AGACCGAGTAACAATCTCCTGCAGGGCAAGTC




AAGACATTAGCAAATACCTCAATTGGTACCAG




CAGAAGCCCGACGGAACGGTAAAACTCCTCAT




CTATCATACGTCAAGGTTGCATTCCGGAGTAC




CGTCACGATTTTCAGGTTCTGGGAGCGGAACT




GACTATTCCTTGACTATTTCAAACCTCGAGCA




GGAGGACATTGCGACATATTTTTGTCAACAAG




GTAATACCCTCCCTTACACTTTCGGAGGAGGA




ACCAAACTCGAAATTACCGGGTCCACCAGTGG




CTCTGGGAAGCCTGGCAGTGGAGAAGGTTCCA




CTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGC




CCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTC




TGTAACGTGCACAGTGAGTGGTGTATCATTGC




CTGATTATGGCGTCTCCTGGATAAGGCAGCCC




CCGCGAAAGGGTCTTGAATGGCTTGGGGTAAT




ATGGGGCTCAGAGACAACGTATTATAACTCCG




CTCTCAAAAGTCGCTTGACGATAATAAAAGAT




AACTCCAAGAGTCAAGTTTTCCTTAAAATGAA




CAGTTTGCAGACTGACGATACCGCTATATATT




ATTGTGCTAAACATTATTACTACGGCGGTAGT




TACGCGATGGATTATTGGGGGCAGGGGACTTC




TGTCACAGTCAGTAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1355
CTX-139
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCGGCTCCGGTG




CCCGTCAGTGGGCAGAGCGCACATCGCCCACA




GTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAA




TTGAACCGGTGCCTAGAGAAGGTGGCGCGGGG




TAAACTGGGAAAGTGATGTCGTGTACTGGCTC




CGCCTTTTTCCCGAGGGTGGGGGAGAACCGTA




TATAAGTGCAGTAGTCGCCGTGAACGTTCTTT




TTCGCAACGGGTTTGCCGCCAGAACACAGGTA




AGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCT




CTTTACGGGTTATGGCCCTTGCGTGCCTTGAA




TTACTTCCACTGGCTGCAGTACGTGATTCTTG




ATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAG




AGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTC




GCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGC




GCTGGGGCCGCCGCGTGCGAATCTGGTGGCAC




CTTCGCGCCTGTCTCGCTGCTTTCGATAAGTC




TCTAGCCATTTAAAATTTTTGATGACCTGCTG




CGACGCTTTTTTTCTGGCAAGATAGTCTTGTA




AATGCGGGCCAAGATCTGCACACTGGTATTTC




GGTTTTTGGGGCCGCGGGCGGCGACGGGGCCC




GTGCGTCCCAGCGCACATGTTCGGCGAGGCGG




GGCCTGCGAGCGCGGCCACCGAGAATCGGACG




GGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGG




TGCCTGGCCTCGCGCCGCCGTGTATCGCCCCG




CCCTGGGCGGCAAGGCTGGCCCGGTCGGCACC




AGTTGCGTGAGCGGAAAGATGGCCGCTTCCCG




GCCCTGCTGCAGGGAGCTCAAAATGGAGGACG




CGGCGCTCGGGAGAGCGGGCGGGTGAGTCACC




CACACAAAGGAAAAGGGCCTTTCCGTCCTCAG




CCGTCGCTTCATGTGACTCCACGGAGTACCGG




GCGCCGTCCAGGCACCTCGATTAGTTCTCGAG




CTTTTGGAGTACGTCGTCTTTAGGTTGGGGGG




AGGGGTTTTATGCGATGGAGTTTCCCCACACT




GAGTGGGTGGAGACTGAAGTTAGGCCAGCTTG




GCACTTGATGTAATTCTCCTTGGAATTTGCCC




TTTTTGAGTTTGGATCTTGGTTCATTCTCAAG




CCTCAGACAGTGGTTCAAAGTTTTTTTCTTCC




ATTTCAGGTGTCGTGACCACCATGCTTCTTTT




GGTTACGTCTCTGTTGCTTTGCGAACTTCCTC




ATCCAGCGTTCTTGCTGATCCCCGATATTCAG




ATGACTCAGACCACCAGTAGCTTGTCTGCCTC




ACTGGGAGACCGAGTAACAATCTCCTGCAGGG




CAAGTCAAGACATTAGCAAATACCTCAATTGG




TACCAGCAGAAGCCCGACGGAACGGTAAAACT




CCTCATCTATCATACGTCAAGGTTGCATTCCG




GAGTACCGTCACGATTTTCAGGTTCTGGGAGC




GGAACTGACTATTCCTTGACTATTTCAAACCT




CGAGCAGGAGGACATTGCGACATATTTTTGTC




AACAAGGTAATACCCTCCCTTACACTTTCGGA




GGAGGAACCAAACTCGAAATTACCGGGTCCAC




CAGTGGCTCTGGGAAGCCTGGCAGTGGAGAAG




GTTCCACTAAAGGCGAGGTGAAGCTCCAGGAG




AGCGGCCCCGGTCTCGTTGCCCCCAGTCAAAG




CCTCTCTGTAACGTGCACAGTGAGTGGTGTAT




CATTGCCTGATTATGGCGTCTCCTGGATAAGG




CAGCCCCCGCGAAAGGGTCTTGAATGGCTTGG




GGTAATATGGGGCTCAGAGACAACGTATTATA




ACTCCGCTCTCAAAAGTCGCTTGACGATAATA




AAAGATAACTCCAAGAGTCAAGTTTTCCTTAA




AATGAACAGTTTGCAGACTGACGATACCGCTA




TATATTATTGTGCTAAACATTATTACTACGGC




GGTAGTTACGCGATGGATTATTGGGGGCAGGG




GACTTCTGTCACAGTCAGTAGTGCTGCTGCCT




TTGTCCCGGTATTTCTCCCAGCCAAACCGACC




ACGACTCCCGCCCCGCGCCCTCCGACACCCGC




TCCCACCATCGCCTCTCAACCTCTTAGTCTTC




GCCCCGAGGCATGCCGACCCGCCGCCGGGGGT




GCTGTTCATACGAGGGGCTTGGACTTCGCTTG




TGATATTTACATTTGGGCTCCGTTGGCGGGTA




CGTGCGGCGTCCTTTTGTTGTCACTCGTTATT




ACTTTGTATTGTAATCACAGGAATCGCTCAAA




GCGGAGTAGGTTGTTGCATTCCGATTACATGA




ATATGACTCCTCGCCGGCCTGGGCCGACAAGA




AAACATTACCAACCCTATGCCCCCCCACGAGA




CTTCGCTGCGTACAGGTCCCGAGTGAAGTTTT




CCCGAAGCGCAGACGCTCCGGCATATCAGCAA




GGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATA




AACGCCGGGGGAGAGACCCGGAAATGGGGGGT




AAACCCCGAAGAAAGAATCCCCAAGAAGGACT




CTACAATGAACTCCAGAAGGATAAGATGGCGG




AGGCCTACTCAGAAATAGGTATGAAGGGCGAA




CGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGT




ACGATGCACTGCATATGCAGGCCCTGCCTCCC




AGATAATAATAAAATCGCTATCCATCGAAGAT




GGATGTGTGTTGGTTTTTTGTGTGTGGAGCAA




CAAATCTGACTTTGCATGTGCAAACGCCTTCA




ACAACAGCATTATTCCAGAAGACACCTTCTTC




CCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTT




CGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCT




AAAACTCCTCTGATTGGTGGTCTCGGCCTTAT




CCATTGCCACCAAAACCCTCTTTTTACTAAGA




AACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGT




GGCAGGAGAGGGCACGTGGCCCAGCCTCAGTC




TCTCCAACTGAGTTCCTGCCTGCCTGCCTTTG




CTCAGACTGTTTGCCCCTTACTGCTCTTCTAG




GCCTCATTCTAAGCCCCTTCTCCAAGTTGCCT




CTCCTTATTTCTCCCTGTCTGCCAAAAAATCT




TTCCCAGCTCACTAAGTCAGTCTCACGCAGTC




ACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGG




AATTAAAAAGTCAGATGAGGGGTGTGCCCAGA




GGAAGCACCATTCTAGTTGGGGGAGCCCATCT




GTCAGCTGGGAAAAGTCCAAATAACTTCAGAT




TGGAATGTGTTTTAACTCAGGGTTGAGAAAAC




AGCTACCTTCAGGACAAAAGTCAGGGAAGGGC




TCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAG




GCCTGGGACAGGAGCTCAATGAGAAAGGTAAC




CACGTGCGGACCGAGGCTGCAGCGTCGTCCTC




CCTAGGAACCCCTAGTGATGGAGTTGGCCACT




CCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC




CGGGCGACCAAAGGTCGCCCGACGCCCGGGCT




TTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCG




CGCAGCTGCCTGCAGG





1356
CTX-140
TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCT




CACTGAGGCCGGGCGACCAAAGGTCGCCCGAC




GCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGC




GAGCGAGCGCGCAGAGAGGGAGTGGCCAACTC




CATCACTAGGGGTTCCTGCGGCCGCACGCGTA




ATCCTCCGGCAAACCTCTGTTTCCTCCTCAAA




AGGCAGGAGGTCGGAAAGAATAAACAATGAGA




GTCACATTAAAAACACAAAATCCTACGGAAAT




ACTGAAGAATGAGTCTCAGCACTAAGGAAAAG




CCTCCAGCAGCTCCTGCTTTCTGAGGGTGAAG




GATAGACGCTGTGGCTCTGCATGACTCACTAG




CACTCTATCACGGCCATATTCTGGCAGGGTCA




GTGGCTCCAACTAACATTTGTTTGGTACTTTA




CAGTTTATTAAATAGATGTTTATATGGAGAAG




CTCTCATTTCTTTCTCAGAAGAGCCTGGCTAG




GAAGGTGGATGAGGCACCATATTCATTTTGCA




GGTGAAATTCCTGAGATGTAAGGAGCTGCTGT




GACTTGCTCAAGGCCTTATATCGAGTAAACGG




TAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGC




AATCTCCTGGTAATGTGATAGATTTCCCAACT




TAATGCCAACATACCATAAACCTCCCATTCTG




CTAATGCCCAGCCTAAGTTGGGGAGACCACTC




CAGATTCCAAGATGTACAGTTTGCTTTGCTGG




GCCTTTTTCCCATGCCTGCCTTTACTCTGCCA




GAGTTATATTGCTGGGGTTTTGAAGAAGATCC




TATTAAATAAAAGAATAAGCAGTATTATTAAG




TAGCCCTGCATTTCAGGTTTCCTTGAGTGGCA




GGCCAGGCCTGGCCGTGAACGTTCACTGAAAT




CATGGCCTCTTGGCCAAGATTGATAGCTTGTG




CCTGTCCCTGAGTCCCAGTCCATCACGAGCAG




CTGGTTTCTAAGATGCTATTTCCCGTATAAAG




CATGAGACCGTGACTTGCCAGCCCCACAGAGC




CCCGCCCTTGTCCATCACTGGCATCTGGACTC




CAGCCTGGGTTGGGGCAAAGAGGGAAATGAGA




TCATGTCCTAACCCTGATCCTCTTGTCCCACA




GATATCGGAAGCGGAGCTACTAACTTCAGCCT




GCTGAAGCAGGCTGGAGACGTGGAGGAGAACC




CTGGACCCATGCTTCTTTTGGTTACGTCTCTG




TTGCTTTGCGAACTTCCTCATCCAGCGTTCTT




GCTGATCCCCGATATTCAGATGACTCAGACCA




CCAGTAGCTTGTCTGCCTCACTGGGAGACCGA




GTAACAATCTCCTGCAGGGCAAGTCAAGACAT




TAGCAAATACCTCAATTGGTACCAGCAGAAGC




CCGACGGAACGGTAAAACTCCTCATCTATCAT




ACGTCAAGGTTGCATTCCGGAGTACCGTCACG




ATTTTCAGGTTCTGGGAGCGGAACTGACTATT




CCTTGACTATTTCAAACCTCGAGCAGGAGGAC




ATTGCGACATATTTTTGTCAACAAGGTAATAC




CCTCCCTTACACTTTCGGAGGAGGAACCAAAC




TCGAAATTACCGGGTCCACCAGTGGCTCTGGG




AAGCCTGGCAGTGGAGAAGGTTCCACTAAAGG




CGAGGTGAAGCTCCAGGAGAGCGGCCCCGGTC




TCGTTGCCCCCAGTCAAAGCCTCTCTGTAACG




TGCACAGTGAGTGGTGTATCATTGCCTGATTA




TGGCGTCTCCTGGATAAGGCAGCCCCCGCGAA




AGGGTCTTGAATGGCTTGGGGTAATATGGGGC




TCAGAGACAACGTATTATAACTCCGCTCTCAA




AAGTCGCTTGACGATAATAAAAGATAACTCCA




AGAGTCAAGTTTTCCTTAAAATGAACAGTTTG




CAGACTGACGATACCGCTATATATTATTGTGC




TAAACATTATTACTACGGCGGTAGTTACGCGA




TGGATTATTGGGGGCAGGGGACTTCTGTCACA




GTCAGTAGTGCTGCTGCCTTTGTCCCGGTATT




TCTCCCAGCCAAACCGACCACGACTCCCGCCC




CGCGCCCTCCGACACCCGCTCCCACCATCGCC




TCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGA




GGGGCTTGGACTTCGCTTGTGATATTTACATT




TGGGCTCCGTTGGCGGGTACGTGCGGCGTCCT




TTTGTTGTCACTCGTTATTACTTTGTATTGTA




ATCACAGGAATCGCTCAAAGCGGAGTAGGTTG




TTGCATTCCGATTACATGAATATGACTCCTCG




CCGGCCTGGGCCGACAAGAAAACATTACCAAC




CCTATGCCCCCCCACGAGACTTCGCTGCGTAC




AGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGA




CGCTCCGGCATATCAGCAAGGACAGAATCAGC




TGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAA




AGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGA




AATAGGTATGAAGGGCGAACGACGACGGGGAA




AAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCA




TATGCAGGCCCTGCCTCCCAGATAATAATAAA




ATCGCTATCCATCGAAGATGGATGTGTGTTGG




TTTTTTGTGTGCCAGTGACAAGTCTGTCTGCC




TATTCACCGATTTTGATTCTCAAACAAATGTG




TCACAAAGTAAGGATTCTGATGTGTATATCAC




AGACAAAACTGTGCTAGACATGAGGTCTATGG




ACTTCAAGAGCAACAGTGCTGTGGCCTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGAG




AAGAGCAGCAGGCATGAGTTGAATGAAGGAGG




CAGGGCCGGGTCACAGGGTAACCACGTGCGGA




CCGAGGCTGCAGCGTCGTCCTCCCTAGGAACC




CCTAGTGATGGAGTTGGCCACTCCCTCTCTGC




GCGCTCGCTCGCTCACTGAGGCCGCCCGGGCA




AAGCCCGGGCGTCGGGCGACCTTTGGTCGCCC




GGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGG




GAGTGGCCAA





1357
CTX-141
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTAATCC




TCCGGCAAACCTCTGTTTCCTCCTCAAAAGGC




AGGAGGTCGGAAAGAATAAACAATGAGAGTCA




CATTAAAAACACAAAATCCTACGGAAATACTG




AAGAATGAGTCTCAGCACTAAGGAAAAGCCTC




CAGCAGCTCCTGCTTTCTGAGGGTGAAGGATA




GACGCTGTGGCTCTGCATGACTCACTAGCACT




CTATCACGGCCATATTCTGGCAGGGTCAGTGG




CTCCAACTAACATTTGTTTGGTACTTTACAGT




TTATTAAATAGATGTTTATATGGAGAAGCTCT




CATTTCTTTCTCAGAAGAGCCTGGCTAGGAAG




GTGGATGAGGCACCATATTCATTTTGCAGGTG




AAATTCCTGAGATGTAAGGAGCTGCTGTGACT




TGCTCAAGGCCTTATATCGAGTAAACGGTAGT




GCTGGGGCTTAGACGCAGGTGTTCTGATTTAT




AGTTCAAAACCTCTATCAATGAGAGAGCAATC




TCCTGGTAATGTGATAGATTTCCCAACTTAAT




GCCAACATACCATAAACCTCCCATTCTGCTAA




TGCCCAGCCTAAGTTGGGGAGACCACTCCAGA




TTCCAAGATGTACAGTTTGCTTTGCTGGGCCT




TTTTCCCATGCCTGCCTTTACTCTGCCAGAGT




TATATTGCTGGGGTTTTGAAGAAGATCCTATT




AAATAAAAGAATAAGCAGTATTATTAAGTAGC




CCTGCATTTCAGGTTTCCTTGAGTGGCAGGCC




AGGCCTGGCCGTGAACGTTCACTGAAATCATG




GCCTCTTGGCCAAGATTGATAGCTTGTGCCTG




TCCCTGAGTCCCAGTCCATCACGAGCAGCTGG




TTTCTAAGATGCTATTTCCCGTATAAAGCATG




AGACCGTGACTTGCCAGCCCCACAGAGCCCCG




CCCTTGTCCATCACTGGCATCTGGACTCCAGC




CTGGGTTGGGGCAAAGAGGGAAATGAGATCAT




GTCCTAACCCTGATCCTCTTGTCCCACAGATA




TCGGAAGCGGAGCTACTAACTTCAGCCTGCTG




AAGCAGGCTGGAGACGTGGAGGAGAACCCTGG




ACCCATGCTTCTTTTGGTTACGTCTCTGTTGC




TTTGCGAACTTCCTCATCCAGCGTTCTTGCTG




ATCCCCGATATTCAGATGACTCAGACCACCAG




TAGCTTGTCTGCCTCACTGGGAGACCGAGTAA




CAATCTCCTGCAGGGCAAGTCAAGACATTAGC




AAATACCTCAATTGGTACCAGCAGAAGCCCGA




CGGAACGGTAAAACTCCTCATCTATCATACGT




CAAGGTTGCATTCCGGAGTACCGTCACGATTT




TCAGGTTCTGGGAGCGGAACTGACTATTCCTT




GACTATTTCAAACCTCGAGCAGGAGGACATTG




CGACATATTTTTGTCAACAAGGTAATACCCTC




CCTTACACTTTCGGAGGAGGAACCAAACTCGA




AATTACCGGGTCCACCAGTGGCTCTGGGAAGC




CTGGCAGTGGAGAAGGTTCCACTAAAGGCGAG




GTGAAGCTCCAGGAGAGCGGCCCCGGTCTCGT




TGCCCCCAGTCAAAGCCTCTCTGTAACGTGCA




CAGTGAGTGGTGTATCATTGCCTGATTATGGC




GTCTCCTGGATAAGGCAGCCCCCGCGAAAGGG




TCTTGAATGGCTTGGGGTAATATGGGGCTCAG




AGACAACGTATTATAACTCCGCTCTCAAAAGT




CGCTTGACGATAATAAAAGATAACTCCAAGAG




TCAAGTTTTCCTTAAAATGAACAGTTTGCAGA




CTGACGATACCGCTATATATTATTGTGCTAAA




CATTATTACTACGGCGGTAGTTACGCGATGGA




TTATTGGGGGCAGGGGACTTCTGTCACAGTCA




GTAGTGCTGCTGCCTTTGTCCCGGTATTTCTC




CCAGCCAAACCGACCACGACTCCCGCCCCGCG




CCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGA




CCCGCCGCCGGGGGTGCTGTTCATACGAGGGG




CTTGGACTTCGCTTGTGATATTTACATTTGGG




CTCCGTTGGCGGGTACGTGCGGCGTCCTTTTG




TTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGC




ATTCCGATTACATGAATATGACTCCTCGCCGG




CCTGGGCCGACAAGAAAACATTACCAACCCTA




TGCCCCCCCACGAGACTTCGCTGCGTACAGGT




CCCGAGTGAAGTTTTCCCGAAGCGCAGACGCT




CCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGT




ATGACGTGCTTGATAAACGCCGGGGGAGAGAC




CCGGAAATGGGGGGTAAACCCCGAAGAAAGAA




TCCCCAAGAAGGACTCTACAATGAACTCCAGA




AGGATAAGATGGCGGAGGCCTACTCAGAAATA




GGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGG




CAACCAAAGATACGTACGATGCACTGCATATG




CAGGCCCTGCCTCCCAGAGGAAGCGGAGCTAC




TAACTTCAGCCTGCTGAAGCAGGCTGGAGACG




TGGAGGAGAACCCTGGACCTATGGTGAGCAAG




GGCGAGGAGCTGTTCACCGGGGTGGTGCCCAT




CCTGGTCGAGCTGGACGGCGACGTAAACGGCC




ACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGC




GATGCCACCTACGGCAAGCTGACCCTGAAGTT




CATCTGCACCACCGGCAAGCTGCCCGTGCCCT




GGCCCACCCTCGTGACCACCCTGACCTACGGC




GTGCAGTGCTTCAGCCGCTACCCCGACCACAT




GAAGCAGCACGACTTCTTCAAGTCCGCCATGC




CCGAAGGCTACGTCCAGGAGCGCACCATCTTC




TTCAAGGACGACGGCAACTACAAGACCCGCGC




CGAGGTGAAGTTCGAGGGCGACACCCTGGTGA




ACCGCATCGAGCTGAAGGGCATCGACTTCAAG




GAGGACGGCAACATCCTGGGGCACAAGCTGGA




GTACAACTACAACAGCCACAACGTCTATATCA




TGGCCGACAAGCAGAAGAACGGCATCAAGGTG




AACTTCAAGATCCGCCACAACATCGAGGACGG




CAGCGTGCAGCTCGCCGACCACTACCAGCAGA




ACACCCCCATCGGCGACGGCCCCGTGCTGCTG




CCCGACAACCACTACCTGAGCACCCAGTCCGC




CCTGAGCAAAGACCCCAACGAGAAGCGCGATC




ACATGGTCCTGCTGGAGTTCGTGACCGCCGCC




GGGATCACTCTCGGCATGGACGAGCTGTACAA




GTAATAATAAAATCGCTATCCATCGAAGATGG




ATGTGTGTTGGTTTTTTGTGTGCCAGTGACAA




GTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGAT




GTGTATATCACAGACAAAACTGTGCTAGACAT




GAGGTCTATGGACTTCAAGAGCAACAGTGCTG




TGGCCTGGAGCAACAAATCTGACTTTGCATGT




GCAAACGCCTTCAACAACAGCATTATTCCAGA




AGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCT




TCAGGAATGGCCAGGTTCTGCCCAGAGCTCTG




GTCAATGATGTCTAAAACTCCTCTGATTGGTG




GTCTCGGCCTTATCCATTGCCACCAAAACCCT




CTTTTTACTAAGAAACAGTGAGCCTTGTTCTG




GCAGTCCAGAGAATGACACGGGAAAAAAGCAG




ATGAAGAGAAGGTGGCAGGAGAGGGCACGTGG




CCCAGCCTCAGTCTCTCCAACTGAGTTCCTGC




CTGCCTGCCTTTGCTCAGACTGTTTGCCCCTT




ACTGCTCTTCTAGGCCTCATTCTAAGCCCCTT




CTCCAAGTTGCCTCTCCTTATTTCTCCCTGTC




TGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATC




ACTGATTGTGCCGGCACATGAATGCACCAGGT




GTTGAAGTGGAGGAATTAAAAAGTCAGATGAG




GGGTGTGCCCAGAGGAAGCACCATTCTAGTTG




GGGGAGCCCATCTGTCAGCTGGGAAAAGTCCA




AATAACTTCAGATTGGAATGTGTTTTAACTCA




GGGTTGAGAAAACAGCTACCTTCAGGACAAAA




GTCAGGGAAGGGCTCTCTGAAGAAATGCTACT




TGAAGATACCAGCCCTACCAAGGGCAGGGAGA




GGACCCTATAGAGGCCTGGGACAGGAGCTCAA




TGAGAAAGGAGAAGAGCAGCAGGCATGAGTTG




AATGAAGGAGGCAGGGCCGGGTCACAGGGTAA




CCACGTGCGGACCGAGGCTGCAGCGTCGTCCT




CCCTAGGAACCCCTAGTGATGGAGTTGGCCAC




TCCCTCTCTGCGCGCTCGCTCGCTCACTGAGG




CCGGGCGACCAAAGGTCGCCCGACGCCCGGGC




TTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGC




GCGCAGCTGCCTGCAGG





1358
CTX-142
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGATATAGTTATGACCCAA




TCACCCGATAGTCTTGCGGTAAGCCTGGGGGA




GCGAGCAACAATAAACTGTCGGGCATCAAAAT




CCGTCAGTACAAGCGGGTATTCATTCATGCAC




TGGTATCAACAGAAACCCGGTCAGCCACCCAA




GCTCCTGATTTATCTTGCGTCTAATCTTGAGT




CCGGCGTCCCAGACCGGTTTTCCGGCTCCGGG




AGCGGCACGGATTTTACTCTTACTATTTCTAG




CCTTCAGGCCGAAGATGTGGCGGTATACTACT




GCCAGCATTCAAGGGAAGTTCCTTGGACGTTC




GGTCAGGGCACGAAAGTGGAAATTAAAGGCGG




GGGGGGATCCGGCGGGGGAGGGTCTGGAGGAG




GTGGCAGTGGTCAGGTCCAACTGGTGCAGTCC




GGGGCAGAGGTAAAAAAACCCGGCGCGTCTGT




TAAGGTTTCATGCAAGGCCAGTGGATATACTT




TCACCAATTACGGAATGAACTGGGTGAGGCAG




GCCCCTGGTCAAGGCCTGAAATGGATGGGATG




GATAAACACGTACACCGGTGAACCTACCTATG




CCGATGCCTTTAAGGGTCGGGTTACGATGACG




AGAGACACCTCCATATCAACAGCCTACATGGA




GCTCAGCAGATTGAGGAGTGACGATACGGCAG




TCTATTACTGTGCAAGAGACTACGGCGATTAT




GGCATGGATTACTGGGGCCAGGGCACTACAGT




AACCGTTTCCAGCAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1359
CTX-145
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAA




AGCGGGGCGGAGGTGAAAAAACCCGGCGCTTC




CGTGAAGGTGTCCTGTAAGGCGTCCGGTTATA




CGTTCACGAACTACGGGATGAATTGGGTTCGC




CAAGCGCCGGGGCAGGGACTGAAATGGATGGG




GTGGATAAATACCTACACCGGCGAACCTACAT




ACGCCGACGCTTTTAAAGGGCGAGTCACTATG




ACGCGCGATACCAGCATATCCACCGCATACAT




GGAGCTGTCCCGACTCCGGTCAGACGACACGG




CTGTCTACTATTGTGCTCGGGACTATGGCGAT




TATGGCATGGACTACTGGGGTCAGGGTACGAC




TGTAACAGTTAGTAGTGGTGGAGGCGGCAGTG




GCGGGGGGGGAAGCGGAGGAGGGGGTTCTGGT




GACATAGTTATGACCCAATCCCCAGATAGTTT




GGCGGTTTCTCTGGGCGAGAGGGCAACGATTA




ATTGTCGCGCATCAAAGAGCGTTTCAACGAGC




GGATATTCTTTTATGCATTGGTACCAGCAAAA




ACCCGGACAACCGCCGAAGCTGCTGATCTACT




TGGCTTCAAATCTTGAGTCTGGGGTGCCGGAC




CGATTTTCTGGTAGTGGAAGCGGAACTGACTT




TACGCTCACGATCAGTTCACTGCAGGCTGAGG




ATGTAGCGGTCTATTATTGCCAGCACAGTAGA




GAAGTCCCCTGGACCTTCGGTCAAGGCACGAA




AGTAGAAATTAAAAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1360
CTX-145b
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAA




AGCGGGGCGGAGGTGAAAAAACCCGGCGCTTC




CGTGAAGGTGTCCTGTAAGGCGTCCGGTTATA




CGTTCACGAACTACGGGATGAATTGGGTTCGC




CAAGCGCCGGGGCAGGGACTGAAATGGATGGG




GTGGATAAATACCTACACCGGCGAACCTACAT




ACGCCGACGCTTTTAAAGGGCGAGTCACTATG




ACGCGCGATACCAGCATATCCACCGCATACAT




GGAGCTGTCCCGACTCCGGTCAGACGACACGG




CTGTCTACTATTGTGCTCGGGACTATGGCGAT




TATGGCATGGACTACTGGGGTCAGGGTACGAC




TGTAACAGTTAGTAGTGGTGGAGGCGGCAGTG




GCGGGGGGGGAAGCGGAGGAGGGGGTTCTGGT




GACATAGTTATGACCCAATCCCCAGATAGTTT




GGCGGTTTCTCTGGGCGAGAGGGCAACGATTA




ATTGTCGCGCATCAAAGAGCGTTTCAACGAGC




GGATATTCTTTTATGCATTGGTACCAGCAAAA




ACCCGGACAACCGCCGAAGCTGCTGATCTACT




TGGCTTCAAATCTTGAGTCTGGGGTGCCGGAC




CGATTTTCTGGTAGTGGAAGCGGAACTGACTT




TACGCTCACGATCAGTTCACTGCAGGCTGAGG




ATGTAGCGGTCTATTATTGCCAGCACAGTAGA




GAAGTCCCCTGGACCTTCGGTCAAGGCACGAA




AGTAGAAATTAAAAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCAAACGGGGCAG




AAAGAAACTCCTGTATATATTCAAACAACCAT




TTATGAGACCAGTACAAACTACTCAAGAGGAA




GATGGCTGTAGCTGCCGATTTCCAGAAGAAGA




AGAAGGAGGATGTGAACTGCGAGTGAAGTTTT




CCCGAAGCGCAGACGCTCCGGCATATCAGCAA




GGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATA




AACGCCGGGGGAGAGACCCGGAAATGGGGGGT




AAACCCCGAAGAAAGAATCCCCAAGAAGGACT




CTACAATGAACTCCAGAAGGATAAGATGGCGG




AGGCCTACTCAGAAATAGGTATGAAGGGCGAA




CGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGT




ACGATGCACTGCATATGCAGGCCCTGCCTCCC




AGATAATAATAAAATCGCTATCCATCGAAGAT




GGATGTGTGTTGGTTTTTTGTGTGTGGAGCAA




CAAATCTGACTTTGCATGTGCAAACGCCTTCA




ACAACAGCATTATTCCAGAAGACACCTTCTTC




CCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTT




CGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCT




AAAACTCCTCTGATTGGTGGTCTCGGCCTTAT




CCATTGCCACCAAAACCCTCTTTTTACTAAGA




AACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGT




GGCAGGAGAGGGCACGTGGCCCAGCCTCAGTC




TCTCCAACTGAGTTCCTGCCTGCCTGCCTTTG




CTCAGACTGTTTGCCCCTTACTGCTCTTCTAG




GCCTCATTCTAAGCCCCTTCTCCAAGTTGCCT




CTCCTTATTTCTCCCTGTCTGCCAAAAAATCT




TTCCCAGCTCACTAAGTCAGTCTCACGCAGTC




ACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGG




AATTAAAAAGTCAGATGAGGGGTGTGCCCAGA




GGAAGCACCATTCTAGTTGGGGGAGCCCATCT




GTCAGCTGGGAAAAGTCCAAATAACTTCAGAT




TGGAATGTGTTTTAACTCAGGGTTGAGAAAAC




AGCTACCTTCAGGACAAAAGTCAGGGAAGGGC




TCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAG




GCCTGGGACAGGAGCTCAATGAGAAAGGTAAC




CACGTGCGGACCGAGGCTGCAGCGTCGTCCTC




CCTAGGAACCCCTAGTGATGGAGTTGGCCACT




CCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC




CGGGCGACCAAAGGTCGCCCGACGCCCGGGCT




TTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCG




CGCAGCTGCCTGCAGG





1361
CTX-152
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAAGA




TCCTATTAAATAAAAGAATAAGCAGTATTATT




AAGTAGCCCTGCATTTCAGGTTTCCTTGAGTG




GCAGGCCAGGCCTGGCCGTGAACGTTCACTGA




AATCATGGCCTCTTGGCCAAGATTGATAGCTT




GTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATA




AAGCATGAGACCGTGACTTGCCAGCCCCACAG




AGCCCCGCCCTTGTCCATCACTGGCATCTGGA




CTCCAGCCTGGGTTGGGGCAAAGAGGGAAATG




AGATCATGTCCTAACCCTGATCCTCTTGTCCC




ACAGATATCCAGAACCCTGACCCTGCCGTGTA




CCAGCTGAGAGACTCTAAATCCAGTGACAAGT




CTGTCTGCCTATTCACCGATTTTGATTCTCAA




ACAAATGTGTCACAAAGTAAGGATTCTGATGT




GTATATCACAGACAAAACTGTGCTAGACATGA




GGTCTATGGACTTCAGGCTCCGGTGCCCGTCA




GTGGGCAGAGCGCACATCGCCCACAGTCCCCG




AGAAGTTGGGGGGAGGGGTCGGCAATTGAACC




GGTGCCTAGAGAAGGTGGCGCGGGGTAAACTG




GGAAAGTGATGTCGTGTACTGGCTCCGCCTTT




TTCCCGAGGGTGGGGGAGAACCGTATATAAGT




GCAGTAGTCGCCGTGAACGTTCTTTTTCGCAA




CGGGTTTGCCGCCAGAACACAGGTAAGTGCCG




TGTGTGGTTCCCGCGGGCCTGGCCTCTTTACG




GGTTATGGCCCTTGCGTGCCTTGAATTACTTC




CACTGGCTGCAGTACGTGATTCTTGATCCCGA




GCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA




GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGT




GCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGG




CCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCC




ATTTAAAATTTTTGATGACCTGCTGCGACGCT




TTTTTTCTGGCAAGATAGTCTTGTAAATGCGG




GCCAAGATCTGCACACTGGTATTTCGGTTTTT




GGGGCCGCGGGCGGCGACGGGGCCCGTGCGTC




CCAGCGCACATGTTCGGCGAGGCGGGGCCTGC




GAGCGCGGCCACCGAGAATCGGACGGGGGTAG




TCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGG




CCTCGCGCCGCCGTGTATCGCCCCGCCCTGGG




CGGCAAGGCTGGCCCGGTCGGCACCAGTTGCG




TGAGCGGAAAGATGGCCGCTTCCCGGCCCTGC




TGCAGGGAGCTCAAAATGGAGGACGCGGCGCT




CGGGAGAGCGGGCGGGTGAGTCACCCACACAA




AGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGC




TTCATGTGACTCCACGGAGTACCGGGCGCCGT




CCAGGCACCTCGATTAGTTCTCGAGCTTTTGG




AGTACGTCGTCTTTAGGTTGGGGGGAGGGGTT




TTATGCGATGGAGTTTCCCCACACTGAGTGGG




TGGAGACTGAAGTTAGGCCAGCTTGGCACTTG




ATGTAATTCTCCTTGGAATTTGCCCTTTTTGA




GTTTGGATCTTGGTTCATTCTCAAGCCTCAGA




CAGTGGTTCAAAGTTTTTTTCTTCCATTTCAG




GTGTCGTGACCACCATGGCTCTTCCTGTAACC




GCACTTCTGCTTCCTCTTGCTCTGCTGCTTCA




TGCTGCTAGACCTCAGGTGCAGTTACAACAGT




CAGGAGGAGGATTAGTGCAGCCAGGAGGATCT




CTGAAACTGTCTTGTGCCGCCAGCGGAATCGA




TTTTAGCAGGTACTGGATGTCTTGGGTGAGAA




GAGCCCCTGGAAAAGGACTGGAGTGGATCGGC




GAGATTAATCCTGATAGCAGCACCATCAACTA




TGCCCCTAGCCTGAAGGACAAGTTCATCATCA




GCCGGGACAATGCCAAGAACACCCTGTACCTG




CAAATGAGCAAGGTGAGGAGCGAGGATACAGC




TCTGTACTACTGTGCCAGCCTGTACTACGATT




ACGGAGATGCTATGGACTATTGGGGCCAGGGA




ACAAGCGTTACAGTGTCTTCTGGAGGAGGAGG




ATCCGGTGGTGGTGGTTCAGGAGGTGGAGGTT




CGGGAGATATTGTGATGACACAAAGCCAGCGG




TTCATGACCACATCTGTGGGCGACAGAGTGAG




CGTGACCTGTAAAGCTTCTCAGTCTGTGGACA




GCAATGTTGCCTGGTATCAGCAGAAGCCCAGA




CAGAGCCCTAAAGCCCTGATCTTTTCTGCCAG




CCTGAGATTTTCTGGCGTTCCTGCCAGATTTA




CCGGCTCTGGCTCTGGCACCGATTTTACACTG




ACCATCAGCAATCTGCAGTCTGAGGATCTGGC




CGAGTACTTTTGCCAGCAGTACAACAACTACC




CCCTGACCTTTGGAGCTGGCACAAAACTGGAG




CTGAAGAGTGCTGCTGCCTTTGTCCCGGTATT




TCTCCCAGCCAAACCGACCACGACTCCCGCCC




CGCGCCCTCCGACACCCGCTCCCACCATCGCC




TCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGA




GGGGCTTGGACTTCGCTTGTGATATTTACATT




TGGGCTCCGTTGGCGGGTACGTGCGGCGTCCT




TTTGTTGTCACTCGTTATTACTTTGTATTGTA




ATCACAGGAATCGCTCAAAGCGGAGTAGGTTG




TTGCATTCCGATTACATGAATATGACTCCTCG




CCGGCCTGGGCCGACAAGAAAACATTACCAAC




CCTATGCCCCCCCACGAGACTTCGCTGCGTAC




AGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGA




CGCTCCGGCATATCAGCAAGGACAGAATCAGC




TGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAA




AGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGA




AATAGGTATGAAGGGCGAACGACGACGGGGAA




AAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCA




TATGCAGGCCCTGCCTCCCAGAGGAAGCGGAG




CTACTAACTTCAGCCTGCTGAAGCAGGCTGGA




GACGTGGAGGAGAACCCTGGACCTATGGTGAG




CAAGGGCGAGGAGCTGTTCACCGGGGTGGTGC




CCATCCTGGTCGAGCTGGACGGCGACGTAAAC




GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA




GGGCGATGCCACCTACGGCAAGCTGACCCTGA




AGTTCATCTGCACCACCGGCAAGCTGCCCGTG




CCCTGGCCCACCCTCGTGACCACCCTGACCTA




CGGCGTGCAGTGCTTCAGCCGCTACCCCGACC




ACATGAAGCAGCACGACTTCTTCAAGTCCGCC




ATGCCCGAAGGCTACGTCCAGGAGCGCACCAT




CTTCTTCAAGGACGACGGCAACTACAAGACCC




GCGCCGAGGTGAAGTTCGAGGGCGACACCCTG




GTGAACCGCATCGAGCTGAAGGGCATCGACTT




CAAGGAGGACGGCAACATCCTGGGGCACAAGC




TGGAGTACAACTACAACAGCCACAACGTCTAT




ATCATGGCCGACAAGCAGAAGAACGGCATCAA




GGTGAACTTCAAGATCCGCCACAACATCGAGG




ACGGCAGCGTGCAGCTCGCCGACCACTACCAG




CAGAACACCCCCATCGGCGACGGCCCCGTGCT




GCTGCCCGACAACCACTACCTGAGCACCCAGT




CCGCCCTGAGCAAAGACCCCAACGAGAAGCGC




GATCACATGGTCCTGCTGGAGTTCGTGACCGC




CGCCGGGATCACTCTCGGCATGGACGAGCTGT




ACAAGTAATAATAAAATAAAATCGCTATCCAT




CGAAGATGGATGTGTGTTGGTTTTTTGTGTGT




GGAGCAACAAATCTGACTTTGCATGTGCAAAC




GCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTG




GTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGA




ATGGCCAGGTTCTGCCCAGAGCTCTGGTCAAT




GATGTCTAAAACTCCTCTGATTGGTGGTCTCG




GCCTTATCCATTGCCACCAAAACCCTCTTTTT




ACTAAGAAACAGTGAGCCTTGTTCTGGCAGTC




CAGAGAATGACACGGGAAAAAAGCAGATGAAG




AGAAGGTGGCAGGAGAGGGCACGTGGCCCAGC




CTCAGTCTCTCCAACTGAGTTCCTGCCTGCCT




GCCTTTGCTCAGACTGTTTGCCCCTTACTGCT




CTTCTAGGCCTCATTCTAAGCCCCTTCTCCAA




GTTGCCTCTCCTTATTTCTCCCTGTCTGCCAA




AAAATCTTTCCCAGCTCACTAAGTCAGTCTCA




CGCAGTCACTCATTAACCCGGTAACCACGTGC




GGACCGAGGCTGCAGCGTCGTCCTCCCTAGGA




ACCCCTAGTGATGGAGTTGGCCACTCCCTCTC




TGCGCGCTCGCTCGCTCACTGAGGCCGGGCGA




CCAAAGGTCGCCCGACGCCCGGGCTTTGCCCG




GGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCT




GCCTGCAGG





1362
CTX-153
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAGAT




GTAAGGAGCTGCTGTGACTTGCTCAAGGCCTT




ATATCGAGTAAACGGTAGTGCTGGGGCTTAGA




CGCAGGTGTTCTGATTTATAGTTCAAAACCTC




TATCAATGAGAGAGCAATCTCCTGGTAATGTG




ATAGATTTCCCAACTTAATGCCAACATACCAT




AAACCTCCCATTCTGCTAATGCCCAGCCTAAG




TTGGGGAGACCACTCCAGATTCCAAGATGTAC




AGTTTGCTTTGCTGGGCCTTTTTCCCATGCCT




GCCTTTACTCTGCCAGAGTTATATTGCTGGGG




TTTTGAAGAAGATCCTATTAAATAAAAGAATA




AGCAGTATTATTAAGTAGCCCTGCATTTCAGG




TTTCCTTGAGTGGCAGGCCAGGCCTGGCCGTG




AACGTTCACTGAAATCATGGCCTCTTGGCCAA




GATTGATAGCTTGTGCCTGTCCCTGAGTCCCA




GTCCATCACGAGCAGCTGGTTTCTAAGATGCT




ATTTCCCGTATAAAGCATGAGACCGTGACTTG




CCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCA




AAGAGGGAAATGAGATCATGTCCTAACCCTGA




TCCTCTTGTCCCACAGATATCCAGAACCCTGA




CCCTGCCGTGTACCAGCTGAGAGACTCTAAAT




CCAGTGACAAGTCTGTCTGCCTATTCACCGAT




TTTGATTCTCAAACAAATGTGTCACAAAGTAA




GGATTCTGATGTGTATATCACAGACAAAACTG




TGCTAGACATGAGGTCTATGGACTTCAGGCTC




CGGTGCCCGTCAGTGGGCAGAGCGCACATCGC




CCACAGTCCCCGAGAAGTTGGGGGGAGGGGTC




GGCAATTGAACCGGTGCCTAGAGAAGGTGGCG




CGGGGTAAACTGGGAAAGTGATGTCGTGTACT




GGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAA




CCGTATATAAGTGCAGTAGTCGCCGTGAACGT




TCTTTTTCGCAACGGGTTTGCCGCCAGAACAC




AGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCT




GGCCTCTTTACGGGTTATGGCCCTTGCGTGCC




TTGAATTACTTCCACTGGCTGCAGTACGTGAT




TCTTGATCCCGAGCTTCGGGTTGGAAGTGGGT




GGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCC




CCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCC




TGGGCGCTGGGGCCGCCGCGTGCGAATCTGGT




GGCACCTTCGCGCCTGTCTCGCTGCTTTCGAT




AAGTCTCTAGCCATTTAAAATTTTTGATGACC




TGCTGCGACGCTTTTTTTCTGGCAAGATAGTC




TTGTAAATGCGGGCCAAGATCTGCACACTGGT




ATTTCGGTTTTTGGGGCCGCGGGCGGCGACGG




GGCCCGTGCGTCCCAGCGCACATGTTCGGCGA




GGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGC




TCTGGTGCCTGGCCTCGCGCCGCCGTGTATCG




CCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCG




GCACCAGTTGCGTGAGCGGAAAGATGGCCGCT




TCCCGGCCCTGCTGCAGGGAGCTCAAAATGGA




GGACGCGGCGCTCGGGAGAGCGGGCGGGTGAG




TCACCCACACAAAGGAAAAGGGCCTTTCCGTC




CTCAGCCGTCGCTTCATGTGACTCCACGGAGT




ACCGGGCGCCGTCCAGGCACCTCGATTAGTTC




TCGAGCTTTTGGAGTACGTCGTCTTTAGGTTG




GGGGGAGGGGTTTTATGCGATGGAGTTTCCCC




ACACTGAGTGGGTGGAGACTGAAGTTAGGCCA




GCTTGGCACTTGATGTAATTCTCCTTGGAATT




TGCCCTTTTTGAGTTTGGATCTTGGTTCATTC




TCAAGCCTCAGACAGTGGTTCAAAGTTTTTTT




CTTCCATTTCAGGTGTCGTGACCACCATGGCT




CTTCCTGTAACCGCACTTCTGCTTCCTCTTGC




TCTGCTGCTTCATGCTGCTAGACCTCAGGTGC




AGTTACAACAGTCAGGAGGAGGATTAGTGCAG




CCAGGAGGATCTCTGAAACTGTCTTGTGCCGC




CAGCGGAATCGATTTTAGCAGGTACTGGATGT




CTTGGGTGAGAAGAGCCCCTGGAAAAGGACTG




GAGTGGATCGGCGAGATTAATCCTGATAGCAG




CACCATCAACTATGCCCCTAGCCTGAAGGACA




AGTTCATCATCAGCCGGGACAATGCCAAGAAC




ACCCTGTACCTGCAAATGAGCAAGGTGAGGAG




CGAGGATACAGCTCTGTACTACTGTGCCAGCC




TGTACTACGATTACGGAGATGCTATGGACTAT




TGGGGCCAGGGAACAAGCGTTACAGTGTCTTC




TGGAGGAGGAGGATCCGGTGGTGGTGGTTCAG




GAGGTGGAGGTTCGGGAGATATTGTGATGACA




CAAAGCCAGCGGTTCATGACCACATCTGTGGG




CGACAGAGTGAGCGTGACCTGTAAAGCTTCTC




AGTCTGTGGACAGCAATGTTGCCTGGTATCAG




CAGAAGCCCAGACAGAGCCCTAAAGCCCTGAT




CTTTTCTGCCAGCCTGAGATTTTCTGGCGTTC




CTGCCAGATTTACCGGCTCTGGCTCTGGCACC




GATTTTACACTGACCATCAGCAATCTGCAGTC




TGAGGATCTGGCCGAGTACTTTTGCCAGCAGT




ACAACAACTACCCCCTGACCTTTGGAGCTGGC




ACAAAACTGGAGCTGAAGAGTGCTGCTGCCTT




TGTCCCGGTATTTCTCCCAGCCAAACCGACCA




CGACTCCCGCCCCGCGCCCTCCGACACCCGCT




CCCACCATCGCCTCTCAACCTCTTAGTCTTCG




CCCCGAGGCATGCCGACCCGCCGCCGGGGGTG




CTGTTCATACGAGGGGCTTGGACTTCGCTTGT




GATATTTACATTTGGGCTCCGTTGGCGGGTAC




GTGCGGCGTCCTTTTGTTGTCACTCGTTATTA




CTTTGTATTGTAATCACAGGAATCGCTCAAAG




CGGAGTAGGTTGTTGCATTCCGATTACATGAA




TATGACTCCTCGCCGGCCTGGGCCGACAAGAA




AACATTACCAACCCTATGCCCCCCCACGAGAC




TTCGCTGCGTACAGGTCCCGAGTGAAGTTTTC




CCGAAGCGCAGACGCTCCGGCATATCAGCAAG




GACAGAATCAGCTGTATAACGAACTGAATTTG




GGACGCCGCGAGGAGTATGACGTGCTTGATAA




ACGCCGGGGGAGAGACCCGGAAATGGGGGGTA




AACCCCGAAGAAAGAATCCCCAAGAAGGACTC




TACAATGAACTCCAGAAGGATAAGATGGCGGA




GGCCTACTCAGAAATAGGTATGAAGGGCGAAC




GACGACGGGGAAAAGGTCACGATGGCCTCTAC




CAAGGGTTGAGTACGGCAACCAAAGATACGTA




CGATGCACTGCATATGCAGGCCCTGCCTCCCA




GATAATAATAAAATCGCTATCCATCGAAGATG




GATGTGTGTTGGTTTTTTGTGTGTGGAGCAAC




AAATCTGACTTTGCATGTGCAAACGCCTTCAA




CAACAGCATTATTCCAGAAGACACCTTCTTCC




CCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTC




GCAGGCTGTTTCCTTGCTTCAGGAATGGCCAG




GTTCTGCCCAGAGCTCTGGTCAATGATGTCTA




AAACTCCTCTGATTGGTGGTCTCGGCCTTATC




CATTGCCACCAAAACCCTCTTTTTACTAAGAA




ACAGTGAGCCTTGTTCTGGCAGTCCAGAGAAT




GACACGGGAAAAAAGCAGATGAAGAGAAGGTG




GCAGGAGAGGGCACGTGGCCCAGCCTCAGTCT




CTCCAACTGAGTTCCTGCCTGCCTGCCTTTGC




TCAGACTGTTTGCCCCTTACTGCTCTTCTAGG




CCTCATTCTAAGCCCCTTCTCCAAGTTGCCTC




TCCTTATTTCTCCCTGTCTGCCAAAAAATCTT




TCCCAGCTCACTAAGTCAGTCTCACGCAGTCA




CTCATTAACCCACCAATCACTGATTGTGCCGG




CACATGAATGCACCAGGTGTTGAAGTGGAGGA




ATTAAAAAGTCAGATGAGGGGTGTGCCCAGAG




GAAGCACCATTCTAGTTGGGGGAGCCCATCTG




TCAGCTGGGAAAAGTCCAAATAACTTCAGATT




GGAATGTGTTTTAACTCAGGGTTGAGAAAACA




GCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCC




CTACCAAGGGCAGGGAGAGGACCCTATAGAGG




CCTGGGACAGGAGCTCAATGAGAAAGGTAACC




ACGTGCGGACCGAGGCTGCAGCGTCGTCCTCC




CTAGGAACCCCTAGTGATGGAGTTGGCCACTC




CCTCTCTGCGCGCTCGCTCGCTCACTGAGGCC




GGGCGACCAAAGGTCGCCCGACGCCCGGGCTT




TGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGC




GCAGCTGCCTGCAGG





1363
CTX-154
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAAGA




TCCTATTAAATAAAAGAATAAGCAGTATTATT




AAGTAGCCCTGCATTTCAGGTTTCCTTGAGTG




GCAGGCCAGGCCTGGCCGTGAACGTTCACTGA




AATCATGGCCTCTTGGCCAAGATTGATAGCTT




GTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATA




AAGCATGAGACCGTGACTTGCCAGCCCCACAG




AGCCCCGCCCTTGTCCATCACTGGCATCTGGA




CTCCAGCCTGGGTTGGGGCAAAGAGGGAAATG




AGATCATGTCCTAACCCTGATCCTCTTGTCCC




ACAGATATCCAGAACCCTGACCCTGCCGTGTA




CCAGCTGAGAGACTCTAAATCCAGTGACAAGT




CTGTCTGCCTATTCACCGATTTTGATTCTCAA




ACAAATGTGTCACAAAGTAAGGATTCTGATGT




GTATATCACAGACAAAACTGTGCTAGACATGA




GGTCTATGGACTTCAGGCTCCGGTGCCCGTCA




GTGGGCAGAGCGCACATCGCCCACAGTCCCCG




AGAAGTTGGGGGGAGGGGTCGGCAATTGAACC




GGTGCCTAGAGAAGGTGGCGCGGGGTAAACTG




GGAAAGTGATGTCGTGTACTGGCTCCGCCTTT




TTCCCGAGGGTGGGGGAGAACCGTATATAAGT




GCAGTAGTCGCCGTGAACGTTCTTTTTCGCAA




CGGGTTTGCCGCCAGAACACAGGTAAGTGCCG




TGTGTGGTTCCCGCGGGCCTGGCCTCTTTACG




GGTTATGGCCCTTGCGTGCCTTGAATTACTTC




CACTGGCTGCAGTACGTGATTCTTGATCCCGA




GCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA




GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGT




GCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGG




CCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCC




ATTTAAAATTTTTGATGACCTGCTGCGACGCT




TTTTTTCTGGCAAGATAGTCTTGTAAATGCGG




GCCAAGATCTGCACACTGGTATTTCGGTTTTT




GGGGCCGCGGGCGGCGACGGGGCCCGTGCGTC




CCAGCGCACATGTTCGGCGAGGCGGGGCCTGC




GAGCGCGGCCACCGAGAATCGGACGGGGGTAG




TCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGG




CCTCGCGCCGCCGTGTATCGCCCCGCCCTGGG




CGGCAAGGCTGGCCCGGTCGGCACCAGTTGCG




TGAGCGGAAAGATGGCCGCTTCCCGGCCCTGC




TGCAGGGAGCTCAAAATGGAGGACGCGGCGCT




CGGGAGAGCGGGCGGGTGAGTCACCCACACAA




AGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGC




TTCATGTGACTCCACGGAGTACCGGGCGCCGT




CCAGGCACCTCGATTAGTTCTCGAGCTTTTGG




AGTACGTCGTCTTTAGGTTGGGGGGAGGGGTT




TTATGCGATGGAGTTTCCCCACACTGAGTGGG




TGGAGACTGAAGTTAGGCCAGCTTGGCACTTG




ATGTAATTCTCCTTGGAATTTGCCCTTTTTGA




GTTTGGATCTTGGTTCATTCTCAAGCCTCAGA




CAGTGGTTCAAAGTTTTTTTCTTCCATTTCAG




GTGTCGTGACCACCATGGCTCTTCCTGTAACC




GCACTTCTGCTTCCTCTTGCTCTGCTGCTTCA




TGCTGCTAGACCTGACATCGTGATGACCCAAA




GCCAGAGGTTCATGACCACATCTGTGGGCGAT




AGAGTGAGCGTGACCTGTAAAGCCTCTCAGTC




TGTGGACAGCAATGTTGCCTGGTATCAGCAGA




AGCCTAGACAGAGCCCTAAAGCCCTGATCTTT




AGCGCCAGCCTGAGATTTAGCGGAGTTCCTGC




CAGATTTACCGGAAGCGGATCTGGAACCGATT




TTACACTGACCATCAGCAACCTGCAGAGCGAG




GATCTGGCCGAGTACTTTTGCCAGCAGTACAA




CAATTACCCTCTGACCTTTGGAGCCGGCACAA




AGCTGGAGCTGAAAGGAGGAGGAGGATCTGGT




GGTGGTGGTTCAGGAGGTGGAGGTTCGGGACA




AGTTCAATTACAGCAATCTGGAGGAGGACTGG




TTCAGCCTGGAGGAAGCCTGAAGCTGTCTTGT




GCCGCTTCTGGAATCGATTTTAGCAGATACTG




GATGAGCTGGGTGAGAAGAGCCCCTGGCAAAG




GACTGGAGTGGATTGGCGAGATTAATCCTGAT




AGCAGCACCATCAACTATGCCCCTAGCCTGAA




GGACAAGTTCATCATCAGCCGGGACAATGCCA




AGAACACCCTGTACCTGCAAATGAGCAAGGTG




AGGAGCGAGGATACAGCTCTGTACTACTGTGC




CAGCCTGTACTACGATTACGGAGATGCTATGG




ACTATTGGGGCCAGGGAACAAGCGTTACAGTG




AGCAGCAGTGCTGCTGCCTTTGTCCCGGTATT




TCTCCCAGCCAAACCGACCACGACTCCCGCCC




CGCGCCCTCCGACACCCGCTCCCACCATCGCC




TCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGA




GGGGCTTGGACTTCGCTTGTGATATTTACATT




TGGGCTCCGTTGGCGGGTACGTGCGGCGTCCT




TTTGTTGTCACTCGTTATTACTTTGTATTGTA




ATCACAGGAATCGCTCAAAGCGGAGTAGGTTG




TTGCATTCCGATTACATGAATATGACTCCTCG




CCGGCCTGGGCCGACAAGAAAACATTACCAAC




CCTATGCCCCCCCACGAGACTTCGCTGCGTAC




AGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGA




CGCTCCGGCATATCAGCAAGGACAGAATCAGC




TGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAA




AGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGA




AATAGGTATGAAGGGCGAACGACGACGGGGAA




AAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCA




TATGCAGGCCCTGCCTCCCAGAGGAAGCGGAG




CTACTAACTTCAGCCTGCTGAAGCAGGCTGGA




GACGTGGAGGAGAACCCTGGACCTATGGTGAG




CAAGGGCGAGGAGCTGTTCACCGGGGTGGTGC




CCATCCTGGTCGAGCTGGACGGCGACGTAAAC




GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA




GGGCGATGCCACCTACGGCAAGCTGACCCTGA




AGTTCATCTGCACCACCGGCAAGCTGCCCGTG




CCCTGGCCCACCCTCGTGACCACCCTGACCTA




CGGCGTGCAGTGCTTCAGCCGCTACCCCGACC




ACATGAAGCAGCACGACTTCTTCAAGTCCGCC




ATGCCCGAAGGCTACGTCCAGGAGCGCACCAT




CTTCTTCAAGGACGACGGCAACTACAAGACCC




GCGCCGAGGTGAAGTTCGAGGGCGACACCCTG




GTGAACCGCATCGAGCTGAAGGGCATCGACTT




CAAGGAGGACGGCAACATCCTGGGGCACAAGC




TGGAGTACAACTACAACAGCCACAACGTCTAT




ATCATGGCCGACAAGCAGAAGAACGGCATCAA




GGTGAACTTCAAGATCCGCCACAACATCGAGG




ACGGCAGCGTGCAGCTCGCCGACCACTACCAG




CAGAACACCCCCATCGGCGACGGCCCCGTGCT




GCTGCCCGACAACCACTACCTGAGCACCCAGT




CCGCCCTGAGCAAAGACCCCAACGAGAAGCGC




GATCACATGGTCCTGCTGGAGTTCGTGACCGC




CGCCGGGATCACTCTCGGCATGGACGAGCTGT




ACAAGTAATAATAAAATAAAATCGCTATCCAT




CGAAGATGGATGTGTGTTGGTTTTTTGTGTGT




GGAGCAACAAATCTGACTTTGCATGTGCAAAC




GCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTG




GTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGA




ATGGCCAGGTTCTGCCCAGAGCTCTGGTCAAT




GATGTCTAAAACTCCTCTGATTGGTGGTCTCG




GCCTTATCCATTGCCACCAAAACCCTCTTTTT




ACTAAGAAACAGTGAGCCTTGTTCTGGCAGTC




CAGAGAATGACACGGGAAAAAAGCAGATGAAG




AGAAGGTGGCAGGAGAGGGCACGTGGCCCAGC




CTCAGTCTCTCCAACTGAGTTCCTGCCTGCCT




GCCTTTGCTCAGACTGTTTGCCCCTTACTGCT




CTTCTAGGCCTCATTCTAAGCCCCTTCTCCAA




GTTGCCTCTCCTTATTTCTCCCTGTCTGCCAA




AAAATCTTTCCCAGCTCACTAAGTCAGTCTCA




CGCAGTCACTCATTAACCCGGTAACCACGTGC




GGACCGAGGCTGCAGCGTCGTCCTCCCTAGGA




ACCCCTAGTGATGGAGTTGGCCACTCCCTCTC




TGCGCGCTCGCTCGCTCACTGAGGCCGGGCGA




CCAAAGGTCGCCCGACGCCCGGGCTTTGCCCG




GGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCT




GCCTGCAGG





1364
CTX-155
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGC




GACCTTTGGTCGCCCGGCCTCAGTGAGCGAGC




GAGCGCGCAGAGAGGGAGTGGCCAACTCCATC




ACTAGGGGTTCCTGCGGCCGCACGCGTGAGAT




GTAAGGAGCTGCTGTGACTTGCTCAAGGCCTT




ATATCGAGTAAACGGTAGTGCTGGGGCTTAGA




CGCAGGTGTTCTGATTTATAGTTCAAAACCTC




TATCAATGAGAGAGCAATCTCCTGGTAATGTG




ATAGATTTCCCAACTTAATGCCAACATACCAT




AAACCTCCCATTCTGCTAATGCCCAGCCTAAG




TTGGGGAGACCACTCCAGATTCCAAGATGTAC




AGTTTGCTTTGCTGGGCCTTTTTCCCATGCCT




GCCTTTACTCTGCCAGAGTTATATTGCTGGGG




TTTTGAAGAAGATCCTATTAAATAAAAGAATA




AGCAGTATTATTAAGTAGCCCTGCATTTCAGG




TTTCCTTGAGTGGCAGGCCAGGCCTGGCCGTG




AACGTTCACTGAAATCATGGCCTCTTGGCCAA




GATTGATAGCTTGTGCCTGTCCCTGAGTCCCA




GTCCATCACGAGCAGCTGGTTTCTAAGATGCT




ATTTCCCGTATAAAGCATGAGACCGTGACTTG




CCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCA




AAGAGGGAAATGAGATCATGTCCTAACCCTGA




TCCTCTTGTCCCACAGATATCCAGAACCCTGA




CCCTGCCGTGTACCAGCTGAGAGACTCTAAAT




CCAGTGACAAGTCTGTCTGCCTATTCACCGAT




TTTGATTCTCAAACAAATGTGTCACAAAGTAA




GGATTCTGATGTGTATATCACAGACAAAACTG




TGCTAGACATGAGGTCTATGGACTTCAGGCTC




CGGTGCCCGTCAGTGGGCAGAGCGCACATCGC




CCACAGTCCCCGAGAAGTTGGGGGGAGGGGTC




GGCAATTGAACCGGTGCCTAGAGAAGGTGGCG




CGGGGTAAACTGGGAAAGTGATGTCGTGTACT




GGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAA




CCGTATATAAGTGCAGTAGTCGCCGTGAACGT




TCTTTTTCGCAACGGGTTTGCCGCCAGAACAC




AGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCT




GGCCTCTTTACGGGTTATGGCCCTTGCGTGCC




TTGAATTACTTCCACTGGCTGCAGTACGTGAT




TCTTGATCCCGAGCTTCGGGTTGGAAGTGGGT




GGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCC




CCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCC




TGGGCGCTGGGGCCGCCGCGTGCGAATCTGGT




GGCACCTTCGCGCCTGTCTCGCTGCTTTCGAT




AAGTCTCTAGCCATTTAAAATTTTTGATGACC




TGCTGCGACGCTTTTTTTCTGGCAAGATAGTC




TTGTAAATGCGGGCCAAGATCTGCACACTGGT




ATTTCGGTTTTTGGGGCCGCGGGCGGCGACGG




GGCCCGTGCGTCCCAGCGCACATGTTCGGCGA




GGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGC




TCTGGTGCCTGGCCTCGCGCCGCCGTGTATCG




CCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCG




GCACCAGTTGCGTGAGCGGAAAGATGGCCGCT




TCCCGGCCCTGCTGCAGGGAGCTCAAAATGGA




GGACGCGGCGCTCGGGAGAGCGGGCGGGTGAG




TCACCCACACAAAGGAAAAGGGCCTTTCCGTC




CTCAGCCGTCGCTTCATGTGACTCCACGGAGT




ACCGGGCGCCGTCCAGGCACCTCGATTAGTTC




TCGAGCTTTTGGAGTACGTCGTCTTTAGGTTG




GGGGGAGGGGTTTTATGCGATGGAGTTTCCCC




ACACTGAGTGGGTGGAGACTGAAGTTAGGCCA




GCTTGGCACTTGATGTAATTCTCCTTGGAATT




TGCCCTTTTTGAGTTTGGATCTTGGTTCATTC




TCAAGCCTCAGACAGTGGTTCAAAGTTTTTTT




CTTCCATTTCAGGTGTCGTGACCACCATGGCT




CTTCCTGTAACCGCACTTCTGCTTCCTCTTGC




TCTGCTGCTTCATGCTGCTAGACCTGACATCG




TGATGACCCAAAGCCAGAGGTTCATGACCACA




TCTGTGGGCGATAGAGTGAGCGTGACCTGTAA




AGCCTCTCAGTCTGTGGACAGCAATGTTGCCT




GGTATCAGCAGAAGCCTAGACAGAGCCCTAAA




GCCCTGATCTTTAGCGCCAGCCTGAGATTTAG




CGGAGTTCCTGCCAGATTTACCGGAAGCGGAT




CTGGAACCGATTTTACACTGACCATCAGCAAC




CTGCAGAGCGAGGATCTGGCCGAGTACTTTTG




CCAGCAGTACAACAATTACCCTCTGACCTTTG




GAGCCGGCACAAAGCTGGAGCTGAAAGGAGGA




GGAGGATCTGGTGGTGGTGGTTCAGGAGGTGG




AGGTTCGGGACAAGTTCAATTACAGCAATCTG




GAGGAGGACTGGTTCAGCCTGGAGGAAGCCTG




AAGCTGTCTTGTGCCGCTTCTGGAATCGATTT




TAGCAGATACTGGATGAGCTGGGTGAGAAGAG




CCCCTGGCAAAGGACTGGAGTGGATTGGCGAG




ATTAATCCTGATAGCAGCACCATCAACTATGC




CCCTAGCCTGAAGGACAAGTTCATCATCAGCC




GGGACAATGCCAAGAACACCCTGTACCTGCAA




ATGAGCAAGGTGAGGAGCGAGGATACAGCTCT




GTACTACTGTGCCAGCCTGTACTACGATTACG




GAGATGCTATGGACTATTGGGGCCAGGGAACA




AGCGTTACAGTGAGCAGCAGTGCTGCTGCCTT




TGTCCCGGTATTTCTCCCAGCCAAACCGACCA




CGACTCCCGCCCCGCGCCCTCCGACACCCGCT




CCCACCATCGCCTCTCAACCTCTTAGTCTTCG




CCCCGAGGCATGCCGACCCGCCGCCGGGGGTG




CTGTTCATACGAGGGGCTTGGACTTCGCTTGT




GATATTTACATTTGGGCTCCGTTGGCGGGTAC




GTGCGGCGTCCTTTTGTTGTCACTCGTTATTA




CTTTGTATTGTAATCACAGGAATCGCTCAAAG




CGGAGTAGGTTGTTGCATTCCGATTACATGAA




TATGACTCCTCGCCGGCCTGGGCCGACAAGAA




AACATTACCAACCCTATGCCCCCCCACGAGAC




TTCGCTGCGTACAGGTCCCGAGTGAAGTTTTC




CCGAAGCGCAGACGCTCCGGCATATCAGCAAG




GACAGAATCAGCTGTATAACGAACTGAATTTG




GGACGCCGCGAGGAGTATGACGTGCTTGATAA




ACGCCGGGGGAGAGACCCGGAAATGGGGGGTA




AACCCCGAAGAAAGAATCCCCAAGAAGGACTC




TACAATGAACTCCAGAAGGATAAGATGGCGGA




GGCCTACTCAGAAATAGGTATGAAGGGCGAAC




GACGACGGGGAAAAGGTCACGATGGCCTCTAC




CAAGGGTTGAGTACGGCAACCAAAGATACGTA




CGATGCACTGCATATGCAGGCCCTGCCTCCCA




GATAATAATAAAATCGCTATCCATCGAAGATG




GATGTGTGTTGGTTTTTTGTGTGTGGAGCAAC




AAATCTGACTTTGCATGTGCAAACGCCTTCAA




CAACAGCATTATTCCAGAAGACACCTTCTTCC




CCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTC




GCAGGCTGTTTCCTTGCTTCAGGAATGGCCAG




GTTCTGCCCAGAGCTCTGGTCAATGATGTCTA




AAACTCCTCTGATTGGTGGTCTCGGCCTTATC




CATTGCCACCAAAACCCTCTTTTTACTAAGAA




ACAGTGAGCCTTGTTCTGGCAGTCCAGAGAAT




GACACGGGAAAAAAGCAGATGAAGAGAAGGTG




GCAGGAGAGGGCACGTGGCCCAGCCTCAGTCT




CTCCAACTGAGTTCCTGCCTGCCTGCCTTTGC




TCAGACTGTTTGCCCCTTACTGCTCTTCTAGG




CCTCATTCTAAGCCCCTTCTCCAAGTTGCCTC




TCCTTATTTCTCCCTGTCTGCCAAAAAATCTT




TCCCAGCTCACTAAGTCAGTCTCACGCAGTCA




CTCATTAACCCACCAATCACTGATTGTGCCGG




CACATGAATGCACCAGGTGTTGAAGTGGAGGA




ATTAAAAAGTCAGATGAGGGGTGTGCCCAGAG




GAAGCACCATTCTAGTTGGGGGAGCCCATCTG




TCAGCTGGGAAAAGTCCAAATAACTTCAGATT




GGAATGTGTTTTAACTCAGGGTTGAGAAAACA




GCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCC




CTACCAAGGGCAGGGAGAGGACCCTATAGAGG




CCTGGGACAGGAGCTCAATGAGAAAGGTAACC




ACGTGCGGACCGAGGCTGCAGCGTCGTCCTCC




CTAGGAACCCCTAGTGATGGAGTTGGCCACTC




CCTCTCTGCGCGCTCGCTCGCTCACTGAGGCC




GGGCGACCAAAGGTCGCCCGACGCCCGGGCTT




TGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGC




GCAGCTGCCTGCAGG





1365
CTX-160
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAG




AGCGGCGGAGGACTGGTCCAGCCTGGCGGCTC




CCTGAAACTGAGCTGCGCCGCCAGCGGCATCG




ACTTCAGCAGGTACTGGATGAGCTGGGTGAGA




CAGGCCCCTGGCAAGGGCCTGGAATGGATCGG




CGAGATCAACCCCGACTCCAGCACCATCAACT




ACGCCGACAGCGTCAAGGGCAGGTTCACCATT




AGCAGGGACAATGCCAAGAACACCCTGTACCT




GCAGATGAACCTGAGCAGGGCCGAAGACACCG




CCCTGTACTACTGTGCCAGCCTGTACTACGAC




TATGGCGACGCTATGGACTACTGGGGCCAGGG




CACCCTGGTGACAGTGAGCTCCGGAGGAGGCG




GCAGCGGCGGAGGCGGCAGCGGCGGAGGCGGC




AGCGACATCCAGATGACCCAGAGCCCTAGCAG




CCTGAGCGCCTCCGTGGGAGATAGGGTGACAA




TCACCTGTAGGGCCAGCCAGAGCGTGGACTCC




AACGTGGCCTGGTATCAACAGAAGCCCGAGAA




GGCCCCCAAGAGCCTGATCTTTTCCGCCTCCC




TGAGGTTCAGCGGAGTCCCCAGCAGGTTCTCC




GGATCCGGCTCCGGAACCGACTTTACCCTGAC




CATCTCCAGCCTGCAGCCCGAGGACTTCGCCA




CCTACTACTGCCAGCAGTACAACAGCTACCCC




CTGACCTTCGGCGCCGGCACAAAGCTGGAGAT




CAAGAGTGCTGCTGCCTTTGTCCCGGTATTTC




TCCCAGCCAAACCGACCACGACTCCCGCCCCG




CGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTG




GGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAAT




CACAGGAATCGCTCAAAGCGGAGTAGGTTGTT




GCATTCCGATTACATGAATATGACTCCTCGCC




GGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACG




CTCCGGCATATCAGCAAGGACAGAATCAGCTG




TATAACGAACTGAATTTGGGACGCCGCGAGGA




GTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCA




GAAGGATAAGATGGCGGAGGCCTACTCAGAAA




TAGGTATGAAGGGCGAACGACGACGGGGAAAA




GGTCACGATGGCCTCTACCAAGGGTTGAGTAC




GGCAACCAAAGATACGTACGATGCACTGCATA




TGCAGGCCCTGCCTCCCAGATAATAATAAAAT




CGCTATCCATCGAAGATGGATGTGTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTC




CAGAAGACACCTTCTTCCCCAGCCCAGGTAAG




GGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATT




GGTGGTCTCGGCCTTATCCATTGCCACCAAAA




CCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCAC




GTGGCCCAGCCTCAGTCTCTCCAACTGAGTTC




CTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCC




CCTTCTCCAAGTTGCCTCTCCTTATTTCTCCC




TGTCTGCCAAAAAATCTTTCCCAGCTCACTAA




GTCAGTCTCACGCAGTCACTCATTAACCCACC




AATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGA




TGAGGGGTGTGCCCAGAGGAAGCACCATTCTA




GTTGGGGGAGCCCATCTGTCAGCTGGGAAAAG




TCCAAATAACTTCAGATTGGAATGTGTTTTAA




CTCAGGGTTGAGAAAACAGCTACCTTCAGGAC




AAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGG




GAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGGTAACCACGTGCGGACCGAG




GCTGCAGCGTCGTCCTCCCTAGGAACCCCTAG




TGATGGAGTTGGCCACTCCCTCTCTGCGCGCT




CGCTCGCTCACTGAGGCCGGGCGACCAAAGGT




CGCCCGACGCCCGGGCTTTGCCCGGGCGGCCT




CAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAG




G





1366
CTX-160b
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAG




AGCGGCGGAGGACTGGTCCAGCCTGGCGGCTC




CCTGAAACTGAGCTGCGCCGCCAGCGGCATCG




ACTTCAGCAGGTACTGGATGAGCTGGGTGAGA




CAGGCCCCTGGCAAGGGCCTGGAATGGATCGG




CGAGATCAACCCCGACTCCAGCACCATCAACT




ACGCCGACAGCGTCAAGGGCAGGTTCACCATT




AGCAGGGACAATGCCAAGAACACCCTGTACCT




GCAGATGAACCTGAGCAGGGCCGAAGACACCG




CCCTGTACTACTGTGCCAGCCTGTACTACGAC




TATGGCGACGCTATGGACTACTGGGGCCAGGG




CACCCTGGTGACAGTGAGCTCCGGAGGAGGCG




GCAGCGGCGGAGGCGGCAGCGGCGGAGGCGGC




AGCGACATCCAGATGACCCAGAGCCCTAGCAG




CCTGAGCGCCTCCGTGGGAGATAGGGTGACAA




TCACCTGTAGGGCCAGCCAGAGCGTGGACTCC




AACGTGGCCTGGTATCAACAGAAGCCCGAGAA




GGCCCCCAAGAGCCTGATCTTTTCCGCCTCCC




TGAGGTTCAGCGGAGTCCCCAGCAGGTTCTCC




GGATCCGGCTCCGGAACCGACTTTACCCTGAC




CATCTCCAGCCTGCAGCCCGAGGACTTCGCCA




CCTACTACTGCCAGCAGTACAACAGCTACCCC




CTGACCTTCGGCGCCGGCACAAAGCTGGAGAT




CAAGAGTGCTGCTGCCTTTGTCCCGGTATTTC




TCCCAGCCAAACCGACCACGACTCCCGCCCCG




CGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTG




GGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAAT




CACAGGAATCGCAAACGGGGCAGAAAGAAACT




CCTGTATATATTCAAACAACCATTTATGAGAC




CAGTACAAACTACTCAAGAGGAAGATGGCTGT




AGCTGCCGATTTCCAGAAGAAGAAGAAGGAGG




ATGTGAACTGCGAGTGAAGTTTTCCCGAAGCG




CAGACGCTCCGGCATATCAGCAAGGACAGAAT




CAGCTGTATAACGAACTGAATTTGGGACGCCG




CGAGGAGTATGACGTGCTTGATAAACGCCGGG




GGAGAGACCCGGAAATGGGGGGTAAACCCCGA




AGAAAGAATCCCCAAGAAGGACTCTACAATGA




ACTCCAGAAGGATAAGATGGCGGAGGCCTACT




CAGAAATAGGTATGAAGGGCGAACGACGACGG




GGAAAAGGTCACGATGGCCTCTACCAAGGGTT




GAGTACGGCAACCAAAGATACGTACGATGCAC




TGCATATGCAGGCCCTGCCTCCCAGATAATAA




TAAAATCGCTATCCATCGAAGATGGATGTGTG




TTGGTTTTTTGTGTGTGGAGCAACAAATCTGA




CTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCA




GGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTG




TTTCCTTGCTTCAGGAATGGCCAGGTTCTGCC




CAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCA




CCAAAACCCTCTTTTTACTAAGAAACAGTGAG




CCTTGTTCTGGCAGTCCAGAGAATGACACGGG




AAAAAAGCAGATGAAGAGAAGGTGGCAGGAGA




GGGCACGTGGCCCAGCCTCAGTCTCTCCAACT




GAGTTCCTGCCTGCCTGCCTTTGCTCAGACTG




TTTGCCCCTTACTGCTCTTCTAGGCCTCATTC




TAAGCCCCTTCTCCAAGTTGCCTCTCCTTATT




TCTCCCTGTCTGCCAAAAAATCTTTCCCAGCT




CACTAAGTCAGTCTCACGCAGTCACTCATTAA




CCCACCAATCACTGATTGTGCCGGCACATGAA




TGCACCAGGTGTTGAAGTGGAGGAATTAAAAA




GTCAGATGAGGGGTGTGCCCAGAGGAAGCACC




ATTCTAGTTGGGGGAGCCCATCTGTCAGCTGG




GAAAAGTCCAAATAACTTCAGATTGGAATGTG




TTTTAACTCAGGGTTGAGAAAACAGCTACCTT




CAGGACAAAAGTCAGGGAAGGGCTCTCTGAAG




AAATGCTACTTGAAGATACCAGCCCTACCAAG




GGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGGTAACCACGTGCGG




ACCGAGGCTGCAGCGTCGTCCTCCCTAGGAAC




CCCTAGTGATGGAGTTGGCCACTCCCTCTCTG




CGCGCTCGCTCGCTCACTGAGGCCGGGCGACC




AAAGGTCGCCCGACGCCCGGGCTTTGCCCGGG




CGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGC




CTGCAGG





1367
CTX-161
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAGGTGCAGCTGGTGGAG




AGCGGAGGAGGACTGGTGCAGCCCGGAGGCTC




CCTGAAGCTGAGCTGCGCTGCCTCCGGCATCG




ACTTCAGCAGGTACTGGATGAGCTGGGTGAGG




CAGGCTCCCGGCAAAGGCCTGGAGTGGATCGG




CGAGATCAACCCCGACAGCAGCACCATCAACT




ACGCCGACAGCGTGAAGGGCAGGTTCACCATC




AGCAGGGACAACGCCAAGAATACCCTGTACCT




GCAGATGAACCTGAGCAGGGCCGAGGACACAG




CCCTGTACTACTGTGCCAGCCTGTACTACGAC




TATGGAGACGCTATGGACTACTGGGGCCAGGG




AACCCTGGTGACCGTGAGCAGCGGAGGCGGAG




GCTCCGGCGGCGGAGGCAGCGGAGGAGGCGGC




AGCGATATCCAGATGACCCAGTCCCCCAGCTC




CCTGAGCGCTAGCCCTGGCGACAGGGTGAGCG




TGACATGCAAGGCCAGCCAGAGCGTGGACAGC




AACGTGGCCTGGTACCAGCAGAAACCCAGACA




GGCCCCCAAGGCCCTGATCTTCAGCGCCAGCC




TGAGGTTTAGCGGCGTGCCCGCTAGGTTTACC




GGATCCGGCAGCGGCACCGACTTCACCCTGAC




CATCTCCAACXTGCAGTCCGAGGACTTCGCCA




CCTACTACTGCCAGCAGTACAACAACTACCCC




CTGACATTCGGCGCCGGAACCAAGCTGGAGAT




CAAGAGTGCTGCTGCCTTTGTCCCGGTATTTC




TCCCAGCCAAACCGACCACGACTCCCGCCCCG




CGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTG




GGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAAT




CACAGGAATCGCTCAAAGCGGAGTAGGTTGTT




GCATTCCGATTACATGAATATGACTCCTCGCC




GGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACG




CTCCGGCATATCAGCAAGGACAGAATCAGCTG




TATAACGAACTGAATTTGGGACGCCGCGAGGA




GTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCA




GAAGGATAAGATGGCGGAGGCCTACTCAGAAA




TAGGTATGAAGGGCGAACGACGACGGGGAAAA




GGTCACGATGGCCTCTACCAAGGGTTGAGTAC




GGCAACCAAAGATACGTACGATGCACTGCATA




TGCAGGCCCTGCCTCCCAGATAATAATAAAAT




CGCTATCCATCGAAGATGGATG7GTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTC




CAGAAGACACCTTCTTCCCCAGCCCAGGTAAG




GGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATT




GGTGGTCTCGGCCTTATCCATTGCCACCAAAA




CCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCAC




GTGGCCCAGCCTCAGTCTCTCCAACTGAGTTC




CTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCC




CCTTCTCCAAGTTGCCTCTCCTTATTTCTCCC




TGTCTGCCAAAAAATCTTTCCCAGCTCACTAA




GTCAGTCTCACGCAGTCACTCATTAACCCACC




AATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGA




TGAGGGGTGTGCCCAGAGGAAGCACCATTCTA




GTTGGGGGAGCCCATCTGTCAGCTGGGAAAAG




TCCAAATAACTTCAGATTGGAATGTGTTTTAA




CTCAGGGTTGAGAAAACAGCTACCTTCAGGAC




AAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGG




GAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGGTAACCACGTGCGGACCGAG




GCTGCAGCGTCGTCCTCCCTAGGAACCCCTAG




TGATGGAGTTGGCCACTCCCTCTCTGCGCGCT




CGCTCGCTCACTGAGGCCGGGCGACCAAAGGT




CGCCCGACGCCCGGGCTTTGCCCGGGCGGCCT




CAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAG




G





1368
CTX-162
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCCAGATGACCCAG




AGCCCTAGCAGCCTGAGCGCTAGCGTGGGCGA




CAGGGTGACCATCACCTGCAGGGCCAGCCAGA




GCGTGGACTCCAACGTGGCCTGGTACCAGCAG




AAGCCCGAGAAGGCCCCCAAGAGCCTGATCTT




CAGCGCCAGCCTGAGGTTCTCCGGAGTGCCTA




GCAGATTTAGCGGCAGCGGCAGCGGCACAGAC




TTCACCCTGACCATCAGCAGCCTCCAGCCCGA




GGATTTCGCCACCTACTACTGCCAGCAGTACA




ACTCCTACCCCCTGACCTTCGGCGCCGGCACA




AAGCTGGAGATCAAGGGAGGAGGAGGAAGCGG




AGGAGGAGGAAGCGGAGGCGGAGGAAGCGAGG




TGCAGCTGGTGGAGTCCGGAGGAGGCCTGGTG




CAACCTGGAGGCAGCCTGAAGCTGAGCTGTGC




CGCCAGCGGAATCGACTTCAGCAGGTACTGGA




TGTCCTGGGTGAGACAGGCCCCTGGCAAGGGC




CTGGAGTGGATCGGAGAGATCAACCCCGACAG




CTCCACCATCAACTACGCCGACAGCGTGAAGG




GCAGGTTCACCATCAGCAGAGACAACGCCAAG




AACACCCTGTACCTGCAGATGAACCTGTCCAG




AGCCGAGGACACCGCCCTGTACTACTGCGCCA




GCCTGTATTACGACTACGGCGACGCTATGGAC




TACTGGGGCCAGGGCACCCTGGTGACAGTGAG




CAGCAGTGCTGCTGCCTTTGTCCCGGTATTTC




TCCCAGCCAAACCGACCACGACTCCCGCCCCG




CGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTG




GGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAAT




CACAGGAATCGCTCAAAGCGGAGTAGGTTGTT




GCATTCCGATTACATGAATATGACTCCTCGCC




GGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACG




CTCCGGCATATCAGCAAGGACAGAATCAGCTG




TATAACGAACTGAATTTGGGACGCCGCGAGGA




GTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCA




GAAGGATAAGATGGCGGAGGCCTACTCAGAAA




TAGGTATGAAGGGCGAACGACGACGGGGAAAA




GGTCACGATGGCCTCTACCAAGGGTTGAGTAC




GGCAACCAAAGATACGTACGATGCACTGCATA




TGCAGGCCCTGCCTCCCAGATAATAATAAAAT




CGCTATCCATCGAAGATGGATGTGTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTC




CAGAAGACACCTTCTTCCCCAGCCCAGGTAAG




GGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATT




GGTGGTCTCGGCCTTATCCATTGCCACCAAAA




CCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCAC




GTGGCCCAGCCTCAGTCTCTCCAACTGAGTTC




CTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCC




CCTTCTCCAAGTTGCCTCTCCTTATTTCTCCC




TGTCTGCCAAAAAATCTTTCCCAGCTCACTAA




GTCAGTCTCACGCAGTCACTCATTAACCCACC




AATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGA




TGAGGGGTGTGCCCAGAGGAAGCACCATTCTA




GTTGGGGGAGCCCATCTGTCAGCTGGGAAAAG




TCCAAATAACTTCAGATTGGAATGTGTTTTAA




CTCAGGGTTGAGAAAACAGCTACCTTCAGGAC




AAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGG




GAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGGTAACCACGTGCGGACCGAG




GCTGCAGCGTCGTCCTCCCTAGGAACCCCTAG




TGATGGAGTTGGCCACTCCCTCTCTGCGCGCT




CGCTCGCTCACTGAGGCCGGGCGACCAAAGGT




CGCCCGACGCCCGGGCTTTGCCCGGGCGGCCT




CAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAG




G





1369
CTX-163
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCCAAATGACCCAG




TCCCCTAGCAGCCTGTCCGCCAGCCCTGGAGA




CAGGGTGTCCGTGACCTGCAAGGCCAGCCAGT




CCGTGGACAGCAACGTCGCCTGGTATCAGCAG




AAGCCCAGGCAAGCTCCCAAGGCTCTGATCTT




CTCCGCCAGCCTGAGATTTTCCGGCGTGCCCG




CCAGATTCACCGGAAGCGGCAGCGGCACCGAC




TTCACCCTGACCATCAGCAACCTGCAGAGCGA




GGATTTCGCCACATACTACTGCCAGCAGTACA




ACAACTACCCCCTGACCTTCGGAGCCGGCACC




AAGCTGGAGATCAAAGGCGGCGGAGGCAGCGG




CGGCGGCGGCAGCGGCGGAGGCGGATCCGAAG




TGCAGCTGGTGGAAAGCGGAGGCGGACTCGTG




CAGCCTGGCGGAAGCCTGAAGCTGAGCTGTGC




CGCCAGCGGCATCGACTTCAGCAGGTACTGGA




TGAGCTGGGTGAGGCAGGCTCCCGGCAAAGGC




CTGGAGTGGATCGGCGAGATCAACCCTGACAG




CAGCACCATCAACTACGCCGACAGCGTGAAAG




GCAGGTTCACCATCAGCAGGGACAACGCCAAG




AACACCCTGTACCTGCAGATGAACCTGTCCAG




AGCCGAGGACACCGCCCTGTACTACTGCGCCA




GCCTGTACTACGACTACGGCGACGCTATGGAC




TACTGGGGCCAAGGCACCCTCGTGACCGTCAG




CTCCAGTGCTGCTGCCTTTGTCCCGGTATTTC




TCCCAGCCAAACCGACCACGACTCCCGCCCCG




CGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTG




GGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAAT




CACAGGAATCGCTCAAAGCGGAGTAGGTTGTT




GCATTCCGATTACATGAATATGACTCCTCGCC




GGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACG




CTCCGGCATATCAGCAAGGACAGAATCAGCTG




TATAACGAACTGAATTTGGGACGCCGCGAGGA




GTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCA




GAAGGATAAGATGGCGGAGGCCTACTCAGAAA




TAGGTATGAAGGGCGAACGACGACGGGGAAAA




GGTCACGATGGCCTCTACCAAGGGTTGAGTAC




GGCAACCAAAGATACGTACGATGCACTGCATA




TGCAGGCCCTGCCTCCCAGATAATAATAAAAT




CGCTATCCATCGAAGATGGATGTGTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTC




CAGAAGACACCTTCTTCCCCAGCCCAGGTAAG




GGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATT




GGTGGTCTCGGCCTTATCCATTGCCACCAAAA




CCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCAC




GTGGCCCAGCCTCAGTCTCTCCAACTGAGTTC




CTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCC




CCTTCTCCAAGTTGCCTCTCCTTATTTCTCCC




TGTCTGCCAAAAAATCTTTCCCAGCTCACTAA




GTCAGTCTCACGCAGTCACTCATTAACCCACC




AATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGA




TGAGGGGTGTGCCCAGAGGAAGCACCATTCTA




GTTGGGGGAGCCCATCTGTCAGCTGGGAAAAG




TCCAAATAACTTCAGATTGGAATGTGTTTTAA




CTCAGGGTTGAGAAAACAGCTACCTTCAGGAC




AAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGG




GAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGGTAACCACGTGCGGACCGAG




GCTGCAGCGTCGTCCTCCCTAGGAACCCCTAG




TGATGGAGTTGGCCACTCCCTCTCTGCGCGCT




CGCTCGCTCACTGAGGCCGGGCGACCAAAGGT




CGCCCGACGCCCGGGCTTTGCCCGGGCGGCCT




CAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAG




G





1370
CTX-164
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAG




TCCGGCCCTGAGCTCGTGAAGCCTGGAGCCAG




CGTGAAAATGAGCTGTAAGGCCTCCGGCAACA




CCCTCACCAACTACGTGATCCATTGGATGAAG




CAGATGCCCGGCCAGGGCCTGGACTGGATTGG




CTACATTCTGCCCTACAACGACCTGACCAAGT




ACAACGAGAAGTTCACCGGCAAGGCCACCCTG




ACCAGCGATAAGAGCTCCAGCAGCGCCTACAT




GGAGCTGAACTCCCTGACCAGCGAGGACAGCG




CCGTGTACTACTGCACCAGGTGGGACTGGGAT




GGCTTCTTCGACCCCTGGGGACAGGGCACCAC




CCTGACAGTGTCCAGCGGAGGAGGCGGCAGCG




GCGGCGGCGGCTCCGGCGGCGGCGGCAGCGAT




ATCGTGATGACACAGTCCCCTCTGAGCCTGCC




TGTGAGCCTGGGCGACCAGGCCAGCATCAGCT




GCAGGTCCACCCAGTCCCTGGTGCACTCCAAC




GGCAACACCCACCTGCACTGGTACCTGCAAAG




GCCCGGCCAGTCCCCTAAGCTGCTGATCTACA




GCGTGAGCAACAGGTTTAGCGAGGTGCCCGAT




AGATTTTCCGCCAGCGGCAGCGGCACCGACTT




CACACTGAAGATCTCCAGGGTGGAGGCCGAGG




ATCTGGGCGTGTACTTCTGCAGCCAGACCAGC




CACATCCCCTACACCTTCGGCGGCGGAACCAA




GCTGGAGATCAAGAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1371
CTX-165
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCGTGATGACCCAG




AGCCCCCTGAGCCTGCCTGTGTCCCTGGGAGA




CCAGGCTTCCATCAGCTGCAGGTCCACCCAGA




GCCTGGTGCACTCCAACGGCAACACCCACCTG




CACTGGTACCTGCAGAGGCCTGGCCAGTCCCC




CAAGCTGCTGATCTACAGCGTGAGCAATAGGT




TCAGCGAGGTGCCCGACAGATTCAGCGCCAGC




GGAAGCGGCACCGACTTCACCCTGAAGATCAG




CAGGGTCGAGGCCGAAGATCTGGGCGTGTACT




TCTGCTCCCAGACATCCCACATCCCTTACACC




TTCGGCGGCGGCACCAAGCTGGAGATTAAGGG




CGGCGGAGGATCCGGCGGAGGAGGATCCGGAG




GAGGAGGAAGCGAGGTGCAGCTGCAGCAGAGC




GGACCCGAGCTGGTGAAACCCGGAGCCAGCGT




CAAAATGAGCTGCAAGGCCAGCGGCAACACCC




TGACCAACTACGTCATCCACTGGATGAAGCAG




ATGCCCGGACAGGGCCTGGACTGGATCGGCTA




CATCCTGCCCTACAACGACCTGACCAAGTACA




ACGAGAAATTCACCGGCAAGGCCACCCTGACC




AGCGACAAGAGCAGCAGCAGCGCCTACATGGA




GCTGAACAGCCTGACCAGCGAGGACTCCGCCG




TGTACTATTGCACCAGGTGGGACTGGGACGGC




TTCTTTGACCCCTGGGGCCAGGGCACAACACT




CACCGTGAGCTCCAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1372
CTX-166
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




AGCGGAGCCGAGCTCAAGAAGCCCGGAGCCTC




CGTGAAGGTGAGCTGCAAGGCCAGCGGCAACA




CCCTGACCAACTACGTGATCCACTGGGTGAGA




CAAGCCCCCGGCCAAAGGCTGGAGTGGATGGG




CTACATCCTGCCCTACAACGACCTGACCAAGT




ACAGCCAGAAGTTCCAGGGCAGGGTGACCATC




ACCAGGGATAAGAGCGCCTCCACCGCCTATAT




GGAGCTGAGCAGCCTGAGGAGCGAGGACACCG




CTGTGTACTACTGTACAAGGTGGGACTGGGAC




GGCTTCTTTGACCCCTGGGGCCAGGGCACAAC




AGTGACCGTCAGCAGCGGCGGCGGAGGCAGCG




GCGGCGGCGGCAGCGGCGGAGGCGGAAGCGAA




ATCGTGATGACCCAGAGCCCCGCCACACTGAG




CGTGAGCCCTGGCGAGAGGGCCAGCATCTCCT




GCAGGGCTAGCCAAAGCCTGGTGCACAGCAAC




GGCAACACCCACCTGCACTGGTACCAGCAGAG




ACCCGGACAGGCTCCCAGGCTGCTGATCTACA




GCGTGAGCAACAGGTTCTCCGAGGTGCCTGCC




AGGTTTAGCGGCAGCGGAAGCGGCACCGACTT




TACCCTGACCATCAGCAGCGTGGAGTCCGAGG




ACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAA




GCTGGAGATCAAAAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1373
CTX-166b
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




AGCGGAGCCGAGCTCAAGAAGCCCGGAGCCTC




CGTGAAGGTGAGCTGCAAGGCCAGCGGCAACA




CCCTGACCAACTACGTGATCCACTGGGTGAGA




CAAGCCCCCGGCCAAAGGCTGGAGTGGATGGG




CTACATCCTGCCCTACAACGACCTGACCAAGT




ACAGCCAGAAGTTCCAGGGCAGGGTGACCATC




ACCAGGGATAAGAGCGCCTCCACCGCCTATAT




GGAGCTGAGCAGCCTGAGGAGCGAGGACACCG




CTGTGTACTACTGTACAAGGTGGGACTGGGAC




GGCTTCTTTGACCCCTGGGGCCAGGGCACAAC




AGTGACCGTCAGCAGCGGCGGCGGAGGCAGCG




GCGGCGGCGGCAGCGGCGGAGGCGGAAGCGAA




ATCGTGATGACCCAGAGCCCCGCCACACTGAG




CGTGAGCCCTGGCGAGAGGGCCAGCATCTCCT




GCAGGGCTAGCCAAAGCCTGGTGCACAGCAAC




GGCAACACCCACCTGCACTGGTACCAGCAGAG




ACCCGGACAGGCTCCCAGGCTGCTGATCTACA




GCGTGAGCAACAGGTTCTCCGAGGTGCCTGCC




AGGTTTAGCGGCAGCGGAAGCGGCACCGACTT




TACCCTGACCATCAGCAGCGTGGAGTCCGAGG




ACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAA




GCTGGAGATCAAAAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCAAACGGGGCAG




AAAGAAACTCCTGTATATATTCAAACAACCAT




TTATGAGACCAGTACAAACTACTCAAGAGGAA




GATGGCTGTAGCTGCCGATTTCCAGAAGAAGA




AGAAGGAGGATGTGAACTGCGAGTGAAGTTTT




CCCGAAGCGCAGACGCTCCGGCATATCAGCAA




GGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATA




AACGCCGGGGGAGAGACCCGGAAATGGGGGGT




AAACCCCGAAGAAAGAATCCCCAAGAAGGACT




CTACAATGAACTCCAGAAGGATAAGATGGCGG




AGGCCTACTCAGAAATAGGTATGAAGGGCGAA




CGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGT




ACGATGCACTGCATATGCAGGCCCTGCCTCCC




AGATAATAATAAAATCGCTATCCATCGAAGAT




GGATGTGTGTTGGTTTTTTGTGTGTGGAGCAA




CAAATCTGACTTTGCATGTGCAAACGCCTTCA




ACAACAGCATTATTCCAGAAGACACCTTCTTC




CCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTT




CGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCT




AAAACTCCTCTGATTGGTGGTCTCGGCCTTAT




CCATTGCCACCAAAACCCTCTTTTTACTAAGA




AACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGT




GGCAGGAGAGGGCACGTGGCCCAGCCTCAGTC




TCTCCAACTGAGTTCCTGCCTGCCTGCCTTTG




CTCAGACTGTTTGCCCCTTACTGCTCTTCTAG




GCCTCATTCTAAGCCCCTTCTCCAAGTTGCCT




CTCCTTATTTCTCCCTGTCTGCCAAAAAATCT




TTCCCAGCTCACTAAGTCAGTCTCACGCAGTC




ACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGG




AATTAAAAAGTCAGATGAGGGGTGTGCCCAGA




GGAAGCACCATTCTAGTTGGGGGAGCCCATCT




GTCAGCTGGGAAAAGTCCAAATAACTTCAGAT




TGGAATGTGTTTTAACTCAGGGTTGAGAAAAC




AGCTACCTTCAGGACAAAAGTCAGGGAAGGGC




TCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAG




GCCTGGGACAGGAGCTCAATGAGAAAGGTAAC




CACGTGCGGACCGAGGCTGCAGCGTCGTCCTC




CCTAGGAACCCCTAGTGATGGAGTTGGCCACT




CCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC




CGGGCGACCAAAGGTCGCCCGACGCCCGGGCT




TTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCG




CGCAGCTGCCTGCAGG





1374
CTX-167
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




AGCGGCGCCGAGCTGAAGAAACCTGGCGCCAG




CGTCAAGGTGAGCTGCAAGGCTTCCGGAAACA




CCCTCACCAACTACGTGATCCACTGGGTGAGG




CAGGCCCCCGGACAGAGACTGGAGTGGATGGG




CTACATTCTGCCCTACAACGACCTGACCAAGT




ACAGCCAGAAGTTCCAGGGCAGGGTCACCATC




ACCAGGGACAAGAGCGCCAGCACCGCCTACAT




GGAGCTGAGCAGCCTGAGGTCCGAGGACACAG




CCGTGTACTACTGCACCAGGTGGGACTGGGAC




GGATTCTTCGACCCTTGGGGCCAAGGCACCAC




AGTGACAGTGAGCTCCGGCGGAGGCGGCAGCG




GCGGCGGAGGAAGCGGCGGCGGCGGAAGCGAC




ATCGTGATGACCCAGAGCCCTCTGAGCCTGCC




CGTGACACTGGGACAGCCTGCCACACTGTCCT




GCAGGAGCACCCAGAGCCTGGTGCATAGCAAC




GGCAACACCCACCTGCACTGGTTCCAGCAGAG




ACCTGGCCAGAGCCCCCTGAGACTGATCTACA




GCGTGAGCAACAGGGACAGCGGCGTGCCCGAT




AGATTTAGCGGCAGCGGCAGCGGCACCGACTT




TACCCTGAAAATCTCCAGGGTGGAGGCCGAGG




ATGTGGGCGTGTATTACTGCTCCCAGACAAGC




CACATTCCCTATACATTCGGCGGCGGCACCAA




GCTGGAGATCAAGAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1375
CTX-168
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAAATCGTGATGACCCAG




AGCCCTGCCACACTGAGCGTGAGCCCTGGCGA




GAGAGCCAGCATCAGCTGCAGGGCCTCCCAGA




GCCTGGTGCACTCCAACGGCAATACCCACCTG




CACTGGTATCAGCAGAGACCCGGCCAGGCCCC




TAGGCTGCTGATCTACTCCGTGAGCAACAGGT




TCTCCGAGGTGCCCGCCAGATTCAGCGGATCC




GGCAGCGGCACCGACTTCACCCTCACCATCTC




CAGCGTGGAGAGCGAGGACTTCGCCGTCTACT




ACTGCAGCCAGACAAGCCACATCCCCTACACC




TTCGGCGGCGGCACCAAGCTGGAGATCAAGGG




CGGCGGCGGCAGCGGCGGCGGAGGCAGCGGAG




GCGGCGGATCCCAGGTGCAACTGGTGCAGAGC




GGAGCCGAGCTGAAGAAGCCCGGAGCCAGCGT




GAAGGTCAGCTGCAAGGCCAGCGGCAACACCC




TGACAAACTACGTGATCCACTGGGTGAGGCAG




GCCCCTGGCCAAAGGCTCGAGTGGATGGGCTA




CATCCTCCCCTACAACGACCTGACCAAGTACT




CCCAGAAGTTCCAGGGCAGGGTGACCATCACC




AGGGATAAGAGCGCCAGCACCGCCTACATGGA




ACTCAGCAGCCTGAGGAGCGAGGACACCGCCG




TGTACTACTGCACCAGGTGGGACTGGGATGGC




TTCTTCGACCCTTGGGGCCAGGGCACCACCGT




GACAGTGAGCTCCAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1376
CTX-169
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCGTGATGACACAA




TCCCCCCTCAGCCTGCCTGTGACACTGGGCCA




GCCTGCCACCCTGAGCTGCAGGAGCACCCAGT




CCCTGGTGCACTCCAACGGCAACACCCACCTG




CACTGGTTCCAGCAGAGGCCTGGACAGAGCCC




CCTGAGGCTGATCTACAGCGTGAGCAACAGGG




ACTCCGGCGTGCCCGATAGATTCAGCGGCAGC




GGCTCCGGCACCGATTTCACCCTGAAGATCTC




CAGAGTGGAAGCCGAGGACGTGGGCGTCTACT




ACTGCAGCCAGACCAGCCATATCCCCTACACC




TTCGGCGGCGGCACCAAGCTGGAGATCAAGGG




AGGCGGCGGAAGCGGCGGAGGCGGATCCGGAG




GCGGAGGCTCCCAAGTGCAGCTGGTGCAGAGC




GGCGCTGAGCTGAAGAAGCCCGGAGCCAGCGT




GAAGGTGAGCTGCAAGGCCAGCGGAAACACCC




TGACCAACTACGTGATCCACTGGGTGAGACAG




GCCCCCGGACAGAGACTCGAGTGGATGGGCTA




CATCCTGCCCTACAACGACCTGACCAAGTACA




GCCAGAAGTTCCAGGGCAGGGTGACAATCACC




AGGGACAAGAGCGCCAGCACCGCCTACATGGA




GCTGAGCAGCCTGAGATCCGAGGACACCGCCG




TGTACTACTGCACCAGGTGGGACTGGGACGGC




TTCTTTGACCCCTGGGGCCAGGGAACCACAGT




GACCGTGTCCTCCAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1377
CTX-170
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAG




AGCGGCCCTGAGCTGGTGAAGCCCGGCGCCAG




CGTGAAGATCAGCTGCAAGACCTCCGGCTATA




CCTTTACCGAGTACACCATCAACTGGGTGAAG




CAGAGCCACGGCAAGAGCCTGGAGTGGATCGG




CGATATCTACCCCGACAACTACAACATCAGGT




ACAACCAGAAGTTCAAGGGCAAGGCCACCCTG




ACCGTGGACAAGTCCAGCAGCACCGCCTACAT




GGAGCTGAGGAGCCTGTCCAGCGAGGACTCCG




CCATCTACTACTGCGCCAACCACGACTTTTTC




GTCTTCTGGGGACAGGGCACCCTGGTGACAGT




GTCCGCTGGCGGCGGCGGCAGCGGCGGCGGCG




GCTCCGGAGGCGGCGGCAGCGACATCCAGATG




ACACAGGCCACAAGCTCCCTGTCCGCCAGCCT




GGGCGATAGGGTGACCATCAATTGCAGGACCT




CCCAGGACATCAGCAACCACCTGAACTGGTAC




CAGCAGAAACCCGACGGCACCGTGAAGCTGCT




CATCTACTACACCAGCAGGCTGCAGTCCGGCG




TCCCTAGCAGATTCAGCGGATCCGGCAGCGGC




ACCGACTATAGCCTGACCATCAGCAACCTCGA




GCAGGAGGACATCGGCACCTACTTCTGCCATC




AGGGCAACACCCTGCCCCCTACCTTTGGCGGC




GGCACAAAGCTGGAGATTAAGAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1378
CTX-171
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGATATCCAGATGACCCAG




GCCACCAGCAGCCTGAGCGCTTCCCTCGGCGA




CAGGGTGACCATCAACTGCAGGACCAGCCAGG




ACATCTCCAACCACCTGAACTGGTACCAGCAG




AAGCCCGACGGCACCGTGAAACTGCTGATCTA




CTACACCAGCAGACTGCAGAGCGGCGTGCCCT




CCAGATTTTCCGGCAGCGGCTCCGGCACCGAC




TACAGCCTGACCATTAGCAACCTGGAGCAGGA




GGACATCGGAACCTACTTCTGCCACCAGGGCA




ACACACTGCCTCCCACCTTCGGCGGCGGCACA




AAGCTCGAGATCAAGGGCGGCGGCGGAAGCGG




CGGCGGCGGCAGCGGCGGCGGAGGCTCCGAGG




TGCAACTGCAACAGAGCGGACCTGAGCTGGTG




AAGCCTGGCGCCAGCGTGAAGATCTCCTGTAA




GACCAGCGGCTACACCTTCACCGAGTACACCA




TCAACTGGGTGAAGCAGAGCCACGGCAAGAGC




CTCGAATGGATCGGCGACATCTATCCCGACAA




CTACAATATCAGATACAACCAGAAGTTCAAGG




GAAAGGCCACCCTGACCGTGGATAAGTCCTCC




TCCACCGCTTACATGGAGCTGAGGAGCCTGAG




CAGCGAGGACTCCGCCATCTACTACTGCGCCA




ACCACGACTTCTTCGTGTTCTGGGGCCAAGGC




ACCCTCGTGACCGTGAGCGCCAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1379
CTX-172
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




TCCGGCGCTGAGCTGAAGAAGCCCGGCGCCAG




CGTGAAGATCAGCTGCAAGGCCAGCGGCTACA




CCTTCACCGAATACACCATCAACTGGGTGAGA




CAGGCCCCTGGACAGAGGCTCGAGTGGATGGG




CGACATCTACCCCGACAACTACAGCATCAGGT




ACAACCAGAAGTTCCAGGGCAGGGTGACAATC




ACCAGGGACACCAGCGCCAGCACCGCCTATAT




GGAGCTGAGCAGCCTGAGATCCGAGGACACCG




CCGTCTATTACTGCGCCAACCACGACTTCTTC




GTGTTCTGGGGCCAGGGAACACTGGTGACCGT




GTCCAGCGGCGGCGGCGGCAGCGGCGGCGGAG




GAAGCGGCGGCGGCGGCAGCGATATCCAGATG




ACCCAGAGCCCCTCCTCCCTGAGCGCTAGCGT




GGGCGACAGGGTGACCATTACCTGTCAGGCCT




CCCAGGACATCAGCAACTACCTGAACTGGTAC




CAGCAGAAGCCTGGCAAGGCCCCCAAGCTGCT




GATCTATTACACCAGCAGGCTGGAGACCGGCG




TGCCCTCCAGATTCAGCGGCTCCGGCTCCGGA




ACCGACTTCACCTTCACCATCAGCTCCCTGCA




GCCTGAGGACATCGCCACCTACTACTGCCAGC




AGGGCAACACCCTGCCTCCCACATTCGGCGGC




GGCACAAAGGTGGAGATCAAAAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1380
CTX-173
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTCCAG




TCCGGCGCCGAACTGAAGAAGCCTGGCGCCAG




CGTGAAGATCAGCTGCAAGGCCTCCGGCTACA




CCTTCACCGAGTACACCATCAACTGGGTGAGG




CAAGCCCCCGGCCAGAGACTGGAGTGGATGGG




CGACATCTACCCCGACAACTACAGCATCAGGT




ACAACCAGAAGTTCCAGGGCAGGGTGACAATC




ACCAGGGATACCAGCGCCAGCACAGCCTATAT




GGAGCTGTCCTCCCTGAGATCCGAGGACACCG




CCGTGTATTACTGCGCCAACCACGACTTCTTC




GTGTTCTGGGGCCAAGGCACCCTGGTGACCGT




GAGCAGCGGCGGCGGCGGCTCCGGCGGCGGAG




GCTCCGGAGGCGGAGGCAGCGACATCCAGATG




ACCCAGAGCCCTTCCAGCCTGAGCGCTAGCCT




GGGCGACAGGGTGACCATCACCTGCAGGACCA




GCCAGGACATCAGCAATCACCTGAACTGGTAC




CAGCAAAAGCCCGGCAAGGCCCCTAAGCTGCT




GATCTACTACACCAGCAGGCTGGAAAGCGGCG




TGCCTAGCAGGTTCAGCGGCAGCGGCTCCGGA




ACCGACTACAGCCTGACCATTAGCAGCCTGCA




ACCTGAGGACATCGGCACCTATTACTGCCAGC




AGGGCAACACCCTGCCTCCTACCTTTGGCGGC




GGCACCAAACTCGAGATCAAGAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1381
CTX-174
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




AGCGGCCCTGAGCTGAAGAAGCCCGGAGCCAG




CGTGAAGATCTCCTGCAAGACCTCCGGCTACA




CCTTCACCGAGTACACCATCAACTGGGTGAAG




CAGGCCCCCGGACAGGGACTGGAATGGATCGG




CGACATCTACCCCGACAACTACAACATCAGGT




ACAACCAGAAGTTCCAAGGCAAGGCCACCATC




ACAAGGGACACCAGCAGCAGCACCGCCTACAT




GGAGCTGAGCAGCCTGAGGAGCGAGGATACCG




CCGTGTACTACTGCGCCAACCACGACTTCTTC




GTGTTCTGGGGCCAGGGCACCCTGGTGACAGT




GAGCAGCGGAGGAGGCGGAAGCGGAGGAGGAG




GATCCGGAGGAGGAGGCAGCGACATCCAGATG




ACCCAGTCCCCCTCCTCCCTGAGCGCCTCCGT




GGGAGACAGGGTGACCATCACCTGCCAGGCCA




GCCAGGACATCAGCAACTACCTGAACTGGTAC




CAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCT




GATTTACTACACCAGCAGGCTGGAAACCGGCG




TGCCCAGCAGATTTAGCGGCAGCGGCAGCGGC




ACCGACTTTACCTTTACCATCTCCAGCCTGCA




GCCCGAGGATATCGCCACATACTACTGCCAGC




AGGGCAACACCCTCCCCCCTACCTTTGGCGGC




GGCACCAAGGTGGAGATTAAGAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1382
CTX-175
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAG




TCCGGCCCCGAACTGAAAAAGCCCGGCGCCAG




CGTCAAGATCAGCTGCAAGACCTCCGGCTACA




CCTTCACCGAGTACAGCATCAACTGGGTGAAG




CAGGCCCCCGGCCAGGGACTGGAATGGATTGG




CGACATCTACCCCGACAACTACAACATTAGGT




ATAACCAGAAGTTCCAGGGCAAGGCCACCATC




ACAAGAGACACCAGCAGCAGCACCGCCTACAT




GGAGCTGAGCAGCCTGAGGAGCGAGGACACCG




CCGTGTACTACTGCGCCAACCACGACTTCTTC




GTGTTCTGGGGCCAGGGAACCCTGGTGACAGT




GTCCAGCGGCGGCGGCGGCTCCGGCGGCGGCG




GCTCCGGCGGCGGCGGCAGCGACATTCAGATG




ACACAGAGCCCCTCCAGCCTGAGCGCCAGCCT




GGGCGATAGGGTGACCATCACCTGCAGAACCA




GCCAGGACATCAGCAACCACCTGAATTGGTAC




CAGCAGAAGCCCGGAAAGGCCCCCAAACTGCT




GATCTACTACACCAGCAGGCTGGAGAGCGGCG




TGCCTAGCAGGTTTAGCGGCAGCGGCAGCGGC




ACAGATTACAGCCTGACCATCAGCAGCCTGCA




GCCCGAAGACATCGGCACCTACTACTGCCAGC




AGGGCAACACCCTGCCCCCTACCTTTGGCGGA




GGCACCAAGCTGGAGATCAAGAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1383
CTX-176
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCCAGATGACACAG




AGCCCTAGCAGCCTGAGCGCTTCCGTGGGCGA




CAGGGTGACCATCACCTGCCAGGCCAGCCAGG




ACATCAGCAACTACCTCAACTGGTACCAGCAG




AAGCCCGGCAAGGCCCCTAAGCTGCTGATCTA




CTACACCTCCAGGCTGGAGACCGGAGTGCCCT




CCAGATTTTCCGGCAGCGGCAGCGGCACCGAT




TTCACCTTCACCATCAGCAGCCTGCAGCCCGA




GGACATCGCCACCTACTATTGCCAGCAGGGCA




ACACCCTGCCCCCCACATTTGGAGGCGGCACC




AAGGTGGAGATCAAGGGCGGAGGAGGAAGCGG




AGGAGGAGGAAGCGGAGGAGGCGGAAGCCAGG




TGCAGCTGGTGCAGAGCGGCGCTGAGCTCAAG




AAGCCTGGCGCCAGCGTGAAGATCAGCTGCAA




AGCCTCCGGATACACCTTCACCGAGTACACCA




TCAATTGGGTGAGACAGGCCCCCGGCCAAAGA




CTGGAGTGGATGGGCGACATCTATCCCGACAA




CTACAGCATCAGGTACAACCAGAAGTTCCAGG




GCAGGGTGACAATCACCAGAGACACCAGCGCC




AGCACCGCCTACATGGAGCTGAGCAGCCTGAG




GAGCGAGGACACCGCCGTGTACTACTGCGCCA




ATCACGACTTCTTCGTGTTCTGGGGCCAGGGA




ACCCTGGTGACCGTCAGCTCCAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1384
CTX-177
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGATATCCAGATGACACAG




AGCCCTAGCTCCCTGAGCGCCAGCCTGGGCGA




TAGGGTGACCATCACCTGCAGGACCTCCCAGG




ACATCAGCAACCACCTGAACTGGTACCAGCAG




AAGCCCGGCAAAGCCCCCAAGCTGCTGATCTA




CTACACCAGCAGGCTGGAAAGCGGCGTGCCCA




GCAGGTTTAGCGGAAGCGGCAGCGGCACCGAC




TACAGCCTGACCATCAGCTCCCTGCAGCCCGA




GGACATCGGCACCTACTACTGCCAGCAGGGCA




ACACCCTGCCTCCCACCTTCGGAGGCGGAACC




AAGCTGGAGATTAAGGGAGGCGGCGGAAGCGG




CGGCGGCGGCTCCGGCGGAGGAGGCAGCCAGG




TGCAGCTGGTGCAGTCCGGAGCCGAGCTGAAA




AAGCCTGGCGCCAGCGTGAAGATCAGCTGCAA




GGCCAGCGGCTACACCTTCACCGAGTACACCA




TCAACTGGGTGAGGCAGGCCCCTGGCCAGAGA




CTCGAGTGGATGGGCGACATCTACCCCGACAA




CTACTCCATCAGGTACAACCAGAAGTTTCAGG




GCAGGGTGACCATTACCAGGGACACCAGCGCC




AGCACAGCCTACATGGAGCTGAGCAGCCTGAG




GAGCGAGGATACAGCCGTCTACTACTGCGCCA




ACCACGACTTTTTCGTGTTCTGGGGACAGGGC




ACCCTGGTGACCGTGTCCTCCAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1385
CTX-178
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGACATCCAAATGACCCAG




AGCCCTAGCTCCCTGAGCGCTTCCGTGGGCGA




CAGAGTGACCATTACCTGCCAGGCCAGCCAGG




ACATCAGCAACTACCTGAACTGGTATCAGCAG




AAGCCTGGCAAGGCCCCCAAGCTGCTGATCTA




CTACACCAGCAGGCTGGAGACCGGAGTGCCCA




GCAGGTTTAGCGGCTCCGGATCCGGCACCGAC




TTCACCTTCACCATCTCCAGCCTGCAGCCCGA




GGACATCGCCACCTACTACTGCCAGCAGGGCA




ATACCCTCCCCCCTACCTTCGGAGGCGGCACC




AAGGTGGAGATCAAGGGCGGCGGCGGCTCCGG




CGGCGGCGGCAGCGGCGGAGGCGGCAGCCAGG




TGCAACTGGTGCAGAGCGGCCCTGAGCTGAAG




AAACCCGGCGCCAGCGTGAAAATCAGCTGCAA




GACCAGCGGCTACACATTCACCGAGTACACCA




TCAACTGGGTGAAGCAGGCTCCCGGACAGGGA




CTGGAGTGGATCGGCGACATCTACCCTGACAA




CTACAACATCAGATACAACCAAAAGTTCCAGG




GCAAGGCCACCATCACCAGGGACACCAGCTCC




TCCACCGCCTACATGGAGCTGAGCAGCCTGAG




GAGCGAGGACACCGCTGTGTACTACTGCGCCA




ACCACGACTTCTTCGTGTTCTGGGGCCAGGGA




ACCCTGGTGACCGTGAGCAGCAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1386
CTX-179
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTGAGATGTAAGGAGCTG




CTGTGACTTGCTCAAGGCCTTATATCGAGTAA




ACGGTAGTGCTGGGGCTTAGACGCAGGTGTTC




TGATTTATAGTTCAAAACCTCTATCAATGAGA




GAGCAATCTCCTGGTAATGTGATAGATTTCCC




AACTTAATGCCAACATACCATAAACCTCCCAT




TCTGCTAATGCCCAGCCTAAGTTGGGGAGACC




ACTCCAGATTCCAAGATGTACAGTTTGCTTTG




CTGGGCCTTTTTCCCATGCCTGCCTTTACTCT




GCCAGAGTTATATTGCTGGGGTTTTGAAGAAG




ATCCTATTAAATAAAAGAATAAGCAGTATTAT




TAAGTAGCCCTGCATTTCAGGTTTCCTTGAGT




GGCAGGCCAGGCCTGGCCGTGAACGTTCACTG




AAATCATGGCCTCTTGGCCAAGATTGATAGCT




TGTGCCTGTCCCTGAGTCCCAGTCCATCACGA




GCAGCTGGTTTCTAAGATGCTATTTCCCGTAT




AAAGCATGAGACCGTGACTTGCCAGCCCCACA




GAGCCCCGCCCTTGTCCATCACTGGCATCTGG




ACTCCAGCCTGGGTTGGGGCAAAGAGGGAAAT




GAGATCATGTCCTAACCCTGATCCTCTTGTCC




CACAGATATCCAGAACCCTGACCCTGCCGTGT




ACCAGCTGAGAGACTCTAAATCCAGTGACAAG




TCTGTCTGCCTATTCACCGATTTTGATTCTCA




AACAAATGTGTCACAAAGTAAGGATTCTGATG




TGTATATCACAGACAAAACTGTGCTAGACATG




AGGTCTATGGACTTCAGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGGCGCTTCCGGTGAC




AGCACTGCTCCTCCCCTTGGCGCTGTTGCTCC




ACGCAGCAAGGCCGGATATCCAGATGACACAA




AGCCCCAGCAGCCTGTCCGCTAGCCTGGGCGA




TAGGGTGACCATCACATGCAGGACCAGCCAGG




ACATCTCCAACCACCTGAACTGGTACCAGCAG




AAGCCTGGAAAGGCCCCCAAACTGCTGATCTA




CTACACCAGCAGGCTGGAGAGCGGCGTGCCTA




GCAGGTTTTCCGGCAGCGGCAGCGGCACCGAC




TATAGCCTGACCATCAGCTCCCTGCAGCCCGA




GGACATCGGCACCTACTACTGCCAGCAGGGAA




ACACACTGCCCCCCACCTTTGGCGGCGGCACA




AAGCTGGAGATCAAGGGCGGCGGCGGATCCGG




CGGCGGAGGCAGCGGAGGAGGAGGAAGCCAGG




TGCAGCTGGTGCAGTCCGGCCCTGAGCTGAAG




AAGCCCGGAGCCAGCGTGAAAATTAGCTGCAA




GACCTCCGGCTACACATTCACCGAGTACACCA




TCAACTGGGTGAAGCAGGCTCCCGGCCAGGGA




CTGGAGTGGATCGGCGACATCTACCCCGACAA




CTACAACATCAGGTACAACCAGAAATTCCAGG




GCAAGGCCACCATCACCAGGGACACCAGCTCC




TCCACCGCCTATATGGAGCTGTCCAGCCTGAG




AAGCGAGGATACCGCCGTGTACTACTGCGCCA




ACCACGATTTCTTCGTGTTCTGGGGCCAGGGC




ACACTGGTCACCGTGAGCAGCAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCC




GCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGG




TACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAA




GAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTT




TTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAAT




TTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGG




GTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCG




AACGACGACGGGGAAAAGGTCACGATGGCCTC




TACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGC




AACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCC




TTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGT




CTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAG




GTGGCAGGAGAGGGCACGTGGCCCAGCCTCAG




TCTCTCCAACTGAGTTCCTGCCTGCCTGCCTT




TGCTCAGACTGTTTGCCCCTTACTGCTCTTCT




AGGCCTCATTCTAAGCCCCTTCTCCAAGTTGC




CTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGA




GGAATTAAAAAGTCAGATGAGGGGTGTGCCCA




GAGGAAGCACCATTCTAGTTGGGGGAGCCCAT




CTGTCAGCTGGGAAAAGTCCAAATAACTTCAG




ATTGGAATGTGTTTTAACTCAGGGTTGAGAAA




ACAGCTACCTTCAGGACAAAAGTCAGGGAAGG




GCTCTCTGAAGAAATGCTACTTGAAGATACCA




GCCCTACCAAGGGCAGGGAGAGGACCCTATAG




AGGCCTGGGACAGGAGCTCAATGAGAAAGGTA




ACCACGTGCGGACCGAGGCTGCAGCGTCGTCC




TCCCTAGGAACCCCTAGTGATGGAGTTGGCCA




CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAG




GCCGGGCGACCAAAGGTCGCCCGACGCCCGGG




CTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG




CGCGCAGCTGCCTGCAGG





1583
CTX-139.1
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTTGTTTGGTACTTTACA




GTTTATTAAATAGATGTTTATATGGAGAAGCT




CTCATTTCTTTCTCAGAAGAGCCTGGCTAGGA




AGGTGGATGAGGCACCATATTCATTTTGCAGG




TGAAATTCCTGAGATGTAAGGAGCTGCTGTGA




CTTGCTCAAGGCCTTATATCGAGTAAACGGTA




GTGCTGGGGCTTAGACGCAGGTGTTCTGATTT




ATAGTTCAAAACCTCTATCAATGAGAGAGCAA




TCTCCTGGTAATGTGATAGATTTCCCAACTTA




ATGCCAACATACCATAAACCTCCCATTCTGCT




AATGCCCAGCCTAAGTTGGGGAGACCACTCCA




GATTCCAAGATGTACAGTTTGCTTTGCTGGGC




CTTTTTCCCATGCCTGCCTTTACTCTGCCAGA




GTTATATTGCTGGGGTTTTGAAGAAGATCCTA




TTAAATAAAAGAATAAGCAGTATTATTAAGTA




GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGG




CCAGGCCTGGCCGTGAACGTTCACTGAAATCA




TGGCCTCTTGGCCAAGATTGATAGCTTGTGCC




TGTCCCTGAGTCCCAGTCCATCACGAGCAGCT




GGTTTCTAAGATGCTATTTCCCGTATAAAGCA




TGAGACCGTGACTTGCCAGCCCCACAGAGCCC




CGCCCTTGTCCATCACTGGCATCTGGACTCCA




GCCTGGGTTGGGGCAAAGAGGGAAATGAGATC




ATGTCCTAACCCTGATCCTCTTGTCCCACAGA




TATCCAGAACCCTGACCCTGCCGTGTACCAGC




TGAGAGACTCTAAATCGGCTCCGGTGCCCGTC




AGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAAC




CGGTGCCTAGAGAAGGTGGCGCGGGGTAAACT




GGGAAAGTGATGTCGTGTACTGGCTCCGCCTT




TTTCCCGAGGGTGGGGGAGAACCGTATATAAG




TGCAGTAGTCGCCGTGAACGTTCTTTTTCGCA




ACGGGTTTGCCGCCAGAACACAGGTAAGTGCC




GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTAC




GGGTTATGGCCCTTGCGTGCCTTGAATTACTT




CCACTGGCTGCAGTACGTGATTCTTGATCCCG




AGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCG




AGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCG




TGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGG




GCCGCCGCGTGCGAATCTGGTGGCACCTTCGC




GCCTGTCTCGCTGCTTTCGATAAGTCTCTAGC




CATTTAAAATTTTTGATGACCTGCTGCGACGC




TTTTTTTCTGGCAAGATAGTCTTGTAAATGCG




GGCCAAGATCTGCACACTGGTATTTCGGTTTT




TGGGGCCGCGGGCGGCGACGGGGCCCGTGCGT




CCCAGCGCACATGTTCGGCGAGGCGGGGCCTG




CGAGCGCGGCCACCGAGAATCGGACGGGGGTA




GTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTG




GCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG




GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGC




GTGAGCGGAAAGATGGCCGCTTCCCGGCCCTG




CTGCAGGGAGCTCAAAATGGAGGACGCGGCGC




TCGGGAGAGCGGGCGGGTGAGTCACCCACACA




AAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCG




CTTCATGTGACTCCACGGAGTACCGGGCGCCG




TCCAGGCACCTCGATTAGTTCTCGAGCTTTTG




GAGTACGTCGTCTTTAGGTTGGGGGGAGGGGT




TTTATGCGATGGAGTTTCCCCACACTGAGTGG




GTGGAGACTGAAGTTAGGCCAGCTTGGCACTT




GATGTAATTCTCCTTGGAATTTGCCCTTTTTG




AGTTTGGATCTTGGTTCATTCTCAAGCCTCAG




ACAGTGGTTCAAAGTTTTTTTCTTCCATTTCA




GGTGTCGTGACCACCATGCTTCTTTTGGTTAC




GTCTCTGTTGCTTTGCGAACTTCCTCATCCAG




CGTTCTTGCTGATCCCCGATATTCAGATGACT




CAGACCACCAGTAGCTTGTCTGCCTCACTGGG




AGACCGAGTAACAATCTCCTGCAGGGCAAGTC




AAGACATTAGCAAATACCTCAATTGGTACCAG




CAGAAGCCCGACGGAACGGTAAAACTCCTCAT




CTATCATACGTCAAGGTTGCATTCCGGAGTAC




CGTCACGATTTTCAGGTTCTGGGAGCGGAACT




GACTATTCCTTGACTATTTCAAACCTCGAGCA




GGAGGACATTGCGACATATTTTTGTCAACAAG




GTAATACCCTCCCTTACACTTTCGGAGGAGGA




ACCAAACTCGAAATTACCGGGTCCACCAGTGG




CTCTGGGAAGCCTGGCAGTGGAGAAGGTTCCA




CTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGC




CCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTC




TGTAACGTGCACAGTGAGTGGTGTATCATTGC




CTGATTATGGCGTCTCCTGGATAAGGCAGCCC




CCGCGAAAGGGTCTTGAATGGCTTGGGGTAAT




ATGGGGCTCAGAGACAACGTATTATAACTCCG




CTCTCAAAAGTCGCTTGACGATAATAAAAGAT




AACTCCAAGAGTCAAGTTTTCCTTAAAATGAA




CAGTTTGCAGACTGACGATACCGCTATATATT




ATTGTGCTAAACATTATTACTACGGCGGTAGT




TACGCGATGGATTATTGGGGGCAGGGGACTTC




TGTCACAGTCAGTAGTGCTGCTGCCTTTGTCC




CGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCG




AGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATAT




TTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTG




TATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGA




CTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGC




TGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCC




CGAAGAAAGAATCCCCAAGAAGGACTCTACAA




TGAACTCCAGAAGGATAAGATGGCGGAGGCCT




ACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGG




GTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATC




TGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGG




CTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACT




CCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACAC




GGGAAAAAAGCAGATGAAGAGAAGGTGGCAGG




AGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCA




TTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTT




ATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCAT




TAACCCACCAATCACTGATTGTGCCGGCACAT




GAATGCACCAGGTGTTGAAGTGGAGGAATTAA




AAAGTCAGATGAGGGGTGTGCCCAGAGGAAGC




ACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAAT




GTGTTTTAACTCAGGGTTGAGAAAACAGCTAC




CTTCAGGACAAAAGTCAGGGAAGGGCTCTCTG




AAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGG




GACAGGAGCTCAATGAGAAAGGTAACCACGTG




CGGACCGAGGCTGCAGCGTCGTCCTCCCTAGG




AACCCCTAGTGATGGAGTTGGCCACTCCCTCT




CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCG




ACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC




GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGC




TGCCTGCAGG





1584
CTX-139.2
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTtgtttggtactttaca




gtttattaaatagatgtttatatggagaagct




ctcatttctttctcagaagagcctggctagga




aggtggatgaggcaccatattcattttgcagg




tgaaattcctGAGATGTAAGGAGCTGCTGTGA




CTTGCTCAAGGCCTTATATCGAGTAAACGGTA




GTGCTGGGGCTTAGACGCAGGTGTTCTGATTT




ATAGTTCAAAACCTCTATCAATGAGAGAGCAA




TCTCCTGGTAATGTGATAGATTTCCCAACTTA




ATGCCAACATACCATAAACCTCCCATTCTGCT




AATGCCCAGCCTAAGTTGGGGAGACCACTCCA




GATTCCAAGATGTACAGTTTGCTTTGCTGGGC




CTTTTTCCCATGCCTGCCTTTACTCTGCCAGA




GTTATATTGCTGGGGTTTTGAAGAAGATCCTA




TTAAATAAAAGAATAAGCAGTATTATTAAGTA




GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGG




CCAGGCCTGGCCGTGAACGTTCACTGAAATCA




TGGCCTCTTGGCCAAGATTGATAGCTTGTGCC




TGTCCCTGAGTCCCAGTCCATCACGAGCAGCT




GGTTTCTAAGATGCTATTTCCCGTATAAAGCA




TGAGACCGTGACTTGCCAGCCCCACAGAGCCC




CGCCCTTGTCCATCACTGGCATCTGGACTCCA




GCCTGGGTTGGGGCAAAGAGGGAAATGAGATC




ATGTCCTAACCCTGATCCTCTTGTCCCACAGA




TATCCAGAACCCTGACCCTGCCGTGTACCAGC




TGAGAGACTCTAAATCCAGTGACAAGTCTGTC




TGCCGGCTCCGGTGCCCGTCAGTGGGCAGAGC




GCACATCGCCCACAGTCCCCGAGAAGTTGGGG




GGAGGGGTCGGCAATTGAACCGGTGCCTAGAG




AAGGTGGCGCGGGGTAAACTGGGAAAGTGATG




TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGT




GGGGGAGAACCGTATATAAGTGCAGTAGTCGC




CGTGAACGTTCTTTTTCGCAACGGGTTTGCCG




CCAGAACACAGGTAAGTGCCGTGTGTGGTTCC




CGCGGGCCTGGCCTCTTTACGGGTTATGGCCC




TTGCGTGCCTTGAATTACTTCCACTGGCTGCA




GTACGTGATTCTTGATCCCGAGCTTCGGGTTG




GAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCT




TAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGA




GGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGC




GAATCTGGTGGCACCTTCGCGCCTGTCTCGCT




GCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGC




AAGATAGTCTTGTAAATGCGGGCCAAGATCTG




CACACTGGTATTTCGGTTTTTGGGGCCGCGGG




CGGCGACGGGGCCCGTGCGTCCCAGCGCACAT




GTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCA




CCGAGAATCGGACGGGGGTAGTCTCAAGCTGG




CCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGC




CGTGTATCGCCCCGCCCTGGGCGGCAAGGCTG




GCCCGGTCGGCACCAGTTGCGTGAGCGGAAAG




ATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCT




CAAAATGGAGGACGCGGCGCTCGGGAGAGCGG




GCGGGTGAGTCACCCACACAAAGGAAAAGGGC




CTTTCCGTCCTCAGCCGTCGCTTCATGTGACT




CCACGGAGTACCGGGCGCCGTCCAGGCACCTC




GATTAGTTCTCGAGCTTTTGGAGTACGTCGTC




TTTAGGTTGGGGGGAGGGGTTTTATGCGATGG




AGTTTCCCCACACTGAGTGGGTGGAGACTGAA




GTTAGGCCAGCTTGGCACTTGATGTAATTCTC




CTTGGAATTTGCCCTTTTTGAGTTTGGATCTT




GGTTCATTCTCAAGCCTCAGACAGTGGTTCAA




AGTTTTTTTCTTCCATTTCAGGTGTCGTGACC




ACCATGCTTCTTTTGGTTACGTCTCTGTTGCT




TTGCGAACTTCCTCATCCAGCGTTCTTGCTGA




TCCCCGATATTCAGATGACTCAGACCACCAGT




AGCTTGTCTGCCTCACTGGGAGACCGAGTAAC




AATCTCCTGCAGGGCAAGTCAAGACATTAGCA




AATACCTCAATTGGTACCAGCAGAAGCCCGAC




GGAACGGTAAAACTCCTCATCTATCATACGTC




AAGGTTGCATTCCGGAGTACCGTCACGATTTT




CAGGTTCTGGGAGCGGAACTGACTATTCCTTG




ACTATTTCAAACCTCGAGCAGGAGGACATTGC




GACATATTTTTGTCAACAAGGTAATACCCTCC




CTTACACTTTCGGAGGAGGAACCAAACTCGAA




ATTACCGGGTCCACCAGTGGCTCTGGGAAGCC




TGGCAGTGGAGAAGGTTCCACTAAAGGCGAGG




TGAAGCTCCAGGAGAGCGGCCCCGGTCTCGTT




GCCCCCAGTCAAAGCCTCTCTGTAACGTGCAC




AGTGAGTGGTGTATCATTGCCTGATTATGGCG




TCTCCTGGATAAGGCAGCCCCCGCGAAAGGGT




CTTGAATGGCTTGGGGTAATATGGGGCTCAGA




GACAACGTATTATAACTCCGCTCTCAAAAGTC




GCTTGACGATAATAAAAGATAACTCCAAGAGT




CAAGTTTTCCTTAAAATGAACAGTTTGCAGAC




TGACGATACCGCTATATATTATTGTGCTAAAC




ATTATTACTACGGCGGTAGTTACGCGATGGAT




TATTGGGGGCAGGGGACTTCTGTCACAGTCAG




TAGTGCTGCTGCCTTTGTCCCGGTATTTCTCC




CAGCCAAACCGACCACGACTCCCGCCCCGCGC




CCTCCGACACCCGCTCCCACCATCGCCTCTCA




ACCTCTTAGTCTTCGCCCCGAGGCATGCCGAC




CCGCCGCCGGGGGTGCTGTTCATACGAGGGGC




TTGGACTTCGCTTGTGATATTTACATTTGGGC




TCCGTTGGCGGGTACGTGCGGCGTCCTTTTGT




TGTCACTCGTTATTACTTTGTATTGTAATCAC




AGGAATCGCTCAAAGCGGAGTAGGTTGTTGCA




TTCCGATTACATGAATATGACTCCTCGCCGGC




CTGGGCCGACAAGAAAACATTACCAACCCTAT




GCCCCCCCACGAGACTTCGCTGCGTACAGGTC




CCGAGTGAAGTTTTCCCGAAGCGCAGACGCTC




CGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTA




TGACGTGCTTGATAAACGCCGGGGGAGAGACC




CGGAAATGGGGGGTAAACCCCGAAGAAAGAAT




CCCCAAGAAGGACTCTACAATGAACTCCAGAA




GGATAAGATGGCGGAGGCCTACTCAGAAATAG




GTATGAAGGGCGAACGACGACGGGGAAAAGGT




CACGATGGCCTCTACCAAGGGTTGAGTACGGC




AACCAAAGATACGTACGATGCACTGCATATGC




AGGCCCTGCCTCCCAGATAATAATAAAATCGC




TATCCATCGAAGATGGATGTGTGTTGGTTTTT




TGTGTGAAACAAATGTGTCACAAAGTAAGGAT




TCTGATGTGTATATCACAGACAAAACTGTGCT




AGACATGAGGTCTATGGACTTCAAGAGCAACA




GTGCTGTGGCCTGGAGCAACAAATCTGACTTT




GCATGTGCAAACGCCTTCAACAACAGCATTAT




TCCAGAAGACACCTTCTTCCCCAGCCCAGGTA




AGGGCAGCTTTGGTGCCTTCGCAGGCGTTTCC




TTGCTTCAGGAATGGCCAGGTTCTGCCCAGAG




CTCTGGTCAATGATGTCTAAAACTCCTCTGAT




TGGTGGTCTCGGCCTTATCCATTGCCACCAAA




ACCCTCTTTTTACTAAGAAACAGTGAGCCTTG




TTCTGGCAGTCCAGAGAATGACACGGGAAAAA




AGCAGATGAAGAGAAGGTGGCAGGAGAGGGCA




CGTGGCCCAGCCTCAGTCTCTCCAACTGAGTT




CCTGCCTGCCTGCCTTTGCTCAGACTGTTTGC




CCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCC




CTGTCTGCCAAAAAATCTTTCCCAGCTCACTA




AGTCAGTCTCACGCAGTCACTCATTAACCCAC




CAATCACTGATTGTGCCGGCACATGAATGCAC




CAGGTGTTGAAGTGGAGGAATTAAAAAGTCAG




ATGAGGGGTGTGCCCAGAGGAAGCACCATTCT




AGTTGGGGGAGCCCATCTGTCAGCTGGGAAAA




GTCCAAATAACTTCAGATTGGAATGTGTTTTA




ACTCAGGGTTGAGAAAACAGCTACCTTCAGGA




CAAAAGTCAGGGAAGGGCTCTCTGAAGAAATG




CTACTTGAAGATACCAGCCCTACCAAGGGCAG




GGAGAGGACCCTATAGAGGCCTGGGACAGGAG




CTCAATGAGAAAGGTAACCACGTGCGGACCGA




GGCTGCAGCGTCGTCCTCCCTAGGAACCCCTA




GTGATGGAGTTGGCCACTCCCTCTCTGCGCGC




TCGCTCGCTCACTGAGGCCGGGCGACCAAAGG




TCGCCCGACGCCCGGGCTTTGCCCGGGCGGCC




TCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCA




GG





1585
CTX-139.3
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT




GAGGCCGCCCGGGCGTCGGGCGACCTTTGGTC




GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGA




GAGGGAGTGGCCAACTCCATCACTAGGGGTTC




CTGCGGCCGCACGCGTTGTTTGGTACTTTACA




GTTTATTAAATAGATGTTTATATGGAGAAGCT




CTCATTTCTTTCTCAGAAGAGCCTGGCTAGGA




AGGTGGATGAGGCACCATATTCATTTTGCAGG




TGAAATTCCTGAGATGTAAGGAGCTGCTGTGA




CTTGCTCAAGGCCTTATATCGAGTAAACGGTA




GTGCTGGGGCTTAGACGCAGGTGTTCTGATTT




ATAGTTCAAAACCTCTATCAATGAGAGAGCAA




TCTCCTGGTAATGTGATAGATTTCCCAACTTA




ATGCCAACATACCATAAACCTCCCATTCTGCT




AATGCCCAGCCTAAGTTGGGGAGACCACTCCA




GATTCCAAGATGTACAGTTTGCTTTGCTGGGC




CTTTTTCCCATGCCTGCCTTTACTCTGCCAGA




GTTATATTGCTGGGGTTTTGAAGAAGATCCTA




TTAAATAAAAGAATAAGCAGTATTATTAAGTA




GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGG




CCAGGCCTGGCCGTGAACGTTCACTGAAATCA




TGGCCTCTTGGCCAAGATTGATAGCTTGTGCC




TGTCCCTGAGTCCCAGTCCATCACGAGCAGCT




GGTTTCTAAGATGCTATTTCCCGTATAAAGCA




TGAGACCGTGACTTGCCAGCCCCACAGAGCCC




CGCCCTTGTCCATCACTGGCATCTGGACTCCA




GCCTGGGTTGGGGCAAAGAGGGAAATGAGATC




ATGTCCTAACCCTGATCCTCTTGTCCCACAGA




TATCCAGAACCCTGACCCTGCCGTGTACCAGC




TGAGAGACTCTAAATCCAGTGACAAGTCTGTC




TGACTATTCACCGATTTTGATTCTCGGCTCCG




GTGCCCGTCAGTGGGCAGAGCGCACATCGCCC




ACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGG




CAATTGAACCGGTGCCTAGAGAAGGTGGCGCG




GGGTAAACTGGGAAAGTGATGTCGTGTACTGG




CTCCGCCTTTTTCCCGAGGGTGGGGGAGAACC




GTATATAAGTGCAGTAGTCGCCGTGAACGTTC




TTTTTCGCAACGGGTTTGCCGCCAGAACACAG




GTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGG




CCTCTTTACGGGTTATGGCCCTTGCGTGCCTT




GAATTACTTCCACTGGCTGCAGTACGTGATTC




TTGATCCCGAGCTTCGGGTTGGAAGTGGGTGG




GAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCC




TTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGG




CACCTTCGCGCCTGTCTCGCTGCTTTCGATAA




GTCTCTAGCCATTTAAAATTTTTGATGACCTG




CTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTAT




TTCGGTTTTTGGGGCCGCGGGCGGCGACGGGG




CCCGTGCGTCCCAGCGCACATGTTCGGCGAGG




CGGGGCCTGCGAGCGCGGCCACCGAGAATCGG




ACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTC




TGGTGCCTGGCCTCGCGCCGCCGTGTATCGCC




CCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGC




ACCAGTTGCGTGAGCGGAAAGATGGCCGCTTC




CCGGCCCTGCTGCAGGGAGCTCAAAATGGAGG




ACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTC




ACCCACACAAAGGAAAAGGGCCTTTCCGTCCT




CAGCCGTCGCTTCATGTGACTCCACGGAGTAC




CGGGCGCCGTCCAGGCACCTCGATTAGTTCTC




GAGCTTTTGGAGTACGTCGTCTTTAGGTTGGG




GGGAGGGGTTTTATGCGATGGAGTTTCCCCAC




ACTGAGTGGGTGGAGACTGAAGTTAGGCCAGC




TTGGCACTTGATGTAATTCTCCTTGGAATTTG




CCCTTTTTGAGTTTGGATCTTGGTTCATTCTC




AAGCCTCAGACAGTGGTTCAAAGTTTTTTTCT




TCCATTTCAGGTGTCGTGACCACCATGCTTCT




TTTGGTTACGTCTCTGTTGCTTTGCGAACTTC




CTCATCCAGCGTTCTTGCTGATCCCCGATATT




CAGATGACTCAGACCACCAGTAGCTTGTCTGC




CTCACTGGGAGACCGAGTAACAATCTCCTGCA




GGGCAAGTCAAGACATTAGCAAATACCTCAAT




TGGTACCAGCAGAAGCCCGACGGAACGGTAAA




ACTCCTCATCTATCATACGTCAAGGTTGCATT




CCGGAGTACCGTCACGATTTTCAGGTTCTGGG




AGCGGAACTGACTATTCCTTGACTATTTCAAA




CCTCGAGCAGGAGGACATTGCGACATATTTTT




GTCAACAAGGTAATACCCTCCCTTACACTTTC




GGAGGAGGAACCAAACTCGAAATTACCGGGTC




CACCAGTGGCTCTGGGAAGCCTGGCAGTGGAG




AAGGTTCCACTAAAGGCGAGGTGAAGCTCCAG




GAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCA




AAGCCTCTCTGTAACGTGCACAGTGAGTGGTG




TATCATTGCCTGATTATGGCGTCTCCTGGATA




AGGCAGCCCCCGCGAAAGGGTCTTGAATGGCT




TGGGGTAATATGGGGCTCAGAGACAACGTATT




ATAACTCCGCTCTCAAAAGTCGCTTGACGATA




ATAAAAGATAACTCCAAGAGTCAAGTTTTCCT




TAAAATGAACAGTTTGCAGACTGACGATACCG




CTATATATTATTGTGCTAAACATTATTACTAC




GGCGGTAGTTACGCGATGGATTATTGGGGGCA




GGGGACTTCTGTCACAGTCAGTAGTGCTGCTG




CCTTTGTCCCGGTATTTCTCCCAGCCAAACCG




ACCACGACTCCCGCCCCGCGCCCTCCGACACC




CGCTCCCACCATCGCCTCTCAACCTCTTAGTC




TTCGCCCCGAGGCATGCCGACCCGCCGCCGGG




GGTGCTGTTCATACGAGGGGCTTGGACTTCGC




TTGTGATATTTACATTTGGGCTCCGTTGGCGG




GTACGTGCGGCGTCCTTTTGTTGTCACTCGTT




ATTACTTTGTATTGTAATCACAGGAATCGCTC




AAAGCGGAGTAGGTTGTTGCATTCCGATTACA




TGAATATGACTCCTCGCCGGCCTGGGCCGACA




AGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGT




TTTCCCGAAGCGCAGACGCTCCGGCATATCAG




CAAGGACAGAATCAGCTGTATAACGAACTGAA




TTTGGGACGCCGCGAGGAGTATGACGTGCTTG




ATAAACGCCGGGGGAGAGACCCGGAAATGGGG




GGTAAACCCCGAAGAAAGAATCCCCAAGAAGG




ACTCTACAATGAACTCCAGAAGGATAAGATGG




CGGAGGCCTACTCAGAAATAGGTATGAAGGGC




GAACGACGACGGGGAAAAGGTCACGATGGCCT




CTACCAAGGGTTGAGTACGGCAACCAAAGATA




CGTACGATGCACTGCATATGCAGGCCCTGCCT




CCCAGATAATAATAAAATCGCTATCCATCGAA




GATGGATGTGTGTTGGTTTTTTGTGTGATTCA




CCGATTTTGATTCTCAAACAAATGTGTCACAA




AGTAAGGATTCTGATGTGTATATCACAGACAA




AACTGTGCTAGACATGAGGTCTATGGACTTCA




AGAGCAACAGTGCTGTGGCCTGGAGCAACAAA




TCTGACTTTGCATGTGCAAACGCCTTCAACAA




CAGCATTATTCCAGAAGACACCTTCTTCCCCA




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA




GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTT




CTGCCCAGAGCTCTGGTCAATGATGTCTAAAA




CTCCTCTGATTGGTGGTCTCGGCCTTATCCAT




TGCCACCAAAACCCTCTTTTTACTAAGAAACA




GTGAGCCTTGTTCTGGCAGTCCAGAGAATGAC




ACGGGAAAAAAGCAGATGAAGAGAAGGTGGCA




GGAGAGGGCACGTGGCCCAGCCTCAGTCTCTC




CAACTGAGTTCCTGCCTGCCTGCCTTTGCTCA




GACTGTTTGCCCCTTACTGCTCTTCTAGGCCT




CATTCTAAGCCCCTTCTCCAAGTTGCCTCTCC




TTATTTCTCCCTGTCTGCCAAAAAATCTTTCC




CAGCTCACTAAGTCAGTCTCACGCAGTCACTC




ATTAACCCACCAATCACTGATTGTGCCGGCAC




ATGAATGCACCAGGTGTTGAAGTGGAGGAATT




AAAAAGTCAGATGAGGGGTGTGCCCAGAGGAA




GCACCATTCTAGTTGGGGGAGCCCATCTGTCA




GCTGGGAAAAGTCCAAATAACTTCAGATTGGA




ATGTGTTTTAACTCAGGGTTGAGAAAACAGCT




ACCTTCAGGACAAAAGTCAGGGAAGGGCTCTC




TGAAGAAATGCTACTTGAAGATACCAGCCCTA




CCAAGGGCAGGGAGAGGACCCTATAGAGGCCT




GGGACAGGAGCTCAATGAGAAAGGTAACCACG




TGCGGACCGAGGCTGCAGCGTCGTCCTCCCTA




GGAACCCCTAGTGATGGAGTTGGCCACTCCCT




CTCTGCGCGCTCGCTCGCTCACTGAGGCCGGG




CGACCAAAGGTCGCCCGACGCCCGGGCTTTGC




CCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCA




GCTGCCTGCAGG
















TABLE 35







Donor Template Nucleotide Sequences - Left Homology Arm to


Right Homology Arm









SEQ ID NO:
Description
Sequence





1387
LHA to RHA
GAAGCCCAGAGCAGGGCCTTAGGGAAGCGGGACCCTGCTCT



of CTX-131
GGGCGGAGGAATATGTCCCAGATAGCACTGGGGACTCTTTAA




GGAAAGAAGGATGGAGAAAGAGAAAGGGAGTAGAGGCGGC




CACGACCTGGTGAACACCTAGGACGCACCATTCTCACAAAGG




GAGTTTTCCACACGGACACCCCCCTCCTCACCACAGCCCTGCC




AGGACGGGGCTGGCTACTGGCCTTATCTCACAGGTAAAACTG




ACGCACGGAGGAACAATATAAATTGGGGACTAGAAAGGTGA




AGAGCCAAAGTTAGAACTCAGGACCAACTTATTCTGATTTTG




TTTTTCCAAACTGCTTCTCCTCTTGGGAAGTGTAAGGAAGCTG




CAGCACCAGGATCAGTGAAACGCACCAGACGGCCGCGTCAG




AGCAGCTCAGGTTCTGGGAGAGGGTAGCGCAGGGTGGCCACT




GAGAACCGGGCAGGTCACGCATCCCCCCCTTCCCTCCCACCC




CCTGCCAAGCTCTCCCTCCCAGGATCCTCTCTGGCTCCATCGT




AAGCAAACCTTAGAGGTTCTGGCAAGGAGAGAGATGGCTCC




AGGAAATGGGGGTGTGTCACCAGATAAGGAATCTGCCTAACA




GGAGGTGGGGGTTAGACCCAATATCAGGAGACTAGGAAGGA




GGAGGCCTAAGGATGGGGCTTTTCTGTCACCAGCCACTAGTG




GCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTATGGG




GATCCGAACAGAGAGACAGCAGAATATGGGCCAAACAGGAT




ATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAAC




AGTTGGAACAGCAGAATATGGGCCAAACAGGATATCTGTGGT




AAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCC




CCAGATGCGGTCCCGCCCTCAGCAGTTTCTAGAGAACCATCA




GATGTTTCCAGGGTGCCCCAAGGACCTGAAATGACCCTGTGC




CTTATTTGAACTAACCAATCAGTTCGCTTCTCGCTTCTGTTCG




CGCGCTTCTGCTCCCCGAGCTCTATATAAGCAGAGCTCGTTTA




GTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTT




GACCTCCATAGAAGACACCGACTCTAGAGGGACCATGCTTCT




TTTGGTTACGTCTCTGTTGCTTTGCGAACTTCCTCATCCAGCG




TTCTTGCTGATCCCCGATATTCAGATGACTCAGACCACCAGTA




GCTTGTCTGCCTCACTGGGAGACCGAGTAACAATCTCCTGCA




GGGCAAGTCAAGACATTAGCAAATACCTCAATTGGTACCAGC




AGAAGCCCGACGGAACGGTAAAACTCCTCATCTATCATACGT




CAAGGTTGCATTCCGGAGTACCGTCACGATTTTCAGGTTCTGG




GAGCGGAACTGACTATTCCTTGACTATTTCAAACCTCGAGCA




GGAGGACATTGCGACATATTTTTGTCAACAAGGTAATACCCT




CCCTTACACTTTCGGAGGAGGAACCAAACTCGAAATTACCGG




GTCCACCAGTGGCTCTGGGAAGCCTGGCAGTGGAGAAGGTTC




CACTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGCCCCGGTC




TCGTTGCCCCCAGTCAAAGCCTCTCTGTAACGTGCACAGTGA




GTGGTGTATCATTGCCTGATTATGGCGTCTCCTGGATAAGGCA




GCCCCCGCGAAAGGGTCTTGAATGGCTTGGGGTAATATGGGG




CTCAGAGACAACGTATTATAACTCCGCTCTCAAAAGTCGCTT




GACGATAATAAAAGATAACTCCAAGAGTCAAGTTTTCCTTAA




AATGAACAGTTTGCAGACTGACGATACCGCTATATATTATTG




TGCTAAACATTATTACTACGGCGGTAGTTACGCGATGGATTA




TTGGGGGCAGGGGACTTCTGTCACAGTCAGTAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACTCCC




GCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTCAAC




CTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATATTTA




CATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTG




TCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGCTCAA




AGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATGACTC




CTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCCTATG




CCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTGAAGT




TTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGACAGA




ATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAGGAGT




ATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGAAATG




GGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGACTCTA




CAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACTCAG




AAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGTCAC




GATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGATACG




TACGATGCACTGCATATGCAGGCCCTGCCTCCCAGAGGAAGC




GGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTG




GAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGGAGCT




GTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGA




CGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGG




GCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCA




CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCA




CCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACC




ACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAG




GCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCA




ACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC




CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAG




GACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAA




CAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACG




GCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACG




GCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA




TCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGA




GCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGC




GATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC




ACTCTCGGCATGGACGAGCTGTACAAGTAATAATAAAATAAA




ATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTG




ACTGTGGGGTGGAGGGGACAGATAAAAGTACCCAGAACCAG




AGCCACATTAACCGGCCCTGGGAATATAAGGTGGTCCCAGCT




CGGGGACACAGGATCCCTGGAGGCAGCAAACATGCTGTCCTG




AAGTGGACATAGGGGCCCGGGTTGGAGGAAGAAGACTAGCT




GAGCTCTCGGACCCCTGGAAGATGCCATGACAGGGGGCTGGA




AGAGCTAGCACAGACTAGAGAGGTAAGGGGGGTAGGGGAGC




TGCCCAAATGAAAGGAGTGAGAGGTGACCCGAATCCACAGG




AGAACGGGGTGTCCAGGCAAAGAAAGCAAGAGGATGGAGAG




GTGGCTAAAGCCAGGGAGACGGGGTACTTTGGGGTTGTCCAG




AAAAACGGTGATGATGCAGGCCTACAAGAAGGGGAGGCGGG




ACGCAAGGGAGACATCCGTCGGAGAAGGCCATCCTAAGAAA




CGAGAGATGGCACAGGCCCCAGAAGGAGAAGGAAAAGGGA




ACCCAGCGAGTGAAGACGGCATGGGGTTGGGTGAGGGAGGA




GAGATGCCCGGAGAGGACCCAGACACGGGGAGGATCCGCTC




AGAGGACATCACGTGGTGCAGCGCCGAGAAGGAAGTGCTCC




GGAAAGAGCATCCTTGGGCAGCAACACAGCAGAGAGCAAGG




GGAAGAGGGAGTGGAGGAAGACGGAACCTGAAGGAGGCGG




C





1388
LHA to RHA
GAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGTA



of CTX-133
GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGCCTGG




CCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAGATTG




ATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAG




CTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGACCGT




GACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCACTGG




CATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAATGA




GATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAG




AACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAATCC




AGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAA




CAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCACAG




ACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGCTCC




GGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTA




GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGT




ACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATA




TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTT




TGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGG




GCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATT




ACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCG




GGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGG




AGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCG




CTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTG




TCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGA




TGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAA




ATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGG




CCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTT




CGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGA




CGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGC




CTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTG




GCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTT




CCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCG




CTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAA




GGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGA




GTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTT




TGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCG




ATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGG




CCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTT




TTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGT




TCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCATGC




TTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTTCCTCATCCA




GCGTTCTTGCTGATCCCCGATATTCAGATGACTCAGACCACCA




GTAGCTTGTCTGCCTCACTGGGAGACCGAGTAACAATCTCCT




GCAGGGCAAGTCAAGACATTAGCAAATACCTCAATTGGTACC




AGCAGAAGCCCGACGGAACGGTAAAACTCCTCATCTATCATA




CGTCAAGGTTGCATTCCGGAGTACCGTCACGATTTTCAGGTTC




TGGGAGCGGAACTGACTATTCCTTGACTATTTCAAACCTCGA




GCAGGAGGACATTGCGACATATTTTTGTCAACAAGGTAATAC




CCTCCCTTACACTTTCGGAGGAGGAACCAAACTCGAAATTAC




CGGGTCCACCAGTGGCTCTGGGAAGCCTGGCAGTGGAGAAG




GTTCCACTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGCCCC




GGTCTCGTTGCCCCCAGTCAAAGCCTCTCTGTAACGTGCACA




GTGAGTGGTGTATCATTGCCTGATTATGGCGTCTCCTGGATAA




GGCAGCCCCCGCGAAAGGGTCTTGAATGGCTTGGGGTAATAT




GGGGCTCAGAGACAACGTATTATAACTCCGCTCTCAAAAGTC




GCTTGACGATAATAAAAGATAACTCCAAGAGTCAAGTTTTCC




TTAAAATGAACAGTTTGCAGACTGACGATACCGCTATATATT




ATTGTGCTAAACATTATTACTACGGCGGTAGTTACGCGATGG




ATTATTGGGGGCAGGGGACTTCTGTCACAGTCAGTAGTGCTG




CTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGAC




TCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCT




CAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGAGG




AAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGA




CGTGGAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGG




AGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACG




GCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC




GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATC




TGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTG




ACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCC




GACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCC




GAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGAC




GGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGA




CACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAA




GGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACT




ACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAG




AACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAG




GACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACC




CCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTAC




CTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAA




GCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG




GATCACTCTCGGCATGGACGAGCTGTACAAGTAATAATAAAA




TAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTTTTG




TGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTT




CAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCC




AGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCT




TCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATG




TCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCC




ACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTCTG




GCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGAGA




AGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTCCA




ACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCC




TTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGTT




GCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCAG




CTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCC





1389
LHA to RHA
TTTTGTAAAGAATATAGGTAAAAAGTGGCATTTTTTCTTTGGA



of CTX-135
TTTAATTCTTATGGATTTAAGTCAACATGTATTTTCAAGCCAA




CAAGTTTTGTTAATAAGATGGCTGCACCCTGCTGCTCCATGCC




AGATCCACCACACAGAAAGCAAATGTTCAGTGCATCTCCCTC




TTCCTGTCAGAGCTTATAGAGGAAGGAAGACCCCGCAATGTG




GAGGCATATTGTATTACAATTACTTTTAATGGCAAAAACTGC




AGTTACTTTTGTGCCAACCTACTACATGGTCTGGACAGCTAAA




TGTCATGTATTTTTCATGGCCCCTCCAGGTATTGTCAGAGTCC




TCTTGTTTGGCCTTCTAGGAAGGCTGTGGGACCCAGCTTTCTT




CAACCAGTCCAGGTGGAGGCCTCTGCCTTGAACGTTTCCAAG




TGAGGTAAAACCCGCAGGCCCAGAGGCCTCTCTACTTCCTGT




GTGGGGTTCAGAAACCCTCCTCCCCTCCCAGCCTCAGGTGCCT




GCTTCAGAAAATGGTGAGTCTCTCTCTTATAAAGCCCTCCTTT




TTCATCCTAGCATTGGGAACAATGGCCCCAGGGTCCTTATCTC




TAGCAGATGTTTTGAAAAAGTCATCTGTTTTGCTTTTTTTCCA




GAAGTAGTAAGTCTGCTGGCCTCCGCCATCTTAGTAAAGTAA




CAGTCCCATGAAACAAAGATGCTTCTTTTGGTTACGTCTCTGT




TGCTTTGCGAACTTCCTCATCCAGCGTTCTTGCTGATCCCCGA




TATTCAGATGACTCAGACCACCAGTAGCTTGTCTGCCTCACTG




GGAGACCGAGTAACAATCTCCTGCAGGGCAAGTCAAGACATT




AGCAAATACCTCAATTGGTACCAGCAGAAGCCCGACGGAAC




GGTAAAACTCCTCATCTATCATACGTCAAGGTTGCATTCCGG




AGTACCGTCACGATTTTCAGGTTCTGGGAGCGGAACTGACTA




TTCCTTGACTATTTCAAACCTCGAGCAGGAGGACATTGCGAC




ATATTTTTGTCAACAAGGTAATACCCTCCCTTACACTTTCGGA




GGAGGAACCAAACTCGAAATTACCGGGTCCACCAGTGGCTCT




GGGAAGCCTGGCAGTGGAGAAGGTTCCACTAAAGGCGAGGT




GAAGCTCCAGGAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCA




AAGCCTCTCTGTAACGTGCACAGTGAGTGGTGTATCATTGCCT




GATTATGGCGTCTCCTGGATAAGGCAGCCCCCGCGAAAGGGT




CTTGAATGGCTTGGGGTAATATGGGGCTCAGAGACAACGTAT




TATAACTCCGCTCTCAAAAGTCGCTTGACGATAATAAAAGAT




AACTCCAAGAGTCAAGTTTTCCTTAAAATGAACAGTTTGCAG




ACTGACGATACCGCTATATATTATTGTGCTAAACATTATTACT




ACGGCGGTAGTTACGCGATGGATTATTGGGGGCAGGGGACTT




CTGTCACAGTCAGTAGTGCTGCTGCCTTTGTCCCGGTATTTCT




CCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCCTCCGAC




ACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTTCGCCCC




GAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCATACGAGG




GGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTCCGTTGG




CGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTATTACTTT




GTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAGGTTGTT




GCATTCCGATTACATGAATATGACTCCTCGCCGGCCTGGGCC




GACAAGAAAACATTACCAACCCTATGCCCCCCCACGAGACTT




CGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGA




CGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTATAACGA




ACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTTGATAA




ACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACCCCGAA




GAAAGAATCCCCAAGAAGGACTCTACAATGAACTCCAGAAG




GATAAGATGGCGGAGGCCTACTCAGAAATAGGTATGAAGGG




CGAACGACGACGGGGAAAAGGTCACGATGGCCTCTACCAAG




GGTTGAGTACGGCAACCAAAGATACGTACGATGCACTGCATA




TGCAGGCCCTGCCTCCCAGAGGAAGCGGAGCTACTAACTTCA




GCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGA




CCTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG




CCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAG




TTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGC




AAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCC




GTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTG




CAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGAC




TTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGC




ACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCC




GAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGA




GCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGG




GGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATA




TCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTC




AAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCC




GACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTG




CTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTG




AGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTG




GAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG




CTGTACAAGTAATAATAAAATAAAATCGCTATCCATCGAAGA




TGGATGTGTGTTGGTTTTTTGTGTGGTGAGTAGGATGGAGTGG




AAAGGGTGGTGTGTCTCCAGACCGCTGGAAGGCTTACAGCCT




TACCTGGCACTGCCTAGTGGCACCAAGGAGCCTCATTTACCA




GATGTAAGGAACTGTTTGTGCTATGTTAGGGTGAGGGATTAG




AGCTGGGGACTAAAGAAAAAGATAGGCCACGGGTGCCTGGG




AGAGCGTTCGGGGAGCAGGCAAAGAAGAGCAGTTGGGGTGA




TCATAGCTATTGTGAGCAGAGAGGTCTCGCTACCTCTAAGTA




CGAGCTCATTCCAACTTACCCAGCCCTCCAGAACTAACCCAA




AAGAGACTGGAAGAGCGAAGCTCCACTCCTTGTTTTGAAGAG




ACCAGATACTTGCGTCCAAACTCTGCACAGGGCATATATAGC




AATTCACTATCTTTGAGACCATAAAACGCCTCGTAATTTTTAG




TCCTTTTCAAGTGACCAACAACTTTCAGTTTATTTCATTTTTTT




GAAGCAAGATGGATTATGAATTGATAAATAACCAAGAGCATT




TCTGTATCTCATATGAGATAAATAATACCAAAAAAAGTTGCC




ATTTATTGTCAGATACTGTGTAAAGAAAAAATTATTTAGACG




TGTTAACTGGTTTAATCCTACTTCTGCCTAGGAAGGAAGGTGT




TATATCCTCTTTTTAAAATTCTTTTTAATTTTGACTATATAAAC




TGATAA





1390
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-138
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GCTTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTTCCTCATC




CAGCGTTCTTGCTGATCCCCGATATTCAGATGACTCAGACCAC




CAGTAGCTTGTCTGCCTCACTGGGAGACCGAGTAACAATCTC




CTGCAGGGCAAGTCAAGACATTAGCAAATACCTCAATTGGTA




CCAGCAGAAGCCCGACGGAACGGTAAAACTCCTCATCTATCA




TACGTCAAGGTTGCATTCCGGAGTACCGTCACGATTTTCAGGT




TCTGGGAGCGGAACTGACTATTCCTTGACTATTTCAAACCTCG




AGCAGGAGGACATTGCGACATATTTTTGTCAACAAGGTAATA




CCCTCCCTTACACTTTCGGAGGAGGAACCAAACTCGAAATTA




CCGGGTCCACCAGTGGCTCTGGGAAGCCTGGCAGTGGAGAAG




GTTCCACTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGCCCC




GGTCTCGTTGCCCCCAGTCAAAGCCTCTCTGTAACGTGCACA




GTGAGTGGTGTATCATTGCCTGATTATGGCGTCTCCTGGATAA




GGCAGCCCCCGCGAAAGGGTCTTGAATGGCTTGGGGTAATAT




GGGGCTCAGAGACAACGTATTATAACTCCGCTCTCAAAAGTC




GCTTGACGATAATAAAAGATAACTCCAAGAGTCAAGTTTTCC




TTAAAATGAACAGTTTGCAGACTGACGATACCGCTATATATT




ATTGTGCTAAACATTATTACTACGGCGGTAGTTACGCGATGG




ATTATTGGGGGCAGGGGACTTCTGTCACAGTCAGTAGTGCTG




CTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGAC




TCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCT




CAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATA




ATAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAAC




GCCTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCA




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAAT




GATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCAT




TGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAA




GAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCT




CTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTT




GCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCC




AAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTT




CCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCC




ACCAATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTT




GAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAG




AGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGG




GAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCA




GGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAA




GGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGG





1391
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-139
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCA




CAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACC




GGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGA




TGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGA




ACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGC




AACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGT




TCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGC




CTTGAATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCC




GAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGC




GCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGG




CCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTT




CGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAA




ATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAG




TCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTT




TTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGC




ACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAG




AATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGT




GCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGC




AAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGAT




GGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGA




CGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAA




AGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGAC




TCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTC




TCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGG




TTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACT




GAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAAT




TTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCA




GACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGA




CCACCATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTT




CCTCATCCAGCGTTCTTGCTGATCCCCGATATTCAGATGACTC




AGACCACCAGTAGCTTGTCTGCCTCACTGGGAGACCGAGTAA




CAATCTCCTGCAGGGCAAGTCAAGACATTAGCAAATACCTCA




ATTGGTACCAGCAGAAGCCCGACGGAACGGTAAAACTCCTCA




TCTATCATACGTCAAGGTTGCATTCCGGAGTACCGTCACGATT




TTCAGGTTCTGGGAGCGGAACTGACTATTCCTTGACTATTTCA




AACCTCGAGCAGGAGGACATTGCGACATATTTTTGTCAACAA




GGTAATACCCTCCCTTACACTTTCGGAGGAGGAACCAAACTC




GAAATTACCGGGTCCACCAGTGGCTCTGGGAAGCCTGGCAGT




GGAGAAGGTTCCACTAAAGGCGAGGTGAAGCTCCAGGAGAG




CGGCCCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTCTGTAACG




TGCACAGTGAGTGGTGTATCATTGCCTGATTATGGCGTCTCCT




GGATAAGGCAGCCCCCGCGAAAGGGTCTTGAATGGCTTGGGG




TAATATGGGGCTCAGAGACAACGTATTATAACTCCGCTCTCA




AAAGTCGCTTGACGATAATAAAAGATAACTCCAAGAGTCAAG




TTTTCCTTAAAATGAACAGTTTGCAGACTGACGATACCGCTAT




ATATTATTGTGCTAAACATTATTACTACGGCGGTAGTTACGCG




ATGGATTATTGGGGGCAGGGGACTTCTGTCACAGTCAGTAGT




GCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCA




CGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCG




CCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGC




CGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTG




TGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTC




CTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGA




ATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGA




ATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACC




AACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCC




GAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCC




GCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGAC




CCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGA




AGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGG




CCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGGA




AAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACC




AAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCCC




AGATAATAATAAAATCGCTATCCATCGAAGATGGATGTGTGT




TGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGC




AAACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTCTT




CCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTG




TTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGG




TCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTA




TCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGAG




CCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAG




ATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTC




AGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGAC




TGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTT




CTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTAA




CCCACCAATCACTGATTGTGCCGGCACATGAATGCACCAGGT




GTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCC




CAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAAC




TCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGG




GAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT




ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGG




AGCTCAATGAGAAAGG





1392
LHA to RHA
TAATCCTCCGGCAAACCTCTGTTTCCTCCTCAAAAGGCAGGA



of CTX-140
GGTCGGAAAGAATAAACAATGAGAGTCACATTAAAAACACA




AAATCCTACGGAAATACTGAAGAATGAGTCTCAGCACTAAGG




AAAAGCCTCCAGCAGCTCCTGCTTTCTGAGGGTGAAGGATAG




ACGCTGTGGCTCTGCATGACTCACTAGCACTCTATCACGGCC




ATATTCTGGCAGGGTCAGTGGCTCCAACTAACATTTGTTTGGT




ACTTTACAGTTTATTAAATAGATGTTTATATGGAGAAGCTCTC




ATTTCTTTCTCAGAAGAGCCTGGCTAGGAAGGTGGATGAGGC




ACCATATTCATTTTGCAGGTGAAATTCCTGAGATGTAAGGAG




CTGCTGTGACTTGCTCAAGGCCTTATATCGAGTAAACGGTAG




TGCTGGGGCTTAGACGCAGGTGTTCTGATTTATAGTTCAAAA




CCTCTATCAATGAGAGAGCAATCTCCTGGTAATGTGATAGAT




TTCCCAACTTAATGCCAACATACCATAAACCTCCCATTCTGCT




AATGCCCAGCCTAAGTTGGGGAGACCACTCCAGATTCCAAGA




TGTACAGTTTGCTTTGCTGGGCCTTTTTCCCATGCCTGCCTTTA




CTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAAGATCCTAT




TAAATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTT




CAGGTTTCCTTGAGTGGCAGGCCAGGCCTGGCCGTGAACGTT




CACTGAAATCATGGCCTCTTGGCCAAGATTGATAGCTTGTGC




CTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGGTTTCTAAG




ATGCTATTTCCCGTATAAAGCATGAGACCGTGACTTGCCAGC




CCCACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACTCC




AGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCTA




ACCCTGATCCTCTTGTCCCACAGATATCGGAAGCGGAGCTAC




TAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGA




ACCCTGGACCCATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGC




GAACTTCCTCATCCAGCGTTCTTGCTGATCCCCGATATTCAGA




TGACTCAGACCACCAGTAGCTTGTCTGCCTCACTGGGAGACC




GAGTAACAATCTCCTGCAGGGCAAGTCAAGACATTAGCAAAT




ACCTCAATTGGTACCAGCAGAAGCCCGACGGAACGGTAAAA




CTCCTCATCTATCATACGTCAAGGTTGCATTCCGGAGTACCGT




CACGATTTTCAGGTTCTGGGAGCGGAACTGACTATTCCTTGAC




TATTTCAAACCTCGAGCAGGAGGACATTGCGACATATTTTTGT




CAACAAGGTAATACCCTCCCTTACACTTTCGGAGGAGGAACC




AAACTCGAAATTACCGGGTCCACCAGTGGCTCTGGGAAGCCT




GGCAGTGGAGAAGGTTCCACTAAAGGCGAGGTGAAGCTCCA




GGAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTC




TGTAACGTGCACAGTGAGTGGTGTATCATTGCCTGATTATGG




CGTCTCCTGGATAAGGCAGCCCCCGCGAAAGGGTCTTGAATG




GCTTGGGGTAATATGGGGCTCAGAGACAACGTATTATAACTC




CGCTCTCAAAAGTCGCTTGACGATAATAAAAGATAACTCCAA




GAGTCAAGTTTTCCTTAAAATGAACAGTTTGCAGACTGACGA




TACCGCTATATATTATTGTGCTAAACATTATTACTACGGCGGT




AGTTACGCGATGGATTATTGGGGGCAGGGGACTTCTGTCACA




GTCAGTAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCA




AACCGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTC




CCACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGA




CTTCGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACG




TGCGGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAA




TCACAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGA




TTACATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAA




ACATTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTA




CAGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGC




ATATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGG




GGAGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAAT




CCCCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGAT




GGCGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGAC




GACGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCATATGCAGGCC




CTGCCTCCCAGATAATAATAAAATCGCTATCCATCGAAGATG




GATGTGTGTTGGTTTTTTGTGTGCCAGTGACAAGTCTGTCTGC




CTATTCACCGATTTTGATTCTCAAACAAATGTGTCACAAAGTA




AGGATTCTGATGTGTATATCACAGACAAAACTGTGCTAGACA




TGAGGTCTATGGACTTCAAGAGCAACAGTGCTGTGGCCTGGA




GCAACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACA




GCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGG




GCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAAT




GGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAAC




TCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAAC




CCTCTTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCA




GAGAATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCA




GGAGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTT




CCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCT




CTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCC




TTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAA




GTCAGTCTCACGCAGTCACTCATTAACCCACCAATCACTGATT




GTGCCGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATT




AAAAAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTC




TAGTTGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATA




ACTTCAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACA




GCTACCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAA




ATGCTACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAG




GACCCTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGGA




GAAGAGCAGCAGGCATGAGTTGAATGAAGGAGGCAGGGCCG




GGTCACAGGG





1393
LHA to RHA
TAATCCTCCGGCAAACCTCTGTTTCCTCCTCAAAAGGCAGGA



of CTX-141
GGTCGGAAAGAATAAACAATGAGAGTCACATTAAAAACACA




AAATCCTACGGAAATACTGAAGAATGAGTCTCAGCACTAAGG




AAAAGCCTCCAGCAGCTCCTGCTTTCTGAGGGTGAAGGATAG




ACGCTGTGGCTCTGCATGACTCACTAGCACTCTATCACGGCC




ATATTCTGGCAGGGTCAGTGGCTCCAACTAACATTTGTTTGGT




ACTTTACAGTTTATTAAATAGATGTTTATATGGAGAAGCTCTC




ATTTCTTTCTCAGAAGAGCCTGGCTAGGAAGGTGGATGAGGC




ACCATATTCATTTTGCAGGTGAAATTCCTGAGATGTAAGGAG




CTGCTGTGACTTGCTCAAGGCCTTATATCGAGTAAACGGTAG




TGCTGGGGCTTAGACGCAGGTGTTCTGATTTATAGTTCAAAA




CCTCTATCAATGAGAGAGCAATCTCCTGGTAATGTGATAGAT




TTCCCAACTTAATGCCAACATACCATAAACCTCCCATTCTGCT




AATGCCCAGCCTAAGTTGGGGAGACCACTCCAGATTCCAAGA




TGTACAGTTTGCTTTGCTGGGCCTTTTTCCCATGCCTGCCTTTA




CTCTGCCAGAGTTATATTGCTGGGGTTTTGAAGAAGATCCTAT




TAAATAAAAGAATAAGCAGTATTATTAAGTAGCCCTGCATTT




CAGGTTTCCTTGAGTGGCAGGCCAGGCCTGGCCGTGAACGTT




CACTGAAATCATGGCCTCTTGGCCAAGATTGATAGCTTGTGC




CTGTCCCTGAGTCCCAGTCCATCACGAGCAGCTGGTTTCTAAG




ATGCTATTTCCCGTATAAAGCATGAGACCGTGACTTGCCAGC




CCCACAGAGCCCCGCCCTTGTCCATCACTGGCATCTGGACTCC




AGCCTGGGTTGGGGCAAAGAGGGAAATGAGATCATGTCCTA




ACCCTGATCCTCTTGTCCCACAGATATCGGAAGCGGAGCTAC




TAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGA




ACCCTGGACCCATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGC




GAACTTCCTCATCCAGCGTTCTTGCTGATCCCCGATATTCAGA




TGACTCAGACCACCAGTAGCTTGTCTGCCTCACTGGGAGACC




GAGTAACAATCTCCTGCAGGGCAAGTCAAGACATTAGCAAAT




ACCTCAATTGGTACCAGCAGAAGCCCGACGGAACGGTAAAA




CTCCTCATCTATCATACGTCAAGGTTGCATTCCGGAGTACCGT




CACGATTTTCAGGTTCTGGGAGCGGAACTGACTATTCCTTGAC




TATTTCAAACCTCGAGCAGGAGGACATTGCGACATATTTTTGT




CAACAAGGTAATACCCTCCCTTACACTTTCGGAGGAGGAACC




AAACTCGAAATTACCGGGTCCACCAGTGGCTCTGGGAAGCCT




GGCAGTGGAGAAGGTTCCACTAAAGGCGAGGTGAAGCTCCA




GGAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTC




TGTAACGTGCACAGTGAGTGGTGTATCATTGCCTGATTATGG




CGTCTCCTGGATAAGGCAGCCCCCGCGAAAGGGTCTTGAATG




GCTTGGGGTAATATGGGGCTCAGAGACAACGTATTATAACTC




CGCTCTCAAAAGTCGCTTGACGATAATAAAAGATAACTCCAA




GAGTCAAGTTTTCCTTAAAATGAACAGTTTGCAGACTGACGA




TACCGCTATATATTATTGTGCTAAACATTATTACTACGGCGGT




AGTTACGCGATGGATTATTGGGGGCAGGGGACTTCTGTCACA




GTCAGTAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCA




AACCGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTC




CCACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATG




CCGACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGA




CTTCGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACG




TGCGGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAA




TCACAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGA




TTACATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAA




ACATTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTA




CAGGTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGC




ATATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGG




GGAGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAAT




CCCCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGAT




GGCGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGAC




GACGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCATATGCAGGCC




CTGCCTCCCAGAGGAAGCGGAGCTACTAACTTCAGCCTGCTG




AAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGT




GAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCT




GGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGT




GTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA




CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCT




GGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCT




TCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCA




AGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCT




TCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGA




AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGG




GCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAG




CTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCC




GACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCG




CCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTA




CCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCC




CGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGA




CCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGT




GACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAA




GTAATAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTG




GTTTTTTGTGTGCCAGTGACAAGTCTGTCTGCCTATTCACCGA




TTTTGATTCTCAAACAAATGTGTCACAAAGTAAGGATTCTGAT




GTGTATATCACAGACAAAACTGTGCTAGACATGAGGTCTATG




GACTTCAAGAGCAACAGTGCTGTGGCCTGGAGCAACAAATCT




GACTTTGCATGTGCAAACGCCTTCAACAACAGCATTATTCCA




GAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGT




GCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCT




GCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCTGATTG




GTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTAC




TAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATGACA




CGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGAGGGC




ACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTGCCTGCC




TGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTCTAGGCCT




CATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCT




GTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCAGTCTCACG




CAGTCACTCATTAACCCACCAATCACTGATTGTGCCGGCACA




TGAATGCACCAGGTGTTGAAGTGGAGGAATTAAAAAGTCAG




ATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTGGGGGA




GCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTCAGATTG




GAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTACCTTCAG




GACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGCTACTTGA




AGATACCAGCCCTACCAAGGGCAGGGAGAGGACCCTATAGA




GGCCTGGGACAGGAGCTCAATGAGAAAGGAGAAGAGCAGCA




GGCATGAGTTGAATGAAGGAGGCAGGGCCGGGTCACAGGG





1394
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-142
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGATATAGTTATGACCCAATCACCC




GATAGTCTTGCGGTAAGCCTGGGGGAGCGAGCAACAATAAA




CTGTCGGGCATCAAAATCCGTCAGTACAAGCGGGTATTCATT




CATGCACTGGTATCAACAGAAACCCGGTCAGCCACCCAAGCT




CCTGATTTATCTTGCGTCTAATCTTGAGTCCGGCGTCCCAGAC




CGGTTTTCCGGCTCCGGGAGCGGCACGGATTTTACTCTTACTA




TTTCTAGCCTTCAGGCCGAAGATGTGGCGGTATACTACTGCC




AGCATTCAAGGGAAGTTCCTTGGACGTTCGGTCAGGGCACGA




AAGTGGAAATTAAAGGCGGGGGGGGATCCGGCGGGGGAGGG




TCTGGAGGAGGTGGCAGTGGTCAGGTCCAACTGGTGCAGTCC




GGGGCAGAGGTAAAAAAACCCGGCGCGTCTGTTAAGGTTTCA




TGCAAGGCCAGTGGATATACTTTCACCAATTACGGAATGAAC




TGGGTGAGGCAGGCCCCTGGTCAAGGCCTGAAATGGATGGG




ATGGATAAACACGTACACCGGTGAACCTACCTATGCCGATGC




CTTTAAGGGTCGGGTTACGATGACGAGAGACACCTCCATATC




AACAGCCTACATGGAGCTCAGCAGATTGAGGAGTGACGATAC




GGCAGTCTATTACTGTGCAAGAGACTACGGCGATTATGGCAT




GGATTACTGGGGCCAGGGCACTACAGTAACCGTTTCCAGCAG




TGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACC




ACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATC




GCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCG




CCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTT




GTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGT




CCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGG




AATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATG




AATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTAC




CAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCC




CGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAG




CAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGC




CGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGA




CCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAG




AAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAG




GCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGG




AAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAAC




CAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCC




CAGATAATAATAAAATCGCTATCCATCGAAGATGGATGTGTG




TTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTG




CAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCT




GTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTG




GTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGA




GCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCA




GATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCT




CAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCT




TCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAA




TCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTA




ACCCACCAATCACTGATTGTGCCGGCACATGAATGCACCAGG




TGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCC




CAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAAC




TCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGG




GAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT




ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGG




AGCTCAATGAGAAAGG





1395
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-145
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAAAGCGGG




GCGGAGGTGAAAAAACCCGGCGCTTCCGTGAAGGTGTCCTGT




AAGGCGTCCGGTTATACGTTCACGAACTACGGGATGAATTGG




GTTCGCCAAGCGCCGGGGCAGGGACTGAAATGGATGGGGTG




GATAAATACCTACACCGGCGAACCTACATACGCCGACGCTTT




TAAAGGGCGAGTCACTATGACGCGCGATACCAGCATATCCAC




CGCATACATGGAGCTGTCCCGACTCCGGTCAGACGACACGGC




TGTCTACTATTGTGCTCGGGACTATGGCGATTATGGCATGGAC




TACTGGGGTCAGGGTACGACTGTAACAGTTAGTAGTGGTGGA




GGCGGCAGTGGCGGGGGGGGAAGCGGAGGAGGGGGTTCTGG




TGACATAGTTATGACCCAATCCCCAGATAGTTTGGCGGTTTCT




CTGGGCGAGAGGGCAACGATTAATTGTCGCGCATCAAAGAGC




GTTTCAACGAGCGGATATTCTTTTATGCATTGGTACCAGCAAA




AACCCGGACAACCGCCGAAGCTGCTGATCTACTTGGCTTCAA




ATCTTGAGTCTGGGGTGCCGGACCGATTTTCTGGTAGTGGAA




GCGGAACTGACTTTACGCTCACGATCAGTTCACTGCAGGCTG




AGGATGTAGCGGTCTATTATTGCCAGCACAGTAGAGAAGTCC




CCTGGACCTTCGGTCAAGGCACGAAAGTAGAAATTAAAAGTG




CTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCAC




GACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGC




CTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCC




GCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGT




GATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCC




TTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAA




TCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAA




TATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCA




ACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCG




AGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCA




AGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCG




CGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACC




CGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAA




GGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGC




CTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAA




AAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCA




AAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCA




GATAATAATAAAATCGCTATCCATCGAAGATGGATGTGTGTT




GGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCA




AACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTCTTC




CCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGT




TTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGT




CAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTAT




CCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGC




CTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAG




ATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTC




AGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGAC




TGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTT




CTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAAT




CTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTAA




CCCACCAATCACTGATTGTGCCGGCACATGAATGCACCAGGT




GTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCC




CAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAAC




TCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGG




GAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT




ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGG




AGCTCAATGAGAAAGG





1396
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-145b
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAAAGCGGG




GCGGAGGTGAAAAAACCCGGCGCTTCCGTGAAGGTGTCCTGT




AAGGCGTCCGGTTATACGTTCACGAACTACGGGATGAATTGG




GTTCGCCAAGCGCCGGGGCAGGGACTGAAATGGATGGGGTG




GATAAATACCTACACCGGCGAACCTACATACGCCGACGCTTT




TAAAGGGCGAGTCACTATGACGCGCGATACCAGCATATCCAC




CGCATACATGGAGCTGTCCCGACTCCGGTCAGACGACACGGC




TGTCTACTATTGTGCTCGGGACTATGGCGATTATGGCATGGAC




TACTGGGGTCAGGGTACGACTGTAACAGTTAGTAGTGGTGGA




GGCGGCAGTGGCGGGGGGGGAAGCGGAGGAGGGGGTTCTGG




TGACATAGTTATGACCCAATCCCCAGATAGTTTGGCGGTTTCT




CTGGGCGAGAGGGCAACGATTAATTGTCGCGCATCAAAGAGC




GTTTCAACGAGCGGATATTCTTTTATGCATTGGTACCAGCAAA




AACCCGGACAACCGCCGAAGCTGCTGATCTACTTGGCTTCAA




ATCTTGAGTCTGGGGTGCCGGACCGATTTTCTGGTAGTGGAA




GCGGAACTGACTTTACGCTCACGATCAGTTCACTGCAGGCTG




AGGATGTAGCGGTCTATTATTGCCAGCACAGTAGAGAAGTCC




CCTGGACCTTCGGTCAAGGCACGAAAGTAGAAATTAAAAGTG




CTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCAC




GACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGC




CTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCC




GCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGT




GATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCC




TTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAA




TCGCAAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACA




ACCATTTATGAGACCAGTACAAACTACTCAAGAGGAAGATGG




CTGTAGCTGCCGATTTCCAGAAGAAGAAGAAGGAGGATGTG




AACTGCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCAT




ATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGG




GACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGG




AGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCC




CCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGG




CGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGAT




GTGTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA




GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGG




CCTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAG




TGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1397
LHA to RHA
GAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGTA



of CTX-152
GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGCCTGG




CCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAGATTG




ATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAG




CTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGACCGT




GACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCACTGG




CATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAATGA




GATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAG




AACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAATCC




AGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAA




CAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCACAG




ACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGCTCC




GGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTA




GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGT




ACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATA




TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTT




TGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGG




GCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATT




ACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCG




GGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGG




AGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCG




CTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTG




TCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGA




TGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAA




ATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGG




CCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTT




CGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGA




CGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGC




CTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTG




GCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTT




CCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCG




CTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAA




GGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGA




GTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTT




TGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCG




ATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGG




CCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTT




TTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGT




TCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCATGG




CTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCTGCTT




CATGCTGCTAGACCTCAGGTGCAGTTACAACAGTCAGGAGGA




GGATTAGTGCAGCCAGGAGGATCTCTGAAACTGTCTTGTGCC




GCCAGCGGAATCGATTTTAGCAGGTACTGGATGTCTTGGGTG




AGAAGAGCCCCTGGAAAAGGACTGGAGTGGATCGGCGAGAT




TAATCCTGATAGCAGCACCATCAACTATGCCCCTAGCCTGAA




GGACAAGTTCATCATCAGCCGGGACAATGCCAAGAACACCCT




GTACCTGCAAATGAGCAAGGTGAGGAGCGAGGATACAGCTC




TGTACTACTGTGCCAGCCTGTACTACGATTACGGAGATGCTAT




GGACTATTGGGGCCAGGGAACAAGCGTTACAGTGTCTTCTGG




AGGAGGAGGATCCGGTGGTGGTGGTTCAGGAGGTGGAGGTT




CGGGAGATATTGTGATGACACAAAGCCAGCGGTTCATGACCA




CATCTGTGGGCGACAGAGTGAGCGTGACCTGTAAAGCTTCTC




AGTCTGTGGACAGCAATGTTGCCTGGTATCAGCAGAAGCCCA




GACAGAGCCCTAAAGCCCTGATCTTTTCTGCCAGCCTGAGAT




TTTCTGGCGTTCCTGCCAGATTTACCGGCTCTGGCTCTGGCAC




CGATTTTACACTGACCATCAGCAATCTGCAGTCTGAGGATCT




GGCCGAGTACTTTTGCCAGCAGTACAACAACTACCCCCTGAC




CTTTGGAGCTGGCACAAAACTGGAGCTGAAGAGTGCTGCTGC




CTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACTCCC




GCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTCAAC




CTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCGGGG




GTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATATTTA




CATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTG




TCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGCTCAA




AGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATGACTC




CTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCCTATG




CCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTGAAGT




TTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGACAGA




ATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAGGAGT




ATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGAAATG




GGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGACTCTA




CAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACTCAG




AAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGTCAC




GATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGATACG




TACGATGCACTGCATATGCAGGCCCTGCCTCCCAGAGGAAGC




GGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTG




GAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGGAGCT




GTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGA




CGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGG




GCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCA




CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCA




CCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACC




ACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAG




GCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCA




ACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC




CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAG




GACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAA




CAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACG




GCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACG




GCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA




TCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGA




GCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGC




GATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC




ACTCTCGGCATGGACGAGCTGTACAAGTAATAATAAAATAAA




ATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTG




TGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTTCAAC




AACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGT




AAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAG




GAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTA




AAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCCACCA




AAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAG




TCCAGAGAATGACACGGGAAAAAAGCAGATGAAGAGAAGGT




GGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTG




AGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTAC




TGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCT




CTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCA




CTAAGTCAGTCTCACGCAGTCACTCATTAACCC





1398
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-153
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCTGC




TTCATGCTGCTAGACCTCAGGTGCAGTTACAACAGTCAGGAG




GAGGATTAGTGCAGCCAGGAGGATCTCTGAAACTGTCTTGTG




CCGCCAGCGGAATCGATTTTAGCAGGTACTGGATGTCTTGGG




TGAGAAGAGCCCCTGGAAAAGGACTGGAGTGGATCGGCGAG




ATTAATCCTGATAGCAGCACCATCAACTATGCCCCTAGCCTG




AAGGACAAGTTCATCATCAGCCGGGACAATGCCAAGAACAC




CCTGTACCTGCAAATGAGCAAGGTGAGGAGCGAGGATACAG




CTCTGTACTACTGTGCCAGCCTGTACTACGATTACGGAGATGC




TATGGACTATTGGGGCCAGGGAACAAGCGTTACAGTGTCTTC




TGGAGGAGGAGGATCCGGTGGTGGTGGTTCAGGAGGTGGAG




GTTCGGGAGATATTGTGATGACACAAAGCCAGCGGTTCATGA




CCACATCTGTGGGCGACAGAGTGAGCGTGACCTGTAAAGCTT




CTCAGTCTGTGGACAGCAATGTTGCCTGGTATCAGCAGAAGC




CCAGACAGAGCCCTAAAGCCCTGATCTTTTCTGCCAGCCTGA




GATTTTCTGGCGTTCCTGCCAGATTTACCGGCTCTGGCTCTGG




CACCGATTTTACACTGACCATCAGCAATCTGCAGTCTGAGGA




TCTGGCCGAGTACTTTTGCCAGCAGTACAACAACTACCCCCT




GACCTTTGGAGCTGGCACAAAACTGGAGCTGAAGAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATA




TTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT




GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGC




TCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATG




ACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTG




AAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGA




CAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGA




AATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGAC




TCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACT




CAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGT




CACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGAT




ACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTT




TTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGC




CTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTG




CTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGA




TGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTC




TGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGA




GAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTC




CAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAG




TTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCACCA




ATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTTGAAG




TGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAGAGGA




AGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGGGAAA




AGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT




GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG




CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCTCAAT




GAGAAA





1399
LHA to RHA
GAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTAAGTA



of CTX-154
GCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGCCTGG




CCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAGATTG




ATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAGCAG




CTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGACCGT




GACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCACTGG




CATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAATGA




GATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATCCAG




AACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAATCC




AGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTCAAA




CAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCACAG




ACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGCTCC




GGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC




GAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTA




GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGT




ACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATA




TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTT




TGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGG




GCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATT




ACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCG




GGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGG




AGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCG




CTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTG




TCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGA




TGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAA




ATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGG




CCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTT




CGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGA




CGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGC




CTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTG




GCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTT




CCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCG




CTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAA




GGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGA




GTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTT




TGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCG




ATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGG




CCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTT




TTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGT




TCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCATGG




CTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCTGCTT




CATGCTGCTAGACCTGACATCGTGATGACCCAAAGCCAGAGG




TTCATGACCACATCTGTGGGCGATAGAGTGAGCGTGACCTGT




AAAGCCTCTCAGTCTGTGGACAGCAATGTTGCCTGGTATCAG




CAGAAGCCTAGACAGAGCCCTAAAGCCCTGATCTTTAGCGCC




AGCCTGAGATTTAGCGGAGTTCCTGCCAGATTTACCGGAAGC




GGATCTGGAACCGATTTTACACTGACCATCAGCAACCTGCAG




AGCGAGGATCTGGCCGAGTACTTTTGCCAGCAGTACAACAAT




TACCCTCTGACCTTTGGAGCCGGCACAAAGCTGGAGCTGAAA




GGAGGAGGAGGATCTGGTGGTGGTGGTTCAGGAGGTGGAGG




TTCGGGACAAGTTCAATTACAGCAATCTGGAGGAGGACTGGT




TCAGCCTGGAGGAAGCCTGAAGCTGTCTTGTGCCGCTTCTGG




AATCGATTTTAGCAGATACTGGATGAGCTGGGTGAGAAGAGC




CCCTGGCAAAGGACTGGAGTGGATTGGCGAGATTAATCCTGA




TAGCAGCACCATCAACTATGCCCCTAGCCTGAAGGACAAGTT




CATCATCAGCCGGGACAATGCCAAGAACACCCTGTACCTGCA




AATGAGCAAGGTGAGGAGCGAGGATACAGCTCTGTACTACTG




TGCCAGCCTGTACTACGATTACGGAGATGCTATGGACTATTG




GGGCCAGGGAACAAGCGTTACAGTGAGCAGCAGTGCTGCTG




CCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACTCC




CGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTCAA




CCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCGGG




GGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATATTT




ACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTT




GTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGCTCA




AAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATGACT




CCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCCTAT




GCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTGAAG




TTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGACAG




AATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAGGAG




TATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGAAAT




GGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGACTCT




ACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACTCA




GAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGTCA




CGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGAGGAAG




CGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGT




GGAGGAGAACCCTGGACCTATGGTGAGCAAGGGCGAGGAGC




TGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCG




ACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAG




GGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGC




ACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACC




ACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGAC




CACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAA




GGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGC




AACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACAC




CCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGA




GGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACA




ACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC




GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGAC




GGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCC




ATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTG




AGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCG




CGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT




CACTCTCGGCATGGACGAGCTGTACAAGTAATAATAAAATAA




AATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGT




GTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCTTCAA




CAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCCCAGG




TAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCA




GGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCT




AAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTGCCACC




AAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCA




GTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGAGAAGG




TGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACT




GAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTA




CTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCC




TCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTC




ACTAAGTCAGTCTCACGCAGTCACTCATTAACCC





1400
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-155
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCTGC




TTCATGCTGCTAGACCTGACATCGTGATGACCCAAAGCCAGA




GGTTCATGACCACATCTGTGGGCGATAGAGTGAGCGTGACCT




GTAAAGCCTCTCAGTCTGTGGACAGCAATGTTGCCTGGTATC




AGCAGAAGCCTAGACAGAGCCCTAAAGCCCTGATCTTTAGCG




CCAGCCTGAGATTTAGCGGAGTTCCTGCCAGATTTACCGGAA




GCGGATCTGGAACCGATTTTACACTGACCATCAGCAACCTGC




AGAGCGAGGATCTGGCCGAGTACTTTTGCCAGCAGTACAACA




ATTACCCTCTGACCTTTGGAGCCGGCACAAAGCTGGAGCTGA




AAGGAGGAGGAGGATCTGGTGGTGGTGGTTCAGGAGGTGGA




GGTTCGGGACAAGTTCAATTACAGCAATCTGGAGGAGGACTG




GTTCAGCCTGGAGGAAGCCTGAAGCTGTCTTGTGCCGCTTCT




GGAATCGATTTTAGCAGATACTGGATGAGCTGGGTGAGAAGA




GCCCCTGGCAAAGGACTGGAGTGGATTGGCGAGATTAATCCT




GATAGCAGCACCATCAACTATGCCCCTAGCCTGAAGGACAAG




TTCATCATCAGCCGGGACAATGCCAAGAACACCCTGTACCTG




CAAATGAGCAAGGTGAGGAGCGAGGATACAGCTCTGTACTA




CTGTGCCAGCCTGTACTACGATTACGGAGATGCTATGGACTA




TTGGGGCCAGGGAACAAGCGTTACAGTGAGCAGCAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATA




TTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT




GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGC




TCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATG




ACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTG




AAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGA




CAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGA




AATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGAC




TCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACT




CAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGT




CACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGAT




ACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTT




TTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGC




CTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTG




CTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGA




TGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTC




TGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGA




GAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTC




CAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAG




TTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCACCA




ATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTTGAAG




TGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAGAGGA




AGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGGGAAA




AGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT




GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG




CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCTCAAT




GAGAAA





1401
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-160
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAGAGCGG




CGGAGGACTGGTCCAGCCTGGCGGCTCCCTGAAACTGAGCTG




CGCCGCCAGCGGCATCGACTTCAGCAGGTACTGGATGAGCTG




GGTGAGACAGGCCCCTGGCAAGGGCCTGGAATGGATCGGCG




AGATCAACCCCGACTCCAGCACCATCAACTACGCCGACAGCG




TCAAGGGCAGGTTCACCATTAGCAGGGACAATGCCAAGAAC




ACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAAGACACC




GCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGCGAC




GCTATGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGAGC




TCCGGAGGAGGCGGCAGCGGCGGAGGCGGCAGCGGCGGAGG




CGGCAGCGACATCCAGATGACCCAGAGCCCTAGCAGCCTGAG




CGCCTCCGTGGGAGATAGGGTGACAATCACCTGTAGGGCCAG




CCAGAGCGTGGACTCCAACGTGGCCTGGTATCAACAGAAGCC




CGAGAAGGCCCCCAAGAGCCTGATCTTTTCCGCCTCCCTGAG




GTTCAGCGGAGTCCCCAGCAGGTTCTCCGGATCCGGCTCCGG




AACCGACTTTACCCTGACCATCTCCAGCCTGCAGCCCGAGGA




CTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCT




GACCTTCGGCGCCGGCACAAAGCTGGAGATCAAGAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATA




TTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT




GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGC




TCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATG




ACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTG




AAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGA




CAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGA




AATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGAC




TCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACT




CAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGT




CACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGAT




ACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTT




TTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGC




CTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTG




CTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGA




TGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTC




TGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGA




GAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTC




CAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAG




TTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCACCA




ATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTTGAAG




TGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAGAGGA




AGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGGGAAA




AGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT




GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG




CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCTCAAT




GAGAAAGG





1402
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-160b
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAGAGCGG




CGGAGGACTGGTCCAGCCTGGCGGCTCCCTGAAACTGAGCTG




CGCCGCCAGCGGCATCGACTTCAGCAGGTACTGGATGAGCTG




GGTGAGACAGGCCCCTGGCAAGGGCCTGGAATGGATCGGCG




AGATCAACCCCGACTCCAGCACCATCAACTACGCCGACAGCG




TCAAGGGCAGGTTCACCATTAGCAGGGACAATGCCAAGAAC




ACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAAGACACC




GCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGCGAC




GCTATGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGAGC




TCCGGAGGAGGCGGCAGCGGCGGAGGCGGCAGCGGCGGAGG




CGGCAGCGACATCCAGATGACCCAGAGCCCTAGCAGCCTGAG




CGCCTCCGTGGGAGATAGGGTGACAATCACCTGTAGGGCCAG




CCAGAGCGTGGACTCCAACGTGGCCTGGTATCAACAGAAGCC




CGAGAAGGCCCCCAAGAGCCTGATCTTTTCCGCCTCCCTGAG




GTTCAGCGGAGTCCCCAGCAGGTTCTCCGGATCCGGCTCCGG




AACCGACTTTACCCTGACCATCTCCAGCCTGCAGCCCGAGGA




CTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCT




GACCTTCGGCGCCGGCACAAAGCTGGAGATCAAGAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATA




TTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT




GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGC




AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCA




TTTATGAGACCAGTACAAACTACTCAAGAGGAAGATGGCTGT




AGCTGCCGATTTCCAGAAGAAGAAGAAGGAGGATGTGAACT




GCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCA




GCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAA




GAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGA




GGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGG




GAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAA




CCAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGATAATAATAAAATCGCTATCCATCGAAGATGGATGTGT




GTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGT




GCAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTC




TTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGC




TGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCT




GGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCT




TATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGA




GCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCA




GATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCT




CAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCT




TCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAA




TCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTA




ACCCACCAATCACTGATTGTGCCGGCACATGAATGCACCAGG




TGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCC




CAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAAC




TCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGG




GAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT




ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGG




AGCTCAATGAGAAAGG





1403
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-161
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAGGTGCAGCTGGTGGAGAGCGG




AGGAGGACTGGTGCAGCCCGGAGGCTCCCTGAAGCTGAGCTG




CGCTGCCTCCGGCATCGACTTCAGCAGGTACTGGATGAGCTG




GGTGAGGCAGGCTCCCGGCAAAGGCCTGGAGTGGATCGGCG




AGATCAACCCCGACAGCAGCACCATCAACTACGCCGACAGCG




TGAAGGGCAGGTTCACCATCAGCAGGGACAACGCCAAGAAT




ACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAGGACACA




GCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGAGAC




GCTATGGACTACTGGGGCCAGGGAACCCTGGTGACCGTGAGC




AGCGGAGGCGGAGGCTCCGGCGGCGGAGGCAGCGGAGGAGG




CGGCAGCGATATCCAGATGACCCAGTCCCCCAGCTCCCTGAG




CGCTAGCCCTGGCGACAGGGTGAGCGTGACATGCAAGGCCA




GCCAGAGCGTGGACAGCAACGTGGCCTGGTACCAGCAGAAA




CCCAGACAGGCCCCCAAGGCCCTGATCTTCAGCGCCAGCCTG




AGGTTTAGCGGCGTGCCCGCTAGGTTTACCGGATCCGGCAGC




GGCACCGACTTCACCCTGACCATCTCCAACCTGCAGTCCGAG




GACTTCGCCACCTACTACTGCCAGCAGTACAACAACTACCCC




CTGACATTCGGCGCCGGAACCAAGCTGGAGATCAAGAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATA




ATAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTT




TTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAAC




GCCTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCA




GCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCT




TGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAAT




GATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCAT




TGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGT




TCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAA




GAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCT




CTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTT




GCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCC




AAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTT




CCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCC




ACCAATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTT




GAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAG




AGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGG




GAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCA




GGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAA




GGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACC




AAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGC




TCAATGAGAAAGG





1404
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-162
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCCAGATGACCCAGAGCCCT




AGCAGCCTGAGCGCTAGCGTGGGCGACAGGGTGACCATCACC




TGCAGGGCCAGCCAGAGCGTGGACTCCAACGTGGCCTGGTAC




CAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTTCAGC




GCCAGCCTGAGGTTCTCCGGAGTGCCTAGCAGATTTAGCGGC




AGCGGCAGCGGCACAGACTTCACCCTGACCATCAGCAGCCTC




CAGCCCGAGGATTTCGCCACCTACTACTGCCAGCAGTACAAC




TCCTACCCCCTGACCTTCGGCGCCGGCACAAAGCTGGAGATC




AAGGGAGGAGGAGGAAGCGGAGGAGGAGGAAGCGGAGGCG




GAGGAAGCGAGGTGCAGCTGGTGGAGTCCGGAGGAGGCCTG




GTGCAACCTGGAGGCAGCCTGAAGCTGAGCTGTGCCGCCAGC




GGAATCGACTTCAGCAGGTACTGGATGTCCTGGGTGAGACAG




GCCCCTGGCAAGGGCCTGGAGTGGATCGGAGAGATCAACCCC




GACAGCTCCACCATCAACTACGCCGACAGCGTGAAGGGCAG




GTTCACCATCAGCAGAGACAACGCCAAGAACACCCTGTACCT




GCAGATGAACCTGTCCAGAGCCGAGGACACCGCCCTGTACTA




CTGCGCCAGCCTGTATTACGACTACGGCGACGCTATGGACTA




CTGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCAGTGCTGC




TGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACT




CCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTC




AACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCG




GGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATA




TTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTT




GTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGC




TCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATG




ACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCC




TATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTG




AAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGA




CAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAG




GAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGA




AATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGAC




TCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACT




CAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGT




CACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGAT




ACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATAA




TAATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTT




TTGTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGC




CTTCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGC




CCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTG




CTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGA




TGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTG




CCACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTC




TGGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGA




GAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTC




CAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCC




CCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAG




TTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCACCA




ATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTTGAAG




TGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAGAGGA




AGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGGGAAA




AGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT




GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG




CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCTCAAT




GAGAAAGG





1405
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-163
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCCAAATGACCCAGTCCCCT




AGCAGCCTGTCCGCCAGCCCTGGAGACAGGGTGTCCGTGACC




TGCAAGGCCAGCCAGTCCGTGGACAGCAACGTCGCCTGGTAT




CAGCAGAAGCCCAGGCAAGCTCCCAAGGCTCTGATCTTCTCC




GCCAGCCTGAGATTTTCCGGCGTGCCCGCCAGATTCACCGGA




AGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAACCTG




CAGAGCGAGGATTTCGCCACATACTACTGCCAGCAGTACAAC




AACTACCCCCTGACCTTCGGAGCCGGCACCAAGCTGGAGATC




AAAGGCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGAGG




CGGATCCGAAGTGCAGCTGGTGGAAAGCGGAGGCGGACTCG




TGCAGCCTGGCGGAAGCCTGAAGCTGAGCTGTGCCGCCAGCG




GCATCGACTTCAGCAGGTACTGGATGAGCTGGGTGAGGCAGG




CTCCCGGCAAAGGCCTGGAGTGGATCGGCGAGATCAACCCTG




ACAGCAGCACCATCAACTACGCCGACAGCGTGAAAGGCAGG




TTCACCATCAGCAGGGACAACGCCAAGAACACCCTGTACCTG




CAGATGAACCTGTCCAGAGCCGAGGACACCGCCCTGTACTAC




TGCGCCAGCCTGTACTACGACTACGGCGACGCTATGGACTAC




TGGGGCCAAGGCACCCTCGTGACCGTCAGCTCCAGTGCTGCT




GCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGACTC




CCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCTCA




ACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCCGG




GGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGATATT




TACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTTTGT




TGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCGCTC




AAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATATGAC




TCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACCCTA




TGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGTGAA




GTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGGACA




GAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGAGGA




GTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGGAAA




TGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGACTC




TACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTACTCA




GAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGGTCA




CGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGATAC




GTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGATAATA




ATAAAATCGCTATCCATCGAAGATGGATGTGTGTTGGTTTTTT




GTGTGTGGAGCAACAAATCTGACTTTGCATGTGCAAACGCCT




TCAACAACAGCATTATTCCAGAAGACACCTTCTTCCCCAGCC




CAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCTGTTTCCTTGC




TTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTGGTCAATGAT




GTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTTATCCATTGC




CACCAAAACCCTCTTTTTACTAAGAAACAGTGAGCCTTGTTCT




GGCAGTCCAGAGAATGACACGGGAAAAAAGCAGATGAAGAG




AAGGTGGCAGGAGAGGGCACGTGGCCCAGCCTCAGTCTCTCC




AACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGACTGTTTGCCC




CTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCTTCTCCAAGT




TGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAATCTTTCCCA




GCTCACTAAGTCAGTCTCACGCAGTCACTCATTAACCCACCA




ATCACTGATTGTGCCGGCACATGAATGCACCAGGTGTTGAAG




TGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCCCAGAGGA




AGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGCTGGGAAA




AGTCCAAATAACTTCAGATTGGAATGTGTTTTAACTCAGGGTT




GAGAAAACAGCTACCTTCAGGACAAAAGTCAGGGAAGGGCT




CTCTGAAGAAATGCTACTTGAAGATACCAGCCCTACCAAGGG




CAGGGAGAGGACCCTATAGAGGCCTGGGACAGGAGCTCAAT




GAGAAAGG





1406
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-164
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAGTCCGGC




CCTGAGCTCGTGAAGCCTGGAGCCAGCGTGAAAATGAGCTGT




AAGGCCTCCGGCAACACCCTCACCAACTACGTGATCCATTGG




ATGAAGCAGATGCCCGGCCAGGGCCTGGACTGGATTGGCTAC




ATTCTGCCCTACAACGACCTGACCAAGTACAACGAGAAGTTC




ACCGGCAAGGCCACCCTGACCAGCGATAAGAGCTCCAGCAG




CGCCTACATGGAGCTGAACTCCCTGACCAGCGAGGACAGCGC




CGTGTACTACTGCACCAGGTGGGACTGGGATGGCTTCTTCGA




CCCCTGGGGACAGGGCACCACCCTGACAGTGTCCAGCGGAGG




AGGCGGCAGCGGCGGCGGCGGCTCCGGCGGCGGCGGCAGCG




ATATCGTGATGACACAGTCCCCTCTGAGCCTGCCTGTGAGCCT




GGGCGACCAGGCCAGCATCAGCTGCAGGTCCACCCAGTCCCT




GGTGCACTCCAACGGCAACACCCACCTGCACTGGTACCTGCA




AAGGCCCGGCCAGTCCCCTAAGCTGCTGATCTACAGCGTGAG




CAACAGGTTTAGCGAGGTGCCCGATAGATTTTCCGCCAGCGG




CAGCGGCACCGACTTCACACTGAAGATCTCCAGGGTGGAGGC




CGAGGATCTGGGCGTGTACTTCTGCAGCCAGACCAGCCACAT




CCCCTACACCTTCGGCGGCGGAACCAAGCTGGAGATCAAGAG




TGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACC




ACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATC




GCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCG




CCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTT




GTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGT




CCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGG




AATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATG




AATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTAC




CAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCC




CGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAG




CAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGC




CGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGA




CCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAG




AAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAG




GCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGG




AAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAAC




CAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCC




CAGATAATAATAAAATCGCTATCCATCGAAGATGGATGTGTG




TTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCATGTG




CAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCTTCT




TCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAGGCT




GTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCTCTG




GTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGCCTT




ATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGTGA




GCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAAGCA




GATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAGCCT




CAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTCAGA




CTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGCCCCT




TCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAAAAA




TCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCATTA




ACCCACCAATCACTGATTGTGCCGGCACATGAATGCACCAGG




TGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTGTGCC




CAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGTCAGC




TGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTTTAAC




TCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTCAGG




GAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGCCCT




ACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGACAGG




AGCTCAATGAGAAAGG





1407
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



CTX-165
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCGTGATGACCCAGAGCCCC




CTGAGCCTGCCTGTGTCCCTGGGAGACCAGGCTTCCATCAGC




TGCAGGTCCACCCAGAGCCTGGTGCACTCCAACGGCAACACC




CACCTGCACTGGTACCTGCAGAGGCCTGGCCAGTCCCCCAAG




CTGCTGATCTACAGCGTGAGCAATAGGTTCAGCGAGGTGCCC




GACAGATTCAGCGCCAGCGGAAGCGGCACCGACTTCACCCTG




AAGATCAGCAGGGTCGAGGCCGAAGATCTGGGCGTGTACTTC




TGCTCCCAGACATCCCACATCCCTTACACCTTCGGCGGCGGC




ACCAAGCTGGAGATTAAGGGCGGCGGAGGATCCGGCGGAGG




AGGATCCGGAGGAGGAGGAAGCGAGGTGCAGCTGCAGCAGA




GCGGACCCGAGCTGGTGAAACCCGGAGCCAGCGTCAAAATG




AGCTGCAAGGCCAGCGGCAACACCCTGACCAACTACGTCATC




CACTGGATGAAGCAGATGCCCGGACAGGGCCTGGACTGGATC




GGCTACATCCTGCCCTACAACGACCTGACCAAGTACAACGAG




AAATTCACCGGCAAGGCCACCCTGACCAGCGACAAGAGCAG




CAGCAGCGCCTACATGGAGCTGAACAGCCTGACCAGCGAGG




ACTCCGCCGTGTACTATTGCACCAGGTGGGACTGGGACGGCT




TCTTTGACCCCTGGGGCCAGGGCACAACACTCACCGTGAGCT




CCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACC




GACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGA




CCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTC




GCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCAC




AGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTAC




ATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGG




TCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATAT




CAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGA




CGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCC




AAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCG




GAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACG




GGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGC




AACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCC




TCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCAT




GTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCT




TCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAG




GCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCT




CTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGC




CTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1408
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-166
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCGG




AGCCGAGCTCAAGAAGCCCGGAGCCTCCGTGAAGGTGAGCT




GCAAGGCCAGCGGCAACACCCTGACCAACTACGTGATCCACT




GGGTGAGACAAGCCCCCGGCCAAAGGCTGGAGTGGATGGGC




TACATCCTGCCCTACAACGACCTGACCAAGTACAGCCAGAAG




TTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGCGCCTCC




ACCGCCTATATGGAGCTGAGCAGCCTGAGGAGCGAGGACAC




CGCTGTGTACTACTGTACAAGGTGGGACTGGGACGGCTTCTT




TGACCCCTGGGGCCAGGGCACAACAGTGACCGTCAGCAGCG




GCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGAGGCGGA




AGCGAAATCGTGATGACCCAGAGCCCCGCCACACTGAGCGTG




AGCCCTGGCGAGAGGGCCAGCATCTCCTGCAGGGCTAGCCAA




AGCCTGGTGCACAGCAACGGCAACACCCACCTGCACTGGTAC




CAGCAGAGACCCGGACAGGCTCCCAGGCTGCTGATCTACAGC




GTGAGCAACAGGTTCTCCGAGGTGCCTGCCAGGTTTAGCGGC




AGCGGAAGCGGCACCGACTTTACCCTGACCATCAGCAGCGTG




GAGTCCGAGGACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAAGCTGGAGATC




AAAAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACA




TTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATA




TCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGG




ACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCC




CAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGAT




GTGTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA




GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGG




CCTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAG




TGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1409
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-166b
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCGG




AGCCGAGCTCAAGAAGCCCGGAGCCTCCGTGAAGGTGAGCT




GCAAGGCCAGCGGCAACACCCTGACCAACTACGTGATCCACT




GGGTGAGACAAGCCCCCGGCCAAAGGCTGGAGTGGATGGGC




TACATCCTGCCCTACAACGACCTGACCAAGTACAGCCAGAAG




TTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGCGCCTCC




ACCGCCTATATGGAGCTGAGCAGCCTGAGGAGCGAGGACAC




CGCTGTGTACTACTGTACAAGGTGGGACTGGGACGGCTTCTT




TGACCCCTGGGGCCAGGGCACAACAGTGACCGTCAGCAGCG




GCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGAGGCGGA




AGCGAAATCGTGATGACCCAGAGCCCCGCCACACTGAGCGTG




AGCCCTGGCGAGAGGGCCAGCATCTCCTGCAGGGCTAGCCAA




AGCCTGGTGCACAGCAACGGCAACACCCACCTGCACTGGTAC




CAGCAGAGACCCGGACAGGCTCCCAGGCTGCTGATCTACAGC




GTGAGCAACAGGTTCTCCGAGGTGCCTGCCAGGTTTAGCGGC




AGCGGAAGCGGCACCGACTTTACCCTGACCATCAGCAGCGTG




GAGTCCGAGGACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAAGCTGGAGATC




AAAAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCAAACGGGGCAGAAAGAAACTCCTGTATATATT




CAAACAACCATTTATGAGACCAGTACAAACTACTCAAGAGGA




AGATGGCTGTAGCTGCCGATTTCCAGAAGAAGAAGAAGGAG




GATGTGAACTGCGAGTGAAGTTTTCCCGAAGCGCAGACGCTC




CGGCATATCAGCAAGGACAGAATCAGCTGTATAACGAACTGA




ATTTGGGACGCCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCAGAAGGATAA




GATGGCGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAAC




GACGACGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTG




AGTACGGCAACCAAAGATACGTACGATGCACTGCATATGCAG




GCCCTGCCTCCCAGATAATAATAAAATCGCTATCCATCGAAG




ATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGA




CTTTGCATGTGCAAACGCCTTCAACAACAGCATTATTCCAGA




AGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGC




CTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGC




CCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTG




GTCTCGGCCTTATCCATTGCCACCAAAACCCTCTTTTTACTAA




GAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGG




GAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGT




GGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCC




TTTGCTCAGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATT




CTAAGCCCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCT




GCCAAAAAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAG




TCACTCATTAACCCACCAATCACTGATTGTGCCGGCACATGA




ATGCACCAGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATG




AGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCC




CATCTGTCAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAA




TGTGTTTTAACTCAGGGTTGAGAAAACAGCTACCTTCAGGAC




AAAAGTCAGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAG




ATACCAGCCCTACCAAGGGCAGGGAGAGGACCCTATAGAGG




CCTGGGACAGGAGCTCAATGAGAAAGG





1410
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-167
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCGG




CGCCGAGCTGAAGAAACCTGGCGCCAGCGTCAAGGTGAGCT




GCAAGGCTTCCGGAAACACCCTCACCAACTACGTGATCCACT




GGGTGAGGCAGGCCCCCGGACAGAGACTGGAGTGGATGGGC




TACATTCTGCCCTACAACGACCTGACCAAGTACAGCCAGAAG




TTCCAGGGCAGGGTCACCATCACCAGGGACAAGAGCGCCAG




CACCGCCTACATGGAGCTGAGCAGCCTGAGGTCCGAGGACAC




AGCCGTGTACTACTGCACCAGGTGGGACTGGGACGGATTCTT




CGACCCTTGGGGCCAAGGCACCACAGTGACAGTGAGCTCCGG




CGGAGGCGGCAGCGGCGGCGGAGGAAGCGGCGGCGGCGGAA




GCGACATCGTGATGACCCAGAGCCCTCTGAGCCTGCCCGTGA




CACTGGGACAGCCTGCCACACTGTCCTGCAGGAGCACCCAGA




GCCTGGTGCATAGCAACGGCAACACCCACCTGCACTGGTTCC




AGCAGAGACCTGGCCAGAGCCCCCTGAGACTGATCTACAGCG




TGAGCAACAGGGACAGCGGCGTGCCCGATAGATTTAGCGGC




AGCGGCAGCGGCACCGACTTTACCCTGAAAATCTCCAGGGTG




GAGGCCGAGGATGTGGGCGTGTATTACTGCTCCCAGACAAGC




CACATTCCCTATACATTCGGCGGCGGCACCAAGCTGGAGATC




AAGAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACA




TTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATA




TCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGG




ACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCC




CAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGAT




GTGTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA




GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGG




CCTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAG




TGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1411
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-168
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAAATCGTGATGACCCAGAGCCCT




GCCACACTGAGCGTGAGCCCTGGCGAGAGAGCCAGCATCAG




CTGCAGGGCCTCCCAGAGCCTGGTGCACTCCAACGGCAATAC




CCACCTGCACTGGTATCAGCAGAGACCCGGCCAGGCCCCTAG




GCTGCTGATCTACTCCGTGAGCAACAGGTTCTCCGAGGTGCC




CGCCAGATTCAGCGGATCCGGCAGCGGCACCGACTTCACCCT




CACCATCTCCAGCGTGGAGAGCGAGGACTTCGCCGTCTACTA




CTGCAGCCAGACAAGCCACATCCCCTACACCTTCGGCGGCGG




CACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCG




GAGGCAGCGGAGGCGGCGGATCCCAGGTGCAACTGGTGCAG




AGCGGAGCCGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGGT




CAGCTGCAAGGCCAGCGGCAACACCCTGACAAACTACGTGAT




CCACTGGGTGAGGCAGGCCCCTGGCCAAAGGCTCGAGTGGAT




GGGCTACATCCTCCCCTACAACGACCTGACCAAGTACTCCCA




GAAGTTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGCG




CCAGCACCGCCTACATGGAACTCAGCAGCCTGAGGAGCGAG




GACACCGCCGTGTACTACTGCACCAGGTGGGACTGGGATGGC




TTCTTCGACCCTTGGGGCCAGGGCACCACCGTGACAGTGAGC




TCCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACA




TTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATA




TCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGG




ACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCC




CAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGAT




GTGTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGC




ATGTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACAC




CTTCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCA




GGCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGC




TCTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGG




CCTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAG




TGAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1412
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-169
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCGTGATGACACAATCCCCC




CTCAGCCTGCCTGTGACACTGGGCCAGCCTGCCACCCTGAGC




TGCAGGAGCACCCAGTCCCTGGTGCACTCCAACGGCAACACC




CACCTGCACTGGTTCCAGCAGAGGCCTGGACAGAGCCCCCTG




AGGCTGATCTACAGCGTGAGCAACAGGGACTCCGGCGTGCCC




GATAGATTCAGCGGCAGCGGCTCCGGCACCGATTTCACCCTG




AAGATCTCCAGAGTGGAAGCCGAGGACGTGGGCGTCTACTAC




TGCAGCCAGACCAGCCATATCCCCTACACCTTCGGCGGCGGC




ACCAAGCTGGAGATCAAGGGAGGCGGCGGAAGCGGCGGAGG




CGGATCCGGAGGCGGAGGCTCCCAAGTGCAGCTGGTGCAGA




GCGGCGCTGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGGTG




AGCTGCAAGGCCAGCGGAAACACCCTGACCAACTACGTGATC




CACTGGGTGAGACAGGCCCCCGGACAGAGACTCGAGTGGAT




GGGCTACATCCTGCCCTACAACGACCTGACCAAGTACAGCCA




GAAGTTCCAGGGCAGGGTGACAATCACCAGGGACAAGAGCG




CCAGCACCGCCTACATGGAGCTGAGCAGCCTGAGATCCGAGG




ACACCGCCGTGTACTACTGCACCAGGTGGGACTGGGACGGCT




TCTTTGACCCCTGGGGCCAGGGAACCACAGTGACCGTGTCCT




CCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACC




GACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCAC




CATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGA




CCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTC




GCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCG




GCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCAC




AGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTAC




ATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACAT




TACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGG




TCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATAT




CAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGA




CGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAG




AGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCC




AAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCG




GAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACG




GGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGC




AACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCC




TCCCAGATAATAATAAAATCGCTATCCATCGAAGATGGATGT




GTGTTGGTTTTTTGTGTGTGGAGCAACAAATCTGACTTTGCAT




GTGCAAACGCCTTCAACAACAGCATTATTCCAGAAGACACCT




TCTTCCCCAGCCCAGGTAAGGGCAGCTTTGGTGCCTTCGCAG




GCTGTTTCCTTGCTTCAGGAATGGCCAGGTTCTGCCCAGAGCT




CTGGTCAATGATGTCTAAAACTCCTCTGATTGGTGGTCTCGGC




CTTATCCATTGCCACCAAAACCCTCTTTTTACTAAGAAACAGT




GAGCCTTGTTCTGGCAGTCCAGAGAATGACACGGGAAAAAA




GCAGATGAAGAGAAGGTGGCAGGAGAGGGCACGTGGCCCAG




CCTCAGTCTCTCCAACTGAGTTCCTGCCTGCCTGCCTTTGCTC




AGACTGTTTGCCCCTTACTGCTCTTCTAGGCCTCATTCTAAGC




CCCTTCTCCAAGTTGCCTCTCCTTATTTCTCCCTGTCTGCCAAA




AAATCTTTCCCAGCTCACTAAGTCAGTCTCACGCAGTCACTCA




TTAACCCACCAATCACTGATTGTGCCGGCACATGAATGCACC




AGGTGTTGAAGTGGAGGAATTAAAAAGTCAGATGAGGGGTG




TGCCCAGAGGAAGCACCATTCTAGTTGGGGGAGCCCATCTGT




CAGCTGGGAAAAGTCCAAATAACTTCAGATTGGAATGTGTTT




TAACTCAGGGTTGAGAAAACAGCTACCTTCAGGACAAAAGTC




AGGGAAGGGCTCTCTGAAGAAATGCTACTTGAAGATACCAGC




CCTACCAAGGGCAGGGAGAGGACCCTATAGAGGCCTGGGAC




AGGAGCTCAATGAGAAAGG





1413
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-170
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAGAGCGG




CCCTGAGCTGGTGAAGCCCGGCGCCAGCGTGAAGATCAGCTG




CAAGACCTCCGGCTATACCTTTACCGAGTACACCATCAACTG




GGTGAAGCAGAGCCACGGCAAGAGCCTGGAGTGGATCGGCG




ATATCTACCCCGACAACTACAACATCAGGTACAACCAGAAGT




TCAAGGGCAAGGCCACCCTGACCGTGGACAAGTCCAGCAGC




ACCGCCTACATGGAGCTGAGGAGCCTGTCCAGCGAGGACTCC




GCCATCTACTACTGCGCCAACCACGACTTTTTCGTCTTCTGGG




GACAGGGCACCCTGGTGACAGTGTCCGCTGGCGGCGGCGGCA




GCGGCGGCGGCGGCTCCGGAGGCGGCGGCAGCGACATCCAG




ATGACACAGGCCACAAGCTCCCTGTCCGCCAGCCTGGGCGAT




AGGGTGACCATCAATTGCAGGACCTCCCAGGACATCAGCAAC




CACCTGAACTGGTACCAGCAGAAACCCGACGGCACCGTGAA




GCTGCTCATCTACTACACCAGCAGGCTGCAGTCCGGCGTCCC




TAGCAGATTCAGCGGATCCGGCAGCGGCACCGACTATAGCCT




GACCATCAGCAACCTCGAGCAGGAGGACATCGGCACCTACTT




CTGCCATCAGGGCAACACCCTGCCCCCTACCTTTGGCGGCGG




CACAAAGCTGGAGATTAAGAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1414
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-171
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGATATCCAGATGACCCAGGCCACC




AGCAGCCTGAGCGCTTCCCTCGGCGACAGGGTGACCATCAAC




TGCAGGACCAGCCAGGACATCTCCAACCACCTGAACTGGTAC




CAGCAGAAGCCCGACGGCACCGTGAAACTGCTGATCTACTAC




ACCAGCAGACTGCAGAGCGGCGTGCCCTCCAGATTTTCCGGC




AGCGGCTCCGGCACCGACTACAGCCTGACCATTAGCAACCTG




GAGCAGGAGGACATCGGAACCTACTTCTGCCACCAGGGCAAC




ACACTGCCTCCCACCTTCGGCGGCGGCACAAAGCTCGAGATC




AAGGGCGGCGGCGGAAGCGGCGGCGGCGGCAGCGGCGGCGG




AGGCTCCGAGGTGCAACTGCAACAGAGCGGACCTGAGCTGGT




GAAGCCTGGCGCCAGCGTGAAGATCTCCTGTAAGACCAGCGG




CTACACCTTCACCGAGTACACCATCAACTGGGTGAAGCAGAG




CCACGGCAAGAGCCTCGAATGGATCGGCGACATCTATCCCGA




CAACTACAATATCAGATACAACCAGAAGTTCAAGGGAAAGG




CCACCCTGACCGTGGATAAGTCCTCCTCCACCGCTTACATGG




AGCTGAGGAGCCTGAGCAGCGAGGACTCCGCCATCTACTACT




GCGCCAACCACGACTTCTTCGTGTTCTGGGGCCAAGGCACCC




TCGTGACCGTGAGCGCCAGTGCTGCTGCCTTTGTCCCGGTATT




TCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCCTCC




GACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTTCGC




CCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCATACG




AGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTCCGT




TGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTATTAC




TTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAGGTT




GTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCTGGG




CCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGAGAC




TTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGCGCA




GACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTATAAC




GAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTTGAT




AAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACCCCG




AAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCCAGA




AGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATGAAG




GGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTACCA




AGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACTGCA




TATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTATCC




ATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCAAC




AAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCATT




ATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGC




TTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCT




GATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTT




TTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGA




GGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTGC




CTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTCTA




GGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTATTTC




TCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCAGTC




TCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAAAA




GTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTG




GGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTCA




GATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTACC




TTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGCTA




CTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACCCT




ATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1415
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-172
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGTCCGGC




GCTGAGCTGAAGAAGCCCGGCGCCAGCGTGAAGATCAGCTG




CAAGGCCAGCGGCTACACCTTCACCGAATACACCATCAACTG




GGTGAGACAGGCCCCTGGACAGAGGCTCGAGTGGATGGGCG




ACATCTACCCCGACAACTACAGCATCAGGTACAACCAGAAGT




TCCAGGGCAGGGTGACAATCACCAGGGACACCAGCGCCAGC




ACCGCCTATATGGAGCTGAGCAGCCTGAGATCCGAGGACACC




GCCGTCTATTACTGCGCCAACCACGACTTCTTCGTGTTCTGGG




GCCAGGGAACACTGGTGACCGTGTCCAGCGGCGGCGGCGGC




AGCGGCGGCGGAGGAAGCGGCGGCGGCGGCAGCGATATCCA




GATGACCCAGAGCCCCTCCTCCCTGAGCGCTAGCGTGGGCGA




CAGGGTGACCATTACCTGTCAGGCCTCCCAGGACATCAGCAA




CTACCTGAACTGGTACCAGCAGAAGCCTGGCAAGGCCCCCAA




GCTGCTGATCTATTACACCAGCAGGCTGGAGACCGGCGTGCC




CTCCAGATTCAGCGGCTCCGGCTCCGGAACCGACTTCACCTTC




ACCATCAGCTCCCTGCAGCCTGAGGACATCGCCACCTACTAC




TGCCAGCAGGGCAACACCCTGCCTCCCACATTCGGCGGCGGC




ACAAAGGTGGAGATCAAAAGTGCTGCTGCCTTTGTCCCGGTA




TTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCCTC




CGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTTCG




CCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCATAC




GAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTCCG




TTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTATTA




CTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAGGT




TGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCTGG




GCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGAGA




CTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGCGC




AGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTATAA




CGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACCCC




GAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCCAG




AAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATGAA




GGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTACC




AAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACTGC




ATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTATC




CATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCAAC




AAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCATT




ATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGC




TTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCT




GATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTT




TTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGA




GGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTGC




CTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTCTA




GGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTATTTC




TCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCAGTC




TCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAAAA




GTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTG




GGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTCA




GATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTACC




TTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGCTA




CTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACCCT




ATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1416
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-173
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTCCAGTCCGGC




GCCGAACTGAAGAAGCCTGGCGCCAGCGTGAAGATCAGCTG




CAAGGCCTCCGGCTACACCTTCACCGAGTACACCATCAACTG




GGTGAGGCAAGCCCCCGGCCAGAGACTGGAGTGGATGGGCG




ACATCTACCCCGACAACTACAGCATCAGGTACAACCAGAAGT




TCCAGGGCAGGGTGACAATCACCAGGGATACCAGCGCCAGC




ACAGCCTATATGGAGCTGTCCTCCCTGAGATCCGAGGACACC




GCCGTGTATTACTGCGCCAACCACGACTTCTTCGTGTTCTGGG




GCCAAGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGC




TCCGGCGGCGGAGGCTCCGGAGGCGGAGGCAGCGACATCCA




GATGACCCAGAGCCCTTCCAGCCTGAGCGCTAGCCTGGGCGA




CAGGGTGACCATCACCTGCAGGACCAGCCAGGACATCAGCA




ATCACCTGAACTGGTACCAGCAAAAGCCCGGCAAGGCCCCTA




AGCTGCTGATCTACTACACCAGCAGGCTGGAAAGCGGCGTGC




CTAGCAGGTTCAGCGGCAGCGGCTCCGGAACCGACTACAGCC




TGACCATTAGCAGCCTGCAACCTGAGGACATCGGCACCTATT




ACTGCCAGCAGGGCAACACCCTGCCTCCTACCTTTGGCGGCG




GCACCAAACTCGAGATCAAGAGTGCTGCTGCCTTTGTCCCGG




TATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCC




CTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCA




TACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT




CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTA




GGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCC




TGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAAC




CCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1417
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-174
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCGG




CCCTGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGATCTCCTG




CAAGACCTCCGGCTACACCTTCACCGAGTACACCATCAACTG




GGTGAAGCAGGCCCCCGGACAGGGACTGGAATGGATCGGCG




ACATCTACCCCGACAACTACAACATCAGGTACAACCAGAAGT




TCCAAGGCAAGGCCACCATCACAAGGGACACCAGCAGCAGC




ACCGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGATAC




CGCCGTGTACTACTGCGCCAACCACGACTTCTTCGTGTTCTGG




GGCCAGGGCACCCTGGTGACAGTGAGCAGCGGAGGAGGCGG




AAGCGGAGGAGGAGGATCCGGAGGAGGAGGCAGCGACATCC




AGATGACCCAGTCCCCCTCCTCCCTGAGCGCCTCCGTGGGAG




ACAGGGTGACCATCACCTGCCAGGCCAGCCAGGACATCAGCA




ACTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCCA




AGCTGCTGATTTACTACACCAGCAGGCTGGAAACCGGCGTGC




CCAGCAGATTTAGCGGCAGCGGCAGCGGCACCGACTTTACCT




TTACCATCTCCAGCCTGCAGCCCGAGGATATCGCCACATACT




ACTGCCAGCAGGGCAACACCCTCCCCCCTACCTTTGGCGGCG




GCACCAAGGTGGAGATTAAGAGTGCTGCTGCCTTTGTCCCGG




TATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCC




CTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCA




TACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT




CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTA




GGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCC




TGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAAC




CCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1418
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-175
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGTCCGGC




CCCGAACTGAAAAAGCCCGGCGCCAGCGTCAAGATCAGCTGC




AAGACCTCCGGCTACACCTTCACCGAGTACACCATCAACTGG




GTGAAGCAGGCCCCCGGCCAGGGACTGGAATGGATTGGCGA




CATCTACCCCGACAACTACAACATTAGGTATAACCAGAAGTT




CCAGGGCAAGGCCACCATCACAAGAGACACCAGCAGCAGCA




CCGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGACACC




GCCGTGTACTACTGCGCCAACCACGACTTCTTCGTGTTCTGGG




GCCAGGGAACCCTGGTGACAGTGTCCAGCGGCGGCGGCGGCT




CCGGCGGCGGCGGCTCCGGCGGCGGCGGCAGCGACATTCAG




ATGACACAGAGCCCCTCCAGCCTGAGCGCCAGCCTGGGCGAT




AGGGTGACCATCACCTGCAGAACCAGCCAGGACATCAGCAA




CCACCTGAATTGGTACCAGCAGAAGCCCGGAAAGGCCCCCAA




ACTGCTGATCTACTACACCAGCAGGCTGGAGAGCGGCGTGCC




TAGCAGGTTTAGCGGCAGCGGCAGCGGCACAGATTACAGCCT




GACCATCAGCAGCCTGCAGCCCGAAGACATCGGCACCTACTA




CTGCCAGCAGGGCAACACCCTGCCCCCTACCTTTGGCGGAGG




CACCAAGCTGGAGATCAAGAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1419
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-176
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCCAGATGACACAGAGCCCT




AGCAGCCTGAGCGCTTCCGTGGGCGACAGGGTGACCATCACC




TGCCAGGCCAGCCAGGACATCAGCAACTACCTCAACTGGTAC




CAGCAGAAGCCCGGCAAGGCCCCTAAGCTGCTGATCTACTAC




ACCTCCAGGCTGGAGACCGGAGTGCCCTCCAGATTTTCCGGC




AGCGGCAGCGGCACCGATTTCACCTTCACCATCAGCAGCCTG




CAGCCCGAGGACATCGCCACCTACTATTGCCAGCAGGGCAAC




ACCCTGCCCCCCACATTTGGAGGCGGCACCAAGGTGGAGATC




AAGGGCGGAGGAGGAAGCGGAGGAGGAGGAAGCGGAGGAG




GCGGAAGCCAGGTGCAGCTGGTGCAGAGCGGCGCTGAGCTC




AAGAAGCCTGGCGCCAGCGTGAAGATCAGCTGCAAAGCCTCC




GGATACACCTTCACCGAGTACACCATCAATTGGGTGAGACAG




GCCCCCGGCCAAAGACTGGAGTGGATGGGCGACATCTATCCC




GACAACTACAGCATCAGGTACAACCAGAAGTTCCAGGGCAG




GGTGACAATCACCAGAGACACCAGCGCCAGCACCGCCTACAT




GGAGCTGAGCAGCCTGAGGAGCGAGGACACCGCCGTGTACT




ACTGCGCCAATCACGACTTCTTCGTGTTCTGGGGCCAGGGAA




CCCTGGTGACCGTCAGCTCCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1420
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-177
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGATATCCAGATGACACAGAGCCCT




AGCTCCCTGAGCGCCAGCCTGGGCGATAGGGTGACCATCACC




TGCAGGACCTCCCAGGACATCAGCAACCACCTGAACTGGTAC




CAGCAGAAGCCCGGCAAAGCCCCCAAGCTGCTGATCTACTAC




ACCAGCAGGCTGGAAAGCGGCGTGCCCAGCAGGTTTAGCGG




AAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCTCCCT




GCAGCCCGAGGACATCGGCACCTACTACTGCCAGCAGGGCAA




CACCCTGCCTCCCACCTTCGGAGGCGGAACCAAGCTGGAGAT




TAAGGGAGGCGGCGGAAGCGGCGGCGGCGGCTCCGGCGGAG




GAGGCAGCCAGGTGCAGCTGGTGCAGTCCGGAGCCGAGCTG




AAAAAGCCTGGCGCCAGCGTGAAGATCAGCTGCAAGGCCAG




CGGCTACACCTTCACCGAGTACACCATCAACTGGGTGAGGCA




GGCCCCTGGCCAGAGACTCGAGTGGATGGGCGACATCTACCC




CGACAACTACTCCATCAGGTACAACCAGAAGTTTCAGGGCAG




GGTGACCATTACCAGGGACACCAGCGCCAGCACAGCCTACAT




GGAGCTGAGCAGCCTGAGGAGCGAGGATACAGCCGTCTACT




ACTGCGCCAACCACGACTTTTTCGTGTTCTGGGGACAGGGCA




CCCTGGTGACCGTGTCCTCCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1421
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-178
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGACATCCAAATGACCCAGAGCCCT




AGCTCCCTGAGCGCTTCCGTGGGCGACAGAGTGACCATTACC




TGCCAGGCCAGCCAGGACATCAGCAACTACCTGAACTGGTAT




CAGCAGAAGCCTGGCAAGGCCCCCAAGCTGCTGATCTACTAC




ACCAGCAGGCTGGAGACCGGAGTGCCCAGCAGGTTTAGCGG




CTCCGGATCCGGCACCGACTTCACCTTCACCATCTCCAGCCTG




CAGCCCGAGGACATCGCCACCTACTACTGCCAGCAGGGCAAT




ACCCTCCCCCCTACCTTCGGAGGCGGCACCAAGGTGGAGATC




AAGGGCGGCGGCGGCTCCGGCGGCGGCGGCAGCGGCGGAGG




CGGCAGCCAGGTGCAACTGGTGCAGAGCGGCCCTGAGCTGA




AGAAACCCGGCGCCAGCGTGAAAATCAGCTGCAAGACCAGC




GGCTACACATTCACCGAGTACACCATCAACTGGGTGAAGCAG




GCTCCCGGACAGGGACTGGAGTGGATCGGCGACATCTACCCT




GACAACTACAACATCAGATACAACCAAAAGTTCCAGGGCAA




GGCCACCATCACCAGGGACACCAGCTCCTCCACCGCCTACAT




GGAGCTGAGCAGCCTGAGGAGCGAGGACACCGCTGTGTACT




ACTGCGCCAACCACGACTTCTTCGTGTTCTGGGGCCAGGGAA




CCCTGGTGACCGTGAGCAGCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTA




TCCATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCA




ACAAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCA




TTATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCA




GCTTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGC




CAGGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCT




CTGATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTC




TTTTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAG




AATGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGA




GAGGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCT




GCCTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTC




TAGGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTAT




TTCTCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCA




GTCTCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGC




CGGCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAA




AAGTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGT




TGGGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTT




CAGATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTA




CCTTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGC




TACTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACC




CTATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG





1422
LHA to RHA
GAGATGTAAGGAGCTGCTGTGACTTGCTCAAGGCCTTATATC



of CTX-179
GAGTAAACGGTAGTGCTGGGGCTTAGACGCAGGTGTTCTGAT




TTATAGTTCAAAACCTCTATCAATGAGAGAGCAATCTCCTGG




TAATGTGATAGATTTCCCAACTTAATGCCAACATACCATAAA




CCTCCCATTCTGCTAATGCCCAGCCTAAGTTGGGGAGACCAC




TCCAGATTCCAAGATGTACAGTTTGCTTTGCTGGGCCTTTTTC




CCATGCCTGCCTTTACTCTGCCAGAGTTATATTGCTGGGGTTT




TGAAGAAGATCCTATTAAATAAAAGAATAAGCAGTATTATTA




AGTAGCCCTGCATTTCAGGTTTCCTTGAGTGGCAGGCCAGGC




CTGGCCGTGAACGTTCACTGAAATCATGGCCTCTTGGCCAAG




ATTGATAGCTTGTGCCTGTCCCTGAGTCCCAGTCCATCACGAG




CAGCTGGTTTCTAAGATGCTATTTCCCGTATAAAGCATGAGA




CCGTGACTTGCCAGCCCCACAGAGCCCCGCCCTTGTCCATCA




CTGGCATCTGGACTCCAGCCTGGGTTGGGGCAAAGAGGGAAA




TGAGATCATGTCCTAACCCTGATCCTCTTGTCCCACAGATATC




CAGAACCCTGACCCTGCCGTGTACCAGCTGAGAGACTCTAAA




TCCAGTGACAAGTCTGTCTGCCTATTCACCGATTTTGATTCTC




AAACAAATGTGTCACAAAGTAAGGATTCTGATGTGTATATCA




CAGACAAAACTGTGCTAGACATGAGGTCTATGGACTTCAGGC




TCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC




CCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGC




CTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGT




ATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACG




GGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCC




GCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTG




AATTACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGC




TTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTT




AAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTG




GGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCG




CCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTT




TTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTT




GTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTG




GGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA




TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATC




GGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCT




GGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG




CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCG




CTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAA




AAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACG




GAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGC




TTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATG




CGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTA




GGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCT




TTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTG




GTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACCACCAT




GGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGTTG




CTCCACGCAGCAAGGCCGGATATCCAGATGACACAAAGCCCC




AGCAGCCTGTCCGCTAGCCTGGGCGATAGGGTGACCATCACA




TGCAGGACCAGCCAGGACATCTCCAACCACCTGAACTGGTAC




CAGCAGAAGCCTGGAAAGGCCCCCAAACTGCTGATCTACTAC




ACCAGCAGGCTGGAGAGCGGCGTGCCTAGCAGGTTTTCCGGC




AGCGGCAGCGGCACCGACTATAGCCTGACCATCAGCTCCCTG




CAGCCCGAGGACATCGGCACCTACTACTGCCAGCAGGGAAAC




ACACTGCCCCCCACCTTTGGCGGCGGCACAAAGCTGGAGATC




AAGGGCGGCGGCGGATCCGGCGGCGGAGGCAGCGGAGGAGG




AGGAAGCCAGGTGCAGCTGGTGCAGTCCGGCCCTGAGCTGAA




GAAGCCCGGAGCCAGCGTGAAAATTAGCTGCAAGACCTCCG




GCTACACATTCACCGAGTACACCATCAACTGGGTGAAGCAGG




CTCCCGGCCAGGGACTGGAGTGGATCGGCGACATCTACCCCG




ACAACTACAACATCAGGTACAACCAGAAATTCCAGGGCAAG




GCCACCATCACCAGGGACACCAGCTCCTCCACCGCCTATATG




GAGCTGTCCAGCCTGAGAAGCGAGGATACCGCCGTGTACTAC




TGCGCCAACCACGATTTCTTCGTGTTCTGGGGCCAGGGCACA




CTGGTCACCGTGAGCAGCAGTGCTGCTGCCTTTGTCCCGGTAT




TTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCCTC




CGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTTCG




CCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCATAC




GAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTCCG




TTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTATTA




CTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAGGT




TGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCTGG




GCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGAGA




CTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGCGC




AGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTATAA




CGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTTGA




TAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACCCC




GAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCCAG




AAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATGAA




GGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTACC




AAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACTGC




ATATGCAGGCCCTGCCTCCCAGATAATAATAAAATCGCTATC




CATCGAAGATGGATGTGTGTTGGTTTTTTGTGTGTGGAGCAAC




AAATCTGACTTTGCATGTGCAAACGCCTTCAACAACAGCATT




ATTCCAGAAGACACCTTCTTCCCCAGCCCAGGTAAGGGCAGC




TTTGGTGCCTTCGCAGGCTGTTTCCTTGCTTCAGGAATGGCCA




GGTTCTGCCCAGAGCTCTGGTCAATGATGTCTAAAACTCCTCT




GATTGGTGGTCTCGGCCTTATCCATTGCCACCAAAACCCTCTT




TTTACTAAGAAACAGTGAGCCTTGTTCTGGCAGTCCAGAGAA




TGACACGGGAAAAAAGCAGATGAAGAGAAGGTGGCAGGAGA




GGGCACGTGGCCCAGCCTCAGTCTCTCCAACTGAGTTCCTGC




CTGCCTGCCTTTGCTCAGACTGTTTGCCCCTTACTGCTCTTCTA




GGCCTCATTCTAAGCCCCTTCTCCAAGTTGCCTCTCCTTATTTC




TCCCTGTCTGCCAAAAAATCTTTCCCAGCTCACTAAGTCAGTC




TCACGCAGTCACTCATTAACCCACCAATCACTGATTGTGCCG




GCACATGAATGCACCAGGTGTTGAAGTGGAGGAATTAAAAA




GTCAGATGAGGGGTGTGCCCAGAGGAAGCACCATTCTAGTTG




GGGGAGCCCATCTGTCAGCTGGGAAAAGTCCAAATAACTTCA




GATTGGAATGTGTTTTAACTCAGGGTTGAGAAAACAGCTACC




TTCAGGACAAAAGTCAGGGAAGGGCTCTCTGAAGAAATGCTA




CTTGAAGATACCAGCCCTACCAAGGGCAGGGAGAGGACCCT




ATAGAGGCCTGGGACAGGAGCTCAATGAGAAAGG
















TABLE 36







CAR Nucleotide Sequences









SEQ ID NO:
Description
Sequence





1316
Anti-CD19
ATGCTTCTTTTGGTTACGTCTCTGTTGCTTTGCGAACTTCCTCA



CAR of CTX-
TCCAGCGTTCTTGCTGATCCCCGATATTCAGATGACTCAGACC



131 to CTX-
ACCAGTAGCTTGTCTGCCTCACTGGGAGACCGAGTAACAATC



141
TCCTGCAGGGCAAGTCAAGACATTAGCAAATACCTCAATTGG




TACCAGCAGAAGCCCGACGGAACGGTAAAACTCCTCATCTAT




CATACGTCAAGGTTGCATTCCGGAGTACCGTCACGATTTTCA




GGTTCTGGGAGCGGAACTGACTATTCCTTGACTATTTCAAACC




TCGAGCAGGAGGACATTGCGACATATTTTTGTCAACAAGGTA




ATACCCTCCCTTACACTTTCGGAGGAGGAACCAAACTCGAAA




TTACCGGGTCCACCAGTGGCTCTGGGAAGCCTGGCAGTGGAG




AAGGTTCCACTAAAGGCGAGGTGAAGCTCCAGGAGAGCGGC




CCCGGTCTCGTTGCCCCCAGTCAAAGCCTCTCTGTAACGTGCA




CAGTGAGTGGTGTATCATTGCCTGATTATGGCGTCTCCTGGAT




AAGGCAGCCCCCGCGAAAGGGTCTTGAATGGCTTGGGGTAAT




ATGGGGCTCAGAGACAACGTATTATAACTCCGCTCTCAAAAG




TCGCTTGACGATAATAAAAGATAACTCCAAGAGTCAAGTTTT




CCTTAAAATGAACAGTTTGCAGACTGACGATACCGCTATATA




TTATTGTGCTAAACATTATTACTACGGCGGTAGTTACGCGATG




GATTATTGGGGGCAGGGGACTTCTGTCACAGTCAGTAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1423
Anti-CD70A
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGATATAGTTATGACCCAATCAC



142
CCGATAGTCTTGCGGTAAGCCTGGGGGAGCGAGCAACAATAA




ACTGTCGGGCATCAAAATCCGTCAGTACAAGCGGGTATTCAT




TCATGCACTGGTATCAACAGAAACCCGGTCAGCCACCCAAGC




TCCTGATTTATCTTGCGTCTAATCTTGAGTCCGGCGTCCCAGA




CCGGTTTTCCGGCTCCGGGAGCGGCACGGATTTTACTCTTACT




ATTTCTAGCCTTCAGGCCGAAGATGTGGCGGTATACTACTGC




CAGCATTCAAGGGAAGTTCCTTGGACGTTCGGTCAGGGCACG




AAAGTGGAAATTAAAGGCGGGGGGGGATCCGGCGGGGGAGG




GTCTGGAGGAGGTGGCAGTGGTCAGGTCCAACTGGTGCAGTC




CGGGGCAGAGGTAAAAAAACCCGGCGCGTCTGTTAAGGTTTC




ATGCAAGGCCAGTGGATATACTTTCACCAATTACGGAATGAA




CTGGGTGAGGCAGGCCCCTGGTCAAGGCCTGAAATGGATGGG




ATGGATAAACACGTACACCGGTGAACCTACCTATGCCGATGC




CTTTAAGGGTCGGGTTACGATGACGAGAGACACCTCCATATC




AACAGCCTACATGGAGCTCAGCAGATTGAGGAGTGACGATAC




GGCAGTCTATTACTGTGCAAGAGACTACGGCGATTATGGCAT




GGATTACTGGGGCCAGGGCACTACAGTAACCGTTTCCAGCAG




TGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACC




ACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATC




GCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCG




CCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTT




GTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGT




CCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGG




AATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATG




AATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTAC




CAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCC




CGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAG




CAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGC




CGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGA




CCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAG




AAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAG




GCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGG




AAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAAC




CAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCC




CAGA





1424
Anti-CD70B
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAAAGCG



145
GGGCGGAGGTGAAAAAACCCGGCGCTTCCGTGAAGGTGTCCT




GTAAGGCGTCCGGTTATACGTTCACGAACTACGGGATGAATT




GGGTTCGCCAAGCGCCGGGGCAGGGACTGAAATGGATGGGG




TGGATAAATACCTACACCGGCGAACCTACATACGCCGACGCT




TTTAAAGGGCGAGTCACTATGACGCGCGATACCAGCATATCC




ACCGCATACATGGAGCTGTCCCGACTCCGGTCAGACGACACG




GCTGTCTACTATTGTGCTCGGGACTATGGCGATTATGGCATGG




ACTACTGGGGTCAGGGTACGACTGTAACAGTTAGTAGTGGTG




GAGGCGGCAGTGGCGGGGGGGGAAGCGGAGGAGGGGGTTCT




GGTGACATAGTTATGACCCAATCCCCAGATAGTTTGGCGGTT




TCTCTGGGCGAGAGGGCAACGATTAATTGTCGCGCATCAAAG




AGCGTTTCAACGAGCGGATATTCTTTTATGCATTGGTACCAGC




AAAAACCCGGACAACCGCCGAAGCTGCTGATCTACTTGGCTT




CAAATCTTGAGTCTGGGGTGCCGGACCGATTTTCTGGTAGTG




GAAGCGGAACTGACTTTACGCTCACGATCAGTTCACTGCAGG




CTGAGGATGTAGCGGTCTATTATTGCCAGCACAGTAGAGAAG




TCCCCTGGACCTTCGGTCAAGGCACGAAAGTAGAAATTAAAA




GTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGAC




CACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCAT




CGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCC




GCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCG




TCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGG




AATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATG




AATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTAC




CAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCC




CGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAG




CAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGC




CGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGA




CCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAG




AAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAG




GCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGG




AAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAAC




CAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCC




CAGA





1275
Anti-CD70
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTCCAGTTGGTGCAAAGCG



145b
GGGCGGAGGTGAAAAAACCCGGCGCTTCCGTGAAGGTGTCCT




GTAAGGCGTCCGGTTATACGTTCACGAACTACGGGATGAATT




GGGTTCGCCAAGCGCCGGGGCAGGGACTGAAATGGATGGGG




TGGATAAATACCTACACCGGCGAACCTACATACGCCGACGCT




TTTAAAGGGCGAGTCACTATGACGCGCGATACCAGCATATCC




ACCGCATACATGGAGCTGTCCCGACTCCGGTCAGACGACACG




GCTGTCTACTATTGTGCTCGGGACTATGGCGATTATGGCATGG




ACTACTGGGGTCAGGGTACGACTGTAACAGTTAGTAGTGGTG




GAGGCGGCAGTGGCGGGGGGGGAAGCGGAGGAGGGGGTTCT




GGTGACATAGTTATGACCCAATCCCCAGATAGTTTGGCGGTT




TCTCTGGGCGAGAGGGCAACGATTAATTGTCGCGCATCAAAG




AGCGTTTCAACGAGCGGATATTCTTTTATGCATTGGTACCAGC




AAAAACCCGGACAACCGCCGAAGCTGCTGATCTACTTGGCTT




CAAATCTTGAGTCTGGGGTGCCGGACCGATTTTCTGGTAGTG




GAAGCGGAACTGACTTTACGCTCACGATCAGTTCACTGCAGG




CTGAGGATGTAGCGGTCTATTATTGCCAGCACAGTAGAGAAG




TCCCCTGGACCTTCGGTCAAGGCACGAAAGTAGAAATTAAAA




GTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGAC




CACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCAT




CGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCC




GCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCT




TGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCG




TCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGG




AATCGCAAACGGGGCAGAAAGAAACTCCTGTATATATTCAAA




CAACCATTTATGAGACCAGTACAAACTACTCAAGAGGAAGAT




GGCTGTAGCTGCCGATTTCCAGAAGAAGAAGAAGGAGGATG




TGAACTGCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGC




ATATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTT




GGGACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGG




GGAGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAAT




CCCCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGAT




GGCGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGAC




GACGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGT




ACGGCAACCAAAGATACGTACGATGCACTGCATATGCAGGCC




CTGCCTCCCAGATAA





1425
Anti-BCMA-1
ATGGCTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCT



CAR of CTX
GCTTCATGCTGCTAGACCTCAGGTGCAGTTACAACAGTCAGG



152 and CTX-
AGGAGGATTAGTGCAGCCAGGAGGATCTCTGAAACTGTCTTG



153
TGCCGCCAGCGGAATCGATTTTAGCAGGTACTGGATGTCTTG




GGTGAGAAGAGCCCCTGGAAAAGGACTGGAGTGGATCGGCG




AGATTAATCCTGATAGCAGCACCATCAACTATGCCCCTAGCC




TGAAGGACAAGTTCATCATCAGCCGGGACAATGCCAAGAAC




ACCCTGTACCTGCAAATGAGCAAGGTGAGGAGCGAGGATAC




AGCTCTGTACTACTGTGCCAGCCTGTACTACGATTACGGAGA




TGCTATGGACTATTGGGGCCAGGGAACAAGCGTTACAGTGTC




TTCTGGAGGAGGAGGATCCGGTGGTGGTGGTTCAGGAGGTGG




AGGTTCGGGAGATATTGTGATGACACAAAGCCAGCGGTTCAT




GACCACATCTGTGGGCGACAGAGTGAGCGTGACCTGTAAAGC




TTCTCAGTCTGTGGACAGCAATGTTGCCTGGTATCAGCAGAA




GCCCAGACAGAGCCCTAAAGCCCTGATCTTTTCTGCCAGCCT




GAGATTTTCTGGCGTTCCTGCCAGATTTACCGGCTCTGGCTCT




GGCACCGATTTTACACTGACCATCAGCAATCTGCAGTCTGAG




GATCTGGCCGAGTACTTTTGCCAGCAGTACAACAACTACCCC




CTGACCTTTGGAGCTGGCACAAAACTGGAGCTGAAGAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1426
Anti-BCMA-2
ATGGCTCTTCCTGTAACCGCACTTCTGCTTCCTCTTGCTCTGCT



CAR of CTX-
GCTTCATGCTGCTAGACCTGACATCGTGATGACCCAAAGCCA



154 and CTX-
GAGGTTCATGACCACATCTGTGGGCGATAGAGTGAGCGTGAC



155
CTGTAAAGCCTCTCAGTCTGTGGACAGCAATGTTGCCTGGTAT




CAGCAGAAGCCTAGACAGAGCCCTAAAGCCCTGATCTTTAGC




GCCAGCCTGAGATTTAGCGGAGTTCCTGCCAGATTTACCGGA




AGCGGATCTGGAACCGATTTTACACTGACCATCAGCAACCTG




CAGAGCGAGGATCTGGCCGAGTACTTTTGCCAGCAGTACAAC




AATTACCCTCTGACCTTTGGAGCCGGCACAAAGCTGGAGCTG




AAAGGAGGAGGAGGATCTGGTGGTGGTGGTTCAGGAGGTGG




AGGTTCGGGACAAGTTCAATTACAGCAATCTGGAGGAGGACT




GGTTCAGCCTGGAGGAAGCCTGAAGCTGTCTTGTGCCGCTTC




TGGAATCGATTTTAGCAGATACTGGATGAGCTGGGTGAGAAG




AGCCCCTGGCAAAGGACTGGAGTGGATTGGCGAGATTAATCC




TGATAGCAGCACCATCAACTATGCCCCTAGCCTGAAGGACAA




GTTCATCATCAGCCGGGACAATGCCAAGAACACCCTGTACCT




GCAAATGAGCAAGGTGAGGAGCGAGGATACAGCTCTGTACT




ACTGTGCCAGCCTGTACTACGATTACGGAGATGCTATGGACT




ATTGGGGCCAGGGAACAAGCGTTACAGTGAGCAGCAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1427
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAGAGC



160
GGCGGAGGACTGGTCCAGCCTGGCGGCTCCCTGAAACTGAGC




TGCGCCGCCAGCGGCATCGACTTCAGCAGGTACTGGATGAGC




TGGGTGAGACAGGCCCCTGGCAAGGGCCTGGAATGGATCGG




CGAGATCAACCCCGACTCCAGCACCATCAACTACGCCGACAG




CGTCAAGGGCAGGTTCACCATTAGCAGGGACAATGCCAAGA




ACACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAAGACA




CCGCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGCG




ACGCTATGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGA




GCTCCGGAGGAGGCGGCAGCGGCGGAGGCGGCAGCGGCGGA




GGCGGCAGCGACATCCAGATGACCCAGAGCCCTAGCAGCCTG




AGCGCCTCCGTGGGAGATAGGGTGACAATCACCTGTAGGGCC




AGCCAGAGCGTGGACTCCAACGTGGCCTGGTATCAACAGAAG




CCCGAGAAGGCCCCCAAGAGCCTGATCTTTTCCGCCTCCCTG




AGGTTCAGCGGAGTCCCCAGCAGGTTCTCCGGATCCGGCTCC




GGAACCGACTTTACCCTGACCATCTCCAGCCTGCAGCCCGAG




GACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCC




CTGACCTTCGGCGCCGGCACAAAGCTGGAGATCAAGAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1428
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAGGTCCAGCTGGTGGAGAGC



160b
GGCGGAGGACTGGTCCAGCCTGGCGGCTCCCTGAAACTGAGC




TGCGCCGCCAGCGGCATCGACTTCAGCAGGTACTGGATGAGC




TGGGTGAGACAGGCCCCTGGCAAGGGCCTGGAATGGATCGG




CGAGATCAACCCCGACTCCAGCACCATCAACTACGCCGACAG




CGTCAAGGGCAGGTTCACCATTAGCAGGGACAATGCCAAGA




ACACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAAGACA




CCGCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGCG




ACGCTATGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGA




GCTCCGGAGGAGGCGGCAGCGGCGGAGGCGGCAGCGGCGGA




GGCGGCAGCGACATCCAGATGACCCAGAGCCCTAGCAGCCTG




AGCGCCTCCGTGGGAGATAGGGTGACAATCACCTGTAGGGCC




AGCCAGAGCGTGGACTCCAACGTGGCCTGGTATCAACAGAAG




CCCGAGAAGGCCCCCAAGAGCCTGATCTTTTCCGCCTCCCTG




AGGTTCAGCGGAGTCCCCAGCAGGTTCTCCGGATCCGGCTCC




GGAACCGACTTTACCCTGACCATCTCCAGCCTGCAGCCCGAG




GACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCC




CTGACCTTCGGCGCCGGCACAAAGCTGGAGATCAAGAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CAAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACC




ATTTATGAGACCAGTACAAACTACTCAAGAGGAAGATGGCTG




TAGCTGCCGATTTCCAGAAGAAGAAGAAGGAGGATGTGAAC




TGCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATC




AGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGAC




GCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGA




GACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCA




AGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGG




AGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGG




GGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCA




ACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCT




CCCAGA





1429
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAGGTGCAGCTGGTGGAGAGC



161
GGAGGAGGACTGGTGCAGCCCGGAGGCTCCCTGAAGCTGAG




CTGCGCTGCCTCCGGCATCGACTTCAGCAGGTACTGGATGAG




CTGGGTGAGGCAGGCTCCCGGCAAAGGCCTGGAGTGGATCG




GCGAGATCAACCCCGACAGCAGCACCATCAACTACGCCGACA




GCGTGAAGGGCAGGTTCACCATCAGCAGGGACAACGCCAAG




AATACCCTGTACCTGCAGATGAACCTGAGCAGGGCCGAGGAC




ACAGCCCTGTACTACTGTGCCAGCCTGTACTACGACTATGGA




GACGCTATGGACTACTGGGGCCAGGGAACCCTGGTGACCGTG




AGCAGCGGAGGCGGAGGCTCCGGCGGCGGAGGCAGCGGAGG




AGGCGGCAGCGATATCCAGATGACCCAGTCCCCCAGCTCCCT




GAGCGCTAGCCCTGGCGACAGGGTGAGCGTGACATGCAAGG




CCAGCCAGAGCGTGGACAGCAACGTGGCCTGGTACCAGCAG




AAACCCAGACAGGCCCCCAAGGCCCTGATCTTCAGCGCCAGC




CTGAGGTTTAGCGGCGTGCCCGCTAGGTTTACCGGATCCGGC




AGCGGCACCGACTTCACCCTGACCATCTCCAACCTGCAGTCC




GAGGACTTCGCCACCTACTACTGCCAGCAGTACAACAACTAC




CCCCTGACATTCGGCGCCGGAACCAAGCTGGAGATCAAGAGT




GCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCA




CGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCG




CCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGC




CGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTG




TGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTC




CTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGA




ATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGA




ATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACC




AACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCC




GAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGC




AAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCC




GCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGAC




CCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGA




AGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGG




CCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGGGA




AAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACC




AAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTCCC




AGA





1430
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCCAGATGACCCAGAGCC



162
CTAGCAGCCTGAGCGCTAGCGTGGGCGACAGGGTGACCATCA




CCTGCAGGGCCAGCCAGAGCGTGGACTCCAACGTGGCCTGGT




ACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTTCA




GCGCCAGCCTGAGGTTCTCCGGAGTGCCTAGCAGATTTAGCG




GCAGCGGCAGCGGCACAGACTTCACCCTGACCATCAGCAGCC




TCCAGCCCGAGGATTTCGCCACCTACTACTGCCAGCAGTACA




ACTCCTACCCCCTGACCTTCGGCGCCGGCACAAAGCTGGAGA




TCAAGGGAGGAGGAGGAAGCGGAGGAGGAGGAAGCGGAGG




CGGAGGAAGCGAGGTGCAGCTGGTGGAGTCCGGAGGAGGCC




TGGTGCAACCTGGAGGCAGCCTGAAGCTGAGCTGTGCCGCCA




GCGGAATCGACTTCAGCAGGTACTGGATGTCCTGGGTGAGAC




AGGCCCCTGGCAAGGGCCTGGAGTGGATCGGAGAGATCAAC




CCCGACAGCTCCACCATCAACTACGCCGACAGCGTGAAGGGC




AGGTTCACCATCAGCAGAGACAACGCCAAGAACACCCTGTAC




CTGCAGATGAACCTGTCCAGAGCCGAGGACACCGCCCTGTAC




TACTGCGCCAGCCTGTATTACGACTACGGCGACGCTATGGAC




TACTGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCAGTGCT




GCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGA




CTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTC




TCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1431
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCCAAATGACCCAGTCCC



163
CTAGCAGCCTGTCCGCCAGCCCTGGAGACAGGGTGTCCGTGA




CCTGCAAGGCCAGCCAGTCCGTGGACAGCAACGTCGCCTGGT




ATCAGCAGAAGCCCAGGCAAGCTCCCAAGGCTCTGATCTTCT




CCGCCAGCCTGAGATTTTCCGGCGTGCCCGCCAGATTCACCG




GAAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAACC




TGCAGAGCGAGGATTTCGCCACATACTACTGCCAGCAGTACA




ACAACTACCCCCTGACCTTCGGAGCCGGCACCAAGCTGGAGA




TCAAAGGCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGA




GGCGGATCCGAAGTGCAGCTGGTGGAAAGCGGAGGCGGACT




CGTGCAGCCTGGCGGAAGCCTGAAGCTGAGCTGTGCCGCCAG




CGGCATCGACTTCAGCAGGTACTGGATGAGCTGGGTGAGGCA




GGCTCCCGGCAAAGGCCTGGAGTGGATCGGCGAGATCAACCC




TGACAGCAGCACCATCAACTACGCCGACAGCGTGAAAGGCA




GGTTCACCATCAGCAGGGACAACGCCAAGAACACCCTGTACC




TGCAGATGAACCTGTCCAGAGCCGAGGACACCGCCCTGTACT




ACTGCGCCAGCCTGTACTACGACTACGGCGACGCTATGGACT




ACTGGGGCCAAGGCACCCTCGTGACCGTCAGCTCCAGTGCTG




CTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGACCACGAC




TCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCATCGCCTCT




CAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACCCGCCGCC




GGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGCTTGTGAT




ATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGCGTCCTTT




TGTTGTCACTCGTTATTACTTTGTATTGTAATCACAGGAATCG




CTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACATGAATAT




GACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTACCAACC




CTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTCCCGAGT




GAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCAGCAAGG




ACAGAATCAGCTGTATAACGAACTGAATTTGGGACGCCGCGA




GGAGTATGACGTGCTTGATAAACGCCGGGGGAGAGACCCGG




AAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAAGAAGGA




CTCTACAATGAACTCCAGAAGGATAAGATGGCGGAGGCCTAC




TCAGAAATAGGTATGAAGGGCGAACGACGACGGGGAAAAGG




TCACGATGGCCTCTACCAAGGGTTGAGTACGGCAACCAAAGA




TACGTACGATGCACTGCATATGCAGGCCCTGCCTCCCAGA





1432
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAGTCCG



164
GCCCTGAGCTCGTGAAGCCTGGAGCCAGCGTGAAAATGAGCT




GTAAGGCCTCCGGCAACACCCTCACCAACTACGTGATCCATT




GGATGAAGCAGATGCCCGGCCAGGGCCTGGACTGGATTGGCT




ACATTCTGCCCTACAACGACCTGACCAAGTACAACGAGAAGT




TCACCGGCAAGGCCACCCTGACCAGCGATAAGAGCTCCAGCA




GCGCCTACATGGAGCTGAACTCCCTGACCAGCGAGGACAGCG




CCGTGTACTACTGCACCAGGTGGGACTGGGATGGCTTCTTCG




ACCCCTGGGGACAGGGCACCACCCTGACAGTGTCCAGCGGAG




GAGGCGGCAGCGGCGGCGGCGGCTCCGGCGGCGGCGGCAGC




GATATCGTGATGACACAGTCCCCTCTGAGCCTGCCTGTGAGC




CTGGGCGACCAGGCCAGCATCAGCTGCAGGTCCACCCAGTCC




CTGGTGCACTCCAACGGCAACACCCACCTGCACTGGTACCTG




CAAAGGCCCGGCCAGTCCCCTAAGCTGCTGATCTACAGCGTG




AGCAACAGGTTTAGCGAGGTGCCCGATAGATTTTCCGCCAGC




GGCAGCGGCACCGACTTCACACTGAAGATCTCCAGGGTGGAG




GCCGAGGATCTGGGCGTGTACTTCTGCAGCCAGACCAGCCAC




ATCCCCTACACCTTCGGCGGCGGAACCAAGCTGGAGATCAAG




AGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAACCGA




CCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCACCA




TCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCGACC




CGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTTCGC




TTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGCGGC




GTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCACAG




GAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTACAT




GAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACATTA




CCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAGGTC




CCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATATCA




GCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGGACG




CCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGAGAG




ACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCCCAA




GAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGCGGA




GGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGACGGG




GAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACGGCAA




CCAAAGATACGTACGATGCACTGCATATGCAGGCCCTGCCTC




CCAGA





1433
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCGTGATGACCCAGAGCC



165
CCCTGAGCCTGCCTGTGTCCCTGGGAGACCAGGCTTCCATCA




GCTGCAGGTCCACCCAGAGCCTGGTGCACTCCAACGGCAACA




CCCACCTGCACTGGTACCTGCAGAGGCCTGGCCAGTCCCCCA




AGCTGCTGATCTACAGCGTGAGCAATAGGTTCAGCGAGGTGC




CCGACAGATTCAGCGCCAGCGGAAGCGGCACCGACTTCACCC




TGAAGATCAGCAGGGTCGAGGCCGAAGATCTGGGCGTGTACT




TCTGCTCCCAGACATCCCACATCCCTTACACCTTCGGCGGCGG




CACCAAGCTGGAGATTAAGGGCGGCGGAGGATCCGGCGGAG




GAGGATCCGGAGGAGGAGGAAGCGAGGTGCAGCTGCAGCAG




AGCGGACCCGAGCTGGTGAAACCCGGAGCCAGCGTCAAAAT




GAGCTGCAAGGCCAGCGGCAACACCCTGACCAACTACGTCAT




CCACTGGATGAAGCAGATGCCCGGACAGGGCCTGGACTGGAT




CGGCTACATCCTGCCCTACAACGACCTGACCAAGTACAACGA




GAAATTCACCGGCAAGGCCACCCTGACCAGCGACAAGAGCA




GCAGCAGCGCCTACATGGAGCTGAACAGCCTGACCAGCGAG




GACTCCGCCGTGTACTATTGCACCAGGTGGGACTGGGACGGC




TTCTTTGACCCCTGGGGCCAGGGCACAACACTCACCGTGAGC




TCCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACA




TTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATA




TCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGG




ACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCC




CAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGA





1434
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCG



166
GAGCCGAGCTCAAGAAGCCCGGAGCCTCCGTGAAGGTGAGC




TGCAAGGCCAGCGGCAACACCCTGACCAACTACGTGATCCAC




TGGGTGAGACAAGCCCCCGGCCAAAGGCTGGAGTGGATGGG




CTACATCCTGCCCTACAACGACCTGACCAAGTACAGCCAGAA




GTTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGCGCCTC




CACCGCCTATATGGAGCTGAGCAGCCTGAGGAGCGAGGACA




CCGCTGTGTACTACTGTACAAGGTGGGACTGGGACGGCTTCT




TTGACCCCTGGGGCCAGGGCACAACAGTGACCGTCAGCAGCG




GCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGAGGCGGA




AGCGAAATCGTGATGACCCAGAGCCCCGCCACACTGAGCGTG




AGCCCTGGCGAGAGGGCCAGCATCTCCTGCAGGGCTAGCCAA




AGCCTGGTGCACAGCAACGGCAACACCCACCTGCACTGGTAC




CAGCAGAGACCCGGACAGGCTCCCAGGCTGCTGATCTACAGC




GTGAGCAACAGGTTCTCCGAGGTGCCTGCCAGGTTTAGCGGC




AGCGGAAGCGGCACCGACTTTACCCTGACCATCAGCAGCGTG




GAGTCCGAGGACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAAGCTGGAGATC




AAAAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATTA




CATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAACA




TTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACAG




GTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCATA




TCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGGG




ACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGGA




GAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCCC




CAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGGC




GGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGAC




GGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGA





1435
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCG



166b
GAGCCGAGCTCAAGAAGCCCGGAGCCTCCGTGAAGGTGAGC




TGCAAGGCCAGCGGCAACACCCTGACCAACTACGTGATCCAC




TGGGTGAGACAAGCCCCCGGCCAAAGGCTGGAGTGGATGGG




CTACATCCTGCCCTACAACGACCTGACCAAGTACAGCCAGAA




GTTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGCGCCTC




CACCGCCTATATGGAGCTGAGCAGCCTGAGGAGCGAGGACA




CCGCTGTGTACTACTGTACAAGGTGGGACTGGGACGGCTTCT




TTGACCCCTGGGGCCAGGGCACAACAGTGACCGTCAGCAGCG




GCGGCGGAGGCAGCGGCGGCGGCGGCAGCGGCGGAGGCGGA




AGCGAAATCGTGATGACCCAGAGCCCCGCCACACTGAGCGTG




AGCCCTGGCGAGAGGGCCAGCATCTCCTGCAGGGCTAGCCAA




AGCCTGGTGCACAGCAACGGCAACACCCACCTGCACTGGTAC




CAGCAGAGACCCGGACAGGCTCCCAGGCTGCTGATCTACAGC




GTGAGCAACAGGTTCTCCGAGGTGCCTGCCAGGTTTAGCGGC




AGCGGAAGCGGCACCGACTTTACCCTGACCATCAGCAGCGTG




GAGTCCGAGGACTTCGCCGTGTATTACTGCAGCCAGACCAGC




CACATCCCTTACACCTTCGGCGGCGGCACCAAGCTGGAGATC




AAAAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAAC




CGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCCA




CCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCCG




ACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACTT




CGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTGC




GGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATCA




CAGGAATCGCAAACGGGGCAGAAAGAAACTCCTGTATATATT




CAAACAACCATTTATGAGACCAGTACAAACTACTCAAGAGGA




AGATGGCTGTAGCTGCCGATTTCCAGAAGAAGAAGAAGGAG




GATGTGAACTGCGAGTGAAGTTTTCCCGAAGCGCAGACGCTC




CGGCATATCAGCAAGGACAGAATCAGCTGTATAACGAACTGA




ATTTGGGACGCCGCGAGGAGTATGACGTGCTTGATAAACGCC




GGGGGAGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAG




AATCCCCAAGAAGGACTCTACAATGAACTCCAGAAGGATAA




GATGGCGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAAC




GACGACGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTG




AGTACGGCAACCAAAGATACGTACGATGCACTGCATATGCAG




GCCCTGCCTCCCAGA





1436
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCG



167
GCGCCGAGCTGAAGAAACCTGGCGCCAGCGTCAAGGTGAGC




TGCAAGGCTTCCGGAAACACCCTCACCAACTACGTGATCCAC




TGGGTGAGGCAGGCCCCCGGACAGAGACTGGAGTGGATGGG




CTACATTCTGCCCTACAACGACCTGACCAAGTACAGCCAGAA




GTTCCAGGGCAGGGTCACCATCACCAGGGACAAGAGCGCCA




GCACCGCCTACATGGAGCTGAGCAGCCTGAGGTCCGAGGACA




CAGCCGTGTACTACTGCACCAGGTGGGACTGGGACGGATTCT




TCGACCCTTGGGGCCAAGGCACCACAGTGACAGTGAGCTCCG




GCGGAGGCGGCAGCGGCGGCGGAGGAAGCGGCGGCGGCGGA




AGCGACATCGTGATGACCCAGAGCCCTCTGAGCCTGCCCGTG




ACACTGGGACAGCCTGCCACACTGTCCTGCAGGAGCACCCAG




AGCCTGGTGCATAGCAACGGCAACACCCACCTGCACTGGTTC




CAGCAGAGACCTGGCCAGAGCCCCCTGAGACTGATCTACAGC




GTGAGCAACAGGGACAGCGGCGTGCCCGATAGATTTAGCGG




CAGCGGCAGCGGCACCGACTTTACCCTGAAAATCTCCAGGGT




GGAGGCCGAGGATGTGGGCGTGTATTACTGCTCCCAGACAAG




CCACATTCCCTATACATTCGGCGGCGGCACCAAGCTGGAGAT




CAAGAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAA




CCGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCC




ACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACT




TCGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTG




CGGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATC




ACAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATT




ACATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAAC




ATTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACA




GGTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCAT




ATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGG




GACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGG




AGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCC




CCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGG




CGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGA





1437
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAAATCGTGATGACCCAGAGCC



168
CTGCCACACTGAGCGTGAGCCCTGGCGAGAGAGCCAGCATCA




GCTGCAGGGCCTCCCAGAGCCTGGTGCACTCCAACGGCAATA




CCCACCTGCACTGGTATCAGCAGAGACCCGGCCAGGCCCCTA




GGCTGCTGATCTACTCCGTGAGCAACAGGTTCTCCGAGGTGC




CCGCCAGATTCAGCGGATCCGGCAGCGGCACCGACTTCACCC




TCACCATCTCCAGCGTGGAGAGCGAGGACTTCGCCGTCTACT




ACTGCAGCCAGACAAGCCACATCCCCTACACCTTCGGCGGCG




GCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGC




GGAGGCAGCGGAGGCGGCGGATCCCAGGTGCAACTGGTGCA




GAGCGGAGCCGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGG




TCAGCTGCAAGGCCAGCGGCAACACCCTGACAAACTACGTGA




TCCACTGGGTGAGGCAGGCCCCTGGCCAAAGGCTCGAGTGGA




TGGGCTACATCCTCCCCTACAACGACCTGACCAAGTACTCCC




AGAAGTTCCAGGGCAGGGTGACCATCACCAGGGATAAGAGC




GCCAGCACCGCCTACATGGAACTCAGCAGCCTGAGGAGCGA




GGACACCGCCGTGTACTACTGCACCAGGTGGGACTGGGATGG




CTTCTTCGACCCTTGGGGCCAGGGCACCACCGTGACAGTGAG




CTCCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAA




CCGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCC




ACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACT




TCGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTG




CGGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATC




ACAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATT




ACATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAAC




ATTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACA




GGTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCAT




ATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGG




GACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGG




AGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCC




CCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGG




CGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGA





1438
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCGTGATGACACAATCCC



169
CCCTCAGCCTGCCTGTGACACTGGGCCAGCCTGCCACCCTGA




GCTGCAGGAGCACCCAGTCCCTGGTGCACTCCAACGGCAACA




CCCACCTGCACTGGTTCCAGCAGAGGCCTGGACAGAGCCCCC




TGAGGCTGATCTACAGCGTGAGCAACAGGGACTCCGGCGTGC




CCGATAGATTCAGCGGCAGCGGCTCCGGCACCGATTTCACCC




TGAAGATCTCCAGAGTGGAAGCCGAGGACGTGGGCGTCTACT




ACTGCAGCCAGACCAGCCATATCCCCTACACCTTCGGCGGCG




GCACCAAGCTGGAGATCAAGGGAGGCGGCGGAAGCGGCGGA




GGCGGATCCGGAGGCGGAGGCTCCCAAGTGCAGCTGGTGCA




GAGCGGCGCTGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGG




TGAGCTGCAAGGCCAGCGGAAACACCCTGACCAACTACGTGA




TCCACTGGGTGAGACAGGCCCCCGGACAGAGACTCGAGTGG




ATGGGCTACATCCTGCCCTACAACGACCTGACCAAGTACAGC




CAGAAGTTCCAGGGCAGGGTGACAATCACCAGGGACAAGAG




CGCCAGCACCGCCTACATGGAGCTGAGCAGCCTGAGATCCGA




GGACACCGCCGTGTACTACTGCACCAGGTGGGACTGGGACGG




CTTCTTTGACCCCTGGGGCCAGGGAACCACAGTGACCGTGTC




CTCCAGTGCTGCTGCCTTTGTCCCGGTATTTCTCCCAGCCAAA




CCGACCACGACTCCCGCCCCGCGCCCTCCGACACCCGCTCCC




ACCATCGCCTCTCAACCTCTTAGTCTTCGCCCCGAGGCATGCC




GACCCGCCGCCGGGGGTGCTGTTCATACGAGGGGCTTGGACT




TCGCTTGTGATATTTACATTTGGGCTCCGTTGGCGGGTACGTG




CGGCGTCCTTTTGTTGTCACTCGTTATTACTTTGTATTGTAATC




ACAGGAATCGCTCAAAGCGGAGTAGGTTGTTGCATTCCGATT




ACATGAATATGACTCCTCGCCGGCCTGGGCCGACAAGAAAAC




ATTACCAACCCTATGCCCCCCCACGAGACTTCGCTGCGTACA




GGTCCCGAGTGAAGTTTTCCCGAAGCGCAGACGCTCCGGCAT




ATCAGCAAGGACAGAATCAGCTGTATAACGAACTGAATTTGG




GACGCCGCGAGGAGTATGACGTGCTTGATAAACGCCGGGGG




AGAGACCCGGAAATGGGGGGTAAACCCCGAAGAAAGAATCC




CCAAGAAGGACTCTACAATGAACTCCAGAAGGATAAGATGG




CGGAGGCCTACTCAGAAATAGGTATGAAGGGCGAACGACGA




CGGGGAAAAGGTCACGATGGCCTCTACCAAGGGTTGAGTACG




GCAACCAAAGATACGTACGATGCACTGCATATGCAGGCCCTG




CCTCCCAGA





1439
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGAGGTGCAGCTGCAGCAGAGC



170
GGCCCTGAGCTGGTGAAGCCCGGCGCCAGCGTGAAGATCAGC




TGCAAGACCTCCGGCTATACCTTTACCGAGTACACCATCAAC




TGGGTGAAGCAGAGCCACGGCAAGAGCCTGGAGTGGATCGG




CGATATCTACCCCGACAACTACAACATCAGGTACAACCAGAA




GTTCAAGGGCAAGGCCACCCTGACCGTGGACAAGTCCAGCAG




CACCGCCTACATGGAGCTGAGGAGCCTGTCCAGCGAGGACTC




CGCCATCTACTACTGCGCCAACCACGACTTTTTCGTCTTCTGG




GGACAGGGCACCCTGGTGACAGTGTCCGCTGGCGGCGGCGGC




AGCGGCGGCGGCGGCTCCGGAGGCGGCGGCAGCGACATCCA




GATGACACAGGCCACAAGCTCCCTGTCCGCCAGCCTGGGCGA




TAGGGTGACCATCAATTGCAGGACCTCCCAGGACATCAGCAA




CCACCTGAACTGGTACCAGCAGAAACCCGACGGCACCGTGAA




GCTGCTCATCTACTACACCAGCAGGCTGCAGTCCGGCGTCCC




TAGCAGATTCAGCGGATCCGGCAGCGGCACCGACTATAGCCT




GACCATCAGCAACCTCGAGCAGGAGGACATCGGCACCTACTT




CTGCCATCAGGGCAACACCCTGCCCCCTACCTTTGGCGGCGG




CACAAAGCTGGAGATTAAGAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1440
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGATATCCAGATGACCCAGGCCA



171
CCAGCAGCCTGAGCGCTTCCCTCGGCGACAGGGTGACCATCA




ACTGCAGGACCAGCCAGGACATCTCCAACCACCTGAACTGGT




ACCAGCAGAAGCCCGACGGCACCGTGAAACTGCTGATCTACT




ACACCAGCAGACTGCAGAGCGGCGTGCCCTCCAGATTTTCCG




GCAGCGGCTCCGGCACCGACTACAGCCTGACCATTAGCAACC




TGGAGCAGGAGGACATCGGAACCTACTTCTGCCACCAGGGCA




ACACACTGCCTCCCACCTTCGGCGGCGGCACAAAGCTCGAGA




TCAAGGGCGGCGGCGGAAGCGGCGGCGGCGGCAGCGGCGGC




GGAGGCTCCGAGGTGCAACTGCAACAGAGCGGACCTGAGCT




GGTGAAGCCTGGCGCCAGCGTGAAGATCTCCTGTAAGACCAG




CGGCTACACCTTCACCGAGTACACCATCAACTGGGTGAAGCA




GAGCCACGGCAAGAGCCTCGAATGGATCGGCGACATCTATCC




CGACAACTACAATATCAGATACAACCAGAAGTTCAAGGGAA




AGGCCACCCTGACCGTGGATAAGTCCTCCTCCACCGCTTACA




TGGAGCTGAGGAGCCTGAGCAGCGAGGACTCCGCCATCTACT




ACTGCGCCAACCACGACTTCTTCGTGTTCTGGGGCCAAGGCA




CCCTCGTGACCGTGAGCGCCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1441
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGTCCG



172
GCGCTGAGCTGAAGAAGCCCGGCGCCAGCGTGAAGATCAGC




TGCAAGGCCAGCGGCTACACCTTCACCGAATACACCATCAAC




TGGGTGAGACAGGCCCCTGGACAGAGGCTCGAGTGGATGGG




CGACATCTACCCCGACAACTACAGCATCAGGTACAACCAGAA




GTTCCAGGGCAGGGTGACAATCACCAGGGACACCAGCGCCA




GCACCGCCTATATGGAGCTGAGCAGCCTGAGATCCGAGGACA




CCGCCGTCTATTACTGCGCCAACCACGACTTCTTCGTGTTCTG




GGGCCAGGGAACACTGGTGACCGTGTCCAGCGGCGGCGGCG




GCAGCGGCGGCGGAGGAAGCGGCGGCGGCGGCAGCGATATC




CAGATGACCCAGAGCCCCTCCTCCCTGAGCGCTAGCGTGGGC




GACAGGGTGACCATTACCTGTCAGGCCTCCCAGGACATCAGC




AACTACCTGAACTGGTACCAGCAGAAGCCTGGCAAGGCCCCC




AAGCTGCTGATCTATTACACCAGCAGGCTGGAGACCGGCGTG




CCCTCCAGATTCAGCGGCTCCGGCTCCGGAACCGACTTCACC




TTCACCATCAGCTCCCTGCAGCCTGAGGACATCGCCACCTACT




ACTGCCAGCAGGGCAACACCCTGCCTCCCACATTCGGCGGCG




GCACAAAGGTGGAGATCAAAAGTGCTGCTGCCTTTGTCCCGG




TATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCC




CTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCA




TACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT




CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTA




GGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCC




TGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAAC




CCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1442
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTCCAGTCCG



173
GCGCCGAACTGAAGAAGCCTGGCGCCAGCGTGAAGATCAGC




TGCAAGGCCTCCGGCTACACCTTCACCGAGTACACCATCAAC




TGGGTGAGGCAAGCCCCCGGCCAGAGACTGGAGTGGATGGG




CGACATCTACCCCGACAACTACAGCATCAGGTACAACCAGAA




GTTCCAGGGCAGGGTGACAATCACCAGGGATACCAGCGCCA




GCACAGCCTATATGGAGCTGTCCTCCCTGAGATCCGAGGACA




CCGCCGTGTATTACTGCGCCAACCACGACTTCTTCGTGTTCTG




GGGCCAAGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCG




GCTCCGGCGGCGGAGGCTCCGGAGGCGGAGGCAGCGACATC




CAGATGACCCAGAGCCCTTCCAGCCTGAGCGCTAGCCTGGGC




GACAGGGTGACCATCACCTGCAGGACCAGCCAGGACATCAG




CAATCACCTGAACTGGTACCAGCAAAAGCCCGGCAAGGCCCC




TAAGCTGCTGATCTACTACACCAGCAGGCTGGAAAGCGGCGT




GCCTAGCAGGTTCAGCGGCAGCGGCTCCGGAACCGACTACAG




CCTGACCATTAGCAGCCTGCAACCTGAGGACATCGGCACCTA




TTACTGCCAGCAGGGCAACACCCTGCCTCCTACCTTTGGCGG




CGGCACCAAACTCGAGATCAAGAGTGCTGCTGCCTTTGTCCC




GGTATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCG




CCCTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGT




CTTCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTT




CATACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGG




CTCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGT




TATTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAG




TAGGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGG




CCTGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCA




CGAGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGA




AGCGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCT




GTATAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGT




GCTTGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTA




AACCCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAA




CTCCAGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGG




TATGAAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCC




TCTACCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATG




CACTGCATATGCAGGCCCTGCCTCCCAGA





1443
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGAGCG



174
GCCCTGAGCTGAAGAAGCCCGGAGCCAGCGTGAAGATCTCCT




GCAAGACCTCCGGCTACACCTTCACCGAGTACACCATCAACT




GGGTGAAGCAGGCCCCCGGACAGGGACTGGAATGGATCGGC




GACATCTACCCCGACAACTACAACATCAGGTACAACCAGAAG




TTCCAAGGCAAGGCCACCATCACAAGGGACACCAGCAGCAG




CACCGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGATA




CCGCCGTGTACTACTGCGCCAACCACGACTTCTTCGTGTTCTG




GGGCCAGGGCACCCTGGTGACAGTGAGCAGCGGAGGAGGCG




GAAGCGGAGGAGGAGGATCCGGAGGAGGAGGCAGCGACATC




CAGATGACCCAGTCCCCCTCCTCCCTGAGCGCCTCCGTGGGA




GACAGGGTGACCATCACCTGCCAGGCCAGCCAGGACATCAGC




AACTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCC




AAGCTGCTGATTTACTACACCAGCAGGCTGGAAACCGGCGTG




CCCAGCAGATTTAGCGGCAGCGGCAGCGGCACCGACTTTACC




TTTACCATCTCCAGCCTGCAGCCCGAGGATATCGCCACATACT




ACTGCCAGCAGGGCAACACCCTCCCCCCTACCTTTGGCGGCG




GCACCAAGGTGGAGATTAAGAGTGCTGCTGCCTTTGTCCCGG




TATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCC




CTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCA




TACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT




CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTA




GGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCC




TGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAAC




CCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1444
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGCAGGTGCAGCTGGTGCAGTCCG



175
GCCCCGAACTGAAAAAGCCCGGCGCCAGCGTCAAGATCAGCT




GCAAGACCTCCGGCTACACCTTCACCGAGTACACCATCAACT




GGGTGAAGCAGGCCCCCGGCCAGGGACTGGAATGGATTGGC




GACATCTACCCCGACAACTACAACATTAGGTATAACCAGAAG




TTCCAGGGCAAGGCCACCATCACAAGAGACACCAGCAGCAG




CACCGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGACA




CCGCCGTGTACTACTGCGCCAACCACGACTTCTTCGTGTTCTG




GGGCCAGGGAACCCTGGTGACAGTGTCCAGCGGCGGCGGCG




GCTCCGGCGGCGGCGGCTCCGGCGGCGGCGGCAGCGACATTC




AGATGACACAGAGCCCCTCCAGCCTGAGCGCCAGCCTGGGCG




ATAGGGTGACCATCACCTGCAGAACCAGCCAGGACATCAGCA




ACCACCTGAATTGGTACCAGCAGAAGCCCGGAAAGGCCCCCA




AACTGCTGATCTACTACACCAGCAGGCTGGAGAGCGGCGTGC




CTAGCAGGTTTAGCGGCAGCGGCAGCGGCACAGATTACAGCC




TGACCATCAGCAGCCTGCAGCCCGAAGACATCGGCACCTACT




ACTGCCAGCAGGGCAACACCCTGCCCCCTACCTTTGGCGGAG




GCACCAAGCTGGAGATCAAGAGTGCTGCTGCCTTTGTCCCGG




TATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCC




CTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCT




TCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCA




TACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCT




CCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTA




TTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTA




GGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCC




TGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACG




AGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAG




CGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTA




TAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCT




TGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAAC




CCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1445
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCCAGATGACACAGAGCC



176
CTAGCAGCCTGAGCGCTTCCGTGGGCGACAGGGTGACCATCA




CCTGCCAGGCCAGCCAGGACATCAGCAACTACCTCAACTGGT




ACCAGCAGAAGCCCGGCAAGGCCCCTAAGCTGCTGATCTACT




ACACCTCCAGGCTGGAGACCGGAGTGCCCTCCAGATTTTCCG




GCAGCGGCAGCGGCACCGATTTCACCTTCACCATCAGCAGCC




TGCAGCCCGAGGACATCGCCACCTACTATTGCCAGCAGGGCA




ACACCCTGCCCCCCACATTTGGAGGCGGCACCAAGGTGGAGA




TCAAGGGCGGAGGAGGAAGCGGAGGAGGAGGAAGCGGAGG




AGGCGGAAGCCAGGTGCAGCTGGTGCAGAGCGGCGCTGAGC




TCAAGAAGCCTGGCGCCAGCGTGAAGATCAGCTGCAAAGCCT




CCGGATACACCTTCACCGAGTACACCATCAATTGGGTGAGAC




AGGCCCCCGGCCAAAGACTGGAGTGGATGGGCGACATCTATC




CCGACAACTACAGCATCAGGTACAACCAGAAGTTCCAGGGCA




GGGTGACAATCACCAGAGACACCAGCGCCAGCACCGCCTAC




ATGGAGCTGAGCAGCCTGAGGAGCGAGGACACCGCCGTGTA




CTACTGCGCCAATCACGACTTCTTCGTGTTCTGGGGCCAGGG




AACCCTGGTGACCGTCAGCTCCAGTGCTGCTGCCTTTGTCCCG




GTATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGC




CCTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTC




TTCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTC




ATACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGC




TCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTT




ATTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGT




AGGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGC




CTGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCAC




GAGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGT




ATAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGC




TTGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAA




CCCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTAT




GAAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCT




ACCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCA




CTGCATATGCAGGCCCTGCCTCCCAGA





1446
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGATATCCAGATGACACAGAGCC



177
CTAGCTCCCTGAGCGCCAGCCTGGGCGATAGGGTGACCATCA




CCTGCAGGACCTCCCAGGACATCAGCAACCACCTGAACTGGT




ACCAGCAGAAGCCCGGCAAAGCCCCCAAGCTGCTGATCTACT




ACACCAGCAGGCTGGAAAGCGGCGTGCCCAGCAGGTTTAGC




GGAAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCTCC




CTGCAGCCCGAGGACATCGGCACCTACTACTGCCAGCAGGGC




AACACCCTGCCTCCCACCTTCGGAGGCGGAACCAAGCTGGAG




ATTAAGGGAGGCGGCGGAAGCGGCGGCGGCGGCTCCGGCGG




AGGAGGCAGCCAGGTGCAGCTGGTGCAGTCCGGAGCCGAGC




TGAAAAAGCCTGGCGCCAGCGTGAAGATCAGCTGCAAGGCC




AGCGGCTACACCTTCACCGAGTACACCATCAACTGGGTGAGG




CAGGCCCCTGGCCAGAGACTCGAGTGGATGGGCGACATCTAC




CCCGACAACTACTCCATCAGGTACAACCAGAAGTTTCAGGGC




AGGGTGACCATTACCAGGGACACCAGCGCCAGCACAGCCTAC




ATGGAGCTGAGCAGCCTGAGGAGCGAGGATACAGCCGTCTA




CTACTGCGCCAACCACGACTTTTTCGTGTTCTGGGGACAGGG




CACCCTGGTGACCGTGTCCTCCAGTGCTGCTGCCTTTGTCCCG




GTATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGC




CCTCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTC




TTCGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTC




ATACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGC




TCCGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTT




ATTACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGT




AGGTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGC




CTGGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCAC




GAGACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAA




GCGCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGT




ATAACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGC




TTGATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAA




CCCCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTC




CAGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTAT




GAAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCT




ACCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCA




CTGCATATGCAGGCCCTGCCTCCCAGA





1447
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGACATCCAAATGACCCAGAGCC



178
CTAGCTCCCTGAGCGCTTCCGTGGGCGACAGAGTGACCATTA




CCTGCCAGGCCAGCCAGGACATCAGCAACTACCTGAACTGGT




ATCAGCAGAAGCCTGGCAAGGCCCCCAAGCTGCTGATCTACT




ACACCAGCAGGCTGGAGACCGGAGTGCCCAGCAGGTTTAGC




GGCTCCGGATCCGGCACCGACTTCACCTTCACCATCTCCAGCC




TGCAGCCCGAGGACATCGCCACCTACTACTGCCAGCAGGGCA




ATACCCTCCCCCCTACCTTCGGAGGCGGCACCAAGGTGGAGA




TCAAGGGCGGCGGCGGCTCCGGCGGCGGCGGCAGCGGCGGA




GGCGGCAGCCAGGTGCAACTGGTGCAGAGCGGCCCTGAGCT




GAAGAAACCCGGCGCCAGCGTGAAAATCAGCTGCAAGACCA




GCGGCTACACATTCACCGAGTACACCATCAACTGGGTGAAGC




AGGCTCCCGGACAGGGACTGGAGTGGATCGGCGACATCTACC




CTGACAACTACAACATCAGATACAACCAAAAGTTCCAGGGCA




AGGCCACCATCACCAGGGACACCAGCTCCTCCACCGCCTACA




TGGAGCTGAGCAGCCTGAGGAGCGAGGACACCGCTGTGTACT




ACTGCGCCAACCACGACTTCTTCGTGTTCTGGGGCCAGGGAA




CCCTGGTGACCGTGAGCAGCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA





1448
Anti-BCMA
ATGGCGCTTCCGGTGACAGCACTGCTCCTCCCCTTGGCGCTGT



CAR of CTX-
TGCTCCACGCAGCAAGGCCGGATATCCAGATGACACAAAGCC



179
CCAGCAGCCTGTCCGCTAGCCTGGGCGATAGGGTGACCATCA




CATGCAGGACCAGCCAGGACATCTCCAACCACCTGAACTGGT




ACCAGCAGAAGCCTGGAAAGGCCCCCAAACTGCTGATCTACT




ACACCAGCAGGCTGGAGAGCGGCGTGCCTAGCAGGTTTTCCG




GCAGCGGCAGCGGCACCGACTATAGCCTGACCATCAGCTCCC




TGCAGCCCGAGGACATCGGCACCTACTACTGCCAGCAGGGAA




ACACACTGCCCCCCACCTTTGGCGGCGGCACAAAGCTGGAGA




TCAAGGGCGGCGGCGGATCCGGCGGCGGAGGCAGCGGAGGA




GGAGGAAGCCAGGTGCAGCTGGTGCAGTCCGGCCCTGAGCTG




AAGAAGCCCGGAGCCAGCGTGAAAATTAGCTGCAAGACCTC




CGGCTACACATTCACCGAGTACACCATCAACTGGGTGAAGCA




GGCTCCCGGCCAGGGACTGGAGTGGATCGGCGACATCTACCC




CGACAACTACAACATCAGGTACAACCAGAAATTCCAGGGCA




AGGCCACCATCACCAGGGACACCAGCTCCTCCACCGCCTATA




TGGAGCTGTCCAGCCTGAGAAGCGAGGATACCGCCGTGTACT




ACTGCGCCAACCACGATTTCTTCGTGTTCTGGGGCCAGGGCA




CACTGGTCACCGTGAGCAGCAGTGCTGCTGCCTTTGTCCCGGT




ATTTCTCCCAGCCAAACCGACCACGACTCCCGCCCCGCGCCC




TCCGACACCCGCTCCCACCATCGCCTCTCAACCTCTTAGTCTT




CGCCCCGAGGCATGCCGACCCGCCGCCGGGGGTGCTGTTCAT




ACGAGGGGCTTGGACTTCGCTTGTGATATTTACATTTGGGCTC




CGTTGGCGGGTACGTGCGGCGTCCTTTTGTTGTCACTCGTTAT




TACTTTGTATTGTAATCACAGGAATCGCTCAAAGCGGAGTAG




GTTGTTGCATTCCGATTACATGAATATGACTCCTCGCCGGCCT




GGGCCGACAAGAAAACATTACCAACCCTATGCCCCCCCACGA




GACTTCGCTGCGTACAGGTCCCGAGTGAAGTTTTCCCGAAGC




GCAGACGCTCCGGCATATCAGCAAGGACAGAATCAGCTGTAT




AACGAACTGAATTTGGGACGCCGCGAGGAGTATGACGTGCTT




GATAAACGCCGGGGGAGAGACCCGGAAATGGGGGGTAAACC




CCGAAGAAAGAATCCCCAAGAAGGACTCTACAATGAACTCC




AGAAGGATAAGATGGCGGAGGCCTACTCAGAAATAGGTATG




AAGGGCGAACGACGACGGGGAAAAGGTCACGATGGCCTCTA




CCAAGGGTTGAGTACGGCAACCAAAGATACGTACGATGCACT




GCATATGCAGGCCCTGCCTCCCAGA
















TABLE 37







CAR Amino Acid Sequenes









SEQ ID NO:
Description
Sequence





1338
Anti-CD19
MLLLVTSLLLCELPHPAFLLIPDIQMTQTTSSLSASLGDRVTISCR



CAR of CTX-
ASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSG



131 to CTX-
TDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGSTSGSG



141
KPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG




VSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQ




VFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVS




SAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSK




RSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFS




RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL




YQGLSTATKDTYDALHMQALPPR





1449
Anti-CD70A
MALPVTALLLPLALLLHAARPDIVMTQSPDSLAVSLGERATINC



CAR of CTX-
RASKSVSTSGYSFMHWYQQKPGQPPKWYLASNLESGVPDRFS



142
GSGSGTDFTLTISSLQAEDVAVYYCQHSREVPWTFGQGTKVEIK




GGGGSGGGGSGGGGSGQVQLVQSGAEVKKPGASVKVSCKASG




YTFTNYGMNWVRQAPGQGLKWMGWINTYTGEPTYADAFKGR




VTMTRDTSISTAYMELSRLRSDDTAVYYCARDYGDYGMDYWG




QGTTVTVSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCNHRNRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFA




AYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRR




GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR





1450
Anti-CD70B
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVSC



CAR of CTX-
KASGYTFTNYGMNWVRQAPGQGLKWMGWINTYTGEPTYADA



145
FKGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARDYGDYGM




DYWGQGTTVTVSSGGGGSGGGGSGGGGSGDIVMTQSPDSLAVS




LGERATINCRASKSVSTSGYSFMHWYQQKPGQPPKLLIYLASNL




ESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQHSREVPWTF




GQGTKVEIKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCNHRNRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFA




AYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRR




GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR





1276
Anti-CD70
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVSC



CAR of CTX-
KASGYTFTNYGMNWVRQAPGQGLKWMGWINTYTGEPTYADA



145b
FKGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARDYGDYGM




DYWGQGTTVTVSSGGGGSGGGGSGGGGSGDIVMTQSPDSLAVS




LGERATINCRASKSVSTSGYSFMHWYQQKPGQPPKLLIYLASNL




ESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQHSREVPWTF




GQGTKVEIKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCNHRNRKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




GGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR




RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGER




RRGKGHDGLYQGLSTATKDTYDALHMQALPPR





1451
Anti-BCMA-1
MALPVTALLLPLALLLHAARPQVQLQQSGGGLVQPGGSLKLSC



CAR of CTX
AASGIDFSRYWMSWVRRAPGKGLEWIGEINPDSSTINYAPSLKD



152 and CTX-
KFIISRDNAKNTLYLQMSKVRSEDTALYYCASLYYDYGDAMDY



153
WGQGTSVTVSSGGGGSGGGGSGGGGSGDIVMTQSQRFMTTSV




GDRVSVTCKASQSVDSNVAWYQQKPRQSPKALIFSASLRFSGVP




ARFTGSGSGTDFTLTISNLQSEDLAEYFCQQYNNYPLTFGAGTKL




ELKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1452
Anti-BCMA-2
MALPVTALLLPLALLLHAARPDIVMTQSQRFMTTSVGDRVSVTC



CAR of CTX-
KASQSVDSNVAWYQQKPRQSPKALIFSASLRFSGVPARFTGSGS



154 and CTX-
GTDFTLTISNLQSEDLAEYFCQQYNNYPLTFGAGTKLELKGGGG



155
SGGGGSGGGGSGQVQLQQSGGGLVQPGGSLKLSCAASGIDFSR




YWMSWVRRAPGKGLEWIGEINPDSSTINYAPSLKDKFIISRDNA




KNTLYLQMSKVRSEDTALYYCASLYYDYGDAMDYWGQGTSV




TVSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1453
Anti-BCMA
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLKLSCA



CAR of CTX-
ASGIDFSRYWMSWVRQAPGKGLEWIGEINPDSSTINYADSVKGR



160 and CTX-
FTISRDNAKNTLYLQMNLSRAEDTALYYCASLYYDYGDAMDY



160b
WGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCRASQSVDSNVAWYQQKPEKAPKSLIFSASLRFSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGAGTKLEIKS




AAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG




AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKR




SRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP




RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





1454
Anti-BCMA
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLKLSCA



CAR of CTX-
ASGIDFSRYWMSWVRQAPGKGLEWIGEINPDSSTINYADSVKGR



160b
FTISRDNAKNTLYLQMNLSRAEDTALYYCASLYYDYGDAMDY




WGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCRASQSVDSNVAWYQQKPEKAPKSLIFSASLRFSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGAGTKLEIKS




AAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG




AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRKRG




RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK




PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR





1455
Anti-BCMA
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLKLSCA



CAR of CTX-
ASGIDFSRYWMSWVRQAPGKGLEWIGEINPDSSTINYADSVKGR



161
FTISRDNAKNTLYLQMNLSRAEDTALYYCASLYYDYGDAMDY




WGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASPGD




RVSVTCKASQSVDSNVAWYQQKPRQAPKALIFSASLRFSGVPAR




FTGSGSGTDFTLTISNLQSEDFATYYCQQYNNYPLTFGAGTKLEI




KSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA




GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRS




KRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKF




SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG




GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG




LYQGLSTATKDTYDALHMQALPPR





1456
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASVGDRVTITCR



CAR of CTX-
ASQSVDSNVAWYQQKPEKAPKSLIFSASLRFSGVPSRFSGSGSGT



162
DFTLTISSLQPEDFATYYCQQYNSYPLTFGAGTKLEIKGGGGSGG




GGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGIDFSRYWMS




WVRQAPGKGLEWIGEINPDSSTINYADSVKGRFTISRDNAKNTL




YLQMNLSRAEDTALYYCASLYYDYGDAMDYWGQGTLVTVSSS




AAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG




AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKR




SRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP




RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





1457
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASPGDRVSVTC



CAR of CTX-
KASQSVDSNVAWYQQKPRQAPKALIFSASLRFSGVPARFTGSGS



163
GTDFTLTISNLQSEDFATYYCQQYNNYPLTFGAGTKLEIKGGGG




SGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGIDFSRY




WMSWVRQAPGKGLEWIGEINPDSSTINYADSVKGRFTISRDNAK




NTLYLQMNLSRAEDTALYYCASLYYDYGDAMDYWGQGTLVT




VSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFS RS ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1458
Anti-BCMA
MALPVTALLLPLALLLHAARPEVQLQQSGPELVKPGASVKMSC



CAR of CTX-
KASGNTLTNYVIHWMKQMPGQGLDWIGYILPYNDLTKYNEKFT



164
GKATLTSDKSSSSAYMELNSLTSEDSAVYYCTRWDWDGFFDPW




GQGTTLTVSSGGGGSGGGGSGGGGSDIVMTQSPLSLPVSLGDQA




SISCRSTQSLVHSNGNTHLHWYLQRPGQSPKLLIYSVSNRFSEVP




DRFSASGSGTDFTLKISRVEAEDLGVYFCSQTSHIPYTFGGGTKL




EIKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPA




AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNR




SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM




GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





1459
Anti-BCMA
MALPVTALLLPLALLLHAARPDIVMTQSPLSLPVSLGDQASISCR



CAR of CTX-
STQSLVHSNGNTHLHWYLQRPGQSPKLLIYSVSNRFSEVPDRFS



165
ASGSGTDFTLKISRVEAEDLGVYFCSQTSHIPYTFGGGTKLEIKG




GGGSGGGGSGGGGSEVQLQQSGPELVKPGASVKMSCKASGNTL




TNYVIHWMKQMPGQGLDWIGYILPYNDLTKYNEKFTGKATLTS




DKSSSSAYMELNSLTSEDSAVYYCTRWDWDGFFDPWGQGTTLT




VSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1460
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGAELKKPGASVKVSC



CAR of CTX-
KASGNTLTNYVIHWVRQAPGQRLEWMGYILPYNDLTKYSQKFQ



166
GRVTITRDKSASTAYMELSSLRSEDTAVYYCTRWDWDGFFDPW




GQGTTVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSVSPGERA




SISCRASQSLVHSNGNTHLHWYQQRPGQAPRLLIYSVSNRFSEVP




ARFSGSGSGTDFTLTISSVESEDFAVYYCSQTSHIPYTFGGGTKLE




IKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPA




AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNR




SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM




GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





1461
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGAELKKPGASVKVSC



CAR of CTX-
KASGNTLTNYVIHWVRQAPGQRLEWMGYILPYNDLTKYSQKFQ



166b
GRVTITRDKSASTAYMELSSLRSEDTAVYYCTRWDWDGFFDPW




GQGTTVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSVSPGERA




SISCRASQSLVHSNGNTHLHWYQQRPGQAPRLLIYSVSNRFSEVP




ARFSGSGSGTDFTLTIS SVESEDFAVYYCSQTSHIPYTFGGGTKLE




IKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPA




AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNR




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1462
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGAELKKPGASVKVSC



CAR of CTX-
KASGNTLTNYVIHWVRQAPGQRLEWMGYILPYNDLTKYSQKFQ



167
GRVTITRDKSASTAYMELSSLRSEDTAVYYCTRWDWDGFFDPW




GQGTTVTVSSGGGGSGGGGSGGGGSDIVMTQSPLSLPVTLGQPA




TLSCRSTQSLVHSNGNTHLHWFQQRPGQSPLRLIYSVSNRDSGV




PDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQTSHIPYTFGGGTK




LEIKSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1463
Anti-BCMA
MALPVTALLLPLALLLHAARPEIVMTQSPATLSVSPGERASISCR



CAR of CTX-
ASQSLVHSNGNTHLHWYQQRPGQAPRLLIYSVSNRFSEVPARFS



168
GSGSGTDFTLTISSVESEDFAVYYCSQTSHIPYTFGGGTKLEIKGG




GGSGGGGSGGGGSQVQLVQSGAELKKPGASVKVSCKASGNTLT




NYVIHWVRQAPGQRLEWMGYILPYNDLTKYSQKFQGRVTITRD




KSASTAYMELSSLRSEDTAVYYCTRWDWDGFFDPWGQGTTVT




VSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNHRN




RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





1464
Anti-BCMA
MALPVTALLLPLALLLHAARPDIVMTQSPLSLPVTLGQPATLSCR



CAR of CTX-
STQSLVHSNGNTHLHWFQQRPGQSPLRLIYSVSNRDSGVPDRFS



169
GSGSGTDFTLKISRVEAEDVGVYYCSQTSHIPYTFGGGTKLEIKG




GGGSGGGGSGGGGSQVQLVQSGAELKKPGASVKVSCKASGNT




LTNYVIHWVRQAPGQRLEWMGYILPYNDLTKYSQKFQGRVTIT




RDKSASTAYMELSSLRSEDTAVYYCTRWDWDGFFDPWGQGTT




VTVSSSAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEAC




RPAAGGAVHTRGLDFACDIYIVVAPLAGTCGVLLLSLVITLYCNH




RNRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS




RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP




EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG




HDGLYQGLSTATKDTYDALHMQALPPR





1465
Anti-BCMA
MALPVTALLLPLALLLHAARPEVQLQQSGPELVKPGASVKISCK



CAR of CTX-
TSGYTFFEYTINWVKQSHGKSLEWIGDIYPDNYNIRYNQKFKGK



170
ATLTVDKSSSTAYMELRSLSSEDSAIYYCANHDFFVFVVGQGTLV




TVSAGGGGSGGGGSGGGGSDIQMTQATSSLSASLGDRVTINCRT




SQDISNHLNWYQQKPDGTVKLLIYYTSRLQSGVPSRFSGSGSGT




DYSLTISNLEQEDIGTYFCHQGNTLPPTFGGGTKLEIKSAAAFVP




VFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




GLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





1466
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQATSSLSASLGDRVTINC



CAR of CTX-
RTSQDISNHLNWYQQKPDGTVKLLIYYTSRLQSGVPSRFSGSGS



171
GTDYSLTISNLEQEDIGTYFCHQGNTLPPTFGGGTKLEIKGGGGS




GGGGSGGGGSEVQLQQSGPELVKPGASVKISCKTSGYTFTEYTI




NWVKQSHGKSLEWIGDIYPDNYNIRYNQKFKGKATLTVDKSSS




TAYMELRSLSSEDSAIYYCANHDFFVFWGQGTLVTVSASAAAF




VPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT




RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLH




SDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAP




AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN




PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





1467
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGAELKKPGASVKISCK



CAR of CTX-
ASGYTFILYTINWVRQAPGQRLEWMGDIYPDNYSIRYNQKFQG



172
RVTITRDTSASTAYMELSSLRSEDTAVYYCANHDFFVFWGQGTL




VTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCQ




ASQDISNYLNWYQQKPGKAPKLLIYYTSRLETGVPSRFSGSGSG




TDFTFTISSLQPEDIATYYCQQGNTLPPTFGGGTKVEIKSAAAFVP




VFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




GLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





1468
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGAELKKPGASVKISCK



CAR of CTX-
ASGYTFILYTINWVRQAPGQRLEWMGDIYPDNYSIRYNQKFQG



173
RVTITRDTSASTAYMELSSLRSEDTAVYYCANHDFFVFWGQGTL




VTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASLGDRVTITCR




TSQDISNHLNWYQQKPGKAPKLLIYYTSRLESGVPSRFSGSGSGT




DYSLTISSLQPEDIGTYYCQQGNTLPPTFGGGTKLEIKSAAAFVP




VFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




GLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





1469
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGPELKKPGASVKISCK



CAR of CTX-
TSGYTFILYTINWVKQAPGQGLEWIGDIYPDNYNIRYNQKFQGK



174
ATITRDTSSSTAYMELSSLRSEDTAVYYCANHDFFVFWGQGTLV




TVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCQA




SQDISNYLNWYQQKPGKAPKLLIYYTSRLETGVPSRFSGSGSGT




DFTFTISSLQPEDIATYYCQQGNTLPPTFGGGTKVEIKSAAAFVPV




FLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL




DFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHSDY




MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





1470
Anti-BCMA
MALPVTALLLPLALLLHAARPQVQLVQSGPELKKPGASVKISCK



CAR of CTX-
TSGYTFILYTINWVKQAPGQGLEWIGDIYPDNYNIRYNQKFQGK



175
ATITRDTSSSTAYMELSSLRSEDTAVYYCANHDFFVFWGQGTLV




TVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASLGDRVTITCRTS




QDISNHLNWYQQKPGKAPKLLIYYTSRLESGVPSRFSGSGSGTD




YSLTISSLQPEDIGTYYCQQGNTLPPTFGGGTKLEIKSAAAFVPVF




LPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL




DFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHSDY




MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





1471
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASVGDRVTITCQ



CAR of CTX-
ASQDISNYLNWYQQKPGKAPKLLIYYTSRLETGVPSRFSGSGSG



176
TDFTFTISSLQPEDIATYYCQQGNTLPPTFGGGTKVEIKGGGGSG




GGGSGGGGSQVQLVQSGAELKKPGASVKISCKASGYTFTEYTIN




WVRQAPGQRLEWMGDIYPDNYSIRYNQKFQGRVTITRDTSAST




AYMELSSLRSEDTAVYYCANHDFFVFVVGQGTLVTVSSSAAAFV




PVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




GLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





1472
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASLGDRVTITCR



CAR of CTX-
TSQDISNHLNWYQQKPGKAPKLLIYYTSRLESGVPSRFSGSGSGT



177
DYSLTISSLQPEDIGTYYCQQGNTLPPTFGGGTKLEIKGGGGSGG




GGSGGGGSQVQLVQSGAELKKPGASVKISCKASGYTFTEYTINW




VRQAPGQRLEWMGDIYPDNYSIRYNQKFQGRVTITRDTSASTAY




MELSSLRSEDTAVYYCANHDFFVFVVGQGTLVTVSSSAAAFVPV




FLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL




DFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHSDY




MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





1473
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASVGDRVTITCQ



CAR of CTX-
ASQDISNYLNWYQQKPGKAPKLLIYYTSRLETGVPSRFSGSGSG



178
TDFTFTISSLQPEDIATYYCQQGNTLPPTFGGGTKVEIKGGGGSG




GGGSGGGGSQVQLVQSGPELKKPGASVKISCKTSGYTFILYTIN




WVKQAPGQGLEWIGDIYPDNYNIRYNQKFQGKATITRDTSSSTA




YMELS SLRSEDTAVYYCANHDFFVFWGQGTLVTVSSSAAAFVP




VFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




GLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





1474
Anti-BCMA
MALPVTALLLPLALLLHAARPDIQMTQSPSSLSASLGDRVTITCR



CAR of CTX-
TSQDISNHLNWYQQKPGKAPKLLIYYTSRLESGVPSRFSGSGSGT



179
DYSLTISSLQPEDIGTYYCQQGNTLPPTFGGGTKLEIKGGGGSGG




GGSGGGGSQVQLVQSGPELKKPGASVKISCKTSGYTFTEYTINW




VKQAPGQGLEWIGDIYPDNYNIRYNQKFQGKATITRDTSSSTAY




MELSSLRSEDTAVYYCANHDFFVFVVGQGTLVTVSSSAAAFVPV




FLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL




DFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRSKRSRLLHSDY




MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR
















TABLE 38







scFv Nucleotide Sequences









SEQ ID NO:
Description
Sequence





1333
Anti-CD19
ATTCAGATGACTCAGACCACCAGTAGCTTGTCTGCCTCACTG



scFv of CTX-
GGAGACCGAGTAACAATCTCCTGCAGGGCAAGTCAAGACATT



131 to CTX-
AGCAAATACCTCAATTGGTACCAGCAGAAGCCCGACGGAAC



141
GGTAAAACTCCTCATCTATCATACGTCAAGGTTGCATTCCGG




AGTACCGTCACGATTTTCAGGTTCTGGGAGCGGAACTGACTA




TTCCTTGACTATTTCAAACCTCGAGCAGGAGGACATTGCGAC




ATATTTTTGTCAACAAGGTAATACCCTCCCTTACACTTTCGGA




GGAGGAACCAAACTCGAAATTACCGGGTCCACCAGTGGCTCT




GGGAAGCCTGGCAGTGGAGAAGGTTCCACTAAAGGCGAGGT




GAAGCTCCAGGAGAGCGGCCCCGGTCTCGTTGCCCCCAGTCA




AAGCCTCTCTGTAACGTGCACAGTGAGTGGTGTATCATTGCCT




GATTATGGCGTCTCCTGGATAAGGCAGCCCCCGCGAAAGGGT




CTTGAATGGCTTGGGGTAATATGGGGCTCAGAGACAACGTAT




TATAACTCCGCTCTCAAAAGTCGCTTGACGATAATAAAAGAT




AACTCCAAGAGTCAAGTTTTCCTTAAAATGAACAGTTTGCAG




ACTGACGATACCGCTATATATTATTGTGCTAAACATTATTACT




ACGGCGGTAGTTACGCGATGGATTATTGGGGGCAGGGGACTT




CTGTCACAGTCAGT





1475
Anti-CD70A
GATATAGTTATGACCCAATCACCCGATAGTCTTGCGGTAAGC



scFv of CTX-
CTGGGGGAGCGAGCAACAATAAACTGTCGGGCATCAAAATC



142
CGTCAGTACAAGCGGGTATTCATTCATGCACTGGTATCAACA




GAAACCCGGTCAGCCACCCAAGCTCCTGATTTATCTTGCGTCT




AATCTTGAGTCCGGCGTCCCAGACCGGTTTTCCGGCTCCGGG




AGCGGCACGGATTTTACTCTTACTATTTCTAGCCTTCAGGCCG




AAGATGTGGCGGTATACTACTGCCAGCATTCAAGGGAAGTTC




CTTGGACGTTCGGTCAGGGCACGAAAGTGGAAATTAAAGGCG




GGGGGGGATCCGGCGGGGGAGGGTCTGGAGGAGGTGGCAGT




GGTCAGGTCCAACTGGTGCAGTCCGGGGCAGAGGTAAAAAA




ACCCGGCGCGTCTGTTAAGGTTTCATGCAAGGCCAGTGGATA




TACTTTCACCAATTACGGAATGAACTGGGTGAGGCAGGCCCC




TGGTCAAGGCCTGAAATGGATGGGATGGATAAACACGTACAC




CGGTGAACCTACCTATGCCGATGCCTTTAAGGGTCGGGTTAC




GATGACGAGAGACACCTCCATATCAACAGCCTACATGGAGCT




CAGCAGATTGAGGAGTGACGATACGGCAGTCTATTACTGTGC




AAGAGACTACGGCGATTATGGCATGGATTACTGGGGCCAGGG




CACTACAGTAACCGTTTCCAGC





1476
Anti-CD70B
CAGGTCCAGTTGGTGCAAAGCGGGGCGGAGGTGAAAAAACC



scFv of CTX-
CGGCGCTTCCGTGAAGGTGTCCTGTAAGGCGTCCGGTTATAC



145 and CTX-
GTTCACGAACTACGGGATGAATTGGGTTCGCCAAGCGCCGGG



145b
GCAGGGACTGAAATGGATGGGGTGGATAAATACCTACACCG




GCGAACCTACATACGCCGACGCTTTTAAAGGGCGAGTCACTA




TGACGCGCGATACCAGCATATCCACCGCATACATGGAGCTGT




CCCGACTCCGGTCAGACGACACGGCTGTCTACTATTGTGCTC




GGGACTATGGCGATTATGGCATGGACTACTGGGGTCAGGGTA




CGACTGTAACAGTTAGTAGTGGTGGAGGCGGCAGTGGCGGG




GGGGGAAGCGGAGGAGGGGGTTCTGGTGACATAGTTATGAC




CCAATCCCCAGATAGTTTGGCGGTTTCTCTGGGCGAGAGGGC




AACGATTAATTGTCGCGCATCAAAGAGCGTTTCAACGAGCGG




ATATTCTTTTATGCATTGGTACCAGCAAAAACCCGGACAACC




GCCGAAGCTGCTGATCTACTTGGCTTCAAATCTTGAGTCTGGG




GTGCCGGACCGATTTTCTGGTAGTGGAAGCGGAACTGACTTT




ACGCTCACGATCAGTTCACTGCAGGCTGAGGATGTAGCGGTC




TATTATTGCCAGCACAGTAGAGAAGTCCCCTGGACCTTCGGT




CAAGGCACGAAAGTAGAAATTAAA





1477
Anti-BCMA-1
CAGGTGCAGTTACAACAGTCAGGAGGAGGATTAGTGCAGCC



scFv of CTX
AGGAGGATCTCTGAAACTGTCTTGTGCCGCCAGCGGAATCGA



152 and CTX-
TTTTAGCAGGTACTGGATGTCTTGGGTGAGAAGAGCCCCTGG



153
AAAAGGACTGGAGTGGATCGGCGAGATTAATCCTGATAGCA




GCACCATCAACTATGCCCCTAGCCTGAAGGACAAGTTCATCA




TCAGCCGGGACAATGCCAAGAACACCCTGTACCTGCAAATGA




GCAAGGTGAGGAGCGAGGATACAGCTCTGTACTACTGTGCCA




GCCTGTACTACGATTACGGAGATGCTATGGACTATTGGGGCC




AGGGAACAAGCGTTACAGTGTCTTCTGGAGGAGGAGGATCCG




GTGGTGGTGGTTCAGGAGGTGGAGGTTCGGGAGATATTGTGA




TGACACAAAGCCAGCGGTTCATGACCACATCTGTGGGCGACA




GAGTGAGCGTGACCTGTAAAGCTTCTCAGTCTGTGGACAGCA




ATGTTGCCTGGTATCAGCAGAAGCCCAGACAGAGCCCTAAAG




CCCTGATCTTTTCTGCCAGCCTGAGATTTTCTGGCGTTCCTGC




CAGATTTACCGGCTCTGGCTCTGGCACCGATTTTACACTGACC




ATCAGCAATCTGCAGTCTGAGGATCTGGCCGAGTACTTTTGC




CAGCAGTACAACAACTACCCCCTGACCTTTGGAGCTGGCACA




AAACTGGAGCTGAAG





1478
Anti-BCMA-2
GACATCGTGATGACCCAAAGCCAGAGGTTCATGACCACATCT



scFv of CTX-
GTGGGCGATAGAGTGAGCGTGACCTGTAAAGCCTCTCAGTCT



154 and CTX-
GTGGACAGCAATGTTGCCTGGTATCAGCAGAAGCCTAGACAG



155
AGCCCTAAAGCCCTGATCTTTAGCGCCAGCCTGAGATTTAGC




GGAGTTCCTGCCAGATTTACCGGAAGCGGATCTGGAACCGAT




TTTACACTGACCATCAGCAACCTGCAGAGCGAGGATCTGGCC




GAGTACTTTTGCCAGCAGTACAACAATTACCCTCTGACCTTTG




GAGCCGGCACAAAGCTGGAGCTGAAAGGAGGAGGAGGATCT




GGTGGTGGTGGTTCAGGAGGTGGAGGTTCGGGACAAGTTCAA




TTACAGCAATCTGGAGGAGGACTGGTTCAGCCTGGAGGAAGC




CTGAAGCTGTCTTGTGCCGCTTCTGGAATCGATTTTAGCAGAT




ACTGGATGAGCTGGGTGAGAAGAGCCCCTGGCAAAGGACTG




GAGTGGATTGGCGAGATTAATCCTGATAGCAGCACCATCAAC




TATGCCCCTAGCCTGAAGGACAAGTTCATCATCAGCCGGGAC




AATGCCAAGAACACCCTGTACCTGCAAATGAGCAAGGTGAG




GAGCGAGGATACAGCTCTGTACTACTGTGCCAGCCTGTACTA




CGATTACGGAGATGCTATGGACTATTGGGGCCAGGGAACAAG




CGTTACAGTGAGCAGC





1479
Anti-BCMA
GAGGTCCAGCTGGTGGAGAGCGGCGGAGGACTGGTCCAGCC



scFv of CTX-
TGGCGGCTCCCTGAAACTGAGCTGCGCCGCCAGCGGCATCGA



160 and CTX-
CTTCAGCAGGTACTGGATGAGCTGGGTGAGACAGGCCCCTGG



160b
CAAGGGCCTGGAATGGATCGGCGAGATCAACCCCGACTCCAG




CACCATCAACTACGCCGACAGCGTCAAGGGCAGGTTCACCAT




TAGCAGGGACAATGCCAAGAACACCCTGTACCTGCAGATGAA




CCTGAGCAGGGCCGAAGACACCGCCCTGTACTACTGTGCCAG




CCTGTACTACGACTATGGCGACGCTATGGACTACTGGGGCCA




GGGCACCCTGGTGACAGTGAGCTCCGGAGGAGGCGGCAGCG




GCGGAGGCGGCAGCGGCGGAGGCGGCAGCGACATCCAGATG




ACCCAGAGCCCTAGCAGCCTGAGCGCCTCCGTGGGAGATAGG




GTGACAATCACCTGTAGGGCCAGCCAGAGCGTGGACTCCAAC




GTGGCCTGGTATCAACAGAAGCCCGAGAAGGCCCCCAAGAG




CCTGATCTTTTCCGCCTCCCTGAGGTTCAGCGGAGTCCCCAGC




AGGTTCTCCGGATCCGGCTCCGGAACCGACTTTACCCTGACC




ATCTCCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGC




CAGCAGTACAACAGCTACCCCCTGACCTTCGGCGCCGGCACA




AAGCTGGAGATCAAG





1480
Anti-BCMA
GAGGTGCAGCTGGTGGAGAGCGGAGGAGGACTGGTGCAGCC



scFv of CTX-
CGGAGGCTCCCTGAAGCTGAGCTGCGCTGCCTCCGGCATCGA



161
CTTCAGCAGGTACTGGATGAGCTGGGTGAGGCAGGCTCCCGG




CAAAGGCCTGGAGTGGATCGGCGAGATCAACCCCGACAGCA




GCACCATCAACTACGCCGACAGCGTGAAGGGCAGGTTCACCA




TCAGCAGGGACAACGCCAAGAATACCCTGTACCTGCAGATGA




ACCTGAGCAGGGCCGAGGACACAGCCCTGTACTACTGTGCCA




GCCTGTACTACGACTATGGAGACGCTATGGACTACTGGGGCC




AGGGAACCCTGGTGACCGTGAGCAGCGGAGGCGGAGGCTCC




GGCGGCGGAGGCAGCGGAGGAGGCGGCAGCGATATCCAGAT




GACCCAGTCCCCCAGCTCCCTGAGCGCTAGCCCTGGCGACAG




GGTGAGCGTGACATGCAAGGCCAGCCAGAGCGTGGACAGCA




ACGTGGCCTGGTACCAGCAGAAACCCAGACAGGCCCCCAAG




GCCCTGATCTTCAGCGCCAGCCTGAGGTTTAGCGGCGTGCCC




GCTAGGTTTACCGGATCCGGCAGCGGCACCGACTTCACCCTG




ACCATCTCCAACCTGCAGTCCGAGGACTTCGCCACCTACTACT




GCCAGCAGTACAACAACTACCCCCTGACATTCGGCGCCGGAA




CCAAGCTGGAGATCAAG





1481
Anti-BCMA
GACATCCAGATGACCCAGAGCCCTAGCAGCCTGAGCGCTAGC



scFv of CTX-
GTGGGCGACAGGGTGACCATCACCTGCAGGGCCAGCCAGAG



162
CGTGGACTCCAACGTGGCCTGGTACCAGCAGAAGCCCGAGAA




GGCCCCCAAGAGCCTGATCTTCAGCGCCAGCCTGAGGTTCTC




CGGAGTGCCTAGCAGATTTAGCGGCAGCGGCAGCGGCACAG




ACTTCACCCTGACCATCAGCAGCCTCCAGCCCGAGGATTTCG




CCACCTACTACTGCCAGCAGTACAACTCCTACCCCCTGACCTT




CGGCGCCGGCACAAAGCTGGAGATCAAGGGAGGAGGAGGAA




GCGGAGGAGGAGGAAGCGGAGGCGGAGGAAGCGAGGTGCA




GCTGGTGGAGTCCGGAGGAGGCCTGGTGCAACCTGGAGGCA




GCCTGAAGCTGAGCTGTGCCGCCAGCGGAATCGACTTCAGCA




GGTACTGGATGTCCTGGGTGAGACAGGCCCCTGGCAAGGGCC




TGGAGTGGATCGGAGAGATCAACCCCGACAGCTCCACCATCA




ACTACGCCGACAGCGTGAAGGGCAGGTTCACCATCAGCAGA




GACAACGCCAAGAACACCCTGTACCTGCAGATGAACCTGTCC




AGAGCCGAGGACACCGCCCTGTACTACTGCGCCAGCCTGTAT




TACGACTACGGCGACGCTATGGACTACTGGGGCCAGGGCACC




CTGGTGACAGTGAGCAGC





1482
Anti-BCMA
GACATCCAAATGACCCAGTCCCCTAGCAGCCTGTCCGCCAGC



scFv of CTX-
CCTGGAGACAGGGTGTCCGTGACCTGCAAGGCCAGCCAGTCC



163
GTGGACAGCAACGTCGCCTGGTATCAGCAGAAGCCCAGGCA




AGCTCCCAAGGCTCTGATCTTCTCCGCCAGCCTGAGATTTTCC




GGCGTGCCCGCCAGATTCACCGGAAGCGGCAGCGGCACCGA




CTTCACCCTGACCATCAGCAACCTGCAGAGCGAGGATTTCGC




CACATACTACTGCCAGCAGTACAACAACTACCCCCTGACCTT




CGGAGCCGGCACCAAGCTGGAGATCAAAGGCGGCGGAGGCA




GCGGCGGCGGCGGCAGCGGCGGAGGCGGATCCGAAGTGCAG




CTGGTGGAAAGCGGAGGCGGACTCGTGCAGCCTGGCGGAAG




CCTGAAGCTGAGCTGTGCCGCCAGCGGCATCGACTTCAGCAG




GTACTGGATGAGCTGGGTGAGGCAGGCTCCCGGCAAAGGCCT




GGAGTGGATCGGCGAGATCAACCCTGACAGCAGCACCATCA




ACTACGCCGACAGCGTGAAAGGCAGGTTCACCATCAGCAGG




GACAACGCCAAGAACACCCTGTACCTGCAGATGAACCTGTCC




AGAGCCGAGGACACCGCCCTGTACTACTGCGCCAGCCTGTAC




TACGACTACGGCGACGCTATGGACTACTGGGGCCAAGGCACC




CTCGTGACCGTCAGCTCC





1483
Anti-BCMA
GAGGTGCAGCTGCAGCAGTCCGGCCCTGAGCTCGTGAAGCCT



scFv of CTX-
GGAGCCAGCGTGAAAATGAGCTGTAAGGCCTCCGGCAACAC



164
CCTCACCAACTACGTGATCCATTGGATGAAGCAGATGCCCGG




CCAGGGCCTGGACTGGATTGGCTACATTCTGCCCTACAACGA




CCTGACCAAGTACAACGAGAAGTTCACCGGCAAGGCCACCCT




GACCAGCGATAAGAGCTCCAGCAGCGCCTACATGGAGCTGA




ACTCCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCACCA




GGTGGGACTGGGATGGCTTCTTCGACCCCTGGGGACAGGGCA




CCACCCTGACAGTGTCCAGCGGAGGAGGCGGCAGCGGCGGC




GGCGGCTCCGGCGGCGGCGGCAGCGATATCGTGATGACACA




GTCCCCTCTGAGCCTGCCTGTGAGCCTGGGCGACCAGGCCAG




CATCAGCTGCAGGTCCACCCAGTCCCTGGTGCACTCCAACGG




CAACACCCACCTGCACTGGTACCTGCAAAGGCCCGGCCAGTC




CCCTAAGCTGCTGATCTACAGCGTGAGCAACAGGTTTAGCGA




GGTGCCCGATAGATTTTCCGCCAGCGGCAGCGGCACCGACTT




CACACTGAAGATCTCCAGGGTGGAGGCCGAGGATCTGGGCGT




GTACTTCTGCAGCCAGACCAGCCACATCCCCTACACCTTCGG




CGGCGGAACCAAGCTGGAGATCAAG





1484
Anti-BCMA
GACATCGTGATGACCCAGAGCCCCCTGAGCCTGCCTGTGTCC



scFv of CTX-
CTGGGAGACCAGGCTTCCATCAGCTGCAGGTCCACCCAGAGC



165
CTGGTGCACTCCAACGGCAACACCCACCTGCACTGGTACCTG




CAGAGGCCTGGCCAGTCCCCCAAGCTGCTGATCTACAGCGTG




AGCAATAGGTTCAGCGAGGTGCCCGACAGATTCAGCGCCAGC




GGAAGCGGCACCGACTTCACCCTGAAGATCAGCAGGGTCGA




GGCCGAAGATCTGGGCGTGTACTTCTGCTCCCAGACATCCCA




CATCCCTTACACCTTCGGCGGCGGCACCAAGCTGGAGATTAA




GGGCGGCGGAGGATCCGGCGGAGGAGGATCCGGAGGAGGAG




GAAGCGAGGTGCAGCTGCAGCAGAGCGGACCCGAGCTGGTG




AAACCCGGAGCCAGCGTCAAAATGAGCTGCAAGGCCAGCGG




CAACACCCTGACCAACTACGTCATCCACTGGATGAAGCAGAT




GCCCGGACAGGGCCTGGACTGGATCGGCTACATCCTGCCCTA




CAACGACCTGACCAAGTACAACGAGAAATTCACCGGCAAGG




CCACCCTGACCAGCGACAAGAGCAGCAGCAGCGCCTACATG




GAGCTGAACAGCCTGACCAGCGAGGACTCCGCCGTGTACTAT




TGCACCAGGTGGGACTGGGACGGCTTCTTTGACCCCTGGGGC




CAGGGCACAACACTCACCGTGAGCTCC





1485
Anti-BCMA
CAGGTGCAGCTGGTGCAGAGCGGAGCCGAGCTCAAGAAGCC



scFv of CTX-
CGGAGCCTCCGTGAAGGTGAGCTGCAAGGCCAGCGGCAACA



166 and CTX-
CCCTGACCAACTACGTGATCCACTGGGTGAGACAAGCCCCCG



166b
GCCAAAGGCTGGAGTGGATGGGCTACATCCTGCCCTACAACG




ACCTGACCAAGTACAGCCAGAAGTTCCAGGGCAGGGTGACC




ATCACCAGGGATAAGAGCGCCTCCACCGCCTATATGGAGCTG




AGCAGCCTGAGGAGCGAGGACACCGCTGTGTACTACTGTACA




AGGTGGGACTGGGACGGCTTCTTTGACCCCTGGGGCCAGGGC




ACAACAGTGACCGTCAGCAGCGGCGGCGGAGGCAGCGGCGG




CGGCGGCAGCGGCGGAGGCGGAAGCGAAATCGTGATGACCC




AGAGCCCCGCCACACTGAGCGTGAGCCCTGGCGAGAGGGCC




AGCATCTCCTGCAGGGCTAGCCAAAGCCTGGTGCACAGCAAC




GGCAACACCCACCTGCACTGGTACCAGCAGAGACCCGGACA




GGCTCCCAGGCTGCTGATCTACAGCGTGAGCAACAGGTTCTC




CGAGGTGCCTGCCAGGTTTAGCGGCAGCGGAAGCGGCACCG




ACTTTACCCTGACCATCAGCAGCGTGGAGTCCGAGGACTTCG




CCGTGTATTACTGCAGCCAGACCAGCCACATCCCTTACACCTT




CGGCGGCGGCACCAAGCTGGAGATCAAA





1486
Anti-BCMA
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGCTGAAGAAACC



scFv of CTX-
TGGCGCCAGCGTCAAGGTGAGCTGCAAGGCTTCCGGAAACAC



167
CCTCACCAACTACGTGATCCACTGGGTGAGGCAGGCCCCCGG




ACAGAGACTGGAGTGGATGGGCTACATTCTGCCCTACAACGA




CCTGACCAAGTACAGCCAGAAGTTCCAGGGCAGGGTCACCAT




CACCAGGGACAAGAGCGCCAGCACCGCCTACATGGAGCTGA




GCAGCCTGAGGTCCGAGGACACAGCCGTGTACTACTGCACCA




GGTGGGACTGGGACGGATTCTTCGACCCTTGGGGCCAAGGCA




CCACAGTGACAGTGAGCTCCGGCGGAGGCGGCAGCGGCGGC




GGAGGAAGCGGCGGCGGCGGAAGCGACATCGTGATGACCCA




GAGCCCTCTGAGCCTGCCCGTGACACTGGGACAGCCTGCCAC




ACTGTCCTGCAGGAGCACCCAGAGCCTGGTGCATAGCAACGG




CAACACCCACCTGCACTGGTTCCAGCAGAGACCTGGCCAGAG




CCCCCTGAGACTGATCTACAGCGTGAGCAACAGGGACAGCGG




CGTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCACCGACTT




TACCCTGAAAATCTCCAGGGTGGAGGCCGAGGATGTGGGCGT




GTATTACTGCTCCCAGACAAGCCACATTCCCTATACATTCGGC




GGCGGCACCAAGCTGGAGATCAAG





1487
Anti-BCMA
GAAATCGTGATGACCCAGAGCCCTGCCACACTGAGCGTGAGC



scFv of CTX-
CCTGGCGAGAGAGCCAGCATCAGCTGCAGGGCCTCCCAGAGC



168
CTGGTGCACTCCAACGGCAATACCCACCTGCACTGGTATCAG




CAGAGACCCGGCCAGGCCCCTAGGCTGCTGATCTACTCCGTG




AGCAACAGGTTCTCCGAGGTGCCCGCCAGATTCAGCGGATCC




GGCAGCGGCACCGACTTCACCCTCACCATCTCCAGCGTGGAG




AGCGAGGACTTCGCCGTCTACTACTGCAGCCAGACAAGCCAC




ATCCCCTACACCTTCGGCGGCGGCACCAAGCTGGAGATCAAG




GGCGGCGGCGGCAGCGGCGGCGGAGGCAGCGGAGGCGGCGG




ATCCCAGGTGCAACTGGTGCAGAGCGGAGCCGAGCTGAAGA




AGCCCGGAGCCAGCGTGAAGGTCAGCTGCAAGGCCAGCGGC




AACACCCTGACAAACTACGTGATCCACTGGGTGAGGCAGGCC




CCTGGCCAAAGGCTCGAGTGGATGGGCTACATCCTCCCCTAC




AACGACCTGACCAAGTACTCCCAGAAGTTCCAGGGCAGGGTG




ACCATCACCAGGGATAAGAGCGCCAGCACCGCCTACATGGA




ACTCAGCAGCCTGAGGAGCGAGGACACCGCCGTGTACTACTG




CACCAGGTGGGACTGGGATGGCTTCTTCGACCCTTGGGGCCA




GGGCACCACCGTGACAGTGAGCTCC





1488
Anti-BCMA
GACATCGTGATGACACAATCCCCCCTCAGCCTGCCTGTGACA



scFv of CTX-
CTGGGCCAGCCTGCCACCCTGAGCTGCAGGAGCACCCAGTCC



169
CTGGTGCACTCCAACGGCAACACCCACCTGCACTGGTTCCAG




CAGAGGCCTGGACAGAGCCCCCTGAGGCTGATCTACAGCGTG




AGCAACAGGGACTCCGGCGTGCCCGATAGATTCAGCGGCAGC




GGCTCCGGCACCGATTTCACCCTGAAGATCTCCAGAGTGGAA




GCCGAGGACGTGGGCGTCTACTACTGCAGCCAGACCAGCCAT




ATCCCCTACACCTTCGGCGGCGGCACCAAGCTGGAGATCAAG




GGAGGCGGCGGAAGCGGCGGAGGCGGATCCGGAGGCGGAGG




CTCCCAAGTGCAGCTGGTGCAGAGCGGCGCTGAGCTGAAGAA




GCCCGGAGCCAGCGTGAAGGTGAGCTGCAAGGCCAGCGGAA




ACACCCTGACCAACTACGTGATCCACTGGGTGAGACAGGCCC




CCGGACAGAGACTCGAGTGGATGGGCTACATCCTGCCCTACA




ACGACCTGACCAAGTACAGCCAGAAGTTCCAGGGCAGGGTG




ACAATCACCAGGGACAAGAGCGCCAGCACCGCCTACATGGA




GCTGAGCAGCCTGAGATCCGAGGACACCGCCGTGTACTACTG




CACCAGGTGGGACTGGGACGGCTTCTTTGACCCCTGGGGCCA




GGGAACCACAGTGACCGTGTCCTCC





1489
Anti-BCMA
GAGGTGCAGCTGCAGCAGAGCGGCCCTGAGCTGGTGAAGCC



scFv of CTX-
CGGCGCCAGCGTGAAGATCAGCTGCAAGACCTCCGGCTATAC



170
CTTTACCGAGTACACCATCAACTGGGTGAAGCAGAGCCACGG




CAAGAGCCTGGAGTGGATCGGCGATATCTACCCCGACAACTA




CAACATCAGGTACAACCAGAAGTTCAAGGGCAAGGCCACCCT




GACCGTGGACAAGTCCAGCAGCACCGCCTACATGGAGCTGAG




GAGCCTGTCCAGCGAGGACTCCGCCATCTACTACTGCGCCAA




CCACGACTTTTTCGTCTTCTGGGGACAGGGCACCCTGGTGAC




AGTGTCCGCTGGCGGCGGCGGCAGCGGCGGCGGCGGCTCCG




GAGGCGGCGGCAGCGACATCCAGATGACACAGGCCACAAGC




TCCCTGTCCGCCAGCCTGGGCGATAGGGTGACCATCAATTGC




AGGACCTCCCAGGACATCAGCAACCACCTGAACTGGTACCAG




CAGAAACCCGACGGCACCGTGAAGCTGCTCATCTACTACACC




AGCAGGCTGCAGTCCGGCGTCCCTAGCAGATTCAGCGGATCC




GGCAGCGGCACCGACTATAGCCTGACCATCAGCAACCTCGAG




CAGGAGGACATCGGCACCTACTTCTGCCATCAGGGCAACACC




CTGCCCCCTACCTTTGGCGGCGGCACAAAGCTGGAGATTAAG





1490
Anti-BCMA
GATATCCAGATGACCCAGGCCACCAGCAGCCTGAGCGCTTCC



scFv of CTX-
CTCGGCGACAGGGTGACCATCAACTGCAGGACCAGCCAGGA



171
CATCTCCAACCACCTGAACTGGTACCAGCAGAAGCCCGACGG




CACCGTGAAACTGCTGATCTACTACACCAGCAGACTGCAGAG




CGGCGTGCCCTCCAGATTTTCCGGCAGCGGCTCCGGCACCGA




CTACAGCCTGACCATTAGCAACCTGGAGCAGGAGGACATCGG




AACCTACTTCTGCCACCAGGGCAACACACTGCCTCCCACCTTC




GGCGGCGGCACAAAGCTCGAGATCAAGGGCGGCGGCGGAAG




CGGCGGCGGCGGCAGCGGCGGCGGAGGCTCCGAGGTGCAAC




TGCAACAGAGCGGACCTGAGCTGGTGAAGCCTGGCGCCAGC




GTGAAGATCTCCTGTAAGACCAGCGGCTACACCTTCACCGAG




TACACCATCAACTGGGTGAAGCAGAGCCACGGCAAGAGCCTC




GAATGGATCGGCGACATCTATCCCGACAACTACAATATCAGA




TACAACCAGAAGTTCAAGGGAAAGGCCACCCTGACCGTGGAT




AAGTCCTCCTCCACCGCTTACATGGAGCTGAGGAGCCTGAGC




AGCGAGGACTCCGCCATCTACTACTGCGCCAACCACGACTTC




TTCGTGTTCTGGGGCCAAGGCACCCTCGTGACCGTGAGCGCC





1491
Anti-BCMA
CAGGTGCAGCTGGTGCAGTCCGGCGCTGAGCTGAAGAAGCCC



scFv of CTX-
GGCGCCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACAC



172
CTTCACCGAATACACCATCAACTGGGTGAGACAGGCCCCTGG




ACAGAGGCTCGAGTGGATGGGCGACATCTACCCCGACAACTA




CAGCATCAGGTACAACCAGAAGTTCCAGGGCAGGGTGACAA




TCACCAGGGACACCAGCGCCAGCACCGCCTATATGGAGCTGA




GCAGCCTGAGATCCGAGGACACCGCCGTCTATTACTGCGCCA




ACCACGACTTCTTCGTGTTCTGGGGCCAGGGAACACTGGTGA




CCGTGTCCAGCGGCGGCGGCGGCAGCGGCGGCGGAGGAAGC




GGCGGCGGCGGCAGCGATATCCAGATGACCCAGAGCCCCTCC




TCCCTGAGCGCTAGCGTGGGCGACAGGGTGACCATTACCTGT




CAGGCCTCCCAGGACATCAGCAACTACCTGAACTGGTACCAG




CAGAAGCCTGGCAAGGCCCCCAAGCTGCTGATCTATTACACC




AGCAGGCTGGAGACCGGCGTGCCCTCCAGATTCAGCGGCTCC




GGCTCCGGAACCGACTTCACCTTCACCATCAGCTCCCTGCAG




CCTGAGGACATCGCCACCTACTACTGCCAGCAGGGCAACACC




CTGCCTCCCACATTCGGCGGCGGCACAAAGGTGGAGATCAAA





1492
Anti-BCMA
CAGGTGCAGCTGGTCCAGTCCGGCGCCGAACTGAAGAAGCCT



scFv of CTX-
GGCGCCAGCGTGAAGATCAGCTGCAAGGCCTCCGGCTACACC



173
TTCACCGAGTACACCATCAACTGGGTGAGGCAAGCCCCCGGC




CAGAGACTGGAGTGGATGGGCGACATCTACCCCGACAACTAC




AGCATCAGGTACAACCAGAAGTTCCAGGGCAGGGTGACAAT




CACCAGGGATACCAGCGCCAGCACAGCCTATATGGAGCTGTC




CTCCCTGAGATCCGAGGACACCGCCGTGTATTACTGCGCCAA




CCACGACTTCTTCGTGTTCTGGGGCCAAGGCACCCTGGTGAC




CGTGAGCAGCGGCGGCGGCGGCTCCGGCGGCGGAGGCTCCG




GAGGCGGAGGCAGCGACATCCAGATGACCCAGAGCCCTTCC




AGCCTGAGCGCTAGCCTGGGCGACAGGGTGACCATCACCTGC




AGGACCAGCCAGGACATCAGCAATCACCTGAACTGGTACCAG




CAAAAGCCCGGCAAGGCCCCTAAGCTGCTGATCTACTACACC




AGCAGGCTGGAAAGCGGCGTGCCTAGCAGGTTCAGCGGCAG




CGGCTCCGGAACCGACTACAGCCTGACCATTAGCAGCCTGCA




ACCTGAGGACATCGGCACCTATTACTGCCAGCAGGGCAACAC




CCTGCCTCCTACCTTTGGCGGCGGCACCAAACTCGAGATCAA




G





1493
Anti-BCMA
CAGGTGCAGCTGGTGCAGAGCGGCCCTGAGCTGAAGAAGCC



scFv of CTX-
CGGAGCCAGCGTGAAGATCTCCTGCAAGACCTCCGGCTACAC



174
CTTCACCGAGTACACCATCAACTGGGTGAAGCAGGCCCCCGG




ACAGGGACTGGAATGGATCGGCGACATCTACCCCGACAACTA




CAACATCAGGTACAACCAGAAGTTCCAAGGCAAGGCCACCAT




CACAAGGGACACCAGCAGCAGCACCGCCTACATGGAGCTGA




GCAGCCTGAGGAGCGAGGATACCGCCGTGTACTACTGCGCCA




ACCACGACTTCTTCGTGTTCTGGGGCCAGGGCACCCTGGTGA




CAGTGAGCAGCGGAGGAGGCGGAAGCGGAGGAGGAGGATCC




GGAGGAGGAGGCAGCGACATCCAGATGACCCAGTCCCCCTCC




TCCCTGAGCGCCTCCGTGGGAGACAGGGTGACCATCACCTGC




CAGGCCAGCCAGGACATCAGCAACTACCTGAACTGGTACCAG




CAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATTTACTACACC




AGCAGGCTGGAAACCGGCGTGCCCAGCAGATTTAGCGGCAG




CGGCAGCGGCACCGACTTTACCTTTACCATCTCCAGCCTGCA




GCCCGAGGATATCGCCACATACTACTGCCAGCAGGGCAACAC




CCTCCCCCCTACCTTTGGCGGCGGCACCAAGGTGGAGATTAA




G





1494
Anti-BCMA
CAGGTGCAGCTGGTGCAGTCCGGCCCCGAACTGAAAAAGCCC



scFv of CTX-
GCGCCAGCGTCAAGATCAGCTGCAAGACCTCCGGCTACACC



175
TTCACCGAGTACACCATCAACTGGGTGAAGCAGGCCCCCGGC




CAGGGACTGGAATGGATTGGCGACATCTACCCCGACAACTAC




AACATTAGGTATAACCAGAAGTTCCAGGGCAAGGCCACCATC




ACAAGAGACACCAGCAGCAGCACCGCCTACATGGAGCTGAG




CAGCCTGAGGAGCGAGGACACCGCCGTGTACTACTGCGCCAA




CCACGACTTCTTCGTGTTCTGGGGCCAGGGAACCCTGGTGAC




AGTGTCCAGCGGCGGCGGCGGCTCCGGCGGCGGCGGCTCCGG




CGGCGGCGGCAGCGACATTCAGATGACACAGAGCCCCTCCAG




CCTGAGCGCCAGCCTGGGCGATAGGGTGACCATCACCTGCAG




AACCAGCCAGGACATCAGCAACCACCTGAATTGGTACCAGCA




GAAGCCCGGAAAGGCCCCCAAACTGCTGATCTACTACACCAG




CAGGCTGGAGAGCGGCGTGCCTAGCAGGTTTAGCGGCAGCG




GCAGCGGCACAGATTACAGCCTGACCATCAGCAGCCTGCAGC




CCGAAGACATCGGCACCTACTACTGCCAGCAGGGCAACACCC




TGCCCCCTACCTTTGGCGGAGGCACCAAGCTGGAGATCAAG





1495
Anti-BCMA
GACATCCAGATGACACAGAGCCCTAGCAGCCTGAGCGCTTCC



scFv of CTX-
GTGGGCGACAGGGTGACCATCACCTGCCAGGCCAGCCAGGA



176
CATCAGCAACTACCTCAACTGGTACCAGCAGAAGCCCGGCAA




GGCCCCTAAGCTGCTGATCTACTACACCTCCAGGCTGGAGAC




CGGAGTGCCCTCCAGATTTTCCGGCAGCGGCAGCGGCACCGA




TTTCACCTTCACCATCAGCAGCCTGCAGCCCGAGGACATCGC




CACCTACTATTGCCAGCAGGGCAACACCCTGCCCCCCACATT




TGGAGGCGGCACCAAGGTGGAGATCAAGGGCGGAGGAGGAA




GCGGAGGAGGAGGAAGCGGAGGAGGCGGAAGCCAGGTGCA




GCTGGTGCAGAGCGGCGCTGAGCTCAAGAAGCCTGGCGCCA




GCGTGAAGATCAGCTGCAAAGCCTCCGGATACACCTTCACCG




AGTACACCATCAATTGGGTGAGACAGGCCCCCGGCCAAAGAC




TGGAGTGGATGGGCGACATCTATCCCGACAACTACAGCATCA




GGTACAACCAGAAGTTCCAGGGCAGGGTGACAATCACCAGA




GACACCAGCGCCAGCACCGCCTACATGGAGCTGAGCAGCCTG




AGGAGCGAGGACACCGCCGTGTACTACTGCGCCAATCACGAC




TTCTTCGTGTTCTGGGGCCAGGGAACCCTGGTGACCGTCAGCT




CC





1496
Anti-BCMA
GATATCCAGATGACACAGAGCCCTAGCTCCCTGAGCGCCAGC



scFv of CTX-
CTGGGCGATAGGGTGACCATCACCTGCAGGACCTCCCAGGAC



177
ATCAGCAACCACCTGAACTGGTACCAGCAGAAGCCCGGCAA




AGCCCCCAAGCTGCTGATCTACTACACCAGCAGGCTGGAAAG




CGGCGTGCCCAGCAGGTTTAGCGGAAGCGGCAGCGGCACCG




ACTACAGCCTGACCATCAGCTCCCTGCAGCCCGAGGACATCG




GCACCTACTACTGCCAGCAGGGCAACACCCTGCCTCCCACCT




TCGGAGGCGGAACCAAGCTGGAGATTAAGGGAGGCGGCGGA




AGCGGCGGCGGCGGCTCCGGCGGAGGAGGCAGCCAGGTGCA




GCTGGTGCAGTCCGGAGCCGAGCTGAAAAAGCCTGGCGCCA




GCGTGAAGATCAGCTGCAAGGCCAGCGGCTACACCTTCACCG




AGTACACCATCAACTGGGTGAGGCAGGCCCCTGGCCAGAGAC




TCGAGTGGATGGGCGACATCTACCCCGACAACTACTCCATCA




GGTACAACCAGAAGTTTCAGGGCAGGGTGACCATTACCAGGG




ACACCAGCGCCAGCACAGCCTACATGGAGCTGAGCAGCCTGA




GGAGCGAGGATACAGCCGTCTACTACTGCGCCAACCACGACT




TTTTCGTGTTCTGGGGACAGGGCACCCTGGTGACCGTGTCCTC




C





1497
Anti-BCMA
GACATCCAAATGACCCAGAGCCCTAGCTCCCTGAGCGCTTCC



scFv of CTX-
GTGGGCGACAGAGTGACCATTACCTGCCAGGCCAGCCAGGAC



178
ATCAGCAACTACCTGAACTGGTATCAGCAGAAGCCTGGCAAG




GCCCCCAAGCTGCTGATCTACTACACCAGCAGGCTGGAGACC




GGAGTGCCCAGCAGGTTTAGCGGCTCCGGATCCGGCACCGAC




TTCACCTTCACCATCTCCAGCCTGCAGCCCGAGGACATCGCC




ACCTACTACTGCCAGCAGGGCAATACCCTCCCCCCTACCTTCG




GAGGCGGCACCAAGGTGGAGATCAAGGGCGGCGGCGGCTCC




GGCGGCGGCGGCAGCGGCGGAGGCGGCAGCCAGGTGCAACT




GGTGCAGAGCGGCCCTGAGCTGAAGAAACCCGGCGCCAGCG




TGAAAATCAGCTGCAAGACCAGCGGCTACACATTCACCGAGT




ACACCATCAACTGGGTGAAGCAGGCTCCCGGACAGGGACTG




GAGTGGATCGGCGACATCTACCCTGACAACTACAACATCAGA




TACAACCAAAAGTTCCAGGGCAAGGCCACCATCACCAGGGA




CACCAGCTCCTCCACCGCCTACATGGAGCTGAGCAGCCTGAG




GAGCGAGGACACCGCTGTGTACTACTGCGCCAACCACGACTT




CTTCGTGTTCTGGGGCCAGGGAACCCTGGTGACCGTGAGCAG




C





1498
Anti-BCMA
GATATCCAGATGACACAAAGCCCCAGCAGCCTGTCCGCTAGC



scFv of CTX-
CTGGGCGATAGGGTGACCATCACATGCAGGACCAGCCAGGA



179
CATCTCCAACCACCTGAACTGGTACCAGCAGAAGCCTGGAAA




GGCCCCCAAACTGCTGATCTACTACACCAGCAGGCTGGAGAG




CGGCGTGCCTAGCAGGTTTTCCGGCAGCGGCAGCGGCACCGA




CTATAGCCTGACCATCAGCTCCCTGCAGCCCGAGGACATCGG




CACCTACTACTGCCAGCAGGGAAACACACTGCCCCCCACCTT




TGGCGGCGGCACAAAGCTGGAGATCAAGGGCGGCGGCGGAT




CCGGCGGCGGAGGCAGCGGAGGAGGAGGAAGCCAGGTGCAG




CTGGTGCAGTCCGGCCCTGAGCTGAAGAAGCCCGGAGCCAGC




GTGAAAATTAGCTGCAAGACCTCCGGCTACACATTCACCGAG




TACACCATCAACTGGGTGAAGCAGGCTCCCGGCCAGGGACTG




GAGTGGATCGGCGACATCTACCCCGACAACTACAACATCAGG




TACAACCAGAAATTCCAGGGCAAGGCCACCATCACCAGGGA




CACCAGCTCCTCCACCGCCTATATGGAGCTGTCCAGCCTGAG




AAGCGAGGATACCGCCGTGTACTACTGCGCCAACCACGATTT




CTTCGTGTTCTGGGGCCAGGGCACACTGGTCACCGTGAGCAG




C
















TABLE 39







scFv Amino Acid Sequences









SEQ ID NO:
Description
Sequence





1334
Anti-CD19
IQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVK



scFv of CTX-
LLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG



131 to CTX-
NTLPYTFGGGTKLEITGSTSGSGKPGSGEGSTKGEVKLQESGPGL



141
VAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGSE




TTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHY




YYGGSYAMDYWGQGTSVTVS





1499
Anti-CD70A
DIVMTQSPDSLAVSLGERATINCRASKSVSTSGYSFMHWYQQKP



scFv of CTX-
GQPPKLLIYLASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAV



142
YYCQHSREVPWTFGQGTKVEIKGGGGSGGGGSGGGGSGQVQL




VQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLK




WMGWINTYTGEPTYADAFKGRVTMTRDTSISTAYMELSRLRSD




DTAVYYCARDYGDYGMDYWGQGTTVTVSS





1500
Anti- CD70B
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPG



scFv of CTX-
QGLKWMGWINTYTGEPTYADAFKGRVTMTRDTSISTAYMELSR



145 and CTX-
LRSDDTAVYYCARDYGDYGMDYWGQGTTVTVSSGGGGSGGG



145b
GSGGGGSGDIVMTQSPDSLAVSLGERATINCRASKSVSTSGYSF




MHWYQQKPGQPPKWYLASNLESGVPDRFSGSGSGTDFTLTISS




LQAEDVAVYYCQHSREVPWTFGQGTKVEIK





1501
Anti-BCMA-1
QVQLQQSGGGLVQPGGSLKLSCAASGIDFSRYWMSWVRRAPG



scFv of CTX
KGLEWIGEINPDSSTINYAPSLKDKFIISRDNAKNTLYLQMSKVR



152 and CTX-
SEDTALYYCASLYYDYGDAMDYWGQGTSVTVSSGGGGSGGGG



153
SGGGGSGDIVMTQSQRFMTTSVGDRVSVTCKASQSVDSNVAW




YQQKPRQSPKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSE




DLAEYFCQQYNNYPLTFGAGTKLELK





1502
Anti-BCMA-2
DIVMTQSQRFMTTSVGDRVSVTCKASQSVDSNVAWYQQKPRQS



scFv of CTX-
PKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSEDLAEYFCQ



154 and CTX-
QYNNYPLTFGAGTKLELKGGGGSGGGGSGGGGSGQVQLQQSG



155
GGLVQPGGSLKLSCAASGIDFSRYWMSWVRRAPGKGLEWIGEI




NPDSSTINYAPSLKDKFIISRDNAKNTLYLQMSKVRSEDTALYYC




ASLYYDYGDAMDYWGQGTSVTVSS





1503
Anti-BCMA
EVQLVESGGGLVQPGGSLKLSCAASGIDFSRYWMSWVRQAPGK



scFv of CTX-
GLEWIGEINPDSSTINYADSVKGRFTISRDNAKNTLYLQMNLSRA



160 and CTX-
EDTALYYCASLYYDYGDAMDYWGQGTLVTVSSGGGGSGGGGS



160b (BCMA-
GGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVDSNVAWYQQ



3)
KPEKAPKSLIFSASLRFSGVPSRFSGSGSGTDFTLTISSLQPEDFAT




YYCQQYNSYPLTFGAGTKLEIK





1504
Anti-BCMA
EVQLVESGGGLVQPGGSLKLSCAASGIDFSRYWMSWVRQAPGK



scFv of CTX-
GLEWIGEINPDSSTINYADSVKGRFTISRDNAKNTLYLQMNLSRA



161 (BCMA-4)
EDTALYYCASLYYDYGDAMDYWGQGTLVTVSSGGGGSGGGGS




GGGGSDIQMTQSPSSLSASPGDRVSVTCKASQSVDSNVAWYQQ




KPRQAPKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSEDFA




TYYCQQYNNYPLTFGAGTKLEIK





1505
Anti-BCMA
DIQMTQSPSSLSASVGDRVTITCRASQSVDSNVAWYQQKPEKAP



scFv of CTX-
KSLIFSASLRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ



162 (BCMA-5)
YNSYPLTFGAGTKLEIKGGGGSGGGGSGGGGSEVQLVESGGGL




VQPGGSLKLSCAASGIDFSRYWMSWVRQAPGKGLEWIGEINPDS




STINYADSVKGRFTISRDNAKNTLYLQMNLSRAEDTALYYCASL




YYDYGDAMDYWGQGTLVTVSS





1506
Anti-BCMA
DIQMTQSPSSLSASPGDRVSVTCKASQSVDSNVAWYQQKPRQA



scFv of CTX-
PKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSEDFATYYCQ



163 (BCMA-6)
QYNNYPLTFGAGTKLEIKGGGGSGGGGSGGGGSEVQLVESGGG




LVQPGGSLKLSCAASGIDFSRYWMSWVRQAPGKGLEWIGEINP




DSSTINYADSVKGRFTISRDNAKNTLYLQMNLSRAEDTALYYCA




SLYYDYGDAMDYWGQGTLVTVSS





1507
Anti-BCMA
EVQLQQSGPELVKPGASVKMSCKASGNTLTNYVIHWMKQMPG



scFv of CTX-
QGLDWIGYILPYNDLTKYNEKFTGKATLTSDKSSSSAYMELNSL



164 (BCMA-7)
TSEDSAVYYCTRWDWDGFFDPWGQGTTLTVSSGGGGSGGGGS




GGGGSDIVMTQSPLSLPVSLGDQASISCRSTQSLVHSNGNTHLH




WYLQRPGQSPKLLIYSVSNRFSEVPDRFSASGSGTDFTLKISRVE




AEDLGVYFCSQTSHIPYTFGGGTKLEIK





1508
Anti-BCMA
DIVMTQSPLSLPVSLGDQASISCRSTQSLVHSNGNTHLHWYLQR



scFv of CTX-
PGQSPKWYSVSNRFSEVPDRFSASGSGTDFTLKISRVEAEDLGV



165 (BCMA-8)
YFCSQTSHIPYTFGGGTKLEIKGGGGSGGGGSGGGGSEVQLQQS




GPELVKPGASVKMSCKASGNTLTNYVIHWMKQMPGQGLDWIG




YILPYNDLTKYNEKFTGKATLTSDKSSSSAYMELNSLTSEDSAV




YYCTRWDWDGFFDPWGQGTTLTVSS





1509
Anti-BCMA
QVQLVQSGAELKKPGASVKVSCKASGNTLTNYVIHWVRQAPG



scFv of CTX-
QRLEWMGYILPYNDLTKYSQKFQGRVTITRDKSASTAYMELSSL



166 (BCMA-
RSEDTAVYYCTRWDWDGFFDPWGQGTTVTVSSGGGGSGGGGS



11) and CTX-
GGGGSEIVMTQSPATLSVSPGERASISCRASQSLVHSNGNTHLH



166b
WYQQRPGQAPRLLIYSVSNRFSEVPARFSGSGSGTDFTLTISSVES




EDFAVYYCSQTSHIPYTFGGGTKLEIK





1510
Anti-BCMA
QVQLVQSGAELKKPGASVKVSCKASGNTLTNYVIHWVRQAPG



scFv of CTX-
QRLEWMGYILPYNDLTKYSQKFQGRVTITRDKSASTAYMELSSL



167 (BCMA-
RSEDTAVYYCTRWDWDGFFDPWGQGTTVTVSSGGGGSGGGGS



12)
GGGGSDIVMTQSPLSLPVTLGQPATLSCRSTQSLVHSNGNTHLH




WFQQRPGQSPLRLIYSVSNRDSGVPDRFSGSGSGTDFTLKISRVE




AEDVGVYYCSQTSHIPYTFGGGTKLEIK





1511
Anti-BCMA
EIVMTQSPATLSVSPGERASISCRASQSLVHSNGNTHLHWYQQR



scFv of CTX-
PGQAPRLLIYSVSNRFSEVPARFSGSGSGTDFTLTISSVESEDFAV



168 (BCMA-
YYCSQTSHIPYTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLVQS



13)
GAELKKPGASVKVSCKASGNTLTNYVIHWVRQAPGQRLEWMG




YILPYNDLTKYSQKFQGRVTITRDKSASTAYMELSSLRSEDTAV




YYCTRWDWDGFFDPWGQGTTVTVSS





1512
Anti-BCMA
DIVMTQSPLSLPVTLGQPATLSCRSTQSLVHSNGNTHLHWFQQR



scFv of CTX-
PGQSPLRLIYSVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVG



169 (BCMA-
VYYCSQTSHIPYTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLV



14)
QSGAELKKPGASVKVSCKASGNTLTNYVIHWVRQAPGQRLEW




MGYILPYNDLTKYSQKFQGRVTITRDKSASTAYMELSSLRSEDT




AVYYCTRWDWDGFFDPWGQGTTVTVSS





1513
Anti-BCMA
EVQLQQSGPELVKPGASVKISCKTSGYTFILYTINWVKQSHGKS



scFv of CTX-
LEWIGDIYPDNYNIRYNQKFKGKATLTVDKSSSTAYMELRSLSS



170 (BCMA-9)
EDSAIYYCANHDFFVFVVGQGTLVTVSAGGGGSGGGGSGGGGSD




IQMTQATSSLSASLGDRVTINCRTSQDISNHLNWYQQKPDGTVK




LLIYYTSRLQSGVPSRFSGSGSGTDYSLTISNLEQEDIGTYFCHQG




NTLPPTFGGGTKLEIK





1514
Anti-BCMA
DIQMTQATSSLSASLGDRVTINCRTSQDISNHLNWYQQKPDGTV



scFv of CTX-
KLLIYYTSRLQSGVPSRFSGSGSGTDYSLTISNLEQEDIGTYFCHQ



171 (BCMA-
GNTLPPTFGGGTKLEIKGGGGSGGGGSGGGGSEVQLQQSGPELV



10)
KPGASVKISCKTSGYTFFEYTINWVKQSHGKSLEWIGDIYPDNY




NIRYNQKFKGKATLTVDKSSSTAYMELRSLSSEDSAIYYCANHD




FFVFWGQGTLVTVSA





1515
Anti-BCMA
QVQLVQSGAELKKPGASVKISCKASGYTFIEYTINWVRQAPGQ



scFv of CTX-
RLEWMGDIYPDNYSIRYNQKFQGRVTITRDTSASTAYMELSSLR



172 (BCMA-
SEDTAVYYCANHDFFVFVVGQGTLVTVSSGGGGSGGGGSGGGG



15)
SDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKA




PKLLIYYTSRLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQ




QGNTLPPTFGGGTKVEIK





1516
Anti-BCMA
QVQLVQSGAELKKPGASVKISCKASGYTFIEYTINWVRQAPGQ



scFv of CTX-
RLEWMGDIYPDNYSIRYNQKFQGRVTITRDTSASTAYMELSSLR



173 (BCMA-
SEDTAVYYCANHDFFVFVVGQGTLVTVSSGGGGSGGGGSGGGG



16)
SDIQMTQSPSSLSASLGDRVTITCRTSQDISNHLNWYQQKPGKAP




KLLIYYTSRLESGVPSRFSGSGSGTDYSLTISSLQPEDIGTYYCQQ




GNTLPPTFGGGTKLEIK





1517
Anti-BCMA
QVQLVQSGPELKKPGASVKISCKTSGYTFTEYTINWVKQAPGQG



scFv of CTX-
LEWIGDIYPDNYNIRYNQKFQGKATITRDTSSSTAYMELSSLRSE



174 (BCMA-
DTAVYYCANHDFFVFWGQGTLVTVSSGGGGSGGGGSGGGGSDI



17)
QMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKL




LIYYTSRLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQGN




TLPPTFGGGTKVEIK





1518
Anti-BCMA
QVQLVQSGPELKKPGASVKISCKTSGYTFTEYTINWVKQAPGQG



scFv of CTX-
LEWIGDIYPDNYNIRYNQKFQGKATITRDTSSSTAYMELSSLRSE



175 (BCMA-
DTAVYYCANHDFFVFWGQGTLVTVSSGGGGSGGGGSGGGGSDI



18)
QMTQSPS SLSASLGDRVTITCRTSQDISNHLNWYQQKPGKAPKL




LIYYTSRLESGVPSRFSGSGSGTDYSLTISSLQPEDIGTYYCQQGN




TLPPTFGGGTKLEIK





1519
Anti-BCMA
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAP



scFv of CTX-
KLLIYYTSRLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQ



176 (BCMA-
GNTLPPTFGGGTKVEIKGGGGSGGGGSGGGGSQVQLVQSGAEL



19)
KKPGASVKISCKASGYTFTEYTINWVRQAPGQRLEWMGDIYPD




NYSIRYNQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCAN




HDFFVFVVGQGTLVTVSS





1520
Anti-BCMA
DIQMTQSPSSLSASLGDRVTITCRTSQDISNHLNWYQQKPGKAP



scFv of CTX-
KLLIYYTSRLESGVPSRFSGSGSGTDYSLTISSLQPEDIGTYYCQQ



177 (BCMA-
GNTLPPTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLVQSGAEL



20)
KKPGASVKISCKASGYTFTEYTINWVRQAPGQRLEWMGDIYPD




NYSIRYNQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCAN




HDFFVFVVGQGTLVTVSS





1521
Anti-BCMA
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAP



scFv of CTX-
KLLIYYTSRLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQ



178 (BCMA-
GNTLPPTFGGGTKVEIKGGGGSGGGGSGGGGSQVQLVQSGPEL



21)
KKPGASVKISCKTSGYTFTEYTINWVKQAPGQGLEWIGDIYPDN




YNIRYNQKFQGKATITRDTSSSTAYMELSSLRSEDTAVYYCANH




DFFVFVVGQGTLVTVSS





1522
Anti-BCMA
DIQMTQSPSSLSASLGDRVTITCRTSQDISNHLNWYQQKPGKAP



scFv of CTX-
KLLIYYTSRLESGVPSRFSGSGSGTDYSLTISSLQPEDIGTYYCQQ



179 (BCMA-
GNTLPPTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLVQSGPELK



22)
KPGASVKISCKTSGYTFFEYTINWVKQAPGQGLEWIGDIYPDNY




NIRYNQKFQGKATITRDTSSSTAYMELSSLRSEDTAVYYCANHD




FFVFWGQGTLVTVSS





1523
BCMA_VH1
QVQLQQSGGGLVQPGGSLKLSCAASGIDFSRYWMSWVRRAPG




KGLEWIGEINPDSSTINYAPSLKDKFIISRDNAKNTLYLQMSKVR




SEDTALYYCASLYYDYGDAMDYWGQGTSVTVSS





1524
BCMA_VH1.1
EVQLVESGGGLVQPGGSLKLSCAASGIDFSRYWMSWVRQAPGK



(of CTX-160)
GLEWIGEINPDSSTINYADSVKGRFTISRDNAKNTLYLQMNLSRA




EDTALYYCASLYYDYGDAMDYWGQGTLVTVSS





1525
BCMA_VL1
DIVMTQSQRFMTTSVGDRVSVTCKASQSVDSNVAWYQQKPRQS




PKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSEDLAEYFCQ




QYNNYPLTFGAGTKLELK





1526
BCMA_VL1.1
DIQMTQSPSSLSASVGDRVTITCRASQSVDSNVAWYQQKPEKAP



(of CTX-160)
KSLIFSASLRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YNSYPLTFGAGTKLEIK





1527
BCMA_VL1.2
DIQMTQSPSSLSASPGDRVSVTCKASQSVDSNVAWYQQKPRQA




PKALIFSASLRFSGVPARFTGSGSGTDFTLTISNLQSEDFATYYCQ




QYNNYPLTFGAGTKLEIK





1528
BCMA_VH2
EVQLQQSGPELVKPGASVKMSCKASGNTLTNYVIHWMKQMPG




QGLDWIGYILPYNDLTKYNEKFTGKATLTSDKSSSSAYMELNSL




TSEDSAVYYCTRWDWDGFFDPWGQGTTLTVSS





1529
BCMA_VL2
DIVMTQSPLSLPVSLGDQASISCRSTQSLVHSNGNTHLHWYLQR




PGQSPKWYSVSNRFSEVPDRFSASGSGTDFTLKISRVEAEDLGV




YFCSQTSHIPYTFGGGTKLEIK





1530
BCMA_VH3
EVQLQQSGPELVKPGASVKISCKTSGYTFILYTINWVKQSHGKS




LEWIGDIYPDNYNIRYNQKFKGKATLTVDKSSSTAYMELRSLSS




EDSAIYYCANHDFFVFVVGQGTLVTVSA





1531
BCMA_VL3
DIQMTQATSSLSASLGDRVTINCRTSQDISNHLNWYQQKPDGTV




KLLIYYTSRLQSGVPSRFSGSGSGTDYSLTISNLEQEDIGTYFCHQ




GNTLPPTFGGGTKLEIK





1589
BCMA VH (of
QVQLVQSGAELKKPGASVKVSCKASGNTLTNYVIHWVRQAPG



CTX-166)
QRLEWMGYILPYNDLTKYSQKFQGRVTITRDKSASTAYMELSSL




RSEDTAVYYCTRWDWDGFFDPWGQGTTVTVSS





1590
BCMA VL (of
EIVMTQSPATLSVSPGERASISCRASQSLVHSNGNTHLHWYQQR



CTX-166)
PGQAPRLLIYSVSNRFSEVPARFSGSGSGTDFTLTISSVESEDFAV




YYCSQTSHIPYTFGGGTKLEIK





1591
BCMA linker
GGGGSGGGGSGGGGS





1592
CD70 VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPG




QGLKWMGWINTYTGEPTYADAFKGRVTMTRDTSISTAYMELSR




LRSDDTAVYYCARDYGDYGMDYWGQGTTVTVSS





1593
CD70 VL
DIVMTQSPDSLAVSLGERATINCRASKSVSTSGYSFMHWYQQKP




GQPPKWYLASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQHSREVPWTFGQGTKVEIK





1594
CD70 linker
GGGGSGGGGSGGGGSG





1595
CD19 VH
EVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKG




LEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSS





1596
CD19 VL
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTV




KLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQ




GNTLPYTFGGGTKLEIT





1597
CD19 linker
GSTSGSGKPGSGEGSTKG









Note Regarding Illustrative Examples

While the present disclosure provides descriptions of various specific aspects for the purpose of illustrating various aspects of the present invention and/or its potential applications, it is understood that variations and modifications will occur to those skilled in the art. Accordingly, the invention or inventions described herein should be understood to be at least as broad as they are claimed, and not as more narrowly defined by particular illustrative aspects provided herein.


Any patent, publication, or other disclosure material identified herein is incorporated by reference into this specification in its entirety unless otherwise indicated, but only to the extent that the incorporated material does not conflict with existing descriptions, definitions, statements, or other disclosure material expressly set forth in this specification. As such, and to the extent necessary, the express disclosure as set forth in this specification supersedes any conflicting material incorporated by reference. Any material, or portion thereof, that is said to be incorporated by reference into this specification, but which conflicts with existing definitions, statements, or other disclosure material set forth herein, is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material. Applicants reserve the right to amend this specification to expressly recite any subject matter, or portion thereof, incorporated by reference herein.

Claims
  • 1. A method for treating cancer, comprising administering to a subject in need thereof an effective amount of a population of engineered primary human T cells, wherein the engineered primary human T cells comprise:(a) a disrupted TRAC gene comprising a deletion of the nucleotide sequence of SEQ ID NO: 76; (b) a nucleic acid comprising a nucleotide sequence encoding a chimeric antigen receptor (CAR), wherein the CAR comprises (i) an ectodomain that comprises an anti-CD19 single-chain variable fragment (scFv), which comprises a variable heavy chain comprising the amino acid sequence of SEQ ID NO: 1595, and a variable light chain comprising the amino acid sequence of SEQ ID NO: 1596, (ii) a CD8 transmembrane domain, and (iii) an endodomain that comprises a CD28 or 4-1BB co-stimulatory domain and a CD3 (co-stimulatory domain, and wherein the nucleic acid is inserted in the disrupted TRAC gene; and (c) a disrupted beta-2-microglobulin (B2M) gene.
  • 2. The method of claim 1, wherein the subject is a human patient having a CD19+ cancer.
  • 3. The method of claim 2, wherein the population of the engineered primary human T cells reduces tumor volume in the subject.
  • 4. The method of claim 2, wherein the population of the engineered primary human T cells increases survival rate in the subject.
  • 5. The method of claim 2, wherein the human patient has a B-cell malignancy.
  • 6. The method of claim 2, wherein the human patient has Burkett's lymphoma or acute lymphoblastic leukemia.
  • 7. The method of claim 1, wherein the anti-CD19 scFv comprises the amino acid sequence of SEQ ID NO: 1334.
  • 8. The method of claim 7, wherein the CAR comprises the amino acid sequence of SEQ ID NO: 1338.
  • 9. The method of claim 8, wherein the nucleotide sequence encoding the CAR comprises the nucleotide sequence of SEQ ID NO: 1316.
  • 10. The method of claim 1, wherein the nucleic acid of (b) comprises the nucleotide sequence of SEQ ID NO: 1390.
  • 11. The method of claim 1, wherein the disrupted B2M gene comprises an insertion of at least one nucleotide base pair, a deletion of at least one nucleotide base pair, or a combination thereof.
  • 12. The method of claim 11, wherein the disrupted B2M gene comprises a nucleotide sequence selected from the group consisting of: SEQ ID NO: 1560; SEQ ID NO: 1561; SEQ ID NO: 1562; SEQ ID NO: 1563; SEQ ID NO: 1564; and SEQ ID NO: 1565.
  • 13. The method of claim 1, wherein at least 90% of the engineered primary human T cells in the population do not express a detectable level of TCR surface protein.
  • 14. The method of claim 13, wherein at least 50% of the engineered primary human T cells in the population express a detectable level of the CAR.
  • 15. The method of claim 1, wherein at least 70% of the engineered primary human T cells in the population do not express a detectable level of TCR surface protein, wherein at least 50% of the engineered primary human T cells in the population do not express a detectable level of B2M surface protein, and wherein at least 50% of the engineered primary human T cells in the population express a detectable level of the CAR.
  • 16. The method of claim 1, wherein the population of the engineered primary human T cells is allogenic to the subject.
  • 17. The method of claim 1, wherein the population of the engineered primary human T cells is from one or more healthy donors.
  • 18. The method of claim 1, wherein the population of the engineered primary human T cells is suspended in a pharmaceutically acceptable carrier.
  • 19. The method of claim 1, wherein the endodomain comprises the CD28 co-stimulatory domain and the CD3ζ co-stimulatory domain.
  • 20. The method of claim 1, wherein the population of the engineered primary human T cells is administered to the subject via an intravenous route.
RELATED APPLICATIONS

The present application is a continuation of, and claims the benefit of and priority to, U.S. patent application Ser. No. 16/901,675, filed Jun. 15, 2020, which is a divisional of, and claims the benefit of and priority to, U.S. patent application Ser. No. 16/431,475, filed on Jun. 4, 2019, which is a continuation of, and claims the benefit of and priority to, U.S. patent application Ser. No. 15/977,798, filed May 11, 2018 and which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/655,510, filed on Apr. 10, 2018, 62/648,138, filed Mar. 26, 2018, 62/639,332, filed Mar. 6, 2018, 62/583,793, filed Nov. 9, 2017, 62/567,012, filed Oct. 2, 2017, 62/567,008, filed Oct. 2, 2017, 62/538,138, filed Jul. 28, 2017, 62/508,862, filed May 19, 2017, and 62/505,649, filed May 12, 2017, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (93)
Number Name Date Kind
7083785 Browning et al. Aug 2006 B2
7435596 Campana et al. Oct 2008 B2
7446179 Jensen et al. Nov 2008 B2
7446190 Sadelain et al. Nov 2008 B2
7452981 Wijdenes et al. Nov 2008 B2
7491390 Law et al. Feb 2009 B2
7641903 Law et al. Jan 2010 B2
7662387 Law et al. Feb 2010 B2
7700739 Lacy et al. Apr 2010 B2
7741465 Eshhar et al. Jun 2010 B1
7771720 Staunton et al. Aug 2010 B2
7888121 Umov et al. Feb 2011 B2
8067546 McDonagh et al. Nov 2011 B2
8124738 Terret et al. Feb 2012 B2
8337838 Law et al. Dec 2012 B2
8440806 Wijdenes et al. May 2013 B2
8535678 Law et al. Sep 2013 B2
8562987 McDonagh et al. Oct 2013 B2
8609104 Law et al. Dec 2013 B2
8629257 Lacy et al. Jan 2014 B2
8647624 Law et al. Feb 2014 B2
8663642 Law et al. Mar 2014 B2
8673304 Wijdenes et al. Mar 2014 B2
8834882 Silence et al. Sep 2014 B2
8871908 Liu et al. Oct 2014 B2
8956828 Bonini et al. Feb 2015 B2
9023999 Mori et al. May 2015 B2
9051372 Law et al. Jun 2015 B2
9102737 Chen et al. Aug 2015 B2
9120854 Ryan et al. Sep 2015 B2
9169325 Keler et al. Oct 2015 B2
9382319 Tso et al. Jul 2016 B2
9399074 Liu et al. Jul 2016 B2
9403914 Kubota Aug 2016 B2
9428585 McDonagh et al. Aug 2016 B2
9701752 McDonagh et al. Jul 2017 B2
9758581 Wijdenes et al. Sep 2017 B2
9765148 Silence et al. Sep 2017 B2
9765149 Silence et al. Sep 2017 B2
9889160 Jantz et al. Feb 2018 B2
9937207 Gregory et al. Apr 2018 B2
10166255 Moriarity et al. Jan 2019 B2
10442849 Baeuerle et al. Oct 2019 B2
10584352 Duchateau Mar 2020 B2
10736919 Terrett Aug 2020 B2
10857184 Terrett Dec 2020 B2
20060051346 Wijdenes Mar 2006 A1
20080138343 Law et al. Jun 2008 A1
20090081239 Staunton et al. Mar 2009 A1
20090148942 McDonagh et al. Jun 2009 A1
20090208496 Wijdenes et al. Aug 2009 A1
20100129362 Law et al. May 2010 A1
20120034159 Kindsvogel Feb 2012 A1
20120045436 McDonagh et al. Feb 2012 A1
20120213771 Keler et al. Aug 2012 A1
20120294863 Law et al. Nov 2012 A1
20130039911 Bedi et al. Feb 2013 A1
20130122020 Liu et al. May 2013 A1
20130138586 Jung et al. May 2013 A1
20130287748 June et al. Oct 2013 A1
20140105915 Algate et al. Apr 2014 A1
20140112942 Van Eenennaam et al. Apr 2014 A1
20140178936 McDonagh et al. Jun 2014 A1
20140220008 Wijdenes et al. Aug 2014 A1
20140349402 Cooper et al. Nov 2014 A1
20140357844 Liu et al. Dec 2014 A1
20150176013 Musunuru et al. Jun 2015 A1
20150266963 Silence et al. Sep 2015 A1
20150284467 Lipp et al. Oct 2015 A1
20150337047 Keler et al. Nov 2015 A1
20150368351 Vu et al. Dec 2015 A1
20160046724 Brogdon et al. Feb 2016 A1
20160289675 Ryan et al. Oct 2016 A1
20170022282 McDonagh et al. Jan 2017 A1
20170157176 Wang et al. Jun 2017 A1
20170173080 Lee et al. Jun 2017 A1
20170183418 Galetto Jun 2017 A1
20170226216 Morgan et al. Aug 2017 A1
20170233484 Sussman et al. Aug 2017 A1
20170267771 Van Eenennaam et al. Sep 2017 A1
20170281766 Wiltzius Oct 2017 A1
20170313759 Batuwangala Nov 2017 A1
20170320957 Chen et al. Nov 2017 A1
20170335281 Loew et al. Nov 2017 A1
20170342157 McDonagh et al. Nov 2017 A1
20170355776 Xiao et al. Dec 2017 A1
20170362297 Marasco Dec 2017 A1
20170369581 Silence et al. Dec 2017 A9
20180002435 Sasu et al. Jan 2018 A1
20180186878 Rosenthal Jul 2018 A1
20180244747 Baeuerle Aug 2018 A1
20180312848 Zhao Nov 2018 A1
20180318435 Pastan et al. Nov 2018 A1
Foreign Referenced Citations (68)
Number Date Country
WO 2004073656 Sep 2004 WO
WO 2006060878 Jun 2006 WO
WO 2006113909 Oct 2006 WO
WO 2008121420 Oct 2008 WO
WO 2011059836 May 2011 WO
WO 2011130434 Oct 2011 WO
WO 2012004367 Jan 2012 WO
WO 2012058460 May 2012 WO
WO 2012079000 Jun 2012 WO
WO 2013074916 May 2013 WO
WO 2013138586 Sep 2013 WO
WO 2013154760 Oct 2013 WO
WO 2013176915 Nov 2013 WO
WO 2014068079 May 2014 WO
WO 2014122143 Aug 2014 WO
WO 2014140374 Sep 2014 WO
WO 2014158821 Oct 2014 WO
WO 2014165119 Oct 2014 WO
WO 2014165825 Oct 2014 WO
WO 2014191128 Dec 2014 WO
WO 2015120096 Aug 2015 WO
WO 2015121454 Aug 2015 WO
WO 2015134877 Sep 2015 WO
WO 2015136001 Sep 2015 WO
WO 2015158671 Oct 2015 WO
WO 2015161276 Oct 2015 WO
WO 2015164594 Oct 2015 WO
WO 2015187528 Dec 2015 WO
WO 2015188056 Dec 2015 WO
WO 2016014789 Jan 2016 WO
WO 2016025454 Feb 2016 WO
WO 2016063264 Apr 2016 WO
WO 2016069282 May 2016 WO
WO 2016069283 May 2016 WO
WO 2016073955 May 2016 WO
WO 2016090320 Jun 2016 WO
WO 2016094304 Jun 2016 WO
WO 2016100985 Jun 2016 WO
WO 2016120216 Aug 2016 WO
WO 2016151315 Sep 2016 WO
WO 2016160721 Oct 2016 WO
WO 2016164356 Oct 2016 WO
WO 2016174652 Nov 2016 WO
WO 2016183041 Nov 2016 WO
WO 2017058850 Apr 2017 WO
WO 2017062451 Apr 2017 WO
WO 2017070429 Apr 2017 WO
WO 2017075537 May 2017 WO
WO 2017083511 May 2017 WO
WO 2017093969 Jun 2017 WO
WO 2017100176 Jun 2017 WO
WO 2017106528 Jun 2017 WO
WO 2017112859 Jun 2017 WO
WO 2017130233 Aug 2017 WO
WO 2017143069 Aug 2017 WO
WO 2017149515 Sep 2017 WO
WO 2017156484 Sep 2017 WO
WO 2017177137 Oct 2017 WO
WO 2017180993 Oct 2017 WO
WO 2017186928 Nov 2017 WO
WO 2017189959 Nov 2017 WO
WO 2017210617 Dec 2017 WO
WO 2017211900 Dec 2017 WO
WO 2017222593 Dec 2017 WO
WO 2018068257 Apr 2018 WO
WO 2018073391 Apr 2018 WO
WO 2018073393 Apr 2018 WO
WO 2018132479 Jul 2018 WO
Non-Patent Literature Citations (15)
Entry
Eyquem. Nature. Mar. 2, 2017; 543(7643): 113-117. (Year: 2013).
Zah et al. (cancer immunol res; 4(6) Jun. 2016, 498-508) (Year: 2016).
Eyquem et al., Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. Mar. 2, 2017;543(7643):113-117. Epub Feb. 22, 2017.
Fraiietta et al., Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563-71.
Jaspers et al., Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther. Oct. 2017;178:83-91. Epub Mar. 22, 2017.
Liu et al., CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. Jan. 2017;27(1):154-157. Epub Dec. 2, 2016.
MacLeod et al., Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of alleogenic gene-edited CAR T cells. Mol Ther. 2017;25(4):949-61.
Maude et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507-17.
Osborn et al., Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016;24(3):570-81.
Poirot et al., Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853-64.
Ren et al., A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8(10):17002-11.
Ren et al., Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell. Sep. 2017;8(9):634-643. Epub Apr. 22, 2017.
Ren et al., Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition, Clin Cancer Res. May 1, 2017;23(9):2255-2266. Epub Nov. 4, 2016.
Torikai et al., A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. Jun. 14, 2012;119(24):5697-705. Epub Apr. 24, 2012. Erratum in: Blood. Nov. 26, 2015;126(22):2527. Rabinovitch, Brian [corrected to Rabinovich, Brian].
Zah et al., T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. Jun. 2016;4(6):498-508. doi: 10.1158/2326-6066.CIR-15-0231. Epub Apr. 8, 2016.
Related Publications (1)
Number Date Country
20210236551 A1 Aug 2021 US
Provisional Applications (9)
Number Date Country
62655510 Apr 2018 US
62648138 Mar 2018 US
62639332 Mar 2018 US
62583793 Nov 2017 US
62567012 Oct 2017 US
62567008 Oct 2017 US
62538138 Jul 2017 US
62508862 May 2017 US
62505649 May 2017 US
Divisions (1)
Number Date Country
Parent 16431475 Jun 2019 US
Child 16901675 US
Continuations (2)
Number Date Country
Parent 16901675 Jun 2020 US
Child 17228540 US
Parent 15977798 May 2018 US
Child 16431475 US