The present patent document relates generally to spin-transfer torque magnetic memory (STT-MRAM) devices and, more particularly, to STT-MRAM devices having thermal stability enhancement layer that increases the thermal stability of the free layer of a magnetic tunnel junction.
Magnetoresistive random-access memory (“MRAM”) is a non-volatile memory technology that stores data through magnetic storage elements. In a type of MRAM, the magnetic storage elements comprise two ferromagnetic plates or electrodes that can hold a magnetic field and are separated by a non-magnetic material, such as a non-magnetic metal or insulator. Such a structure is called a magnetic tunnel junction (“MTJ”). In general, one of the plates has its magnetization pinned (i.e., a “reference layer”), meaning that this layer has a higher coercivity than the other layer and requires a larger magnetic field or spin-polarized current to change the orientation of its magnetization. The second plate is typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer. Thus, the free layer is also referred to as the storage layer. MTJ's are manufactured using stacked materials, with each stack of materials forming an MTJ pillar.
MRAM devices store information by changing the orientation of the magnetization of the free layer. In particular, based on whether the free layer is in a parallel or anti-parallel alignment relative to the reference layer, either a “1” or a “0” can be stored in each MRAM cell. Due to the spin-polarized tunneling magnetoresistance (TMR) effect, the electrical resistance of the cell change due to the orientation of the magnetic fields of the two layers. The cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”. One important feature of MRAM devices is that they are non-volatile memory devices, since they maintain the information even when the power is off. The two plates can be sub-micron in lateral size and the magnetization direction can still be stable with respect to thermal fluctuations.
Spin transfer torque or spin transfer switching, uses spin-aligned (“polarized”) electrons to change the magnetization orientation of the free layer in the magnetic tunnel junction. In general, electrons possess a spin, a quantized number of angular momentum intrinsic to the electron. An electrical current is generally unpolarized, i.e., it consists of 50% spin up and 50% spin down electrons. Passing a current though a magnetic layer polarizes electrons with the spin orientation corresponding to the magnetization direction of the magnetic layer (i.e., polarizer), thus produces a spin-polarized current. If a spin-polarized current is passed to the magnetic region of a free layer in the magnetic tunnel junction device, the electrons will transfer a portion of their spin-angular momentum to the magnetization layer to produce a torque on the magnetization of the free layer. Thus, this spin transfer torque can switch the magnetization of the free layer, which, in effect, writes either a “1” or a “0” based on whether the free layer is in the parallel or anti-parallel states relative to the reference layer.
MRAM devices are considered as the next generation structures for wide range of memory applications. One MRAM technology uses a perpendicular magnetic tunnel junction device. In perpendicular MTJ devices, the free and reference layers are separated by a thin insulator layer for spin polarized tunneling. The free and reference layers have a magnetic direction that is perpendicular to their planes, thus creating a perpendicular magnetic tunnel junction (pMTJ). The pMTJ configuration may provide a lower critical switching current when compared to in-plane MTJ technology, simplified layer stack structure without need of using thick antiferromagnetic layers, and reduction of the device size below 40 nm.
The first magnetic layer 114 in the perpendicular SAF layer 120 is disposed over seed layer 110. Perpendicular SAF layer 120 also has an antiferromagnetic coupling layer 116 disposed over the first magnetic layer 114. As seen by the arrows in magnetic layers 114 and 132 of perpendicular SAF 120, layers 114 and 132 have a magnetic direction that is perpendicular to their respective planes. Furthermore, a nonmagnetic spacer 140 is disposed on top of MTJ 130 and a polarizer 150 may optionally be disposed on top of the nonmagnetic spacer 140. Polarizer 150 is a magnetic layer that has a magnetic direction in its plane, but is orthogonal to the magnetic direction of the reference layer 132 and free layer 136. Polarizer 150 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to pMTJ structure 100. Further, one or more capping layers 160 can be provided on top of polarizer 150 to protect the layers below on MTJ stack 100. Finally, a hard mask 170 is deposited over capping layers 160 and is provided to pattern the underlying layers of the MTJ structure 100, using a reactive ion etch (RIE) process.
As discussed, one type of MTJ is referred to as a perpendicular MTJ. In a perpendicular MTJ, the reference layer and the free layer each have a magnetic direction that is perpendicular to the plane of their respective layers. The resistance of the magnetic memory device is sensitive to the relative orientation of the magnetization vector of the free magnetic layer and the magnetization vector of the reference layer. The resistance of the magnetic memory device is highest when the magnetization vectors of the free magnetic layer and the reference layer, respectively, are in anti-parallel alignment. The resistance of the magnetic device is lowest when the magnetization vectors of the layers free magnetic layer and the reference layer, respectively, are in parallel alignment. Thus, a resistance measurement or its equivalent can determine the orientation of the magnetization vector of the free magnetic layer.
An important characteristic of MTJs is thermal stability. The thermal stability of each perpendicular MTJ, i.e., the magnetic bits, is proportional to the magnetic material volume of the MTJ for a given perpendicular anisotropy. Thermal stability of an MTJ is a factor in data retention capability. Thus, improving the thermal stability of the free layer of an MTJ is an important design consideration. Because of the relationship between the magnetic material volume of an MTJ and the perpendicular anisotropy, as MTJ pillar dimensions decreases, for example when shrinking an existing design for future generation MRAM devices, the thermal stability declines. This is highly undesirable. Unfortunately the thickness of the free layer cannot be increased at will to add more magnetic moment (volume) to enhance the thermal stability. Thus, the thermal stability of the free layer structure with a perpendicular magnetic direction cannot be enhanced simply by increasing the thickness of the material used to construct the free layer (typically CoFeB). This is because there is a limit on the thickness of CoFeB where the perpendicular anisotropy can be obtained. For CoFeB, this thickness may be around sixteen (16) Angstroms. Above this thickness, the magnetization reverses to be in plane, meaning that the MTJ will no longer be a perpendicular MTJ. Thus, the thermal stability of the perpendicular MTJ free (i.e., storage) layer cannot be enhanced by further increasing the free layer thickness.
Perpendicular magnetization direction can be achieved using surface perpendicular anisotropy (interface perpendicular magnetic anisotropy) which is an interface property of the ferromagnetic film and neighboring capping and seeding layer of non-magnetic material used for a free layer. Interface perpendicular magnetic anisotropy (IPMA) is inversely proportional to the thickness of the film. For common ferromagnetic materials, IPMA becomes strong enough to keep magnetization out of plane in the thickness range of 1.2 to 1.6 nm. However, at this thicknesses range, the magnetic moment of the free layer is small. This small magnetic moment of the free layer reduces thermal stability. On the other hand, increasing the free layer thickness lowers the IPMA, which causes the free layer to become in-plane magnetized. In a perpendicular MTJ device, this is not acceptable since it would cause degradation of the tunneling magnetoresistance (TMR) value to a level below which device can operate reliably. Thus, increasing the free layer thickness lowers the thermal stability by diminishing the perpendicular anisotropy. In addition, the device itself becomes useless, as the free layer loses its perpendicular magnetic anisotropy. This is one of the most difficult issues to address for perpendicular MTJ MRAM devices.
Thus, a need exists to enhance the thermal stability of the free layer of an MTJ where the thickness of the free layer does not have to be disturbed.
An MRAM device is disclosed that comprises a thin layer of magnetic material having perpendicular anisotropy, referred to herein as a thermal stability enhancement (TSE) layer, deposited on a non-magnetic separation layer, where the non-magnetic separation layer is located between the free layer and the TSE layer. The TSE layer magnetization can be optimized as described herein to enhance the switching characteristics of the free layer.
In an embodiment, a magnetic device is disclosed. The embodiment comprises a bottom electrode in a first plane. The embodiment further comprises a perpendicular synthetic antiferromagnetic structure including a magnetic reference layer in a second plane, where the magnetic reference layer has a magnetization direction that is perpendicular to the second plane and having a fixed magnetization direction. The embodiment further discloses a non-magnetic tunnel barrier layer in a third plane, which is disposed over the magnetic reference layer. The embodiment further comprises a free magnetic layer in a fourth plane that is disposed over the non-magnetic tunnel barrier layer. The free magnetic layer has a magnetization vector that is perpendicular to the fourth plane and has a magnetization direction that can switch from a first magnetization direction to a second magnetization direction. The magnetic reference layer, the non-magnetic tunnel barrier layer and the free magnetic layer forming a magnetic tunnel junction. The embodiment further comprises a non-magnetic thermal stability enhancement coupling layer in a fifth plane that is disposed over the free magnetic layer. The embodiment also comprises a magnetic thermal stability enhancement layer in a sixth plane that is physically separated from the free magnetic layer and coupled to the free magnetic layer by the non-magnetic thermal stability enhancement coupling layer. The magnetic thermal stability enhancement layer has a magnetization direction that is perpendicular to the sixth plane and has a magnetization direction that can switch from the first magnetization direction to the second magnetization direction, wherein switching of the magnetic thermal stability enhancement layer from the first magnetization direction to the second magnetization direction tracks switching in the magnetic free layer. The embodiment also comprises a cap layer in a seventh plane that is disposed over the thermal stability enhancement layer.
In an aspect of the embodiment, the magnetic device further comprises a current source that directs electrical current through the cap layer in the seventh plane, the magnetic thermal stability enhancement layer in a sixth plane, the non-magnetic thermal stability enhancement coupling layer in the fifth plane, the free magnetic layer in the fourth plane, the non-magnetic tunnel barrier layer in the third plane, the magnetic reference layer in the second plane, and the bottom electrode in the first plane.
In another aspect of the embodiment, the magnetic thermal stability enhancement layer comprises a layer of CoFeB.
In another aspect of the embodiment, the magnetic thermal stability enhancement layer comprises a film of CoFeB having a thickness between 1.3 nanometers and 1.5 nanometers.
In another aspect of the embodiment, the free magnetic layer comprises CoFeB with a Ta interlayer.
In another aspect of the embodiment, the free magnetic layer has a sum thickness of 1.6 nanometers.
In another aspect of the embodiment, the perpendicular synthetic antiferromagnetic structure further comprises a first magnetic pSAF layer and a second magnetic pSAF layer, where the first magnetic pSAF layer is over the first electrode and is separated from the second magnetic pSAF layer by an exchange coupling layer.
In another aspect of the embodiment, a ferromagnetic coupling layer is in between the second magnetic pSAF layer and the magnetic reference layer.
In another aspect of the embodiment, the magnetic thermal stability enhancement layer is magnetically coupled to the free magnetic layer by the non-magnetic thermal stability enhancement coupling layer.
In another aspect of the embodiment, the non-magnetic thermal stability enhancement coupling layer comprises a layer MgO.
In another aspect of the embodiment, the layer of MgO has a thickness between 0.6-1.2 nm.
In another aspect of the embodiment, the layer of MgO has a thickness 0.7 nm.
In another aspect of the embodiment, the non-magnetic thermal stability enhancement coupling layer provides high interface perpendicular magnetic anisotropy between the magnetic thermal stability enhancement layer and free magnetic layer such that the magnetic direction of the free magnetic layer remains perpendicular to the fourth plane and the magnetic direction of the magnetic thermal stability enhancement layer remains perpendicular to the sixth plane.
In another embodiment, a magnetic device is disclosed that comprises a perpendicular magnetic tunnel junction having a magnetic reference layer and a magnetic free layer. The magnetic reference layer and the magnetic free layer are separated by a non-magnetic tunneling barrier layer. The magnetic reference layer has a fixed magnetic direction that is perpendicular to its plane. The magnetic free layer has a variable magnetic direction that can switch between a first perpendicular magnetic direction and second perpendicular magnetic direction. The first perpendicular magnetic direction and the second perpendicular magnetic direction is perpendicular to the magnetic free layer. The embodiment further comprises a magnetic thermal stability enhancement layer disposed over the magnetic free layer of the magnetic tunnel junction. The magnetic thermal stability enhancement layer comprises a magnetic material having a variable magnetic direction that can switch between the first perpendicular magnetic direction and the second perpendicular magnetic direction. In an embodiment, the switching of the magnetic thermal stability enhancement layer from the first magnetization direction to the second magnetization direction tracks switching in the magnetic free layer. The embodiment further comprises a non-magnetic thermal stability enhancement coupling layer disposed in between and physically separating the magnetic free layer of the magnetic tunnel junction and the magnetic thermal stability enhancement layer. The non-magnetic thermal stability enhancement coupling layer magnetically couples the free magnetic layer and the magnetic thermal stability coupling layer.
In aspect of the embodiment, the magnetic device further comprises an electrode and a perpendicular synthetic antiferromagnetic structure coupled to the electrode. The perpendicular synthetic antiferromagnetic structure includes the magnetic reference layer. In an aspect of this embodiment, a cap layer is disposed over the magnetic thermal stability enhancement layer.
In another aspect of the embodiment, the perpendicular synthetic antiferromagnetic structure further comprises a first magnetic pSAF layer and a second magnetic pSAF layer. The first magnetic pSAF layer is over the electrode and is separated from the second magnetic pSAF layer by a non-magnetic exchange coupling layer.
In another aspect of the embodiment, the magnetic thermal stability enhancement layer comprises CoFeB.
In another aspect of the embodiment, the magnetic thermal stability enhancement layer comprises a film of CoFeB having a thickness between 1.3 nanometers and 1.5 nanometers.
In another aspect of the embodiment, the free magnetic layer comprises CoFeB with a Ta interlayer.
In another aspect of the embodiment, the free magnetic layer has a sum thickness of 1.6 nanometers.
In another aspect of the embodiment, the magnetic device further comprises a current source that directs electrical current through the cap layer, the magnetic thermal stability enhancement layer, the non-magnetic thermal stability enhancement coupling layer, the free magnetic layer, the non-magnetic tunnel barrier layer, the perpendicular synthetic antiferromagnetic structure, and the electrode.
In another aspect of the embodiment, the non-magnetic thermal stability enhancement coupling layer provides high interface perpendicular magnetic anisotropy between the magnetic thermal stability enhancement layer and free magnetic layer such that the magnetic direction of the free magnetic layer and the magnetic direction of the magnetic thermal stability enhancement layer remain out-of-plane.
These and other objects, features, aspects, and advantages of the embodiments will become better understood with reference to the following description and accompanying drawings.
The accompanying drawings, which are included as part of the present specification, illustrate the presently preferred embodiments and, together with the general description given above and the detailed description given below, serve to explain and teach the principles of the MTJ devices described herein.
The figures are not necessarily drawn to scale and the elements of similar structures or functions are generally represented by like reference numerals for illustrative purposes throughout the figures. The figures are only intended to facilitate the description of the various embodiments described herein; the figures do not describe every aspect of the teachings disclosed herein and do not limit the scope of the claims.
The following description is presented to enable any person skilled in the art to create and use an STT-MRAM device using a perpendicular magnetic tunnel junction having a free layer with high thermal stability. Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features to implement the disclosed system and method. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the claims. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense, and are instead taught merely to describe particularly representative examples of the present teachings.
In the following description, for purposes of explanation only, specific nomenclature is set forth to provide a thorough understanding of the present teachings. However, it will be apparent to one skilled in the art that these specific details are not required to practice the present teachings.
An embodiment of an STT-MRAM device using the present teachings will described with reference to
As will be discussed, STT-MRAM device 300 has a thin layer of magnetic material with perpendicular anisotropy, referred to herein as a thermal stability enhancement layer (TSE) 380. As described herein, the TSE layer is magnetically coupled to the free layer 365 of an MTJ 355 through a separation layer 375. A ferromagnetic coupling layer 345 on the opposite side of fixed magnetic reference layer 340 of MTJ 355 provides additional interfaces to achieve high IPMA, which allows the free layer to maintain an out of plane magnetization, which achieves a perpendicular TMR value above one hundred (100) percent.
To manufacture STT-MRAM device 300, in step 202, a bottom electrode 305 is fabricated on a semiconductor wafer (not shown) or other appropriate substrate structure. In an embodiment, bottom electrode 305 can comprise six TaN/CuN multilayers 310, each of which can have a thickness of six nanometers. These TaN/CuN multilayers 310 are deposited during step 204 using magnetron sputtering. Bottom electrode 305 can also comprise TaN layer 315 fabricated over the TaN/CuN multilayers 310, which in an embodiment can have a thickness of two nm. TaN layer 315 is deposited during step 206 by magnetron sputtering.
After fabricating bottom electrode 305, perpendicular synthetic antiferromagnet (pSAF) structure 320 is fabricated during step 208. As seen in
Fabrication of pSAF 320 further includes step 212, where a non-magnetic exchange coupling layer 330 is deposited over first magnetic pSAF layer 325. In an embodiment, non-magnetic exchange coupling layer 330 is comprised of a Co/Ru/Co multilayer comprising a first and second 0.18 nm layer of Co separated by a 0.85 nm layer of Ru. Next, at step 214, a second magnetic pSAF layer 335 is deposited over exchange coupling layer 330. In an embodiment, second magnetic pSAF layer comprises a Co/Ni multilayer having perpendicular anisotropy. Second magnetic pSAF layer 335 is a magnetic layer having a magnetic direction perpendicular to its plane, as seen in
Fabrication of pSAF 320 further can include step 216, in which the reference layer 340 of perpendicular magnetic tunnel junction 355 is fabricated. In an embodiment, the step 216 of fabricating reference layer 340 comprises step 218, in which a ferromagnetic coupling layer 345 is deposited, and step 220, in which a fixed magnetic direction layer 350 is deposited. In an embodiment, ferromagnetic coupling layer 345 can comprise a Co/Ta multilayer, while fixed magnetic direction layer 350 can be comprised of a layer of CoFeB film and Ta, the combination of which has perpendicular anisotropy.
The Co layer of Co/Ta ferromagnetic coupling layer 345 can have a thickness of 0.21 nm and the Ta layer of Co/Ta ferromagnetic coupling layer 345 can have a thickness of 0.25 nm. Fixed magnetic direction layer 350 can comprise layers of CoFeB with a Ta interlayer. In an embodiment, fixed magnetic direction layer 350 comprises a 0.7 nm thick layer of CoFeB, a 0.25 nm layer of Ta and a 0.8 nm thick layer of CoFeB. Note that Ta interlayer can be substituted by other materials such as tungsten (W), hafnium (Hf), etc. Ferromagnetic coupling layer 345 of the reference layer 340 couples fixed magnetic direction layer 350 to second magnetic pSAF layer 335 of the perpendicular synthetic antiferromagnet structure 320, which assists in maintaining the perpendicular magnetic direction of reference layer 340, free layer 365 (to be discussed) and thermal stability enhancement layer 380 (also to be discussed).
At step 222, the remaining layers of perpendicular magnetic tunnel junction 355 are fabricated. As discussed, perpendicular magnetic tunnel junction 355 comprises a reference layer 340 and free layer 365 separated by a non-magnetic tunneling barrier layer 360. In an embodiment, non-magnetic tunneling barrier layer 360 is deposited at step 224. Non-magnetic tunneling barrier layer 360 is comprised of an insulator material, which can be an approximately one (1) nm thick layer of magnesium oxide (MgO). After depositing non-magnetic tunneling barrier layer 360, step 226 is performed, which deposits free layer 365. In these embodiments, free layer 365 can comprise CoFeB layers and Ta interlayer. In an embodiment, a first CoFeB layer has thicknesses of 1.1 nm CoFeB, the Ta layer has a thickness of 0.25 nm and the second CoFeB layer has a thickness of 0.5 nm CoFeB. Note that other materials can replace the Ta interlayer, examples of which are tungsten (W), hafnium (Hf), etc.
Both free layer 365 and reference layer 340 have perpendicular anisotropy and thus have a magnetic direction that is perpendicular to the plane of each respective layer. Depending on the logic level stored in the device, magnetic directions of the reference layer and the free layer will either be parallel or antiparallel.
At step 230, non-magnetic thermal stability enhancement coupling layer 375, the purpose of which will be discussed below, is fabricated over free layer 365 of perpendicular magnetic tunnel junction. Then, at step 232, thermal stability enhancement layer 380 is fabricated over non-magnetic thermal stability enhancement coupling layer 375. In an embodiment, thermal stability enhancement layer 380 comprises a CoFeB ferromagnetic layer having perpendicular anisotropy with a thickness between 0.35 nm and 1.5 nm, while non-magnetic thermal stability enhancement coupling layer 375 can comprise a layer of MgO, and can have a thickness that can vary from 0.6-1.2 nm. The choice of MgO thickness is selected so that different magnetic coupling strengths to free layer 365 can be achieved. For MgO thickness of about 0.6 nm to 0.75 nm, magnetic coupling of the thermal stability enhancement layer 380 to the free layer is strong, and allows optimization of the free layer stability. In one embodiment, non-magnetic thermal stability enhancement coupling layer 375 is comprised of a 0.7 nm layer of MgO. As the thickness of the MgO of the non-magnetic thermal stability enhancement coupling layer 375 increases, magnetic coupling will exponentially decrease. The thermal stability enhancement layer 380 will become less and less coupled to the free layer 365 when the thickness of the MgO of the non-magnetic thermal stability enhancement coupling layer 375 increases and finally decouples when MgO thickness exceeds approximately 1.2 nm. A non-magnetic metal or metallic layer can be substituted for the MgO used in this embodiment for the non-magnetic thermal stability enhancement coupling layer 375.
In an embodiment of the device 300 shown in
As discussed, non-magnetic thermal stability coupling layer 375 can comprise an MgO layer having a thickness of 0.7 nm. The thin CoFeB thermal stability enhancement layer 380 and MgO non-magnetic thermal stability enhancement coupling layer 375 enable improved recrystallization of the MgO of non-magnetic tunneling barrier layer 360 and the CoFeB of free layer 365 of perpendicular magnetic tunnel junction 355 during the annealing process used to manufacture device 300. Enhanced recrystallization of MgO of non-magnetic tunneling barrier layer 360 and the CoFeB of free layer 365 improves the performance (including thermal stability) of the perpendicular MTJ structure 355. Note that in alternative embodiments, thermal stability enhancement layer 380 can be construed with materials other than CoFeB, such as alloys of Co, Fe, Ni, or B.
A final step 234 in the process 200 is fabrication of a capping structure over the thermal stability enhancement layer 380. Cap 385 can comprise a 2 nm TaN layer and a layer of Ru having a thickness of 10 nm.
Non-magnetic thermal stability enhancement coupling layer 375 (e.g., an MgO layer) ferromagnetically couples thermal stability enhancement layer 380 to free layer 365 and can be used to control degree of stabilization of free layer 365, thus also allowing indirect tuning of switching current needed for switching the magnetic direction of free layer 365. The thickness of thermal stability enhancement layer 380 can be adjusted (from 0.1 to 3 nm) to optimize thermal stability and switching currents for different device sizes, and the choice of such thickness will be influenced by many factors, including the thickness of the MTJ layers.
Thermal stability enhancement layer 380 improves the thermal stability of device 300, as will now be discussed with reference to
To obtain this data, a DC field was applied perpendicular to the plane of each. The applied field started at −7000 Oersteds, which then decreased to 0.00 Oersteds, before rising to +7000 Oersteds, another very large magnetic field. The applied field was then decreased steadily from +7000 Oersteds to 0.00 Oersteds, before increasing to −7000 Oersteds. Positive and negative signs of the DC applied field indicate perpendicular applied field directions of the field sweep. VSM measurements, shown as normalized magnetic moment on the Y axis of the graph in
As can be seen in
When the applied magnetic field at approximately 0.00 Oersteds moves from negative to positive,
As the applied magnetic field starts increasing, for example, at +5000 Oersteds,
In
Non-magnetic thermal stability enhancement coupling layer 375 between thermal stability enhancement layer 380 and free layer 365 provides high interface perpendicular magnetic anisotropy (IPMA), which acts to maintain the magnetic direction of both free layer 365 and thermal stability enhancement layer 380 out-of-plane, thus ensuring that the magnetization direction of the thermal stability enhancement layer 380 and free layer 365 are perpendicular to their planes.
In particular,
At the same time as coercivity Hc increases, critical switching currents are not increased in a manner that might cause performance issues, which is contrary to what a person having ordinary skill in the art would expect from such a large volume of magnetization. This can be seen in Table 1. In particular, Table 1 shows the critical switching parameters for the same test devices used to collect the data in
In Table 1, Jc0 is the critical switching current density. Vc0 is critical switching voltage. Delta is the thermal stability factor. TMR is the tunneling magnetoresistance. RA is the resistance area product of the tunnel junction. Note also that “+/−” indicates the positive/negative direction of the perpendicular voltage applied to the test devices. As the data in Table 1 demonstrates, an MRAM memory cell having a perpendicular MTJ and a thermal stability enhancement layer 380, where the thickness of thermal stability enhancement layer 380 and free layer 365 have a combined thickness of 3 nm, achieves both out of plane magnetization and low critical switching currents.
Note that the embodiment discussed in the context of
MRAM devices 300 having perpendicular magnetic tunnel junctions and thermal stability enhancement layers 380 as described herein can be fabricated using thin film deposition. Layer stacks are deposited by means of conventional DC and RF sputtering methods using commercially available Physical Vapor Deposition (PVD) tools. Layer stacks can be annealed after deposition at 300° C., 1 hour soak time without magnetic field.
In sum, one aspect of the present teachings is forming a magnetic layer that is magnetically coupled to the free layer of a perpendicular magnetic tunnel junction. This magnetic layer, described herein as the TSE layer, has a magnetization direction perpendicular to its plane, and separated from the free layer of an MTJ with a non-magnetic separation layer.
A person of skill will understand that the above disclosure maps only particular embodiments. It should be further understood that intervening layers can occur even when one layer is described as having been placed over, is covering, or is on top of another layer. That understanding applies to the claims. It should further be understood that while the MTJ pillars have been depicted in two-dimensional cross sections, they are three dimensional objects and the layers discussed may cover the three dimensional top, all sides, and all surrounding valley portions of the MTJ pillars.
It should also be appreciated to one skilled in the art that a plurality of devices 300 can be manufactured and provided as respective bit cells of an STT-MRAM device. In other words, each device 300 can be implemented as a bit cell for a memory array having a plurality of bit cells.
The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modifications and substitutions to specific process conditions can be made. Accordingly, the embodiments in this patent document are not considered as being limited by the foregoing description and drawings.
This application is continuation of U.S. patent application Ser. No. 15/656,398, filed Jul. 21, 2017, which is a continuation of U.S. patent application Ser. No. 15/157,783, filed May 18, 2016, now U.S. Pat. No. 9,741,926, which claims the benefit of Provisional Application No. 62/287,994, filed Jan. 28, 2016. The present application also claims the benefit of U.S. Provisional Application No. 62/287,494. Priority to this provisional application is expressly claimed, and the disclosure of the provisional application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
341801 | Fox | May 1886 | A |
5541868 | Prinz | Jul 1996 | A |
5629549 | Johnson | May 1997 | A |
5640343 | Gallagher et al. | Jun 1997 | A |
5654566 | Johnson | Aug 1997 | A |
5691936 | Sakakima et al. | Nov 1997 | A |
5695846 | Lange et al. | Dec 1997 | A |
5695864 | Slonczewski | Dec 1997 | A |
5732016 | Chen et al. | Mar 1998 | A |
5856897 | Mauri | Jan 1999 | A |
5896252 | Kanai | Apr 1999 | A |
5966323 | Chen et al. | Oct 1999 | A |
6016269 | Peterson et al. | Jan 2000 | A |
6055179 | Koganei et al. | Apr 2000 | A |
6097579 | Gill | Aug 2000 | A |
6124711 | Tanaka et al. | Sep 2000 | A |
6134138 | Lu et al. | Oct 2000 | A |
6140838 | Johnson | Oct 2000 | A |
6154349 | Kanai et al. | Nov 2000 | A |
6172902 | Wegrowe et al. | Jan 2001 | B1 |
6233172 | Chen et al. | May 2001 | B1 |
6243288 | Ishikawa et al. | Jun 2001 | B1 |
6252798 | Satoh et al. | Jun 2001 | B1 |
6256223 | Sun | Jul 2001 | B1 |
6272036 | You et al. | Aug 2001 | B1 |
6292389 | Chen et al. | Sep 2001 | B1 |
6347049 | Childress et al. | Feb 2002 | B1 |
6376260 | Chen et al. | Apr 2002 | B1 |
6385082 | Abraham et al. | May 2002 | B1 |
6436526 | Odagawa et al. | Aug 2002 | B1 |
6458603 | Kersch et al. | Oct 2002 | B1 |
6493197 | Ito et al. | Dec 2002 | B2 |
6522137 | Sun et al. | Feb 2003 | B1 |
6532164 | Redon et al. | Mar 2003 | B2 |
6538918 | Swanson et al. | Mar 2003 | B2 |
6545906 | Savtchenko et al. | Apr 2003 | B1 |
6563681 | Sasaki et al. | May 2003 | B1 |
6566246 | deFelipe et al. | May 2003 | B1 |
6603677 | Redon et al. | Aug 2003 | B2 |
6653154 | Doan et al. | Nov 2003 | B2 |
6654278 | Engel et al. | Nov 2003 | B1 |
6677165 | Lu et al. | Jan 2004 | B1 |
6710984 | Yuasa et al. | Mar 2004 | B1 |
6713195 | Wang et al. | Mar 2004 | B2 |
6714444 | Huai et al. | Mar 2004 | B2 |
6744086 | Daughton et al. | Jun 2004 | B2 |
6750491 | Sharma et al. | Jun 2004 | B2 |
6765824 | Kishi et al. | Jul 2004 | B2 |
6773515 | Li et al. | Aug 2004 | B2 |
6777730 | Daughton et al. | Aug 2004 | B2 |
6785159 | Tuttle | Aug 2004 | B2 |
6812437 | Levy et al. | Nov 2004 | B2 |
6829161 | Huai et al. | Dec 2004 | B2 |
6835423 | Chen et al. | Dec 2004 | B2 |
6838740 | Huai et al. | Jan 2005 | B2 |
6842317 | Sugita et al. | Jan 2005 | B2 |
6847547 | Albert et al. | Jan 2005 | B2 |
6887719 | Lu et al. | May 2005 | B2 |
6888742 | Nguyen et al. | May 2005 | B1 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
6906369 | Ross et al. | Jun 2005 | B2 |
6920063 | Huai et al. | Jul 2005 | B2 |
6933155 | Albert et al. | Aug 2005 | B2 |
6958927 | Nguyen et al. | Oct 2005 | B1 |
6967863 | Huai | Nov 2005 | B2 |
6980469 | Kent et al. | Dec 2005 | B2 |
6985385 | Nguyen et al. | Jan 2006 | B2 |
6992359 | Nguyen et al. | Jan 2006 | B2 |
6995962 | Saito et al. | Feb 2006 | B2 |
7002839 | Kawabata et al. | Feb 2006 | B2 |
7005958 | Wan | Feb 2006 | B2 |
7006375 | Covington | Feb 2006 | B2 |
7009877 | Huai et al. | Mar 2006 | B1 |
7041598 | Sharma | May 2006 | B2 |
7045368 | Hong et al. | May 2006 | B2 |
7149106 | Mancoff et al. | Dec 2006 | B2 |
7170778 | Kent et al. | Jan 2007 | B2 |
7190611 | Nguyen et al. | Mar 2007 | B2 |
7203129 | Lin et al. | Apr 2007 | B2 |
7227773 | Nguyen et al. | Jun 2007 | B1 |
7262941 | Li et al. | Aug 2007 | B2 |
7307876 | Kent et al. | Dec 2007 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335960 | Han et al. | Feb 2008 | B2 |
7351594 | Bae et al. | Apr 2008 | B2 |
7352021 | Bae et al. | Apr 2008 | B2 |
7376006 | Bednorz et al. | May 2008 | B2 |
7378699 | Chan et al. | May 2008 | B2 |
7449345 | Horng et al. | Nov 2008 | B2 |
7476919 | Hong et al. | Jan 2009 | B2 |
7502249 | Ding | Mar 2009 | B1 |
7573737 | Kent et al. | Aug 2009 | B2 |
7598555 | Papworth-Parkin | Oct 2009 | B1 |
7619431 | DeWilde et al. | Nov 2009 | B2 |
7630232 | Guo | Dec 2009 | B2 |
7643332 | Leuschner | Jan 2010 | B2 |
7679155 | Korenivski | Mar 2010 | B2 |
7911832 | Kent et al. | Mar 2011 | B2 |
7936595 | Han et al. | May 2011 | B2 |
7986544 | Kent et al. | Jul 2011 | B2 |
8014193 | Nakayama et al. | Sep 2011 | B2 |
8279663 | Nakayama et al. | Oct 2012 | B2 |
8279666 | Dieny et al. | Oct 2012 | B2 |
8334213 | Mao | Dec 2012 | B2 |
8357982 | Kajiyama | Jan 2013 | B2 |
8363465 | Kent et al. | Jan 2013 | B2 |
8456883 | Liu | Jun 2013 | B1 |
8488375 | Saida et al. | Jul 2013 | B2 |
8492881 | Kuroiwa et al. | Jul 2013 | B2 |
8508979 | Saida et al. | Aug 2013 | B2 |
8535952 | Ranjan et al. | Sep 2013 | B2 |
8574928 | Satoh et al. | Nov 2013 | B2 |
8576616 | Saida et al. | Nov 2013 | B2 |
8582355 | Saida et al. | Nov 2013 | B2 |
8617408 | Balamane | Dec 2013 | B2 |
8716817 | Saida et al. | May 2014 | B2 |
8737122 | Saida et al. | May 2014 | B2 |
8737137 | Choy et al. | May 2014 | B1 |
8779537 | Huai | Jul 2014 | B2 |
8823118 | Horng | Sep 2014 | B2 |
8852760 | Wang et al. | Oct 2014 | B2 |
8860156 | Beach | Oct 2014 | B2 |
8878317 | Daibou et al. | Nov 2014 | B2 |
9019754 | Bedeschi | Apr 2015 | B1 |
9025368 | Saida et al. | May 2015 | B2 |
9082888 | Kent et al. | Jul 2015 | B2 |
9117995 | Daibou et al. | Aug 2015 | B2 |
9129690 | Park et al. | Sep 2015 | B2 |
9159342 | Kudo et al. | Oct 2015 | B2 |
9245608 | Chen et al. | Jan 2016 | B2 |
9263667 | Pinarbasi | Feb 2016 | B1 |
9299918 | Daibou et al. | Mar 2016 | B2 |
9337412 | Pinarbasi et al. | May 2016 | B2 |
9362486 | Kim et al. | Jun 2016 | B2 |
9378817 | Lee et al. | Jun 2016 | B2 |
9379314 | Park | Jun 2016 | B2 |
9406876 | Pinarbasi | Aug 2016 | B2 |
9472282 | Lee et al. | Oct 2016 | B2 |
9472748 | Kuo et al. | Oct 2016 | B2 |
9484527 | Han et al. | Nov 2016 | B2 |
9548445 | Lee et al. | Jan 2017 | B2 |
9589616 | Meng et al. | Mar 2017 | B2 |
9728712 | Kardasz et al. | Aug 2017 | B2 |
9741926 | Pinarbasi et al. | Aug 2017 | B1 |
9773540 | Zang et al. | Sep 2017 | B2 |
9773974 | Pinarbasi et al. | Sep 2017 | B2 |
9777974 | Kamitani et al. | Oct 2017 | B2 |
9818464 | Saida et al. | Nov 2017 | B2 |
9853206 | Pinarbasi et al. | Dec 2017 | B2 |
10008248 | Buhrman et al. | Jun 2018 | B2 |
10026892 | Pinarbasi et al. | Jul 2018 | B2 |
10032978 | Schabes et al. | Jul 2018 | B1 |
10229724 | el Baraji et al. | Mar 2019 | B1 |
10236047 | Ryan et al. | Mar 2019 | B1 |
10236048 | Tzoufras et al. | Mar 2019 | B1 |
10236439 | Schabes et al. | Mar 2019 | B1 |
10270027 | Gajek et al. | Apr 2019 | B1 |
10360961 | Tzoufras et al. | Jul 2019 | B1 |
20020090533 | Zhang et al. | Jul 2002 | A1 |
20020105823 | Redon et al. | Aug 2002 | A1 |
20020132140 | Igarashi et al. | Sep 2002 | A1 |
20030117840 | Sharma et al. | Jun 2003 | A1 |
20030151944 | Saito | Aug 2003 | A1 |
20030197984 | Inomata et al. | Oct 2003 | A1 |
20030218903 | Luo | Nov 2003 | A1 |
20040012994 | Slaughter et al. | Jan 2004 | A1 |
20040061154 | Huai et al. | Apr 2004 | A1 |
20040094785 | Zhu et al. | May 2004 | A1 |
20040125649 | Durlam et al. | Jul 2004 | A1 |
20040130936 | Nguyen et al. | Jul 2004 | A1 |
20040257717 | Sharma et al. | Dec 2004 | A1 |
20050041342 | Huai et al. | Feb 2005 | A1 |
20050051820 | Stojakovic et al. | Mar 2005 | A1 |
20050063222 | Huai et al. | Mar 2005 | A1 |
20050104101 | Sun et al. | May 2005 | A1 |
20050128842 | Wei | Jun 2005 | A1 |
20050136600 | Huai | Jun 2005 | A1 |
20050158881 | Sharma | Jul 2005 | A1 |
20050174702 | Gill | Aug 2005 | A1 |
20050180202 | Huai et al. | Aug 2005 | A1 |
20050184839 | Nguyen et al. | Aug 2005 | A1 |
20050201023 | Huai et al. | Sep 2005 | A1 |
20050237787 | Huai et al. | Oct 2005 | A1 |
20050280058 | Pakala et al. | Dec 2005 | A1 |
20060002184 | Hong et al. | Jan 2006 | A1 |
20060018057 | Huai | Jan 2006 | A1 |
20060044703 | Inomata et al. | Mar 2006 | A1 |
20060049472 | Diao et al. | Mar 2006 | A1 |
20060087880 | Mancoff et al. | Apr 2006 | A1 |
20060092696 | Bessho | May 2006 | A1 |
20060132990 | Morise et al. | Jun 2006 | A1 |
20060227465 | Inokuchi et al. | Oct 2006 | A1 |
20070019337 | Apalkov et al. | Jan 2007 | A1 |
20070047294 | Panchula | Mar 2007 | A1 |
20070096229 | Yoshikawa et al. | May 2007 | A1 |
20070242501 | Hung et al. | Oct 2007 | A1 |
20080031035 | Rodmacq et al. | Feb 2008 | A1 |
20080049488 | Rizzo | Feb 2008 | A1 |
20080112094 | Kent et al. | May 2008 | A1 |
20080151442 | Mauri et al. | Jun 2008 | A1 |
20080151614 | Guo | Jun 2008 | A1 |
20080164547 | Higo | Jul 2008 | A1 |
20080185670 | Kajiyama | Aug 2008 | A1 |
20080259508 | Kent et al. | Oct 2008 | A2 |
20080273274 | Kojima et al. | Nov 2008 | A1 |
20080297292 | Viala et al. | Dec 2008 | A1 |
20090015958 | Nakamura et al. | Jan 2009 | A1 |
20090046501 | Ranjan et al. | Feb 2009 | A1 |
20090072185 | Raksha et al. | Mar 2009 | A1 |
20090091037 | Assefa et al. | Apr 2009 | A1 |
20090098413 | Kanegae | Apr 2009 | A1 |
20090161421 | Cho et al. | Jun 2009 | A1 |
20090209050 | Wang et al. | Aug 2009 | A1 |
20090209102 | Zhong et al. | Aug 2009 | A1 |
20090231909 | Dieny et al. | Sep 2009 | A1 |
20090244792 | Nakayama et al. | Oct 2009 | A1 |
20100019333 | Zhao et al. | Jan 2010 | A1 |
20100124091 | Cowburn | May 2010 | A1 |
20100193891 | Wang et al. | Aug 2010 | A1 |
20100232206 | Li | Sep 2010 | A1 |
20100246254 | Prejbeanu et al. | Sep 2010 | A1 |
20100271870 | Zheng et al. | Oct 2010 | A1 |
20100290275 | Park et al. | Nov 2010 | A1 |
20100304204 | Routkevitch et al. | Dec 2010 | A1 |
20110001108 | Greene et al. | Jan 2011 | A1 |
20110032645 | Noel et al. | Feb 2011 | A1 |
20110058412 | Zheng et al. | Mar 2011 | A1 |
20110089511 | Keshtbod et al. | Apr 2011 | A1 |
20110121417 | Li | May 2011 | A1 |
20110133298 | Chen et al. | Jun 2011 | A1 |
20110141804 | Apalkov et al. | Jun 2011 | A1 |
20110149632 | Chen et al. | Jun 2011 | A1 |
20110216436 | Igarashi | Sep 2011 | A1 |
20110235217 | Chen et al. | Sep 2011 | A1 |
20110305077 | Higo et al. | Dec 2011 | A1 |
20120012952 | Chen | Jan 2012 | A1 |
20120052258 | Op Debeeck et al. | Mar 2012 | A1 |
20120069649 | Ranjan et al. | Mar 2012 | A1 |
20120120520 | Childress et al. | May 2012 | A1 |
20120155156 | Watts | Jun 2012 | A1 |
20120156390 | Araki | Jun 2012 | A1 |
20120181642 | Prejbeanu et al. | Jul 2012 | A1 |
20120188818 | Ranjan et al. | Jul 2012 | A1 |
20120228728 | Ueki et al. | Sep 2012 | A1 |
20120280336 | Jan | Nov 2012 | A1 |
20120280339 | Zhang et al. | Nov 2012 | A1 |
20120294078 | Kent et al. | Nov 2012 | A1 |
20120299133 | Son et al. | Nov 2012 | A1 |
20130001506 | Sato et al. | Jan 2013 | A1 |
20130001652 | Yoshikawa et al. | Jan 2013 | A1 |
20130021841 | Zhou et al. | Jan 2013 | A1 |
20130062714 | Zhu | Mar 2013 | A1 |
20130075845 | Chen et al. | Mar 2013 | A1 |
20130119495 | Vetro et al. | May 2013 | A1 |
20130157385 | Jung et al. | Jun 2013 | A1 |
20130181305 | Nakayama et al. | Jul 2013 | A1 |
20130244344 | Malmhall et al. | Sep 2013 | A1 |
20130267042 | Satoh et al. | Oct 2013 | A1 |
20130270523 | Wang et al. | Oct 2013 | A1 |
20130270661 | Yi et al. | Oct 2013 | A1 |
20130307097 | Yi et al. | Nov 2013 | A1 |
20130341801 | Satoh et al. | Dec 2013 | A1 |
20140009994 | Parkin et al. | Jan 2014 | A1 |
20140036573 | Ishihara et al. | Feb 2014 | A1 |
20140042571 | Gan et al. | Feb 2014 | A1 |
20140048896 | Huang et al. | Feb 2014 | A1 |
20140070341 | Beach et al. | Mar 2014 | A1 |
20140087483 | Ohsawa | Mar 2014 | A1 |
20140093701 | Sahoo et al. | Apr 2014 | A1 |
20140103472 | Kent et al. | Apr 2014 | A1 |
20140103473 | Kent et al. | Apr 2014 | A1 |
20140131824 | Kitagawa et al. | May 2014 | A1 |
20140159175 | Lee et al. | Jun 2014 | A1 |
20140169085 | Wang et al. | Jun 2014 | A1 |
20140177316 | Otsuka et al. | Jun 2014 | A1 |
20140217531 | Jan | Aug 2014 | A1 |
20140252439 | Guo | Sep 2014 | A1 |
20140252519 | Kim | Sep 2014 | A1 |
20140264671 | Chepulskyy et al. | Sep 2014 | A1 |
20150008550 | Min et al. | Jan 2015 | A1 |
20150056368 | Wang et al. | Feb 2015 | A1 |
20150171315 | Gan et al. | Jun 2015 | A1 |
20150171316 | Park et al. | Jun 2015 | A1 |
20150279904 | Pinarbasi | Oct 2015 | A1 |
20150287910 | Lu | Oct 2015 | A1 |
20150357015 | Kent et al. | Dec 2015 | A1 |
20150372687 | Buhrman et al. | Dec 2015 | A1 |
20160027999 | Pinarbasi et al. | Jan 2016 | A1 |
20160087193 | Pinarbasi et al. | Mar 2016 | A1 |
20160093798 | Kim et al. | Mar 2016 | A1 |
20160099405 | Zimmer et al. | Apr 2016 | A1 |
20160111634 | Lee et al. | Apr 2016 | A1 |
20160126452 | Kuo et al. | May 2016 | A1 |
20160126453 | Chen et al. | May 2016 | A1 |
20160163965 | Han et al. | Jun 2016 | A1 |
20160163973 | Pinarbasi | Jun 2016 | A1 |
20160181508 | Lee et al. | Jun 2016 | A1 |
20160218278 | Pinarbasi et al. | Jul 2016 | A1 |
20160276006 | Ralph et al. | Sep 2016 | A1 |
20160284762 | Wang et al. | Sep 2016 | A1 |
20160315118 | Kardasz et al. | Oct 2016 | A1 |
20160315259 | Kardasz et al. | Oct 2016 | A1 |
20160372656 | Pinarbasi et al. | Dec 2016 | A1 |
20170018705 | Harms et al. | Jan 2017 | A1 |
20170025472 | Kim et al. | Jan 2017 | A1 |
20170033156 | Gan et al. | Feb 2017 | A1 |
20170033283 | Pinarbasi et al. | Feb 2017 | A1 |
20170033742 | Akerman | Feb 2017 | A1 |
20170047107 | Berger et al. | Feb 2017 | A1 |
20170084826 | Zhou et al. | Mar 2017 | A1 |
20170222132 | Pinarbasi et al. | Aug 2017 | A1 |
20170236570 | Kent et al. | Aug 2017 | A1 |
20170324029 | Pinarbasi et al. | Nov 2017 | A1 |
20170331032 | Chen et al. | Nov 2017 | A1 |
20170331033 | Kardasz et al. | Nov 2017 | A1 |
20170346002 | Pinarbasi et al. | Nov 2017 | A1 |
20180047894 | Pinarbasi et al. | Feb 2018 | A1 |
20180076382 | Park et al. | Mar 2018 | A1 |
20180114898 | Lee | Apr 2018 | A1 |
20180205001 | Beach et al. | Jul 2018 | A1 |
20180248110 | Kardasz et al. | Aug 2018 | A1 |
20180248113 | Pinarbasi et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2766141 | Jan 2011 | CA |
101036195 | Sep 2008 | CN |
102334207 | Jan 2012 | CN |
102959693 | Mar 2013 | CN |
105706259 | Jun 2016 | CN |
105917480 | Aug 2016 | CN |
106062979 | Oct 2016 | CN |
107750382 | Mar 2018 | CN |
107851712 | Mar 2018 | CN |
1345277 | Sep 2003 | EP |
3298636 | Mar 2018 | EP |
2817998 | Jun 2002 | FR |
2832542 | May 2003 | FR |
2910716 | Jun 2008 | FR |
H10-4012 | Jan 1998 | JP |
H11-120758 | Apr 1999 | JP |
H11-352867 | Dec 1999 | JP |
2001-195878 | Jul 2001 | JP |
2002-261352 | Sep 2002 | JP |
2002-357489 | Dec 2002 | JP |
2003-318461 | Nov 2003 | JP |
2005-044848 | Feb 2005 | JP |
2005-150482 | Jun 2005 | JP |
2005-535111 | Nov 2005 | JP |
4066477 | Mar 2006 | JP |
2006-128579 | May 2006 | JP |
2008-098365 | Apr 2008 | JP |
2008-524830 | Jul 2008 | JP |
2008-192832 | Aug 2008 | JP |
2009-027177 | Feb 2009 | JP |
2012-004222 | Jan 2012 | JP |
2013-012546 | Jan 2013 | JP |
2013-048210 | Mar 2013 | JP |
2013-219010 | Oct 2013 | JP |
2014-022751 | Feb 2014 | JP |
2014 039061 | Feb 2014 | JP |
5635666 | Dec 2014 | JP |
2015-002352 | Jan 2015 | JP |
2017-510989 | Apr 2017 | JP |
2017-527097 | Sep 2017 | JP |
2017-532752 | Nov 2017 | JP |
10-2014-0115246 | Sep 2014 | KR |
10-2015-0016162 | Feb 2015 | KR |
WO 2009080636 | Jul 2009 | WO |
WO 2011005484 | Jan 2011 | WO |
WO 2013027406 | Feb 2013 | WO |
WO 2014062681 | Apr 2014 | WO |
WO 2015153142 | Oct 2015 | WO |
WO 2016011435 | Jan 2016 | WO |
WO 2016014326 | Jan 2016 | WO |
WO 2016048603 | Mar 2016 | WO |
WO 2016171800 | Oct 2016 | WO |
WO 2016171920 | Oct 2016 | WO |
WO 2016204835 | Dec 2016 | WO |
WO 2017019134 | Feb 2017 | WO |
WO 2017030647 | Feb 2017 | WO |
WO 2017131894 | Aug 2017 | WO |
WO 2017151735 | Sep 2017 | WO |
Entry |
---|
NonFinal Office Action dated Jan. 15, 2019 in U.S. Appl. No. 15/862,788. |
Final Office Action dated Jul. 9, 2015 in U.S. Appl. No. 14/242,419; 19 pages. |
Final Office Action dated Jun. 9, 2017 in U.S. Appl. No. 14/814,038; 19 pages. |
Final Office Action dated Aug. 2, 2018 in U.S. Appl. No. 15/674,620. |
NonFinal Office Action dated Mar. 20, 2015 in U.S. Appl. No. 14/242,419; 18 pages. |
NonFinal Office Action dated Sep. 11, 2015 in U.S. Appl. No. 14/492,943; 13 pages. |
NonFinal Office Action dated Jan. 20, 2016 in U.S. Appl. No. 14/242,419; 17 pages. |
NonFinal Office Action dated Dec. 9, 2017 in U.S. Appl. No. 14/866,359; 26 pages. |
NonFinal Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/093,367; 13 pages. |
NonFinal Office Action dated Jan. 25, 2017 in U.S. Appl. No. 15/097,576; 17 pages. |
NonFinal Office Action dated Feb. 6, 2017 in U.S. Appl. No. 14/814,036; 22 pages. |
NonFinal Office Action dated Jun. 29, 2018 in U.S. Appl. No. 15/859,381. |
Nonfinal Office Action dated Jun. 26, 2018 in U.S. Appl. No. 15/859,384. |
NonFinal Office Action dated Jun. 29, 2018 in U.S. Appl. No. 15/859,374. |
Notice of Allowance dated Sep. 26, 2018 in U.S. Appl. No. 15/859,047; 10 pages. |
Notice of Allowance dated Oct. 24, 2018 in U.S. Appl. No. 15/859,517. |
Office Action dated Aug. 30, 2018 in Chinese Patent Application No. 201580009984.2. |
Office Action dated Oct. 9, 2018 in Japanese Patent Application No. 2016-526761. |
Berger et al.; U.S. Appl. No. 15/174,482, filed Jun. 6, 2016, entitled “Method and Apparatus for Bipolar Memory Write-Verify”. |
Bozdag et al.; U.S. Appl. No. 15/859,047, filed Dec. 29, 2017, entitled “Three-Terminal MRAM with AC Write-Assist for Low Read Disturb”. |
El Baraji et al.; U.S. Appl. No. 15/859,514, filed Dec. 30, 2017, entitled “Microwave Write-Assist in Orthogonal STT-MRAM”. |
El Baraji et al.; U.S. Appl. No. 15/859,517, filed Dec. 30, 2017, entitled “Microwave Write-Assist in Series-Interconnected Orthogonal STT-MRAM Devices”. |
Gajek et al.; U.S. Appl. No. 15/858,988, filed Dec. 29, 2017, entitled “Self-Generating AC Current Assist in Orthogonal STT-MRAM”. |
Ikeda et al.; “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction”; Nature Materials, vol. 9, Sep. 2010; pp. 721-724 (4 pages). |
International Search Report and Written Opinion dated Jul. 10, 2015 in PCT/US2015/021580; 12 pages. |
International Search Report and Written Opinion dated Oct. 30, 2015 in PCT/US2015/040700; 11 pages. |
International Search Report and Written Opinion dated Dec. 14, 2015 in PCT/US2015/047875; 13 pages. |
International Search Report and Written Opinion datedJun. 17, 2016 in PCT/US2016/021324; 9 pages. |
International Search Report and Written Opinion dated Jun. 17, 2016 in PCT/US2016/021691; 9 pages. |
International Search Report and Written Opinion dated Jul. 15, 2016 in PCT/US2016/026473; 9 pages. |
International Search Report and Written Opinion dated Jul. 21, 2016 in PCT/US2016/027445; 10 pages. |
International Search Report and Written Opinion dated Sep. 26, 2016 in PCT/US2016/037843; 10 pages. |
International Search Report and Written Opinion dated Apr. 7, 2017 in PCT/US2016/067444; 13 pages. |
International Search Report and Written Opinion dated May 10, 2018 in PCT/US2018/014645; 14 pages. |
International Search Report and Written Opinion dated May 30, 2018 in PCT/US2018/014641; 13 pages. |
Kardasz et al.; U.S. Appl. No. 14/866,359, filed Sep. 25, 2015 entitled “Spin Transfer Torque Structure for MRAM Devices Having a Spin Current Injection Capping Layer”. |
Kardasz et al.; U.S. Appl. No. 15/091,853, filed Apr. 6, 2016, entitled “High Annealing Temperature Perpendicular Magnetic Anisotropy Structure for Magnetic Random Access Memory”. |
Kardasz et al.; U.S. Appl. No. 15/657,498, filed Jul. 24, 2017, entitled “Spin Transfer Torque Structure for MRAM Devices Having a Spin Current Injection Capping Layer”. |
Kent et al.; U.S. Appl. No. 61/715,111, filed Oct. 17, 2012, entitled “Inverted Orthogonal Spin Transfer Layer Stack”. |
Koch et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”; Physical Review Letters; The American Physical Society; vol. 84, No. 23; Jun. 5, 2000, pp. 5419-5422 (4 pages). |
Lee et al., “Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer”; Applied Physics Letters; American Institute of Physics; vol. 86, (2005); pp. 022505-1 to 022505-3 (3 pages). |
“Magnetic Technology Sprintronics, Media and Interface”; Data Storage Institute, R&D Highlights; Sep. 2010; 3 pages. |
Martens et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”; NSF grants PHY-0351964 (DLS); 2005; 11 pages. |
Martens et al., “Magnetic Reversal in Nanoscopic Ferromagnetic Rings”; NSF grants PHY-0351964 (DLS); 2006; 23 pages. |
Notice of Allowance dated Jul. 27, 2017 in U.S. Appl. No. 15/097,576; 22 pages. |
Notice of Allowance dated Oct. 16, 2017 in U.S. Appl. No. 14/814,036; 16 pages. |
Pinarbasi et al.; U.S. Appl. No. 14/341,185, filed Jul. 25, 2014, entitled “Method for Manufacturing MTJ Memory Device”. |
Pinarbasi et al.; U.S. Appl. No. 14/492,943, filed Sep. 22, 2014, entitled “Magnetic Tunnel Junction Structure for MRAM Device”. |
Pinarbasi et al.; U.S. Appl. No. 14/814,036, filed Jul. 30, 2015, entitled “Precessional Spin Current Structure for MRAM”. |
Pinarbasi et al.; U.S. Appl. No. 15/041,325, filed Feb. 11, 2016, entitled “Method for Manufacturing MTJ Memory Device”. |
Pinarbasi et al.; U.S. Appl. No. 15/093,367, filed Apr. 7, 2016, entitled “Magnetic Tunnel Junction Structure for MRAM Device”. |
Pinarbasi et al.; U.S. Appl. No. 15/097,576, filed Apr. 13, 2016, entitled “Polishing Stop Layer(s) for Processing Arrays of Semiconductor Elements”. |
Pinarbasi et al.; U.S. Appl. No. 15/157,783, filed May 18, 2016, entitled “Memory Cell Having Magnetic Tunnel Junction and Thermal Stability Enhancement Layer”. |
Pinarbasi et al.; U.S. Appl. No. 15/445,260, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”. |
Pinarbasi et al.; U.S. Appl. No. 15/445,362, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”. |
Pinarbasi et al.; U.S. Appl. No. 15/656,398, filed Jul. 21, 2017, entitled “Memory Cell Having Magnetic Tunnel Junction and Thermal Stability Enhancement Layer”. |
Pinarbasi et al.; U.S. Appl. No. 15/674,620, filed Aug. 11, 2017, entitled “Polishing Stop Layer(s) for Processing Arrays of Semiconductor Elements”. |
Ryan et al.; U.S. Appl. No. 15/859,015, filed Dec. 29, 2017, entitled “Shared Oscillator (STNO) for MRAM Array Write-Assist in Orthogonal STT-MRAM”. |
Pinarbasi et al.; U.S. Appl. No. 15/794,871, filed Oct. 26, 2017, entitled “Precessional Spin Current Structure for MRAM ”. |
Seo et al.; “Current-induced synchronized switching of magnetization;” Applied Physics Letters 101; 2012 American Institute of Physics; Aug. 7, 2012; 6 pages. |
Notice of Allowance dated Apr. 21, 2017 in U.S. Appl. No. 15/157,783; 36 pages. |
Schabes et al.; U.S. Appl. No. 15/634,629, filed Jun. 27, 2017, entitled “MRAM with Reduced Stray Magnetic Fields”. |
Schabes et al.; U.S. Appl. No. 15/862,788, filed Jan. 5, 2018, entitled “Perpendicular Magnetic Tunnel Junction Device with Skyrmionic Enhancement Layers for the Precessional Spin Current Magnetic Layer”. |
Schabes et al.; U.S. Appl. No. 15/859,384, filed Dec. 30, 2017, entitled “Perpendicular Magnetic Tunnel Junction Device with Skyrmionic Assist Layers for Free Layer Switching”. |
Schabes et al.; U.S. Appl. No. 15/859,381, filed Dec. 30, 2017, entitled Perpendicular Magnetic Tunnel Junction Device with Precessional Spin Current Layer Having a Modulated Moment Density. |
Schabes et al.; U.S. Appl. No. 15/859,379, filed Dec. 30, 2017, entitled “Perpendicular Magnetic Tunnel Junction Device with Offset Precessional Spin Current Layer”. |
Schabes et al.; U.S. Appl. No. 15/859,374, filed Dec. 30, 2017, entitled “Switching and Stability Control for Perpendicular Magnetic Tunnel Junction Device”. |
Tzoufras et al.; U.S. Appl. No. 15/858,950, filed Dec. 29, 2017, entitled “AC Current Pre-Charge Write-Assist in Orthogonal STT-MRAM”. |
Tzoufras et al.; U.S. Appl. No. 15/859,030, filed Dec. 29, 2017, entitled “AC Current Write-Assist in Orthogonal STT-MRAM”. |
Final Office Action dated Nov. 8, 2018 in U.S. Appl. No. 15/445,260. |
Final Office Action dated Nov. 16, 2018 in U.S. Appl. No. 15/445,362. |
Final Office Action dated Dec. 13, 2018 in U.S. Appl. No. 15/091,853. |
NonFinal Office Action dated Nov. 23, 2018 in U.S. Appl. No. 15/859,384. |
NonFinal Office Action dated Nov. 26, 2018 in U.S. Appl. No. 15/858,950. |
Notice of Allowance dated Nov. 9, 2018 in U.S. Appl. No. 15/859,015. |
Notice of Allowance mailed Nov. 21, 2018 in U.S. Appl. No. 15/859,030. |
Notice of Allowance dated Nov. 21, 2018 in U.S. Appl. No. 15/859,374. |
Notice of Allowance dated Nov. 30, 2018 in U.S. Appl. No. 15/859,514. |
Notice of Allowance dated Dec. 12, 2018 in U.S. Appl. No. 15/858,988. |
Extended European Search Report dated Jan. 30, 2019 in EU Application No. 16812075.6. |
NonFinal Office Action dated Mar. 22, 2019 in U.S. Appl. No. 16/027,739. |
NonFinal Office Action dated Jun. 25, 2019 in U.S. Appl. No. 16/197,622. |
NonFinal Office Action dated Aug. 15, 2019 in U.S. Appl. No. 15/674,620. |
NonFinal Office Action dated Sep. 4, 2019 in U.S. Appl. No. 15/445,260. |
NonFinal Office Action dated Sep. 16, 2019 in U.S. Appl. No. 15/445,362. |
Notice of Allowance dated Feb. 12, 2019 in U.S. Appl. No. 15/859,381. |
Notice of Allowance dated Mar. 21, 2019 in U.S. Appl. No. 15/858,950. |
Notice of Allowance dated Jun. 26, 2019 in U.S. Appl. No. 15/091,853. |
Office Action dated Jul. 23, 2019 in Japanese Patent Application No. 2016-529428 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20190006582 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62287994 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15656398 | Jul 2017 | US |
Child | 16123663 | US | |
Parent | 15157783 | May 2016 | US |
Child | 15656398 | US |