1. Field of the Invention
The present invention relates generally to the configuration and methods for manufacturing an image display system implemented with a micro electromechanical system (MEMS) device functioning as a spatial light modulator (SLM). More particularly, this invention relates to a technology used for packaging a MEMS device provided with electrical connections and optical configurations suitable to operate in the image display system.
2. Description of the Related Art
After the dominance of CRT technology in the display industry for over 100 years, Flat Panel Display (FPD) and Projection Display have gained popularity because of their space efficiency and larger screen size. Projection displays using micro-display technology are gaining popularity among consumers because of their high picture quality and lower cost. There are two types of micro-displays used for projection displays in the market. One is micro-LCD (Liquid Crystal Display) and the other is micro-mirror technology. Because a micro-mirror device uses un-polarized light, it produces better brightness than micro-LCD, which uses polarized light.
Although significant advances have been made in technologies of implementing electromechanical micro-mirror devices as spatial light modulators, there are still limitations in their high quality images display. Specifically, when display images are digitally controlled, image quality is adversely due to an insufficient number of gray scales.
Electromechanical micro-mirror devices have drawn considerable interest because of their application as spatial light modulators (SLMs). A spatial light modulator requires an array of a relatively large number of micro-mirror devices. In general, the number of required devices ranges from 60,000 to several million for each SLM. Referring to
The on-and-off states of the micromirror control scheme, as that implemented in the U.S. Pat. No. 5,214,420 and in most conventional display systems, impose a limitation on the quality of the display. Specifically, applying the conventional configuration of a control circuit limits the gray scale gradations produced in a conventional system (PWM between ON and OFF states), limited by the LSB (least significant bit, or the least pulse width). Due to the ON-OFF states implemented in the conventional systems, there is no way of providing a shorter pulse width than the duration represented by the LSB. The least intensity of light, which determines the gray scale, is the light reflected during the least pulse width. The limited levels of the gray scale lead to a degradation of the display image.
Specifically,
The control circuit, as illustrated in
For example, assuming n bits of gray scales, one time frame is divided into 2n−1 equal time periods. For a 16.7-millisecond frame period and n-bit intensity values, the time period is 16.7/(2n−1) milliseconds.
Having established these times for each pixel of each frame, pixel intensities are quantified such that black is a 0 time period, the intensity level represented by the LSB is 1 time period, and the maximum brightness is 2n−1 time periods. Each pixel's quantified intensity determines its ON-time during a time frame. Thus, during a time frame, each pixel with a quantified value of more than 0 is ON for the number of time periods that correspond to its intensity. The viewer's eye integrates the pixel brightness so that the image appears the same as if it were generated with analog levels of light.
For controlling deflectable mirror devices, the PWM applies data to be formatted into “bit-planes”, with each bit-plane corresponding to a bit weight of the intensity of light. Thus, if the brightness of each pixel is represented by an n-bit value, each frame of data has the n-bit-planes. Then, each bit-plane has a 0 or 1 value for each mirror element. According to the PWM control scheme described in the preceding paragraphs, each bit-plane is independently loaded and the mirror elements are controlled according to bit-plane values corresponding to the value of each bit during one frame. Specifically, the bit-plane according to the LSB of each pixel is displayed for 1 time period.
Micro-electromechanical system (MEMS) devices, such as the above described micromirror device, tend to be sensitive to external environmental conditions, including temperature, humidity, fine particle dust, vibration, and shock. Therefore, a MEMS device requires a MEMS package to protect the device and so that it can operate normally. Many patents related to such a MEMS package have been disclosed.
With the situation as described above in mind, the present invention aims at providing a MEMS package simply configured by eliminating a dedicated spacer member used for securing the distance between the MEMS device and window substrate.
A first embodiment of the present invention is an image projection system comprises a micro-electromechanical system (MEMS) package wherein the MEMS package further includes: a first substrate and a second substrate joined together at a joinder surface applied with a joinder material thereon to provide an internal space to contain and package a MEMS device therein, wherein at least one of the first and second substrate is configured to have a an inclined surface near the joinder surface.
In another embodiment, the present invention discloses a method for manufacturing an image display device by implementing a micro-electromechanical system (MEMS) device contained in a package formed by joining together two substrates, the method comprising: forming an inclined surface on at least one of the two substrates; depositing a joinder material on a joinder surface near the inclined surface, joining together the two substrates to form a joined substrate by placing one of the substrates onto the joinder surface f another substrate deposited with the joinder material; and applying a dicing process to divide the joined substrate into individual MEMS packages.
The present invention is described in detail below with reference to the following Figures.
The following is a description, in detail, of the preferred embodiment of the present invention with reference to the accompanying drawings.
As exemplified in
The following is a brief description of the role of an individual constituent component.
To begin with, the MEMS device 100 is the object of the packaging and is, for example, a micromirror device in which a plurality of micromirror elements is arranged in an array (simply noted as “arrayed” hereinafter).
The micromirror device is a kind of spatial light modulator used for an image display apparatus and is capable of deflecting an illumination light incident from a light source using micromirror elements corresponding to the respective pixels of an image, thereby projecting a desired image.
Each micromirror element includes a mirror supported by an elastic hinge. The mirror is tilted by an electrostatic force generated between the mirror and an electrode placed under the mirror, in accordance with an electric signal from an external control circuit. The tilt angle of the mirror is, for example, between −12 degrees and +12 degrees, with the initial state of the mirror being zero (“0”) degrees. In this case, when the tilt angle of the mirror is +12 degrees, the mirror is in an ON state, deflecting the illumination light in the direction of a projection optical system. When the tilt angle of the mirror is −12 degrees, the mirror is in an OFF state, deflecting the illumination light away from the projection optical system.
The MEMS device 100 is positioned on the package substrate 110. The package substrate 110 includes a cavity for placing the MEMS device 100 and an inclined surface 120 used for joining the window substrate 200. A metalized layer 160, which is used for joining together the MEMS device 100 and package substrate 110, is formed inside of the cavity. The MEMS device 100 may be joined onto the metalized layer 160 by soldering. Alternatively, an adhesive, such as an epoxy-series adhesive and an ultraviolet hardening adhesive, and a low-melting point glass such as a fritted glass may be used for joining the MEMS device 100. Meanwhile, the cavity as shown in the figure is not necessarily required, and the MEMS device 100 may be placed instead within a step formed by the inclined surface 120.
The electrical connection unit 130 is formed as a pattern on the package substrate 110 and is utilized for securing an electrical connection between the inside and outside of the package. An internal electrode pad 131, used as the electrical connection point to the MEMS device 100, and an external electrode pad 132, used as the electrical connection point to the device external to the MEMS package 1000, are equipped on both sides of the electrical connection unit 130. In addition, the electrical connection unit 130 also radiates the heat from inside of the package to the outside. Alternatively, a thermal conductive member may be equipped, in addition to the electrical connection unit 130, so as to separate the function of electrical connection from that of heat transfer. These members are preferably made of aluminum, copper, gold, silver, tungsten magnesium, titanium, and the like.
The bonding wire 150 is a wire used to connect the electrode pad equipped on the top surface of the device substrate 101 of the MEMS device 100 to the internal electrode pad 131 equipped on the electrical connection unit 130. The bonding wire 150 secures the electrical connection between the device substrate 101 and electrical connection unit 130 and also conducts the heat of the device substrate 101. Also in this comprisal, a thermal conduction-use member may be separately placed, or the heat may be conducted by way of the above described metalized layer 160.
The window substrate 200 is joined to the package substrate 110 and is an optically transparent substrate tightly sealing the inside of the package. An anti-reflection coating is applied, commonly with MgF2, to the surface of the window substrate 200 in order to prevent extraneous light from influencing the display image. In addition to the reflection prevention method utilizing the difference in the refractive indexes of the MgF2, a method of preventing reflection by forming a fine micro-structure with pitch between the structural elements less than the wavelength of light has been recently proposed. While having a function as the gateway, i.e., the entrance and exit, for the light to and from the MEMS device 100, the window substrate 200 has the primary function of protecting the MEMS device 100 from dust and debris, which is generated in the substrate dicing process.
A joinder material 140 is placed on the inclined surface 120 of the package substrate 110. The joinder material 140 joins together the package substrate 110 and window substrate 200 without intervening directly on the joinder surface.
Note that while the configuration shown in
Note that the present specification document labels the contact surface between the package substrate 110 or window substrate 200 and the joinder material 140 as the “adhesion surface” and further labels the contact surface between the package substrate 110 and the window substrate 200 as the “joinder surface”.
Next is a description of the production process of the MEMS package 1000 according to the present embodiment.
First, in step S101, a package substrate 110 is prepared (refer to
In S102, the inclined surface 120 is formed on the prepared package substrate 110 (refer to
In S103, a cavity for placing the MEMS device 100 between the two protrusion parts that have been formed in S102 is formed (refer to
In S104, a thin, electric conductive film is formed on the package substrate 110 as the precursor to forming the electrical connection unit 130 (refer to
In S105, the film formed in S104 is etched to form the pattern of the electrical connection unit 130 (refer to
Note that the protrusion part plays the role of a spacer used for supporting the window substrate 200 while maintaining the distance between itself and the MEMS device 100, as described above. Therefore, the side surfaces of the protrusion part may be configured to be a vertical surface. The MEMS package 1000 according to the present embodiment, however, is configured to form the side surface of the protrusion part as an inclined surface 120. The reason for it is to ease the transfer of the pattern onto the side surface.
Meanwhile, the height of the protrusion part is preferably as small as possible, since a variation in the distance between the mask and electrical connection unit 130 increases with the height of the protrusion part, thus decreasing the accuracy of transfer and of the pattern.
Next, in S106, a metalized layer 160 used for joining the MEMS device 100 onto the bottom surface of the cavity is formed (refer to
In S107, the MEMS device 100 is joined onto the metalized layer 160 using a solder (refer to
In S108, an environment adjustment material 170 is placed inside of the cavity (refer to
The last step, S108, is a wire bonding process. The electrode pad equipped on the top surface of the device substrate 101 is connected to an internal electrode pad 131 (not shown in drawing) equipped on the electrical connection unit 130 using the bonding wire 150 (refer to
The following description labels the product, resulting from the above described processes in which the MEMS device 100 is placed on the package substrate 110 and the electrical connection unit 130 is formed, as the package substrate assembly 180.
Note that the initial form of the package substrate 110 is flat. However, this is arbitrary. Alternatively, a package substrate 110, for which a protrusion part is already formed by a molding or a sintering, may be prepared in S101. In such a case, the process for forming the inclined surface 120 (in S102) may be eliminated.
Further,
First, in S201, an optically transparent window substrate 200 is prepared. The material of the window substrate 200 is, for example, glass. Further, the top and bottom surfaces of the window substrate 200 may be coated with an anti-reflection (AR) coating produced by vapor-depositing magnesium fluoride, or the like, so as to eliminate extraneous reflection.
In S202, a groove 210 is formed on the window substrate 200 (refer to
In S203, an air outlet hole 220 is bored in the window substrate 200 on an as needed basis (refer to
In S204, the joinder material 140 is placed in the groove 210 that has been formed in S202 (refer to
In S205, the package substrate assembly 180 and window substrate 200 are joined together by using the joinder material 140 (refer to
After joining the window substrate 200, the air outlet hole 220 equipped in S203 is sealed. The sealant uses fritted glass, epoxy resin, ultraviolet hardening resin, or other similar material.
In S206, the joinder material 140 spread on the inclined surface 120 is hardened to fix the joined state of the package substrate assembly 180 and window substrate 200.
Step S207 is the first stage of the dicing process, in which only the window substrate 200 is cut (refer to
Step S208 is the second stage of the dicing process, in which the package substrate 110 is cut to make a chip from the MEMS package 1000 (refer to
In S209, ball grids 190 are formed on the external electrode pad 132 of the electrical connection unit 130 in order to connect to an external device (refer to
Lastly in S210, the operation testing on each MEMS package 1000 is performed. This process completes the production process for the MEMS package 1000. The MEMS package 1000 according to the present embodiment is produced by the above described process.
Note that the joinder material 140 is deposited on the window substrate 200 in
Further, if the MEMS device 100 is a micromirror device, the design of the inclined surface 120 needs to take into consideration the reflection of the illumination light incident to the inclined surface 120, as shown in
The MEMS package 1000 according to the present embodiment is configured to form the protrusion part on the package substrate 110, thereby eliminating a spacer that is conventionally provided as a separate member from the substrate to secure the distance between the MEMS device 100 and window substrate 200. This configuration makes it possible to decrease the number of components and reduce the cost related to producing the package.
Further, the MEMS package 1000 according to the present embodiment is configured to form the side surface of a protrusion part as the inclined surface 120 and utilize it as the adhesion surface for the joinder material 140. This configuration separates the joinder surface from the adhesion surface. Since the joinder material 140 is not on the joinder surface, the distance between the MEMS device 100 and window substrate 200 can be accurately maintained. As a result, the top surface of the window substrate 200 can also be utilized as the surface for positioning the optical axis direction.
Further, the MEMS package 1000 according to the present embodiment is configured to use the inclined surface 120 as an adhesion surface, thereby making it possible to enlarge the area in which the joinder material 140 comes into contact with the package substrate 110. This configuration makes it possible to attain a strong joinder.
The MEMS package 1000 according to the present embodiment is configured to equip the window substrate 200 with the groove 210 used for positioning when depositing the joinder material 140. Further, the inclined surface 120 of the package substrate 110 makes it possible to manage the direction of the joinder material 140 spreading. This configuration stabilizes the positioning of the joinder material 140, making it possible to minimize variation in the joinder state between individual components.
As shown in
Note that the material used for the light-blocking layer 230 may vary and may be selected in consideration of cost, durability, productivity, or other factors. Specifically, the material may be, for example, metallic thin film, painted film, resin film or a composite of them.
Further, the method for forming the light-blocking layer 230 may also vary. Possible methods includes a sputtering method, a vacuum deposition method, a screen printing method, and a method of adhesively attaching a separately produced light-blocking member onto a window substrate 200.
As described above, in addition to deriving the benefits of the first embodiment, the present embodiment prevents an increase in the temperature inside of the package caused by extraneous light entering the package and also prevents degradation in the contrast of an image due to extraneous light incident to the projection optical system.
The present embodiment is configured to join the package substrate assembly 180 and window substrate 200 using the joinder material 140 placed on the inside inclined surface 121 within the package.
As such, the present embodiment provides similar benefits as the first embodiment. Furthermore, modifications similar to the second embodiment can also be applied to the present embodiment.
By substituting a black, opaque adhesive for the joinder material 140, reflection of extraneous light coming from the nearby surface of the micromirror device inside of the package can be prevented, and thus a further benefit is realized.
The present embodiment is configured to deposit the joinder material 140 inside of the package, as in the case of the third embodiment, and the joinder material 140 is deposited so that it spreads to the bonding wires 150. As a result, the bonding wires 150 are sealed by the joinder material 140, which is the difference from the third embodiment.
As such, in addition to deriving the benefits of the third embodiment, the present embodiment prevents the bonding wire 150 from peeling off or from contacting the window substrate 200, and also prevents extraneous light caused by the bonding wire 150. Furthermore, a modification that is similar to the second embodiment can also be applied to the present embodiment.
The present embodiment is configured to place a joinder material 140 on the inside inclined surface 121, in addition to the outside inclined surface 122, as shown in
Note that, for the present embodiment, the joinder material 140 may be initially deposited on both the inside inclined surface 121 and the outside inclined surface 122, or may initially be deposited on the flat part on top of the protrusion part. If the joinder material 140 is placed on the flat part, the two substrates are pressed together with sufficient pressure to spread the joinder material 140 over both inclined surfaces 120, so as to prevent the joinder material 140 from remaining on the flat part after the joinder material 140 is hardened.
As such, the present embodiment is configured to expand the adhesion surface area, thereby making it possible to strengthen the adhesion between the package substrate assembly 180 and window substrate 200, while also deriving the benefits of the first embodiment. Furthermore, a modification that is similar to the second embodiment can also be applied to the present embodiment.
The present embodiment is configured such that the side surfaces of the protrusion part formed on the package substrate 110 is concavely curved, instead of being a flat surface. This difference increases the surface area of the outside inclined surface 122 (i.e., the inclined surface 120) to be utilized as an adhesion surface.
As such, the present embodiment makes it possible to more strongly join together the package substrate assembly 180 and window substrate 200 by virtue of the expanded adhesion surface area, while deriving the benefits of the first embodiment. Furthermore, a modification that is similar to the second embodiment can also be applied to the present embodiment.
Note that the side surface of the protrusion part formed on the package substrate 110 may alternatively be convexly curved, in contrast to the configuration shown in
The present embodiment is configured to form two straight-line protrusion parts on both sides of the cavity part, as shown in
As such, in the present embodiment, there are actually four adhesion surfaces on the package substrate 110, i.e., two for both sides of the cavity part. This configuration provides a more stable adhesion between the package substrate assembly 180 and the window substrate 200, while also deriving the benefits of the first embodiment. The number of protrusion parts is arbitrary, and the forming of a plurality thereof makes it possible to derive a similar benefit. Furthermore, a modification that is similar to the second embodiment can also be applied to the present embodiment.
As shown in
As such, while also realizing the benefits of the seventh embodiment, the present embodiment is configured to enlarge the adhesion surface area, thereby providing a stronger adhesion between the package substrate assembly 180 and window substrate 200. Furthermore, a modification that is similar to the second embodiment can also be applied to the present embodiment.
The present embodiment is configured to form a step having only one inclined surface 120 on the package substrate 110, instead of a protrusion part with two inclined surfaces, as in the first embodiment. Further, the joinder material 140 is placed on the inclined surface 120 that forms the step. Such a change makes it possible to simplify the processing of the package substrate 110.
Further, in the present embodiment there is no space between the package substrate 110 and window substrate 200 on the outside of the package. Therefore, it is necessary to apply a dicing process to the window substrate 200 before the substrates are joined together, unlike the case of the first embodiment. In this case, it is possible to obtain a larger number of window substrates 200 from one piece of wafer than when dicing after the substrates are joined together, decreasing the unit price of the component associated with the window substrate 200.
As such, the present embodiment also provides similar benefits as the first embodiment. Further, a modification that is similar to the second embodiment can also be applied to the present embodiment.
The present embodiment is configured to deposit the joinder material 140 outside of the package. Such a change makes it possible to deposit the joinder material 140 after the package substrate 110 and window substrate 200 are in contact with each other. Note that in this case, a dicing process needs to be applied to the window substrate 200 before the substrates are joined together.
The present embodiment also makes it possible to eliminate the spacer member, thus reducing the cost related to producing the package since there is a decrease in the number of components.
In addition, in this embodiment, there is no joinder material 140 on the surface between the package substrate 110 and window substrate 200, and therefore, the distance between the MEMS device 100 and window substrate 200 can be accurately secured. This, in turn, prevents problems, such as the bonding wire 150 coming in contact with the window substrate 200. Further, the present embodiment may equip a light-blocking layer 230 on the window substrate 200.
The present embodiment is configured with a two-stage step having two inclined surfaces 120 on the package substrate 110, in place of the protrusion part in the first embodiment. Further, the window substrate 200 is supported by part of the flat surface between the two inclined surfaces 120, and the joinder material 140 is deposited on the other part of the flat surface. Such a change makes it possible to deposit the joinder material 140 after placing the window substrate 200 on the package substrate 110. Further, the joinder material 140 is actually surrounded by three surfaces: the flat surface formed between the two inclined surfaces 120, the side surface of the window substrate 200 and the upper inclined surface 120. This configuration makes it possible to stabilize the placement position of the joinder material 140 and to secure a larger surface area for adhesion.
The present embodiment is further configured to bury the window substrate 200 in the package substrate 110. Therefore, it is necessary to apply a dicing process to the window substrate 200 before the substrates are joined, unlike the case of the first embodiment. In this case, it is possible to obtain a larger number of window substrates 200 from one piece of wafer than when dicing the window substrate 200 after the substrates are joined together, decreasing the unit price of components associated with the window substrate 200.
As described above, also the present embodiment eliminates the spacer member and decreases the number of components, thereby making it possible to reduce the cost related to producing the package.
In addition, there is no joinder material 140 intervening on the surface between the package substrate 110 and window substrate 200, and therefore, the distance between the MEMS device 100 and window substrate 200 can be accurately secured. This, in turn, prevents problems such as the bonding wire 150 contacting the window substrate 200. Further, increasing the adhesion surface area makes it possible to more securely and adhesively join together the package substrate assembly 180 and window substrate 200. Also, the present embodiment may equip a light-blocking layer 230 on the window substrate 200. Note that the present embodiment may also be applied to a configuration in which wireless bonding is employed.
The present embodiment is configured to form a step having only one inclined surface 120 on the package substrate 110, as shown in
Further, electrical connection units 130 are placed in two areas, on a flat surface, including the internal electrode pad 131, on the top surface of the package substrate 110 and on a flat surface of the bottom surface (i.e., the surface to which the window substrate 200 is not joined) of the package substrate 110. The electrical connection between the electrical connection unit 130 inside of the package and the electrical connection unit 130 outside of the package is secured through a hole 195 near the internal electrode pad 131. In this configuration, the electrical connection unit 130 is formed only on flat surfaces, improving the transfer accuracy of a mask when forming the electrical connection unit 130 and improving the pattern accuracy of the electrical connection unit as a result.
Further, in the present embodiment, there is no space between the package substrate 110 and window substrate 200 on the outside of the package, unlike the case of the first embodiment. However, there is no electrical connection unit 130 intervening between the package substrate 110 and window substrate 200 and therefore, even if the package substrate 110 and window substrate 200 are joined together, there is no possibility of damaging the electrical connection unit 130 when a dicing process is applied to the window substrate 200. Therefore, the package substrate 110 and window substrate 200 can be joined together in units of wafer, as in the case of the first embodiment, and thereby, the production process can be simplified.
As such, the present embodiment provides similar benefits as the first embodiment. Further, a modification similar to that of the second embodiment can also be applied to the present embodiment.
The present invention is configured to eliminate a dedicated spacer member used for securing the distance between a MEMS device and a window substrate, thereby enabling a more simply configured MEMS package.
Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after reading the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention.
This application is a non-provisional application of a Provisional Application 61/197,717 and claims a Priority Date of Oct. 30, 2008. This application is also a Continuation-in-Part (CIP) application of a co-pending application Ser. No. 12/231,922 filed on Sep. 5, 2008 by common Applicants of this patent application. The application Ser. No. 12/231,922 is a non-provisional application of a U.S. Patent Provisional Application No. 60/967,811 filed on Sep. 6, 2007. The patent application Ser. No. 12/231,922 is a Continuation In Part (CIP) application of a pending U.S. patent application Ser. No. 11/121,543 filed on May 4, 2005 issued into U.S. Pat. No. 7,268,932. The application Ser. No. 12/231,922 is also a Continuation In Part (CIP) application of three previously filed applications. These three applications are 10/698,620 filed on Nov. 1, 2003, 10/699,140 filed on Nov. 1, 2003 now issued into U.S. Pat. No. 6,862,127, and 10/699,143 filed on Nov. 1, 2003 now issued into U.S. Pat. No. 6,903,860 by the Applicant of this patent applications. The disclosures made in these patent applications are hereby incorporated by reference in this patent application.
Number | Date | Country | |
---|---|---|---|
61197717 | Oct 2008 | US | |
60967811 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12231922 | Sep 2008 | US |
Child | 12589907 | US | |
Parent | 11121543 | May 2005 | US |
Child | 12231922 | US | |
Parent | 10698620 | Nov 2003 | US |
Child | 11121543 | US | |
Parent | 10699140 | Nov 2003 | US |
Child | 10698620 | US | |
Parent | 10699143 | Nov 2003 | US |
Child | 10699140 | US |