The present invention relates to microelectronic devices and more particularly to transistors, for example, metal-semiconductor field-effect transistors (MESFETs).
Electrical circuits requiring high power handling capability while operating at high frequencies such as radio frequencies, S-band and X-band have in recent years become more prevalent. Because of the increase in high power, high frequency circuits there has been a corresponding increase in demand for transistors that are capable of reliably operating at radio frequencies and above while still being capable of handling higher power loads. Previously, bipolar transistors and power metal-oxide semiconductor field effect transistors (MOSFETs) have been used for high power applications but the power handling capability of such devices may be limited at higher operating frequencies. Junction field-effect transistors (JFETs) were commonly used for high frequency applications but the power handling capability of previously known JFETs may also be limited.
Metal-semiconductor field effect transistors (MESFETs) have been developed for high frequency applications. The MESFET construction may be preferable for high frequency applications because only majority carriers carry current. The MESFET design may be preferred over MOSFET designs because the reduced gate capacitance permits faster switching times of the gate input. Therefore, although all field-effect transistors utilize only majority carriers to carry current, the Schottky gate structure of the MESFET may make the MESFET more desirable for high frequency applications.
In addition to the type of structure, and perhaps more fundamentally, the characteristics of the semiconductor material from which a transistor is formed also affects the operating parameters. Of the characteristics that affect a transistor's operating parameters, the electron mobility, saturated electron drift velocity, electric breakdown field and thermal conductivity may have the greatest effect on a transistor's high frequency and high power characteristics.
Electron mobility is the measurement of how rapidly an electron is accelerated to its saturated velocity in the presence of an electric field. In the past, semiconductor materials which have a high electron mobility were preferred because more current could be developed with a lesser field, resulting in faster response times when a field is applied. Saturated electron drift velocity is the maximum velocity that an electron can obtain in the semiconductor material. Materials with higher saturated electron drift velocities may be preferred for high frequency applications because the higher velocity translates to shorter times from source to drain.
Electric breakdown field is the field strength at which breakdown of the Schottky junction and the current through the gate of the device suddenly increases. A high electric breakdown field material may be preferred for high power, high frequency transistors because larger electric fields generally can be supported by a given dimension of material. Larger electric fields allow for faster transients as the electrons can be accelerated more quickly by larger electric fields than by smaller.
Thermal conductivity is the ability of the semiconductor material to dissipate heat. In typical operations, all transistors generate heat. In turn, high power and high frequency transistors usually generate larger amounts of heat than small signal transistors. As the temperature of the semiconductor material increases, the junction leakage currents generally increase and the current through the field effect transistor generally decreases due to a decrease in carrier mobility with an increase in temperature. Therefore, if the heat is dissipated from the semiconductor, the material will remain at a lower temperature and be capable of carrying larger currents with lower leakage currents.
High frequency MESFETs may be manufactured of n-type III-V compounds, such as gallium arsenide (GaAs) because of their high electron mobilities. Although these devices provide increased operating frequencies and moderately increased power handling capability, the relatively low breakdown voltage and the lower thermal conductivity of these materials have limited their usefulness in high power applications.
Silicon carbide (SiC) has been known for many years to have excellent physical and electronic properties which should theoretically allow production of electronic devices that can operate at higher temperatures, higher power and higher frequency than devices produced from silicon (Si) or GaAs. The high electric breakdown field of about 4×106 V/cm, high saturated electron drift velocity of about 2.0×107 cm/sec and high thermal conductivity of about 4.9 W/cm-° K indicate that SiC would be suitable for high frequency, high power applications.
MESFETs having channel layers of silicon carbide have been produced on silicon the substrates (See, e.g., U.S. Pat. No. 4,762,806 to Suzuki et al. and U.S. Pat. No. 4,757,028 to Kondoh et al.). Because the semiconductor layers of a MESFET are epitaxial, the layer upon which each epitaxial layer is grown affects the characteristics of the device. Thus, a SiC epitaxial layer grown on a Si substrate generally has different electrical and thermal characteristics then a SiC epitaxial layer grown on a different substrate. Although the SiC on Si substrate devices described in U.S. Pat. Nos. 4,762,806 and 4,757,028 may have exhibited improved thermal characteristics, the use of a Si substrate generally limits the ability of such devices to dissipate heat. Furthermore, the growth of SiC on Si generally results in defects in the epitaxial layers that result in high leakage current when the device is in operation.
Other MESFETs have been developed using SiC substrates. U.S. patent application Ser. No. 07/540,488 filed Jun. 19, 1990 and now abandoned, the disclosure of which is incorporated entirely herein by reference, describes a SiC MESFET having epitaxial layers of SiC grown on a SiC substrate. These devices exhibited improved thermal characteristics over previous devices because of the improved crystal quality of the epitaxial layers grown on SiC substrates. However, to obtain high power and high frequency it may be necessary to overcome the limitations of SiC's lower electron mobility.
Similarly, commonly assigned U.S. Pat. No. 5,270,554 to Palmour describes a SiC MESFET having source and drain contact formed on n+ regions of SiC and an optional lightly doped epitaxial layer between the substrate and the n-type layer in which the channel is formed. U.S. Pat. No. 5,925,895 to Sriram et al. also describes a SiC MESFET and a structure that is described as overcoming “surface effects” which may reduce the performance of the MESFET for high frequency operation. Sriram et al. also describes SiC MESFETs that use n+ source and drain contact regions as well as a p-type buffer layer. SiC MESFETs are also discussed in commonly assigned U.S. Pat. No. 6,686,616 to Allen et al.
Furthermore, conventional SiC FET structures may provide constant characteristics during the entire operating range of the FET, i.e. from fully open channel to near pinch-off voltage, by using a very thin, highly doped channel (a delta doped channel) offset from the gate by a lightly doped region of similar conductivity type. Delta doped channels are discussed in detail in an article by Yokogawa et al. entitled Electronic Properties of Nitrogen Delta-Doped Silicon Carbide Layers, MRS Fall Symposium, 2000 and an article by Konstantinov et al. entitled Investigation of Lo-Hi-Lo and Delta Doped Silicon Carbide Structure, MRS Fall Symposium, 2000. However, further improvements may be made in SiC MESFETs.
For example, as discussed above, SiC MESFETs may be desirable for use in applications that require RF power amplifiers with very high output power (˜1 kW) in the UHF to S-band frequencies due to their high power density, high gain, high temperature operation and overall reliability. However, the periphery of the MESFET may be increased to achieve such a high power level, which may cause the device to exhibit instability due to odd mode oscillation. Conventional devices have been modified to address the issue of odd mode oscillation issue by coupling the gate and/or drain pads to one or more cells of the MESFET using resistors. However, this approach has proven relatively unsuccessful when a large number of MESFET cells are combined to achieve a very high power output. Accordingly, further improvements may be made with respect to existing SiC FET devices such that they may provide high power output with reduced odd mode oscillation.
Some embodiments of the present invention provide unit cell of a metal-semiconductor field-effect transistor (MESFET). The unit cells include a MESFET on a substrate. The MESFET has a source region, a drain region and a gate contact and the gate contact is between the source region and the drain region. The drain region is electrically coupled to the substrate through a contact via hole to the substrate.
In further embodiments of the present invention, the substrate may be an n-type substrate and the contact via hole may extend through the drain region and expose a first surface of the substrate. The substrate may be an n-type silicon carbide (SiC) substrate. First and second ohmic contacts may be provided on the source and drain regions that respectively define a source contact and a drain contact. A substrate contact may be provided on the exposed first surface of the substrate. A first overlayer may be provided in the contact via hole and may extend to the drain contact and the substrate contact. Thus, the first overlayer may electrically couple the drain contact to the substrate contact to electrically couple the drain region to the substrate.
In still further embodiments of the present invention, the substrate contact may be a non-ohmic contact. A third ohmic contact may be provided on a second surface of the substrate, opposite the first surface of the substrate, that defines a backside substrate contact. In certain embodiments of the present invention, the drain region may be electrically coupled to a drain pad and the contact via hole may be at least partially located in the drain pad.
In some embodiments of the present invention, the substrate contact may be an ohmic contact. A non-ohmic backside substrate contact may be provided on a second surface of the substrate, opposite the first surface of the substrate. A drain pad may be electrically coupled to the drain region and a wire may be provided to electrically couple the drain pad to the backside substrate contact.
In further embodiments of the present invention, the substrate may be a semi-insulating substrate or an n-type substrate and the contact via hole may extend through a first surface of the substrate to a second surface of the substrate, opposite the first surface of the substrate. In certain embodiments of the present invention, the substrate may be an n-type silicon carbide (SiC) substrate or a semi-insulating SiC substrate. First and second ohmic contacts may be provided on the source region and the drain region, respectively, that respectively define a source contact and a drain contact. A backside substrate contact may be provided on the second surface of the substrate and the contact via hole may expose a portion of the backside substrate contact. A first overlayer may be provided in the contact via hole and extend to the drain contact and the backside substrate contact. The first overlayer may electrically couple the drain contact to the backside substrate contact to electrically couple the drain region to the substrate. In certain embodiments of the present invention, the drain region may be electrically coupled to a drain pad and the contact via hole may be at least partially disposed in the drain pad.
In still further embodiments of the present invention, the substrate may have a thickness of from about 100 μm to about 400 μm. In certain embodiments of the present invention, the thickness of the substrate may be about 300 μm. An n-type conductivity channel layer may be provided on the substrate and the gate contact may be disposed on the n-type conductivity layer.
In some embodiments of the present invention, the n-type conductivity channel layer may include n-type conductivity silicon carbide (SiC) and the gate may extend into the n-type conductivity SiC channel layer. The gate contact may be disposed in a single recess or a double recess.
In further embodiments of the present invention, the contact via hole may be a first contact via hole. A p-type conductivity region may be provided beneath the source region and have an end that extends towards the drain region. The p-type conductivity region may be spaced apart from the n-type conductivity channel layer and be electrically coupled to the source region. A second contact via hole may be provided adjacent the source region that exposes the p-type conductivity region. An ohmic contact may be provided on the exposed portion of the p-type conductivity region.
In still further embodiments of the present invention, implanted n-type conductivity regions may be provided in the n-type conductivity channel layer that respectively define the source region and the drain region. The implanted n-type conductivity regions may have carrier concentrations greater than a carrier concentration of the n-type conductivity channel layer. The first and second ohmic contacts that respectively define a source contact and a drain contact may be disposed on the source region and the drain region, respectively.
In some embodiments of the present invention, a first buffer layer may be provided on the substrate and a second buffer layer may be on the first buffer layer. The n-type conductivity channel layer may be provided on the second buffer layer. The contact via hole may extend through the drain region, the n-type channel region and the first and second buffer layers to a first surface of the substrate. The contact via hole may further extend through the first surface of the substrate to a second surface of the substrate, opposite the first surface of the substrate.
In further embodiments of the present invention, the n-type conductivity channel layer may include a first n-type conductivity channel layer on the substrate and a second n-type conductivity channel layer on the first n-type conductivity channel layer. In certain embodiments of the present invention, the n-type conductivity channel layer may include first, second and third n-type conductivity SiC channel layers. The first, second and third n-type conductivity channel layers may have respective first, second and third carrier concentrations. The substrate may include n-type conductivity gallium arsenide (GaAs), semi-insulating GaAs, n-type conductivity gallium nitride (GaN) or semi-insulating GaN.
While the present invention is described above primarily with reference to MESFETs, other types of transistors as well as methods of fabricating transistors and, in particular, MESFETs are also provided.
The invention is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. It will be understood that when an element or layer is referred to as being “on”, “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Like numbers refer to like elements throughout.
It will be understood that although the terms first and second are used herein to describe various regions, layers and/or sections, these regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one region, layer or section from another region, layer or section. Thus, a first region, layer or section discussed below could be termed a second region, layer or section, and similarly, a second region, layer or section may be termed a first region, layer or section without departing from the teachings of the present invention.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used herein the term “ohmic contact” refers to contacts where an impedance associated therewith is substantially given by the relationship of Impedance=V/I, where V is a voltage across the contact and I is the current, at substantially all expected operating frequencies (i.e., the impedance associated with the ohmic contact is substantially the same at all operating frequencies) and currents.
Embodiments of the present invention will now be described in detail below with reference to
Some embodiments of the present invention will now be discussed with respect to cross-sections of MESFETs. The cross-sections discussed herein are taken along the line A-A′ of the plan view of
Referring now to
A buffer layer 12 of, for example, p-type silicon carbide may be provided on the substrate 10. The buffer layer 12 may be formed of p-type conductivity silicon carbide of 6H, 4H, 15R or 3C polytype. The buffer layer 12 may, for example, have a carrier concentration of from about 0.5×1015 cm−3 to about 3.0×1015 cm−3. Suitable dopants include aluminum, boron and/or gallium. The buffer layer 12 may have a thickness of from about 5.0 to about 10.0 μm. Although the buffer layer 12 is described above as p-type silicon carbide, embodiments of the present invention should not be limited to this configuration. Alternatively, the buffer layer 12 may be undoped silicon carbide (i.e. not intentionally doped) or very low-doped n-type conductivity silicon carbide. If a very low doped n-type silicon carbide is utilized for the buffer layer 12, the carrier concentration of the buffer layer 12 may be less than about 5.0×1014 cm−3.
As further illustrated in
The p+ region 14 is a region of p-type conductivity, for example, p-type conductivity silicon carbide. For the p+ region 14, carrier concentrations of from about 1.0×1018 cm−3 to about 1.0×1020 cm−3 may be suitable, but carrier concentrations as high as possible are preferred. The carrier concentration may not be constant throughout the p+ region 14, but it is preferable that the carrier concentration be as high as possible at the surface of the p+ region 14 to facilitate the formation of ohmic contacts thereon. In some embodiments of the present invention, the p+ conductivity region 14 may be provided in the substrate 10 instead of the buffer layer 12.
It will be understood that although embodiments of the present invention are discussed herein as being included in a device having a p+ region as discussed in United States Patent Application Publication No. 2004/0099888, filed on Nov. 26, 2003, entitled Transistors Having Buried P-Type Layers Beneath The Source Region And Methods Of Fabricating The Same, embodiments of the present invention are not limited to this configuration. For example, embodiments of the present invention may be included in MESFET devices having, for example, a p+ region that extends under both the source and the drain without departing from the scope of the present invention.
The buffer layer 12 may be disposed between the substrate 10 and a second buffer layer 16. In some embodiments of the present invention, the buffer layer 12, may be optional. The second buffer layer 16 may be, for example, p-type silicon carbide having a carrier concentration of about 5×1015 cm−3. The second buffer layer 16 may also have a thickness of from about 0.5 μm to about 1.0 μm. Although the second buffer layer 16 is described above as being of p-type conductivity silicon carbide, it will be understood that the present invention is not limited to this configuration. Alternatively, for example, the second buffer layer 16 may be of n-type conductivity, for example, very lightly doped n-type conductivity SiC or undoped SiC as discussed above with respect to first buffer layer 12. In some embodiments of the present invention, the second buffer layer 16 may be provided directly on the substrate 10.
An n-type conductivity channel layer 18 is provided on the second buffer layer 16. The n-type conductivity channel layer 18 may be formed of n-type conductivity silicon carbide of 6H, 4H, 15R or 3C polytype and may have a thickness of about 0.25 μm. The n-type conductivity channel layer may include one or more layers of, for example, n-type conductivity silicon carbide having different carrier concentrations. For example, the n-type conductivity channel layer 18 may include a first n-type conductivity channel layer 15 and a second n-type conductivity channel layer 19 as illustrated, for example, in
As further illustrated in
Ohmic contacts 26 and 22 are provided on the source and drain regions 13 and 17, respectively, and are spaced apart so as to provide the source contact 26 and the drain contact 22. An ohmic contact 27 is also provided on a first surface 10A of the substrate 10 to provide a substrate contact 27. As illustrated in
In some embodiments of the present invention, the ohmic contacts 22, 25, 26, 27 and 34 may include nickel or other suitable metals. In some embodiments of the present invention, the ohmic contacts 22, 26, 27 and 34 may be similar to contacts discussed in commonly assigned U.S. patent application Ser. No. 10/884,930 filed Jul. 6, 2004, entitled Silicon-Rich Nickel Silicide Ohmic Contacts for SiC Semiconductor Devices, the disclosure of which is incorporated herein by reference as if set forth in its entirety. An insulator layer 20, such as an oxide, may be further provided on the exposed surface of the device.
MESFETs according to some embodiments of the present invention include first and second contact via holes 52 and 42 and a first recess 43. The first recess 43 is provided between the source and drain regions 13 and 17. The first recess 43 extends into the n-type conductivity channel layer 18 and exposes the n-type conductivity channel layer 18. The first contact via hole 52 is provided on the drain region 17 and extends at least to a first surface 10A of the substrate 10 exposing at least a portion of the first surface 10A of the substrate 10. The second contact via hole 42 is provided adjacent the source region 13 and exposes at least a portion of the p+ region 14.
As further illustrated in
As illustrated in embodiments of
As further illustrated in
In selecting the dimensions of the MESFET, the width of the gate is defined as the dimension of the gate perpendicular to the flow of current. As shown in the cross-section of
Although not illustrated in
Referring now to
In embodiments of the present invention including semi-insulating substrates, the substrates 10′ may be fabricated as described in commonly assigned U.S. Pat. No. 6,218,680 to Carter et al. entitled Semi-insulating Silicon Carbide Without Vanadium Domination, the disclosure of which is hereby incorporated by reference herein as if set forth in its entirety. Such a semi-insulating substrate may be produced by providing silicon carbide substrates with sufficiently high levels of point defects and sufficiently matched levels of p-type and n-type dopants such that the resistivity of the silicon carbide substrate is dominated by the point defects. Such a domination may be accomplished by fabricating the silicon carbide substrate at elevated temperatures with source powders that have concentrations of heavy metals, transition elements or other deep level trapping elements of less than about 1×1016 cm−3 and preferably less than about 1.0×1014 cm−3. For example, temperatures between about 2360° C. and 2380° C. with the seed being about 300° C. to about 500° C. lower may be utilized. Other techniques for providing semi-insulating substrates may also be used.
As further illustrated in
As seen in
As illustrated in
As seen in
In certain embodiments, only the second buffer layer 16 and the n-type conductivity channel layer 18 may be etched to form an isolation mesa as shown in
Referring now to
As further illustrated in
As illustrated in
As illustrated in
As illustrated in
As further illustrated in
In some embodiments of the present invention, for example, embodiments of the present invention illustrated in
Referring now to
Now referring to
Referring now to
Referring now to
Although the present invention is described above with reference to SiC MESFETs, the present invention is not limited to SiC MESFETs. For example, MESFETs according to embodiments of the present invention may be, for example, gallium arsenide (GaAs) MESFETs or Gallium Nitride (GaN) MESFETs. In particular, if the present invention were described with respect to GaAs MESFETs, the p-type conductivity regions might be p-type conductivity GaAs regions, the n-type conductivity channel layers might be n-type conductivity GaAs layers and the like. Furthermore, MESFETs according to some embodiments of the present invention may be, for example, SiC MESFET MMICs, GaN HEMTs, GaN HEMT MMICs, GaAs MESFETs, GaAs MESFET MMICs, GaAs HEMTs, GaAs HEMT MMICs, GaAs pHEMTs, GaAs pHEMT MMICs and the like.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3903592 | Heckl | Sep 1975 | A |
3969745 | Blocker, III | Jul 1976 | A |
3986196 | Decker et al. | Oct 1976 | A |
4732871 | Buchmann et al. | Mar 1988 | A |
4737469 | Stevens | Apr 1988 | A |
4757028 | Kondoh et al. | Jul 1988 | A |
4762806 | Suzuki et al. | Aug 1988 | A |
4803526 | Terada et al. | Feb 1989 | A |
4897710 | Suzuki et al. | Jan 1990 | A |
4947218 | Edmond et al. | Aug 1990 | A |
5043777 | Sriram | Aug 1991 | A |
5138407 | Hirtz et al. | Aug 1992 | A |
5229625 | Suzuki et al. | Jul 1993 | A |
5264713 | Palmour | Nov 1993 | A |
5270554 | Palmour | Dec 1993 | A |
5289015 | Chirovsky et al. | Feb 1994 | A |
5300795 | Saunier et al. | Apr 1994 | A |
5306650 | O'Mara, Jr. et al. | Apr 1994 | A |
5396085 | Baliga | Mar 1995 | A |
5399883 | Baliga | Mar 1995 | A |
5510630 | Agarwal et al. | Apr 1996 | A |
5686737 | Allen | Nov 1997 | A |
5719409 | Singh et al. | Feb 1998 | A |
5742082 | Tehrani et al. | Apr 1998 | A |
5869856 | Kasahara | Feb 1999 | A |
5891769 | Liaw et al. | Apr 1999 | A |
5895939 | Ueno | Apr 1999 | A |
5900648 | Harris et al. | May 1999 | A |
5925895 | Sriram et al. | Jul 1999 | A |
5972801 | Lipkin et al. | Oct 1999 | A |
6107649 | Zhao | Aug 2000 | A |
6121633 | Singh et al. | Sep 2000 | A |
6218680 | Carter, Jr. et al. | Apr 2001 | B1 |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6476431 | Ohno et al. | Nov 2002 | B1 |
6686616 | Allen et al. | Feb 2004 | B1 |
20020043697 | Hirokawa et al. | Apr 2002 | A1 |
20020113240 | Ota | Aug 2002 | A1 |
20030017660 | Li | Jan 2003 | A1 |
20030075719 | Sriram | Apr 2003 | A1 |
20040099888 | Sriram | May 2004 | A1 |
20040226503 | Iwata et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
19900169 | Jul 1999 | DE |
0 029 481 | Jun 1981 | EP |
0518 683 | Dec 1992 | EP |
47-5124 | Mar 1972 | JP |
54-155482 | Oct 1979 | JP |
59134874 | Aug 1984 | JP |
60-142568 | Jul 1985 | JP |
60-154674 | Aug 1985 | JP |
60-189250 | Sep 1985 | JP |
63-47983 | Feb 1988 | JP |
64-59961 | Mar 1989 | JP |
1-106476 | Apr 1989 | JP |
1-106477 | Apr 1989 | JP |
1-196873 | Aug 1989 | JP |
1-308876 | Dec 1989 | JP |
2-10772 | Jan 1990 | JP |
4-4225534 | Aug 1992 | JP |
9-36359 | Feb 1997 | JP |
11-150124 | Jun 1999 | JP |
2002280386 | Sep 2002 | JP |
WO 9819342 | May 1998 | WO |
WO 0167521 | Sep 2001 | WO |
WO 0186727 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060091430 A1 | May 2006 | US |