In the fabrication of semiconductor devices, such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on semiconductor wafers. The wafers include integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnected metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.
During the series of manufacturing operations, the wafer surface is exposed to various types of contaminants. Essentially, any material present in a manufacturing operation is a potential source of contamination. For example, sources of contamination may include process gases, chemicals, deposition materials, and liquids, among others. The various contaminants may deposit on the surface of a wafer as particulate matter. If the particulate contamination is not removed, the devices within the vicinity of the contamination will likely be inoperable. Thus, it is necessary to clean contamination from the wafer surface in a substantially complete manner without damaging the features defined on the wafer. The size of particulate contamination is often on the order of critical dimension size of the features being fabricated on the wafer. Removal of such small particulate contamination without adversely affecting the features on the wafer can be a challenge.
Conventional wafer cleaning methods have relied heavily on mechanical force to remove particulate contamination from the wafer. As feature size continues to decrease and become more fragile, the probability of feature damage due to application of mechanical force to the wafer surface increases. For example, features having high aspect ratios are vulnerable to toppling or breaking when impacted by a sufficient mechanical force. To further complicate the cleaning problem, the move toward reduced feature sizes also causes a reduction in the size of particulate contamination that may cause damage. Particulate contamination of sufficiently small size can find its way into difficult-to-reach areas on the wafer surface, such as in a trench surrounded by high-aspect ratio features or bridging of conductive lines, etc. Thus, efficient and non-damaging removal of contaminants during marred and semiconductor fabrication represents continuous challenge to be met by continuing advances in wafer cleaning technology. It should be appreciated that the manufacturing operations for flat panel displays suffer from the same shortcomings of the integrated circuit manufacturing discussed above. Thus, any technology requiring contaminant removal is in need of a more effective and less-abrasive cleaning technique.
Broadly speaking, the present invention fills these needs by providing an improved cleaning technique and cleaning solution. It should be appreciated that the present invention can be implemented in numerous ways, including as a system, an apparatus and a method. Several inventive embodiments of the present invention are described below.
In one embodiment, a method for cleaning a substrate is provided. The method initiates with disposing a fluid layer having solid components therein to a surface of the substrate. A shear force directed substantially parallel to the surface of the substrate and toward an outer edge of the substrate is then created. The shear force may result from a normal or tangential component of a force applied to a solid body in contact with the fluid layer in one embodiment. The surface of the substrate is rinsed to remove the fluid layer.
In another embodiment, a cleaning apparatus for cleaning a substrate is provided. The cleaning apparatus includes a force transferring entity having an outer surface in contact with a fluid disposed on a surface of the substrate. The fluid has solid components and the force transferring entity is configured to force the solid components toward the surface of the substrate. The apparatus includes a substrate support configured to support the substrate under the force transferring entity.
In yet another embodiment, a cleaning system for cleaning a substrate is provided. The cleaning system includes a fluid reservoir configured to deliver a fluid having solid components to a surface of a substrate. The system includes a force transferring entity having an outer surface configured to contact the fluid disposed on the surface of the substrate. The force transferring entity is configured to provide a force having a normal component to thin a fluid layer defined between a bottom surface of one of the solid components and the surface of the substrate. The system includes a substrate support configured to support the substrate under the force transferring entity.
Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, and like reference numerals designate like structural elements.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The embodiments described herein provide for a cleaning technique that reduces the abrasive contact and is efficient at cleaning contaminants from a semiconductor substrate which may contain high aspect ratio features. It should be appreciated that while the embodiments provide specific examples related to semiconductor cleaning applications, these cleaning applications may be extended to any technology requiring the removal of contaminants from a surface. The embodiments described herein provide a force to a cleaning agent to thin a fluid layer between the cleaning agent and a contaminant on the surface of the substrate being cleaned. In on exemplary embodiment, the cleaning agent is a solid material that interacts with the contaminant to subsequently remove the contaminant. In another embodiment, the force having a normal component relative to a surface of the substrate causes a fluid layer defined between the bottom surface of the cleaning agent and a top surface of the contaminant to thin. This thinning in turn causes a sheer force that is substantially parallel to the surface of the substrate to force the contaminant toward an outer edge of the substrate. In essence, the contaminant becomes entrained in the fluid flow defined by the shear force which is a consequence of the force having the normal component.
The interaction force between the solid component 109 and the contaminant 103 is stronger than the force connecting the contaminant 103 to the wafer 105. Additionally, in an embodiment where the solid component 109 binds with the contaminant 103, a force used to move the solid component 109 away from the wafer 105 is stronger than the force connecting the contaminant 103 to the wafer 105. Therefore, as depicted in
Interaction between the solid component 109 and the contaminant 103 can be established through one or more mechanisms including adhesion, collision, and attractive forces, among others. Adhesion between the solid component 109 and contaminant 103 can be established through chemical interaction and/or physical interaction. For example, in one embodiment, chemical interaction causes a glue-like effect to occur between the solid component 109 and the contaminant 103. In another embodiment, physical interaction between the solid component 109 and the contaminant 103 is facilitated by the mechanical properties of the solid component 109. For example, the solid component 109 can be malleable such that when pressed against the contaminant 103, the contaminant 103 becomes imprinted within the malleable solid component 109. In another embodiment, the contaminant 103 can become entangled in a network of solid components 109. In this embodiment, mechanical stresses can be transferred through the network of solid components 109 to the contaminant 103, thus providing the mechanical force necessary for removal of the contaminant 103 from the wafer 105.
Deformation of the solid component 109 due to imprinting by the contaminant 103 creates a mechanical linkage between the solid component 109 and the contaminant 103. For example, a surface topography of the contaminant 103 may be such that as the contaminant 103 is pressed into the solid component 109, portions of the solid component 109 material enters regions within the surface topography of the contaminant 103 from which the solid component 109 material cannot easily escape, thereby creating a locking mechanism. Additionally, as the contaminant 103 is pressed into the solid component 109, a vacuum force can be established to resist removal of the contaminant 103 from the solid component 109.
In another embodiment, energy transferred from the solid component 109 to the contaminant 103 through direct or indirect contact may cause the contaminant 103 to be dislodged from the wafer 105. In this embodiment, the solid component 109 may be softer or harder than the contaminant 103. If the solid component 109 is softer than the contaminant 103, greater deformation of the solid component 109 is likely to occur during the collision, resulting in less transfer of kinetic energy for dislodging the contaminant 103 from the wafer 105. However, in the case where the solid component 109 is softer than the contaminant 103, the adhesive connection between the solid component 109 and the contaminant 103 may be stronger. Conversely, if the solid component 109 is at least as hard as the contaminant 103, a substantially complete transfer of energy can occur between the solid component 109 and the contaminant 103, thus increasing the force that serves to dislodge the contaminant 103 from the wafer 105. However, in the case where the solid component 109 is at least as hard as the contaminant 103, interaction forces that rely on deformation of the solid component tO9 may be reduced. It should be appreciated that physical properties and relative velocities associated with the solid component 109 and the contaminant 103 will influence the collision interaction there between.
In addition to the foregoing, in one embodiment, interaction between the solid component 109 and contaminant 103 can result from electrostatic attraction. For example, if the solid component 109 and the contaminant 103 have opposite surface charges they will be electrically attracted to each other. It is possible that the electrostatic attraction between the solid component 109 and the contaminant 103 can be sufficient to overcome the force connecting the contaminant 103 to the wafer 105.
In another embodiment, an electrostatic repulsion may exist between the solid component 109 and the contaminant 103. For example, both the solid component 109 and the contaminant 103 can have either a negative surface charge or a positive surface charge. If the solid component 109 and the contaminant 103 can be brought into close enough proximity, the electrostatic repulsion there between can be overcome through van der Waals attraction. The force applied by the immiscible component 111 to the solid component 109 may be sufficient to overcome the electrostatic repulsion such that van der Waals attractive forces are established between the solid component 109 and the contaminant 103. Additionally, in another embodiment, the pH of the liquid medium 107 can be adjusted to compensate for surface charges present on one or both of the solid component 109 and contaminant 103, such that the electrostatic repulsion there between is reduced to facilitate interaction, or so that either the solid component or the contamination exhibit surface charge reversal relative to the other resulting in electrostatic attraction.
The method of
The method also includes an operation 303 for applying a force to a solid component to bring the solid component within proximity to a contaminant present on the substrate, such that an interaction is established between the solid component and the contaminant. As previously discussed, immiscible components are provided within the cleaning material to apply the force to the solid component necessary to bring the solid component within proximity to the contaminant. In one embodiment, the method can include an operation for controlling the immiscible components to apply a controlled amount of force to the solid component. The immiscible components can be defined as gas bubbles or immiscible liquid droplets within the liquid medium. Additionally, the immiscible components can be represented as a combination of gas bubbles and immiscible liquid droplets within the liquid medium. Alternatively, the force may be applied to the solid component through the force transferring entities discussed herein.
In one embodiment of the method, the immiscible components are defined within the liquid medium prior to disposing the cleaning material over the substrate. However, in another embodiment, the method can include an operation to form the immiscible components in-situ following disposition of the cleaning material over the substrate. For example, the immiscible components can be formed from a dissolved gas within the liquid medium upon a decrease in ambient pressure relative to the cleaning material. It should be appreciated that formation of the immiscible components in situ may enhance the contamination removal process. For example, in one embodiment, gravity serves to pull the solid components toward the substrate prior to formation of the immiscible components. Then, the ambient pressure is reduced such that gas previously dissolved within the liquid medium comes out of solution to form gas bubbles. Because the solid components have settled by gravity toward the substrate, the majority of gas bubbles will form above the solid components. Formation of the gas bubbles above the solid components, with the solid components already settled toward the substrate, will serve to enhance movement of the solid components to within proximity of the contaminants on the substrate.
In various embodiments, the interaction between the solid component and the contaminant can be established by adhesive forces, collision forces, attractive forces, or a combination thereof. Also, in one embodiment, the method can include an operation for modifying a chemistry of the liquid medium to enhance interaction between the solid component and the contaminant. For example, the pH of the liquid medium can be modified to cancel surface charges on one or both of the solid component and contaminant such that electrostatic repulsion is reduced.
Additionally, in one embodiment, the method can include an operation for controlling a temperature of the cleaning material to enhance interaction between the solid component and the contaminant. More specifically, the temperature of the cleaning material can be controlled to control the properties of the solid component. For example, at a higher temperature the solid component may be more malleable such that it conforms better when pressed against the contaminant. Then, once the solid component is pressed and conformed to the contaminant, the temperature is lowered to make the solid component less malleable to better hold its conformal shape relative to the contaminant, thus effectively locking the solid component and contaminant together. The temperature may also be used to control the solubility and therefore the concentration of the solid components. For example, at higher temperatures the solid component may be more likely to dissolve in the liquid medium. The temperature may also be used to control and/or enable formation of solid components in-situ on the wafer from liquid-liquid suspension.
In a separate embodiment, the method can include an operation for precipitating solids dissolved within the continuous liquid medium. This precipitation operation can be accomplished by dissolving the solids into a solvent and then adding a component that is miscible with the solvent but that does not dissolve the solid. Addition of the component that is miscible with the solvent but that does not dissolve the solid causes the precipitation of a solid component.
The method further includes an operation 305 for moving the solid component away from the substrate such that the contaminant that interacted with the solid component is removed from the substrate. In one embodiment, the method includes an operation for controlling a flow rate of the cleaning material over the substrate to control or enhance movement of the solid component and/or contaminant away from the substrate. The method of the present invention for removing contamination from a substrate can be implemented in many different ways so long as there is a means for applying a force to the solid components of the cleaning material such that the solid components establish an interaction with the contaminants to be removed. It should be noted that while the embodiments described above refer to an immiscible component, the embodiments are not required to have this immiscible component. As described below, a force transferring entity provides a force to the solid components to thin a fluid layer thereby creating a shear force and/or enable the solid components to interact with the contaminants.
Although the present invention has been described in the context of removing contaminants from a semiconductor wafer, it should be understood that the previously described principles and techniques of the present invention can be equally applied to cleaning surfaces other than semiconductor wafers. For example, the present invention can be used to clean any equipment surface used in semiconductor manufacturing, wherein any equipment surface refers to any surface that is in environmental communication with the wafer, e.g., shares air space with the wafer. The present invention can also be used in other technology areas where contamination removal is important. For example, the present invention can be used to remove contamination on parts used in the space program, or other high technology areas such as surface science, energy, optics, microelectronics, MEMS, flat-panel processing, solar cells, memory devices, etc. It should be understood that the aforementioned listing of exemplary areas where the present invention may be used is not intended to represent an inclusive listing. Furthermore, it should be appreciated that the wafer as used in the exemplary description herein can be generalized to represent essentially any other structure, such as a substrate, a part, a panel, etc.
While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention. In the claims, elements and/or steps do not imply any particular order of operation, unless explicitly stated in the claims.
This application claims the benefit of U.S. Provisional Application No. 60/755,377, filed Dec. 30, 2005. Additionally, this application is a continuation-in-part of prior application Ser. No. 10/608,871, filed Jun. 27, 2003, now abandoned and entitled “Method and Apparatus for Removing a Target Layer From a Substrate Using Reactive Gases.” The disclosure of each of the above-identified applications is incorporated herein by reference for all purposes. This application is related to U.S. patent application Ser. No. 10/816,337, filed on Mar. 31, 2004, and entitled “Apparatuses and Methods for Cleaning a Substrate,” and U.S. patent application Ser. No. 11/173,132, filed on Jun. 30, 2005, and entitled “System and Method for Producing Bubble Free Liquids for Nanometer Scale Semiconductor Processing,” and U.S. patent application Ser. No. 11/153,957, filed on Jun. 15, 2005, and entitled “Method and Apparatus for Cleaning a Substrate Using Non-Newtonian Fluids,” and U.S. patent application Ser. No. 11/154,129, filed on Jun. 15, 2005, and entitled “Method and Apparatus for Transporting a Substrate Using Non-Newtonian Fluid,” and U.S. patent application Ser. No. 11/174,080, filed on Jun. 30, 2005, and entitled “Method for Removing Material from Semiconductor Wafer and Apparatus for Performing the Same,” and U.S. patent application Ser. No. 10/746,114, filed on Dec. 23, 2003, and entitled “Method and Apparatus for Cleaning Semiconductor Wafers using Compressed and/or Pressurized Foams, Bubbles, and/or Liquids,” and U.S. patent application Ser. No. 11/336,215 filed on Jan. 20, 2006, and entitled “Method and Apparatus for Removing Contamination from Substrate,” U.S. patent application Ser. No. 11/346,894 filed on Feb. 3, 2006 and entitled “Method for Removing Contamination from a Substrate and for Making a Cleaning Solution,” U.S. patent application Ser. No. 11/347,154 filed on Feb. 3, 2006 and entitled “Cleaning Compound and Method and System for Using the Cleaning Compound,” U.S. patent application Ser. No. 11/532,491 filed on Sep. 15, 2006 and entitled “Method and material for cleaning a substrate,” U.S. patent application Ser. No. 11/532,493 filed on Sep. 15, 2006 and entitled “Apparatus and system for cleaning a substrate.” The disclosure of each of these related applications is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3037887 | Brenner et al. | Jun 1962 | A |
3212762 | Carroll et al. | Oct 1965 | A |
3436262 | Crowe et al. | Apr 1969 | A |
3617095 | Lissant | Nov 1971 | A |
3978176 | Voegeli | Aug 1976 | A |
4085059 | Smith et al. | Apr 1978 | A |
4133773 | Simmons | Jan 1979 | A |
4156619 | Griesshammer | May 1979 | A |
4238244 | Banks | Dec 1980 | A |
4781764 | Leenaars | Nov 1988 | A |
4817652 | Liu et al. | Apr 1989 | A |
4838289 | Kottman et al. | Jun 1989 | A |
4849027 | Simmons | Jul 1989 | A |
4911761 | McConnell et al. | Mar 1990 | A |
4962776 | Liu et al. | Oct 1990 | A |
5000795 | Chung et al. | Mar 1991 | A |
5048549 | Hethcoat | Sep 1991 | A |
5102777 | Lin et al. | Apr 1992 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5113597 | Sylla | May 1992 | A |
5175124 | Winebarger | Dec 1992 | A |
5181985 | Lampert et al. | Jan 1993 | A |
5226969 | Watanabe et al. | Jul 1993 | A |
5242669 | Flor | Sep 1993 | A |
5271774 | Leenaars et al. | Dec 1993 | A |
5288332 | Pustilnik et al. | Feb 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5336371 | Chung et al. | Aug 1994 | A |
5415191 | Mashimo et al. | May 1995 | A |
5417768 | Smith et al. | May 1995 | A |
5464480 | Matthews | Nov 1995 | A |
5472502 | Batchelder | Dec 1995 | A |
5494526 | Paranjpe | Feb 1996 | A |
5498293 | Ilardi et al. | Mar 1996 | A |
5542982 | Terada et al. | Aug 1996 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5660642 | Britten | Aug 1997 | A |
5705223 | Bunkofske | Jan 1998 | A |
5800626 | Cohen et al. | Sep 1998 | A |
5858283 | Burris | Jan 1999 | A |
5900191 | Gray et al. | May 1999 | A |
5904156 | Advocate, Jr. et al. | May 1999 | A |
5906021 | Coffey | May 1999 | A |
5908509 | Olesen et al. | Jun 1999 | A |
5911837 | Matthews | Jun 1999 | A |
5932493 | Akatsu et al. | Aug 1999 | A |
5944581 | Goenka | Aug 1999 | A |
5944582 | Talieh | Aug 1999 | A |
5945351 | Mathuni | Aug 1999 | A |
5951779 | Koyanagi et al. | Sep 1999 | A |
5964954 | Matsukawa et al. | Oct 1999 | A |
5964958 | Ferrell et al. | Oct 1999 | A |
5968285 | Ferrell et al. | Oct 1999 | A |
5997653 | Yamasaka | Dec 1999 | A |
6048409 | Kanno et al. | Apr 2000 | A |
6049996 | Freeman et al. | Apr 2000 | A |
6081650 | Lyons et al. | Jun 2000 | A |
6090217 | Kittle | Jul 2000 | A |
6092538 | Arai et al. | Jul 2000 | A |
6152805 | Takahashi | Nov 2000 | A |
6158445 | Olesen et al. | Dec 2000 | A |
6167583 | Miyashita et al. | Jan 2001 | B1 |
6190238 | Tanaka et al. | Feb 2001 | B1 |
6228563 | Starove et al. | May 2001 | B1 |
6267125 | Bergman et al. | Jul 2001 | B1 |
6270584 | Ferrell et al. | Aug 2001 | B1 |
6272712 | Gockel et al. | Aug 2001 | B1 |
6276459 | Herrick et al. | Aug 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6290780 | Ravkin | Sep 2001 | B1 |
6296715 | Kittle | Oct 2001 | B1 |
6319801 | Wake et al. | Nov 2001 | B1 |
6352082 | Mohindra et al. | Mar 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
6398975 | Mertens et al. | Jun 2002 | B1 |
6401734 | Morita et al. | Jun 2002 | B1 |
6423148 | Aoki | Jul 2002 | B1 |
6431959 | Mikhaylich et al. | Aug 2002 | B1 |
6439247 | Kittle | Aug 2002 | B1 |
6457199 | Frost et al. | Oct 2002 | B1 |
6491043 | Mohindra et al. | Dec 2002 | B2 |
6491764 | Mertens et al. | Dec 2002 | B2 |
6493902 | Lin | Dec 2002 | B2 |
6513538 | Chung et al. | Feb 2003 | B2 |
6514921 | Kakizawa | Feb 2003 | B1 |
6527870 | Gotikis | Mar 2003 | B2 |
6532976 | Huh et al. | Mar 2003 | B1 |
6537915 | Moore et al. | Mar 2003 | B2 |
6562726 | Torek et al. | May 2003 | B1 |
6576066 | Namatsu | Jun 2003 | B1 |
6594847 | Krusell et al. | Jul 2003 | B1 |
6596093 | DeYoung et al. | Jul 2003 | B2 |
6616772 | de Larios et al. | Sep 2003 | B2 |
6705930 | Boyd et al. | Mar 2004 | B2 |
6733596 | Mikhaylichenko et al. | May 2004 | B1 |
6787473 | Andreas | Sep 2004 | B2 |
6797071 | Kittle | Sep 2004 | B2 |
6802911 | Lee et al. | Oct 2004 | B2 |
6846380 | Dickinson et al. | Jan 2005 | B2 |
6851435 | Mertens et al. | Feb 2005 | B2 |
6874516 | Matsuno et al. | Apr 2005 | B2 |
6896826 | Wojtczak et al. | May 2005 | B2 |
6927176 | Verhaverbeke et al. | Aug 2005 | B2 |
6946396 | Miyazawa et al. | Sep 2005 | B2 |
6951042 | Mikhaylichenko et al. | Oct 2005 | B1 |
7122126 | Fuentes | Oct 2006 | B1 |
20010012751 | Boyd et al. | Aug 2001 | A1 |
20020072482 | Sachdev et al. | Jun 2002 | A1 |
20020081945 | Kistler et al. | Jun 2002 | A1 |
20020094684 | Hirasaki et al. | Jul 2002 | A1 |
20020121290 | Tang et al. | Sep 2002 | A1 |
20020185164 | Tetsuka et al. | Dec 2002 | A1 |
20020195121 | Kittle | Dec 2002 | A1 |
20030075204 | de Larios et al. | Apr 2003 | A1 |
20030148903 | Bargaje et al. | Aug 2003 | A1 |
20030171239 | Patel et al. | Sep 2003 | A1 |
20030226577 | Orll et al. | Dec 2003 | A1 |
20040002430 | Verhaverbeke | Jan 2004 | A1 |
20040053808 | Raehse et al. | Mar 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040159335 | Montierth et al. | Aug 2004 | A1 |
20040163681 | Verhaverbeke | Aug 2004 | A1 |
20040261823 | de Larios | Dec 2004 | A1 |
20050045209 | Tan | Mar 2005 | A1 |
20050132515 | Boyd et al. | Jun 2005 | A1 |
20050133060 | de Larios et al. | Jun 2005 | A1 |
20050133061 | de Larios et al. | Jun 2005 | A1 |
20050159322 | Min et al. | Jul 2005 | A1 |
20050176606 | Konno et al. | Aug 2005 | A1 |
20050183740 | Fulton et al. | Aug 2005 | A1 |
20060201267 | Liu | Sep 2006 | A1 |
20060283486 | de Larios et al. | Dec 2006 | A1 |
20060285930 | de Larios et al. | Dec 2006 | A1 |
20070000518 | Korolik et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
40-38-587 | Jun 1992 | DE |
0827188 | Mar 1998 | EP |
0905746 | Mar 1999 | EP |
11-334874 | Dec 1999 | EP |
0989600 | Mar 2000 | EP |
53-076559 | Jul 1978 | JP |
56-084618 | Jul 1981 | JP |
56-084619 | Jul 1981 | JP |
59-24849 | Feb 1984 | JP |
60-005529 | Jan 1985 | JP |
62-119543 | May 1987 | JP |
63-077510 | Apr 1988 | JP |
02-309638 | Dec 1990 | JP |
5-15857 | Jan 1993 | JP |
06-177101 | Jun 1994 | JP |
07-006993 | Jan 1995 | JP |
11-350169 | Dec 1999 | JP |
2001-064688 | Mar 2001 | JP |
2002-66475 | Mar 2002 | JP |
2002-280330 | Sep 2002 | JP |
2002-309638 | Oct 2002 | JP |
2003-282513 | Oct 2003 | JP |
2005-194294 | Jul 2005 | JP |
WO-9916109 | Apr 1999 | WO |
WO-0033980 | Jun 2000 | WO |
WO-0059006 | Oct 2000 | WO |
WO-0112384 | Feb 2001 | WO |
WO-02101795 | Dec 2002 | WO |
WO-2005006424 | Jan 2005 | WO |
WO 2005064647 | Jul 2005 | WO |
Entry |
---|
Aubert, JM et al.; “Aqueous foams”; Scientific America; 1986, 74-82, 254. |
Kittle, et al.; “Semiconductor Wafer Cleaning and Drying Using a Foam Medium”; <hhttp://www.aquafoam.com/papers;SCI0202.pdf>; Sematech Novel Wafer Cleans Working Group Meeting, Internet Presetation; Nov. 13, 2001. |
Hunter; “Introduction to Modern Colloid Science”; Oxford University Press; Feb. 1, 1994. |
Lester; “Is Foam Wafer Cleaning and Drying the Future?” <http://www.aquafoam.com/papers/SCI0202.pdf>; Semiconductor, 25, #2, Feb. 1, 2002. |
Kirkpatrick et al.; “Advanced Wafer-Cleaning Evolution”; Solid State Technology; May 1, 2003; www.solid-state.com. |
Weaire et al.; “The Physics of Foams”; Department of Physics; Trinity Colloge, Dublin; 1999. |
Kittle, et al.; “Photoresist Residue Removal Using Aqueous Foam Proof of Concept Experiments”; Internet; http://www.aquafoam.com/paper/Proof-11MB.pdf;<papers/A2C2photoresis.pdf>; 13-17; May 1, 2002. |
Lide; “Air Composition”; CRC handbook of Chemistry and Physics; 1997. |
U.S. Appl. No. 11/639,752, filed Dec. 15, 2006, Boyd et al. |
U.S. Appl. No. 11/743,283, filed May 2, 2007, Freer et al. |
Number | Date | Country | |
---|---|---|---|
20070084485 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60755377 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10608871 | Jun 2003 | US |
Child | 11612371 | US |