Method and apparatus for depositing LED organic film

Abstract
In one embodiment the disclosure relates to an apparatus for depositing an organic material on a substrate, including a source heater for heating organic particles to form suspended organic particles; a transport stream for delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores, the micro-pores providing a conduit for passage of the suspended organic particles; and a nozzle heater for pulsatingly heating the micro-pores nozzle to discharge the suspended organic particles from the discharge nozzle.
Description
BACKGROUND

The disclosure relates to a method and apparatus for depositing an organic film on a substrate. Manufacturing light emitting diode (LED) cell requires depositing of two thin organic films on a substrate and coupling each of the thin films to an electrode. Conventionally, the deposition step is carried out by evaporating the desired organic film on the substrate. The film thickness is a prime consideration. The layer thickness is about 100 nm and each layer is optimally deposited to an accuracy of about .+−0.10 nm. As a result, conventional apparatus form multiple layers on a substrate with each layer having a thickness of about 10 nm. A combination of these layers will form the overall film. Because the organic constituents of the LED are often suspended in a solvent, removing the solvent prior to depositing each layer is crucial. A small amount of solvent in one layer of deposited organic thin film can cause contamination and destruction of the adjacent layers. Conventional techniques have failed to address this deficiency.


Another consideration in depositing organic thin films of an LED device is placing the films precisely at the desired location. Conventional technologies use shadow masking to form LED films of desired configuration. The shadow masking techniques require placing a well-defined mask over a region of the substrate followed by depositing the film over the entire substrate. Once deposition is complete, the shadow mask is removed to expose the protected portions of the substrate. Since every deposition step starts by forming a shadow mask and ends with removing and discarding the mask, a drawback of shadow masking technique is inefficiency.


SUMMARY OF THE DISCLOSURE

In one embodiment the disclosure relates to an apparatus for depositing an organic material on a substrate, the apparatus comprising: a source heater for heating organic particles to form suspended organic particles; a transport stream for delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores, the micro-pores providing a conduit for passage of the suspended organic particles; and a nozzle heater for pulsatingly heating the nozzle to discharge the suspended organic particles from the discharge nozzle.


According to another embodiment, the disclosure relates to a method for depositing a layer of substantially solvent-free organic material on a substrate, comprising heating the organic material to form a plurality of suspended organic particles; delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores for receiving the suspended organic particles; and energizing the discharge nozzle to pulsatingly eject the suspended organic particles from the discharge nozzle. Organic particle may include an organic molecule or a molecular aggregate.


According to another embodiment, the disclosure relates to a method for depositing a layer of organic material on a substrate. The organic material may be suspended in solvent to provide crystal growth or to convert an amorphous organic structure into a crystalline structure. The method can include heating the organic material to form a plurality of suspended organic particles; delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores for receiving the suspended organic particles; and energizing the discharge nozzle to pulsatingly eject the suspended organic particles from the discharge nozzle. Organic particle may include an organic molecule or a molecular aggregate.


According to still another embodiment, the disclosure relates to an apparatus for depositing an organic compound on a substrate comprising a chamber having a reservoir for receiving the organic compound, the chamber having an inlet and an outlet for receiving a transport gas; a discharge nozzle having a plurality of micro-porous conduits for receiving the organic compound delivered by the transport gas; and an energy source coupled to the discharge nozzle to provide pulsating energy adapted to discharge at least a portion of the organic compound from one of the micro-porous conduits to a substrate.


In yet another embodiment, an apparatus for depositing an organic compound comprises a chamber having a reservoir for housing the organic material dissolved in a solvent, the reservoir separated from the chamber through an orifice; a discharge nozzle defined by a plurality of micro-porous conduits for receiving the organic compound communicated from the reservoir; and an energy source coupled to the discharge nozzle providing pulsating energy for discharging at least a portion of the organic compound from one of the micro-porous conduits to a substrate; and a delivery path connecting the chamber and the nozzle. The organic compound may be substantially free of solvent. Alternatively, the organic compound may include in solvent. In a solvent-based system, the solvent discharge from the nozzle provides the added benefit of cooling the nozzle upon discharge.


In still another embodiment, a micro-porous nozzle for depositing an organic composition on a substrate includes a thermal source communicating energy to organic material interposed between the heater and a porous medium, the porous medium having an integrated mask formed thereon to define a deposition pattern.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic representation of a discharge apparatus for discharging organic compounds, or its mixture, according to one embodiment of the disclosure;



FIG. 2 is a schematic representation of a discharge apparatus for discharging organic compounds according to another embodiment of the disclosure;



FIG. 3 schematically illustrates a discharge nozzle according to one embodiment of the disclosure;



FIGS. 4A and 4B show an image printed according to one embodiment of the disclosure;



FIG. 5 is a photoluminescence image of a pattern printed by molecular jet printer system;



FIGS. 6A and 6B show the surface and the cross section, respectively, of a porous medium; and



FIGS. 7A and 7B illustrate a molecular jet printing apparatus according one embodiment of the disclosure in cross-sectional and top views, respectively.





DETAILED DESCRIPTION

In one embodiment, the disclosure relates to a method and apparatus for depositing a pure organic thin film, or a mixed organic film, or an organic thin film mixed with inorganic particles, or inorganic thin film on a substrate. Such films can be used, among others, in the design and construction of organic LED.



FIG. 1 is a schematic representation of a discharge apparatus for discharging organic compounds, or its mixture, according to one embodiment of the disclosure. Referring to FIG. 1, exemplary apparatus for deposing an organic material on a substrate includes housing 105 having discharge nozzle 125 at one end and a reservoir 107 at another end. Reservoir 107 may contain organic constituents required for forming an LED film. The organic constituent may be liquid or solid. Heat source 110 is provided to heat reservoir 107 and the content thereof. Heat source 110 can provide heating of about 100-700.degree. C.


Housing 105 may optionally include inlet 115 and outlet 120. The inlet and outlet can be defined by a flange adapted to receive a carrier gas (interchangeably, transport gas.) In one embodiment, the carrier gas is an inert gas such as nitrogen or argon. Delivery path 135 can be formed within housing 105 to guide the flow of the carrier gas. Thermal shields 160 may be positioned to deflect thermal radiation from heat source 110 to thereby protect discharge nozzle 125 and organic particles contained therein.


In the exemplary embodiment of FIG. 1, the discharge section includes discharge nozzle 125 and nozzle heater 130. Among others, the discharge nozzle can be formed from anodized porous aluminum oxide or porous silicon membranes or other solid membranes. Such material are capable of blocking organic material from escaping through the porous medium when the organic material is delivered onto the porous medium's surface. Discharge nozzle 125 includes rigid portions 141 separated by micro-pores 140. Micro-pores 140 block organic material from escaping through the medium until the medium is appropriately activated. Depending on the desired application, micro-pores 140 can provide conduits (or passages) in the order of micro- or nano-pores. In one embodiment, the pore size is in the range of about 5 nm-100 microns. In another embodiment pores are about 100 nm to about 10 microns. Nozzle heater 130 is positioned proximal to the discharge nozzle 125. When activated, nozzle heater 130 provides a pulse of energy, for example as heat, to discharge nozzle 125. The activation energy of the pulse dislodges organic material 109 contained within micro-pores 140.


In a method according to one embodiment of the disclosure, reservoir 107 is commissioned with organic material suitable for LED deposition. The organic material may be in liquid or solid form. Source heater 110 provides heat adequate to evaporate the organic material and form suspended particles 109. By engaging a carrier gas inlet 115, suspended particles 109 are transported through thermal shields 160 toward discharge nozzle 125. The carrier gas is directed to gas outlet 120 through delivery path 135. Particles 109 reaching discharge nozzle are lodged in micro-pores 130. Activating nozzle heater 130 to provide energy to discharge nozzle 125 can cause ejection of organic particles 109 from the discharge nozzle. Nozzle heater 130 can provide energy in cyclical pulses. The intensity and the duration of each pulse can be defined by a controller (not shown.) The activating energy can be thermal energy. A substrate can be positioned immediately adjacent to discharge nozzle 125 to receive the ejected organic particles. Applicants have discovered that the exemplary embodiment shown in FIG. 1 can form a think organic film on a substrate with great accuracy. The embodiment of FIG. 1 is also advantageous in that it can substantially reduce substrate heating, minimizes local clogging and provide the most efficient use of organic material.



FIG. 2 is a schematic representation of a discharge apparatus for discharging organic compounds according to another embodiment of the disclosure. Referring to FIG. 2, apparatus 200 is adapted for forming an organic film substantially free from solvent. Apparatus 200 includes reservoir 210 for receiving organic solution 215. In one embodiment, organic solution 215 contains organic material dissolved in a solvent. Thermal resistor 220 is positioned proximal to reservoir 210 to heat organic solution 215. Orifice 232 separates reservoir 210 from discharge nozzle 225. Discharge nozzle 225 comprises micro-pores 240 separated by rigid sections 241.


Because of the size of orifice 232, surface tension of organic solution prevents discharge of organic solution 215 from the reservoir until appropriately activated. Once thermal resistor 220 is activated, energy in the form of heat causes evaporation of droplet 235 within a chamber of apparatus 200. Solvents have a lower vapor pressure and evaporate rapidly. Once evaporates, organic compound within droplet 235 is transported to discharge nozzle 225. Discharge nozzle 225 receives the organic material 209 within micro-pores 240. The solvent can be recycled back to organic solution 215 or can be removed from the chamber (not shown). By activating nozzle heater 230, micro-pores 240 dislodge organic particles 209, thereby forming a film on an immediately adjacent substrate (not shown.) In one embodiment, nozzle heater 230 can be activated in a pulse-like manner to provide heat to discharge nozzle cyclically.



FIG. 3 schematically illustrates a discharge nozzle according to one embodiment of the disclosure. In FIG. 3, discharge nozzle 300 comprises heater 330, porous medium 340 and integrated mask 345. Heater 330 is communicates pulse energy in the form of heat to organic material 309 causing dislodge thereof from porous medium 340. Integrated mask 345 effectively masks portions of the porous medium from transmitting organic ink material 309. Consequently, a film forming on substrate 360 will define a negative image of the integrated mask.


Thus, in one embodiment, the particles can be discharged from the porous medium by receiving thermal energy from a proximal resistive heater, or a thermal radiation heater, or by electrostatic force pull out of the micro-porous, or by mechanical vibration.



FIGS. 4A and 4B show an image printed according to one embodiment of the disclosure. Specifically, FIG. 4 shows the printing result using the exemplary apparatus shown in FIG. 3. The ink material is Alq3 and was pre-coated on the backside of an anodized porous alumina disc. FIG. 4A shows the LED organic printed pattern under halogen illumination. FIG. 4B shows the photoluminescence image under UV illumination.



FIG. 5 is a photoluminescence image of a pattern printed by molecular jet printer system according to another embodiment of the disclosure. FIG. 5 was obtained by using the discharge nozzle shown in FIG. 3. The ink material was Alq3. The ink material was drop cast on the backside of anodized porous alumina disc.



FIGS. 6A and 6B show the surface and the cross section, respectively, of a porous medium. The porous medium can be used according to the principles disclosed herein with a discharge nozzle or as a part of a nozzle having an integrated mask (see FIG. 3.) FIG. 6A shows the surface of the porous medium. FIG. 6B shows a cross-section of the porous medium. FIG. 6A shows a scale of 1 μm and FIG. 6B has a scale of 2 μm.



FIGS. 7A and 7B illustrate a molecular jet printing apparatus according to an embodiment of the disclosure in cross-sectional and top views, respectively. Referring to FIG. 7A, printing apparatus 700 includes micro-heater 710 which can be used as a liquid delivery system. Wafer bonding layer 715 connects the liquid delivery system to nozzle section 720. Porous openings 730 are positioned at a discharge end of nozzle 720 and micro-heaters 740 are positioned adjacent to porous openings 730 to providing energy required to eject organic material or ink from nozzle 720. FIG. 7B shows a top view of the nozzle shown in FIG. 7A including porous openings 730 and heaters 740.


While the principles of the disclosure have been illustrated in relation to the exemplary embodiments shown herein, the principles of the disclosure are not limited thereto and include any modification, variation or permutation thereof.

Claims
  • 1. A method for depositing a layer of substantially solvent-free organic material on a substrate, comprising: heating the organic material to form a plurality of suspended organic particles;delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores for receiving the suspended organic particles;processing the suspended organic particles through the plurality of micro-pores to substantially block a portion of the suspended organic particles; andenergizing the discharge nozzle to pulsatingly eject the suspended organic particles from the plurality of micro-pores onto the substrate.
  • 2. The method of claim further comprising positioning the discharge nozzle proximal to the substrate.
  • 3. The method of claim 1, wherein the step of energizing the discharge nozzle further comprises heating the discharge nozzle.
  • 4. The method of claim 1, wherein the step of delivering the suspended organic particles further comprises transporting the suspended organic particles with a carrier gas.
  • 5. The method of claim 4, wherein the carrier gas is inert.
  • 6. The method of claim 1, wherein the step of energizing the discharge nozzle further comprises mechanically vibrating the discharge nozzle.
  • 7. The method of claim 1, wherein processing the suspended organic material further comprises processing the suspended organic material through micro-pores having a porous medium to separate a quantity of organic particles from a quantity of solvent.
  • 8. The method of claim 1, wherein processing the suspended organic material further comprises separating an organic material from a solvent.
  • 9. The method of claim 1, further comprising deflecting thermal radiation from the discharge nozzle.
  • 10. A method for depositing substantially solvent-free organic film on a substrate, the method comprising: transporting an OLED solution from a reservoir to a discharge nozzle, the OLED solution having OLED particles in a solvent;receiving the OLED solution at a plurality of micro-pores of the discharge nozzle, each micro-pore containing a porous medium;separating a quantity of OLED particles from the solvent at the porous medium of the micro-pores;removing the solvent from the discharge nozzle; anddislodging the quantity of organic particles from the discharge nozzle onto a substrate.
  • 11. The method of claim 10, wherein transporting an OLED solution from a reservoir to a discharge nozzle further comprises heating the OLED solution.
  • 12. The method of claim 10, wherein the OLED solution comprises a quantity of OLED particles dissolved in solvent.
  • 13. The method of claim 10, further comprising heating the discharge nozzle to dislodge the quantity of organic particles.
Parent Case Info

This instant application is a continuation of both U.S. Non-Provisional application Ser. No. 11/282,472 filed Nov. 21, 2005; U.S. Non-Provisional application Ser. No. 13/050,907 filed Mar. 17, 2011; U.S. Non-Provisional application Ser. No. 13/088,323 and claims the filing-date priority to U.S. Provisional Application No. 60/629,312, filed Nov. 19, 2004.

US Referenced Citations (127)
Number Name Date Kind
4238807 Bovio et al. Dec 1980 A
4751531 Saito et al. Jun 1988 A
5041161 Cooke et al. Aug 1991 A
5116148 Ohara et al. May 1992 A
5155502 Kimura et al. Oct 1992 A
5172139 Sekiya et al. Dec 1992 A
5202659 DeBonte et al. Apr 1993 A
5247190 Friend et al. Sep 1993 A
5405710 Dodabalapur et al. Apr 1995 A
5574485 Anderson et al. Nov 1996 A
5623292 Shrivastava et al. Apr 1997 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5731828 Ishinaga et al. Mar 1998 A
5781210 Hirano et al. Jul 1998 A
5801721 Gandy et al. Sep 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
5865860 Delnick Feb 1999 A
5947022 Freeman et al. Sep 1999 A
5956051 Davies et al. Sep 1999 A
6013982 Thompson et al. Jan 2000 A
6065825 Anagnostopoulos et al. May 2000 A
6086195 Bohorquez et al. Jul 2000 A
6086196 Ando et al. Jul 2000 A
6086679 Lee et al. Jul 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6095630 Horii et al. Aug 2000 A
6097147 Baldo et al. Aug 2000 A
6189989 Hirabayashi et al. Feb 2001 B1
6250747 Hauck Jun 2001 B1
6257706 Ahn Jul 2001 B1
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6312083 Moore Nov 2001 B1
6326224 Xu et al. Dec 2001 B1
6337102 Forrest et al. Jan 2002 B1
6431702 Ruhe Aug 2002 B2
6444400 Cloots et al. Sep 2002 B1
6453810 Rossmeisl et al. Sep 2002 B1
6460972 Trauernicht et al. Oct 2002 B1
6468819 Kim et al. Oct 2002 B1
6472962 Guo et al. Oct 2002 B1
6498802 Chu et al. Dec 2002 B1
6513903 Sharma et al. Feb 2003 B2
6548956 Forrest et al. Apr 2003 B2
6562405 Eser et al. May 2003 B2
6576134 Agner Jun 2003 B1
6586763 Wang et al. Jul 2003 B2
6601936 McDonald Aug 2003 B2
6666548 Sadasivan et al. Dec 2003 B1
6811896 Aziz et al. Nov 2004 B2
6824262 Kubota et al. Nov 2004 B2
6861800 Tyan et al. Mar 2005 B2
6896346 Trauernicht et al. May 2005 B2
6911671 Marcus et al. Jun 2005 B2
6917159 Tyan et al. Jul 2005 B2
6982005 Eser et al. Jan 2006 B2
7023013 Ricks et al. Apr 2006 B2
7077513 Kimura et al. Jul 2006 B2
7247394 Hatwar et al. Jul 2007 B2
7374984 Hoffman May 2008 B2
7377616 Sakurai May 2008 B2
7404862 Shtein et al. Jul 2008 B2
7406761 Jafri et al. Aug 2008 B2
7410240 Kadomatsu et al. Aug 2008 B2
7431435 Lopez et al. Oct 2008 B2
7431968 Shtein et al. Oct 2008 B1
7530778 Yassour et al. May 2009 B2
7604439 Yassour et al. Oct 2009 B2
7648230 Kachi Jan 2010 B2
7677690 Takatsuka Mar 2010 B2
7802537 Kang et al. Sep 2010 B2
7857121 Yassour Dec 2010 B2
7883832 Colburn et al. Feb 2011 B2
7908885 Devitt Mar 2011 B2
8128753 Bulovic et al. Mar 2012 B2
20010045973 Sharma et al. Nov 2001 A1
20020008732 Moon et al. Jan 2002 A1
20020191063 Gelbart et al. Dec 2002 A1
20030000476 Matsunaga et al. Jan 2003 A1
20030175414 Hayashi Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040009304 Pichler Jan 2004 A1
20040048000 Shtein et al. Mar 2004 A1
20040048183 Teshima Mar 2004 A1
20040056244 Marcus et al. Mar 2004 A1
20040086631 Han May 2004 A1
20040174116 Lu et al. Sep 2004 A1
20040202794 Yoshida Oct 2004 A1
20050005850 Yamazaki et al. Jan 2005 A1
20050087131 Shtein et al. Apr 2005 A1
20050100690 Mayer et al. May 2005 A1
20050190220 Lim et al. Sep 2005 A1
20050223994 Blomlelly et al. Oct 2005 A1
20050255249 Schlatterbeck Nov 2005 A1
20060012290 Kang Jan 2006 A1
20060115585 Bulovic et al. Jun 2006 A1
20070040877 Kachi Feb 2007 A1
20070058010 Nagashima Mar 2007 A1
20070098891 Tyan et al. May 2007 A1
20070134512 Klubek et al. Jun 2007 A1
20070286944 Yokoyama et al. Dec 2007 A1
20080174235 Kim et al. Jul 2008 A1
20080238310 Forrest et al. Oct 2008 A1
20080299311 Shtein et al. Dec 2008 A1
20080308037 Bulovic et al. Dec 2008 A1
20080311289 Bulovic et al. Dec 2008 A1
20080311296 Shtein et al. Dec 2008 A1
20080311307 Bulovic et al. Dec 2008 A1
20090031579 Piatt et al. Feb 2009 A1
20090045739 Kho et al. Feb 2009 A1
20090115706 Hwang et al. May 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090220680 Winters Sep 2009 A1
20100055810 Sung et al. Mar 2010 A1
20100079513 Taira et al. Apr 2010 A1
20100171780 Madigan et al. Jul 2010 A1
20100188457 Madigan et al. Jul 2010 A1
20100201749 Somekh et al. Aug 2010 A1
20100310424 Rose et al. Dec 2010 A1
20110008541 Madigan et al. Jan 2011 A1
20110057171 Adamovich et al. Mar 2011 A1
20110181644 Bulovic et al. Jul 2011 A1
20110267390 Bulovic et al. Nov 2011 A1
20110293818 Madigan et al. Dec 2011 A1
Foreign Referenced Citations (15)
Number Date Country
1 626 103 Feb 2006 EP
06-122201 May 1994 JP
08-216401 Aug 1996 JP
09-248918 Sep 1997 JP
2002-069650 Mar 2002 JP
2005-286069 Oct 2005 JP
2006-123551 May 2006 JP
2006-150900 Jun 2006 JP
2007-076168 Mar 2007 JP
2007-095343 Apr 2007 JP
2007-299616 Nov 2007 JP
05-255630 Oct 2009 JP
100232852 Dec 1999 KR
10-2008-0060111 Jul 2007 KR
WO 2005090085 Sep 2005 WO
Non-Patent Literature Citations (25)
Entry
Street et al., “Jet Printing of Active-Matrix TFT Backplanes for Displays and Sensors”, IS&T Archiving, Dec. 2005, vol. 20, No. 5, 16 pages.
Chin, Byung Doo, “Effective Hole Transport Layer Structure for Top Emitting Devices Based on Laser Transfer Patterning,” Journal of Physics D: Applied Physics, 2007, vol. 40, pp. 5541-5546.
Elwenspoek et al., “Silicon Micromachining,” Aug. 2004, Cambridge University, Cambridge, U.K. ISBN 0521607671. [Abstract].
Forrest, Stephen R., “The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic,” Nature, Apr. 29, 2004, vol. 428, 8 pages.
C. Ducso, et al. “Porous Silicon Bulk Micromachining for Thermally Isolated Membrane Formation,” Sensors and Actuators A, 1997, vol. 60, pp. 235-239.
C. Tsamis, et al. “Thermal Properties of Suspended Porous Micro-hotplates for Sensor Applications,” Sensor and Actuators B, 2003, vol. 95, pp. 78-82.
J. Lee, et al. “Differential Scanning Calorimeter Based on Suspended Membrane Single Crystal Silicon Microhotplate,” Journal of Microelectromechanical Systems, Dec. 2008, vol. 17, No. 6, pp. 1513-1525.
J. C. Belmonte, et al. “High-temperature Low-power Performing Micromachined Suspended Micro-hotplate for Gas Sensing Applications<” Sensors and Actuators B, 2006, vol. 114, pp. 826-835.
G.S. Chung, “Fabrication and Characterization of Micro-heaters with Low-power Consumption using SOI membrane and Trench Structures,” Sensors and Actuators A, 2004, vol. 112, pp. 55-60.
Geffroy et al., “Organic Light-emitting Diode (OLED) Technology: Material Devices and Display Technologies,” Polymer International, Jun. 2006, vol. 55, pp. 572-582. (Abstract only).
Huang et al., “Reducing Blueshift of Viewing Angle for Top-Eimtting Organic Light-Emitting Devices,” Dec. 6, 2008, 3 pages.
J. Lee, et al. “Cavity Effects on Light Extraction in Organic Light emitting Devices,” Applied Physics Letters, Jan. 24, 2008, vol. 92, No. 3, 5 pages.
Leblanc et al., “Micromachined Printheads for the Evaporative Patterning of Organic Materials and Metals,” Journal of Microelectromechanical Systems, Apr. 2007, vol. 16, No. 2, 7 pp. 1-139.
Lindermann et al., “Thermal Bubble Jet Printhead with Integrated Nozzle Plate,” NIP20: International Conference on Digital Printing Technologies, Oct. 2004, pp. 834-839.
S.H. Kim et al. “Fabrication and Characterization of co-planar type MEMS Structures on SiO2/sI3n4 Membrane for Gas Sensrors with Dispensing Method Guided by Micromachined Wells,” Journal of Electroceramicx, 2006, vol. 17, No. 2-4, pp. 995-998.
Chen, Jianglong, “Novel Patterning Techniques for Manufacturing Organic and Nanostructured Electronics,” M.S. Materials Science and Engineering, Massachusetts Institute of Technology, 2003, pp. 1-206.
Chen, Jingkuang et al., “A High-Resolution Silicon Monolithic Nozzle Array for Inkjet Printing,” IEEE Transactions on Electron Devices, vol. 44, No. 9, Sep. 1997, pp. 1401-1409.
Chen et al., “Evaporative Deposition of Molecular Organics in Ambient with a Molecular Jet Printer,” Digital Fabrication, Sep. 2006, pp. 63-65 (Abstract only).
Chen et al., “Ambient Environment Patterning of Organic Thin Films by a Second Generation Molecular Jet (MoJet) Printer,” Progress Report 2006-2007, Oct. 2007, pp. 26-6; 26-7.
International Search Report issued on Dec. 15, 2010 for PCT Application No. PCT/US10/020144.
International Search Report issued on Sep. 2, 2010 for PCT Application No. PCT/US10/033315.
International Search Report and Written Opinion issued on Mar. 24, 2011 for PCT Application No. PCT/US10/058145.
International Preliminary Report on Patentability issued on Dec. 17, 2009 for PCT Application No. PCT/US08/66975.
International Preliminary Report on Patentability issued on Dec. 7, 2009 for PCT Application No. PCT/US08/066991.
International Preliminary Report on Patentability issued on Dec. 17, 2009 for PCT Application No. PCT/US08/67002.
Related Publications (1)
Number Date Country
20110262624 A1 Oct 2011 US
Divisions (1)
Number Date Country
Parent 11282472 Nov 2005 US
Child 13095619 US
Continuations (2)
Number Date Country
Parent 13050907 Mar 2011 US
Child 11282472 US
Parent 13088323 Apr 2011 US
Child 13050907 US