n/a
The present invention relates generally to a method and system for improving the transmission of high bit rates or high frequencies within a layer to layer transition of a PCB substrate and more specifically to a method and system for improving the electrical performance of a via by controlling the dielectric properties with a known value of permittivity or dielectric constant Dk surrounding the via hole structure.
As the bit rate of data and communication systems continue to increase and Integrated Circuit (“IC”) driver rise times continue to decrease, channel simulations are becoming a necessity. Printed Circuit Boards (“PCBs”) used in these systems are typically created by stacking layers of fiberglass and copper until the system specifications are met. Etched copper traces from multiple layers are connected after the stacking process. A small hole, called a “via”, is drilled through the fiberglass stack and the barrel of the hole is metal plated. Each via appears as a small hole from the surfaces of the PCB. However, the through hole via parasitic effects on PCB transmission channels have become a factor affecting the Bit Error Rate (“BER”) performance. Simulation models and methods can be used to predict the via effects on system performance. These topology modeling and simulation techniques rely on defining the correct value of the relative permittivity (sometimes referred to as the dielectric constant, (“Dk”)) of the dielectric material surrounding the via in order to achieve better accuracy.
Attempts to model the parasitic effects of via holes have included simple lumped element models. However, as data rates are now driven to 6 Gbs/second and beyond, via model bandwidth and accuracy must increase to account for faster rise-times. Using an incorrect value of permittivity surrounding the via hole structure may lead to an over-optimistic channel performance prediction.
Another challenge faced today in high data rate transmission signal integrity is to reduce the via propagation discontinuity (delay) along transmission lines. This problem is compounded with multiple vias along the transmission lines stitching through a PCB in which critical signals could become contaminated by other signals.
PCB fabrication processes use a combination of fiberglass woven cloth and epoxy resin materials to laminate the layers in a non-homogeneous multi-layer stack-up. Electronic or E-Glass is one component used to fabricate fiberglass yarns. When glass fiber yarns are woven into sheets the “warp” yarns run the length of the fabric roll, while the “fill” or “weft” yarns run the width. The thread count is the number of warp yarns per inch by the number of fill yarns per inch.
Prepreg is the term used for a weave of glass fiber yarns impregnated with resin which is only partially cured. The combinations of yarn and resin thicknesses define the overall thickness of a prepreg sheet. Resin content is typically within the 40 to 70 percent range. It is a function of the thread count and the yarn diameters. Larger diameter glass yarn in a weave tend to be thicker and have a lower resin content, while smaller yarns are thinner and have a higher resin content.
When copper foil is attached to one or both sides of fully cured prepreg mats, the laminated sheet is called a core. Both core and prepreg sheets can be fabricated in various panel sizes and thicknesses. A multilayer PCB stackup can be fabricated with alternating layers of core and prepreg material. Depending on controlled impedance requirements for various transmission lines within the design, cores and prepregs are chosen to build up the required thicknesses to satisfy a particular trace etch geometry. The PCB manufacturing process dictates the preferred laminate thickness and resin content of the prepreg mats.
Inter-pair propagation delay mismatch (or “Laminate Weave Effect”) occurs due to differences in dielectric material properties (“Dk”). The additional losses introduced in differential transmission lines as a result of temporal asymmetries of the glass fiber yarns are due to the relative difference in propagation delay cased by the Weave Effect. As a signal propagates along a transmission line, its speed of propagation is directly proportional to the effective Dk of the dielectric material surrounding the trace. The characteristic impedence the signal sees at any point along the transmission line is inversely proportional to the effective Dk.
Due to the nature of the glass-resin construction of a typical PCB dielectric layer, the signal will experience a non-homogenous dielectric as it propagates parallel to the warp and weft of the glass yarns in the x/y direction. The effective Dk of any laminate is a function of the glass-to-resin ratio. As the signal propagates through the via, in the z-axis direction, it will experience a higher effective Dk, due to the anisotropic nature of the dielectric.
When using the appropriate value for Dk, the correct characteristic impedence of the trace geometry can be predicted using traditional software techniques known in the art. Laboratory measurements usually correlate well with the predicted results. However, using the same value of Dk when trying to model a particular via geometry typically results in poorer correlation to measurement. This is particularly true when trying to model and simulate the resonance stub effect caused by via transmissions to stripline layers in a multi-layer PCB.
Therefore, what is needed is a system and method for improving electrical performance of vias for high data rate transmission by using a known value of Dk to surround PCB via hole structures.
The present invention advantageously provides a method and system for improving the transmission of high bit rates or high frequencies within a layer transition of a PCB substrate by minimizing dielectric permittivity surrounding a via hole structure.
According to one aspect of the invention, a method of improving signal integrity in a multi-layer circuit board is provided. The circuit board includes at least a top layer, an inner signal substrate layer, and a bottom layer. The method includes creating a channel within the circuit board to accommodate a via hole, filling the created channel with a predetermined amount of dielectric material with known dielectric constant, providing an inner signal substrate layer, forming the via hole, and electrically coupling the top layer to at least the inner signal substrate layer.
According to another aspect of the invention, a circuit board substrate is provided. The substrate includes a top layer and a bottom layer, an inner signal layer disposed between the top layer and the bottom layer, and a predetermined amount of dielectric material with known dielectric constant, where the dielectric material fills a channel formed between the top layer and the bottom layer, and the channel has dimensions to accommodate a via hole barrel. The via hole barrel extends through the dielectric material and electrically couples the top layer to the bottom layer.
According to yet another embodiment, a multi-layer circuit board substrate is provided where the substrate includes a top layer and a bottom layer, top circuitry and bottom circuitry, an inner signal layer disposed between the top layer and the bottom layer, and a predetermined amount of dielectric material with known dielectric constant. The dielectric material fills a channel formed between the top layer and the bottom layer and has dimensions to accommodate a via hole barrel. The substrate also includes a conducting device extending at least partially through the channel of dielectric material, where the conducting device electrically couples the top circuitry to the bottom circuitry.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
Before describing in detail exemplary embodiments that are in accordance with the present invention, it is noted that the embodiments reside primarily in combinations of apparatus components and processing steps related to implementing a system and method for improving the transmission of high bit rates or high frequencies within a layer to layer transition of a PCB substrate.
Accordingly, the system and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
As used herein, relational terms, such as “first” and “second,” “top” and “bottom,” and the like, may be used solely to distinguish one entity or element from another entity or element without necessarily requiring or implying any physical or logical relationship or order between such entities or elements.
The present invention improves PCB via performance for high speed serial data transmissions by reducing excess via capacitance. This is accomplished by utilizing lower permittivity reinforcement and z-axis conducting methods in order to better control the via parasitic capacitance.
Referring now to the drawing figures in which like reference designators refer to like elements,
In
Referring to
In an alternate embodiment shown in
Stack-up 10 includes one or more single or double-sided PCB laminated cores 28, having pre-plated holes 30. Within stack-up 10, there are one or more pre-laminated multilayer PCB structures 32. The structures 32 can be arranged to have alternating core 28 and prepreg 34 laminates. The laminates may have unplated holes 36 predrilled therein and may be but need not be drilled in accordance with the effective anti-pad clearance diameter. The opening created by unplated holes 36 may be of any shape or dimension. Stack-up 10 may include bonding material 38 that includes a clearance hole 40 that also may be but need not be limited to the effective anti-pad clearance diameter. Hole 40 of bonding material 38 may be of any shape of dimension.
In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. Significantly, this invention can be embodied in other specific forms without departing from the spirit or essential attributes thereof, and accordingly, reference should be had to the following claims, rather than to the foregoing specification, as indicating the scope of the invention.
The present invention is related to and claims priority to U.S. Provisional Patent Application No. 61/027,071, filed Feb. 8, 2008, entitled METHOD AND TECHNIQUE/APPARATUS TO MODEL VIA ELECTRICAL PERFORMANCE FOR HIGH DATA RATE TRANSMISSION, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61027071 | Feb 2008 | US |