Method for fabricating a transistor device with a tuned dopant profile

Abstract
A transistor device with a tuned dopant profile is fabricated by implanting one or more dopant migrating mitigating material such as carbon. The process conditions for the carbon implant are selected to achieve a desired peak location and height of the dopant profile for each dopant implant, such as boron. Different transistor devices with similar boron implants may be fabricated with different peak locations and heights for their respective dopant profiles by tailoring the carbon implant energy to effect tuned dopant profiles for the boron.
Description
TECHNICAL FIELD

The present disclosure relates in general to semiconductor fabrication processes and more particularly to a method for fabricating a transistor device with a tuned dopant profile.


BACKGROUND

Cost effective semiconductor electronic manufacturing requires transistor structures and manufacturing processes that are reliable at nanometer scales and that do not require expensive or unavailable tools or process control conditions for the design or manufacture. While it is difficult to balance the many variables that control transistor electrical performance, finding suitable transistor dopant structures with an associated manufacturing technique that results in acceptable electrical characteristics such as charge carrier mobility, threshold voltage levels, and junction leakage are a key aspect of such commercially useful transistors.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:



FIGS. 1A-1C illustrate how a carbon implant may be used to adjust a dopant profile of a boron implant;



FIGS. 2A-2B illustrate examples of how a position and height of a peak of the dopant profile can be adjusted through a change in the carbon implant;



FIGS. 3A-3F illustrate changes in a transistor structure during a fabrication process to produce the dopant profiles of FIGS. 1A-1C and 2A-2B;



FIG. 4 illustrates an example of a transistor structure without a screening layer, with carbon added to the channel.





DETAILED DESCRIPTION

A Deeply Depleted Channel (DDC) transistor can use, among other things, dopants in preselected concentrations and located specific areas a distance below the top surface of the substrate to define a depletion zone and establish a threshold voltage during transistor operation. This can result in a transistor having improved electrical parameters including threshold voltage variation among transistors and reduced power requirements. One quality goal of a DDC transistor is to form the doped regions in such a manner as to inhibit the migration of the dopants outside of the desired locations.


A DDC transistor typically includes both a highly doped region formed in a semiconductor substrate below a gate, called the screening layer, that functions to define the extent of the depletion region below the gate in operation, and an undoped epitaxially grown channel on the highly doped region extending between a source and a drain of the transistor. In addition, a threshold voltage set layer may be positioned between the undoped channel and the screening layer and may alternatively contact or be separated from the screening layer and/or the undoped channel. This threshold voltage set layer is used to finely adjust or tune the threshold voltage of individual or blocks of transistors. The screening layer and/or the threshold voltage set layer can be implanted into the semiconductor substrate, separately grown as a blanket or as selective epitaxial layers on the semiconductor substrate and doped by controlled implants, or by substitutional doped deposition. The threshold voltage set layer may also be formed by performing a controlled diffusion from the screening layer. An anti-punchthrough layer may also underlie the screening layer and may be formed by implantation into the semiconductor substrate or by diffusion from the screening layer. As compared to conventional doped channel transistors, such DDC transistors can be more closely matched in device characteristics, in part because they have reduced channel random dopant fluctuations that can result in variable threshold voltage set points. Other embodiments of DDC transistors may include a slightly doped channel, whether by way of channel dopants distributed throughout or halo implants or other forms of channel doping. Further examples of a DDC transistor structure and manufacture are disclosed in U.S. Pat. No. 8,273,617 titled ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME by Scott E. Thompson et al., as well as U.S. patent application Ser. No. 12/971,884, filed on Dec. 17, 2010 titled LOW POWER SEMICONDUCTOR TRANSISTOR STRUCTURE AND METHOD OF FABRICATION THEREOF and U.S. patent application Ser. No. 12/971,955 filed on Dec. 17, 2010 titled TRANSISTOR WITH THRESHOLD VOLTAGE SET NOTCH AND METHOD OF FABRICATION THEREOF, the respective contents of which are incorporated by reference herein.


Thermal cycles in the fabrication process can lead to diffusion of the screening and threshold voltage set layer materials particularly when the materials used tend to be mobile. It is desirable to prevent screening layer and threshold voltage set layer materials from unwanted diffusion into the undoped channel layer. A method of reducing dopant migration is to introduce a dopant migration resistant material, such as carbon, to further limit unwanted dopant migration.


As an example, boron is preferably used for NMOS transistor fabrication. For a DDC NMOS transistor, a boron implant may be used for a screening layer and for the optional threshold voltage set layer. Implanted boron is widely known to diffuse during device fabrication, especially in thermal cycles of 900° C. or more. To avoid unwanted diffusion of boron, carbon may be added to the crystalline lattice. It is thought that carbon takes substitutional positions in the crystalline structure to limit available pathways for the movement of boron. There may be a pre-amorphization implant using germanium followed by a recrystallization anneal to enhance the effectiveness of the added carbon. The use of carbon addition to inhibit migration of dopants works effectively in a silicon crystalline substrate, and can be effective in other semiconducting substrates as well. Another benefit to using carbon implant is in its ability to tune the dopant profile of the boron.



FIGS. 1A-1C show by way of example how a carbon implant may be used to adjust a dopant profile of a boron used for a screening layer or a threshold voltage set layer of the DDC transistor. Throughout FIGS. 1A-1C, the dose of the boron implant is constant at 3.5×1013 atoms/cm2 to achieve a peak concentration as shown on the charts. In each of FIGS. 1A-1C, two dopant profiles are shown, one at a BF2 implant energy of 5 keV and one at an implant energy of 20 keV. Though results are shown for BF2, the effects shown herein apply to a boron implant as well. FIG. 1A shows the effect of a carbon implant at an implant energy of 3 keV and an implant dose of 5×1014 atoms/cm2 on the boron dopant profile. FIG. 1B shows the effect of a carbon implant at an implant energy of 1 keV and an implant dose of 5×1014 atoms/cm2 on the boron dopant profile. FIG. 1C shows the effect of a carbon implant at an implant energy of 3 keV and an implant dose of 8×1014 atoms/cm2 on the boron dopant profile.


As shown in FIGS. 1A-1C, the amount of implant energy for the carbon implant has a visible effect on the resultant boron dopant profile. For instance, as seen in FIG. 1B, a lower carbon implant energy, for instance, 1 keV, produces a sharper and higher peak in the boron dopant profile than for a carbon implant energy of 3 keV, where, as seen in FIGS. 1A and 1C, the boron dopant profile is more spread out. Moreover, boron dopant profile peak height and location may also be changed even when the carbon implant remains constant and the BF2 implant energy is adjusted. Another characteristic illustrated by FIGS. 1A-1C is that a tail of the dopant profile is affected by an amount of implant energy for the BF2 implant. Degradation of the dopant profile tail at lower implant energies for the BF2 implant may lead to higher drain induced barrier lowering (DIBL), greater short channel effects, and less threshold voltage response.



FIGS. 2A-2B show examples of how a position and height of a peak of the boron dopant profile can be adjusted through a change in the carbon implant. The example of FIG. 2A uses BF2 as the dopant material implanted at an energy of 5 keV and a dopant implant dose of 3.5×1013 atoms/cm2. The peak of the boron dopant profile is sharper and higher and occurs at a shallower depth for a carbon implant energy of 1 keV as compared to 3 keV. As a result, fine tuning of the boron dopant profile is achieved through variations in carbon implant parameters, with the carbon energy being tied to the sharpness of the peak for the boron profile. A lower carbon energy is used to attain a sharper boron peak. A lower carbon energy also causes the peak of the boron to be shallower and higher in concentration than for a higher carbon energy. Changes in carbon implant dose has a negligible effect on the boron dopant profile in this example, with very slight increases in peak height and sharpness of the dopant profile occurring at increased doses of the carbon implant. As a result, the boron dopant profile is more affected by carbon implant energy than carbon dopant concentration. However, increased carbon dopant concentration may protect the screening layer and the threshold voltage set layer from encroachment of subsequently formed lightly doped drain or source/drain extension regions.


The example of FIG. 2B uses BF2 as the dopant material implanted at an energy of 20 keV and a dopant implant dose of 3.5×1013 atoms/cm2. Similar changes in location and height of the peak of the dopant profile are achieved relative to carbon implant energy as similarly shown in FIG. 2A. Note that, as indicated in FIG. 2A-2B, a dual implant of carbon can be used to attain a dual peak profile for the boron. A lower-energy carbon, for instance, at an energy of about 1 keV, can be combined with a higher energy carbon, for instance, at an energy of about 3 keV, to produce a dual peak profile for the boron of a first, sharper, shallower peak and a second, wider, deeper peak. Finer dopant profile tuning can be made with modifications to the carbon dose.



FIGS. 3A-3F show an example of the changes that may take place in a transistor channel structure 300 during a fabrication process to produce the dopant profiles of FIGS. 1A-1C and 2A-2B. The process begins in FIG. 3A with a mask 302 formed on a semiconductor substrate 304 (preferably bulk silicon) to define an opening constituting an implant region 306. In one embodiment for an NMOS transistor device, a p-type material (for discussion purposes Boron or BF2) is implanted in the opening 306, at approximately 100-250 keV at doses in the range of 1×1013 to 5×1013 atoms/cm2, to form a well 308.


In FIG. 3B, an optional anti-punchthrough layer 310 comprising a p-type material may be implanted into opening 306. An example implant condition for anti-punchthrough layer 310 may include an implant energy of 30 to 50 keV and a dopant concentration of about 0.8 to 3.0×1013 atoms/cm2.


In FIG. 3C, dopant migration resistant material such as carbon is implanted into opening 306. An example process condition may include a germanium implant at an implant energy of 30 to 50 keV and a dopant implant dose of 4 to 6×1014 atoms/cm2. Multiple carbon implants may be performed for further dopant profile tuning as desired. For instance, each carbon implant can correspond respectively to one or more of anti-punchthrough layer 310 and a subsequently formed screening layer and a subsequently formed threshold voltage set layer. The process conditions for the carbon implants may include those discussed above, with energy selections tailored to tune the dopant profile of the anti-punchthrough layer 310, the screening layer, the threshold voltage set layer and any other desired profiles. The carbon implant may be performed once for all dopant profile tunings, or may be performed in steps specifically matched to steps for one or more of the dopant regions. Notably, the dopant profile shape for one or more screening layers and if present, the threshold voltage set layer are designed for the transistor to meet its parametric requirements. Therefore, implementing a process that matches an appropriate carbon implant energy to targeted dopant profile shapes is beneficial for achieving structural and device metric goals for the transistor. Example carbon implant conditions may include an implant energy of 0.8 to 8 keV and a dopant implant dose of 3×1013 to 8×1014 atoms/cm2. A particularly shallow carbon implant may serve an additional benefit to contain the profile of the to-be-formed source/drain extensions (shown as 322, 324 in FIG. 3F). A deeper carbon implant may be used to control the shape of a more deeply implanted dopant, for example anti-punchthrough layer 310. The carbon implant conditions are selected to place a peak of the dopant profile of the anti-punchthrough layer 310, the screening layer, and the threshold voltage set layer at a desired location and height.


After the germanium and carbon implants, transistor structure 300 is usually subjected to one or more annealing processes. Example annealing processes include baking transistor structure 300 at a temperature of 600 to 700° C. for 80 to 200 seconds. A spike anneal may also be performed at an example temperature of 900 to 1100° C. for a duration of less than 1 second. The anneal processes are selected and performed to recrystallize the semiconductor substrate while suppressing diffusion of implanted dopants.


In FIG. 3D, a screening layer 312 and a threshold voltage set layer 314 are implanted into implant region 306. In an alternative process, anti-punchthrough layer 310 may also be implanted at this time instead of prior to the germanium implant as stated above. Example implant conditions include those discussed above where screening layer 312 may be implanted with a p-type material at an implant energy of 10 to 30 keV and a dopant implant dose of 2 to 5×1013 atoms/cm2. Threshold voltage set layer 314 may be implanted with a p-type material at an implant energy of 3 to 20 keV and a dopant implant dose of 1 to 4×1013 atoms/cm2. In alternative embodiments, screening layer 312 may have a higher dopant concentration, approximately the same, or lower dopant concentration than that of threshold voltage set layer 314 so that the screening layer 312 may be below or above the threshold voltage set layer 314. The desired peak sharpness of the screening layer 312 and threshold voltage set layer 314 are modulated by setting the carbon implant energy that matches the desired outcome, that is a lower carbon implant energy resulting in sharper, higher peaks with a more narrow profile. Typically, the dopant concentration of the anti-punchthrough layer 310 is lower than both the screening layer 312 and threshold voltage set layer 314. Implantation of screening layer 312 and threshold voltage set layer 314 may be performed in separate implant steps or as a single continuous step through dynamic adjustment of the process conditions.


In FIG. 3E, following screening layer 312 and threshold voltage set layer 314 implantation, transistor structure 300 may be subject to one or more anneal processes as discussed above in order to further prevent diffusion of the dopants in these layers. Mask 302 is removed and a blanket undoped channel layer 316 may then be epitaxially grown across a plurality of transistor structures 300 on a single die (not shown).


In FIG. 3F, a gate dielectric 322, a gate region 324, and sidewall spacers 326 may be formed over undoped channel 316. Note that although a planar CMOS structure is depicted in the FIGURE, alternative transistor structures above the channel 316 may be formed. An n-type material may be implanted to form a source extension 322 and drain extension 324 as well as a source region 318 and a drain region 320.


The above embodiments for using a diffusion-mitigating material in the context of DDC transistors is applicable for both NMOS and PMOS transistors, though typically, such methods may be used more commonly for NMOS and less commonly for PMOS. For PMOS, other materials which in themselves tend to be less diffusive may be used. For instance, antimony may be used for the highly doped regions of the PMOS transistor, thus making potentially unnecessary the use of further diffusion-mitigation measures. For PMOS, energy and dose levels for ion implantation of the dopant material (for instance, antimony) are selected to effect a targeted placement of the profile peak as well as thickness and concentration of the doped region, all of which can affect resultant electrical parameters for the transistor including threshold voltage, junction leakage, drive current, drain-induced barrier lowering, and other parameters. However, an alternative embodiment may be to deposit a blanket epitaxial carbon-infused silicon on the substrate surface in advance of or after the doping of the highly doped regions (for instance, the screen layer and the threshold voltage setting layer). Such a blanket epitaxial carbon-infused silicon may serve as an overall dopant migration inhibitor for all devices. Implanted dopant migration mitigation material (for instance, carbon) may be used to augment in-situ epitaxially grown material as needed. Adjacent transistor structures 300 may be separated by isolation regions 326, with the isolation regions being preferably formed after the epitaxial layer is formed. Further conventional process steps can then be performed to complete the fabrication to form an integrated circuit.


As a further note, as shown in FIG. 4, preselected carbon implants may be performed in the absence of a screening layer or threshold voltage tuning layer (not shown). There is provided a transistor 400 which contains, in this example, a gate 402 and spacer structures 404 on either side of gate 402 overlying a gate dielectric 406 which may be a thermally grown oxide or other suitable material. There may be source and drain extension structures 410 and 412 extending below and near the edges of gate 402 with spacers 404. There may be deeper source and drain structures 420 and 422, doped to a level sufficient to provide a suitable contact to metallization which may be formed thereabove (not shown).


There may not be an undoped epitaxially grown channel as preferably used for DDC transistor structures. Carbon addition 430 may be made by ion implantation directly into substrate 428 which may be previously doped with wells (not shown) or the wells may be formed after the carbon implants. Instead of implanted carbon, carbon addition 430 may be epitaxially introduced by way of an epitaxial material growth over substrate 428 that includes carbon, resulting in carbon addition 430 appearing in the channel. A benefit of using carbon-added epitaxially grown silicon is the avoidance of using germanium pre-amorphization implants. If instead, carbon is put into the substrate by way of ion implantation, then germanium pre-amorphization may be typically followed by recrystallization anneal to secure the carbon into the substitutional lattice locations. Germanium pre-amorphization implant may, however, be avoided with the selection of an appropriate ion implantation process for the carbon, for instance through use of low-temperature ion implantation methods.


Preselected carbon implants (the process shall be referred to herein as “implants” though in-situ epitaxially introduced carbon alone or in combination with ion implantation of carbon may be used) may be used in the context of a DDC transistor, with conventional channel doping implementations or halo doping implementations, or both. The carbon is introduced into substrate 428 so that the carbon concentration and, as applicable, the profile may be matched to those areas of the source 420, drain 422, source extension 410, and drain extension 412 tending to produce unwanted out-diffusion. Typically, carbon may be added to substrate 428 uniformly in the deep source 420/drain 422 area with the concentration being modulated at the source extension 410/drain extension 412 area to fine-tune the electrical parameters of the transistor device which may be affected by tolerance for more or less out-diffusion of material from the doped areas 410, 412, 420 and 422.


Preselected carbon implants may be used with the isolation structures formed first or right after placement of carbon addition 430, or sometime later in the fabrication process sequence. Preferably, the isolation structures are formed after the carbon implants.


Energy for implanting the carbon implants may range from 0.5 to 10 keV for a dose of 8×1013 to 2×1015 atoms/cm2 or other dose to result in a sufficient concentration of carbon to effect a stop for potential diffusion of the later formed source 420, drain 422, source extension 410, and drain extension 412. Concentration of the carbon in the semiconductor lattice may be, for instance, 1×1018 atoms/cm3 to 8×1020 atoms/cm3 where the concentrations may be more precisely located to be in the vicinity of the source extension 410/drain extension 412 or source 420/drain 422. The carbon concentration and location of concentration profile peaks can be tuned with the selection of energies and dose, as can be seen in the examples of FIGS. 1A TO 1C, and FIGS. 2A TO 2B. If a dual carbon profile is desired, the profile can be achieved using a combination of ion implant steps or using a combination of in-situ carbon epitaxial growth at a designated carbon concentration with separately performed ion implantation.


A benefit of using carbon implants in the channel is multi-fold. In the case of DDC transistors, carbon helps to mitigate against unwanted diffusion doped regions to effect a desired and specific dopant profile. In the case of conventional transistors, there is usually a greater problem of out-diffusion from the source and drain structures due to high temperature anneals that take place later in the process sequence. The high temperature anneals may cause excessive out-diffusion of material, for instance boron or phosphorous, from the source and drain structures. By introducing carbon into the channel prior to the initiation of the anneals that may cause excessive out-diffusion of the source and drain into the channel region, the otherwise occurring out-diffusion of material from the source and drain structures can be mitigated. Though the carbon implants may be formed at any time prior to the problematic anneals, the carbon implants are preferably formed together with, before, or right after the formation of the wells.


Note that although a well-known structure for a MOSFET is shown in FIG. 4, the embodiment of placing carbon into the channel is useful for a variety of MOSFET structures including structures having shallower junction, raised source and drain, source and/or drain structures created with selective epitaxial growth, having or not having source/drain extensions, or other variations thereof. Placing carbon in the channel is useful for either NMOS or PMOS, and carbon placement to tune dopant profile of adjacent doped structures can be used in non-MOSFET contexts as well, for instance in bipolar or other structures that involve doped regions that should remain in place. Carbon in the channel is useful for numerous types of DDC structures as described above in relation to FIGS. 1A to 1C, 2A to 2B, and 3A to 3F, as well as the previous cases incorporated by reference herein. Carbon in the channel may also be used in three-dimensional transistor structures, for instance finFET devices, where it is desired to block the out-diffusion of source/drain dopant material into a non-doped, lesser doped, or oppositely doped area.


Different process conditions for doping may be implemented across a plurality of transistors in a die. Through selective use of doping conditions across a plurality of transistors, transistor structures may be fabricated with variations in location and height of the peak of the dopant profile so as to effect differing electrical transistor behaviors. Doping conditions within the channel may directly affect certain electrical properties such as threshold voltage. Doping profile of other parts of the transistor, for instance the source and drain, should also be controlled, though out-diffusion that results in a modification of the shape of the source and drain can create problems with transistors not meeting parametric targets. The use of carbon or other dopant migration mitigation materials is effective to hold a dopant material that would otherwise travel through a semiconductor lattice in place to effect a dopant desired profile. More specifically, the use of preselected carbon process conditions to effect a placement of carbon into the substrate has beneficial effects on keeping the target shape for the doped areas. If ion implantation is used for introducing the carbon, the modulation of energy of the implant results in a certain shape of a dopant profile peak. To insert carbon into the substrate, ion implantation, in-situ epitaxial growth, or other methods or combinations thereof may be used to effect a placement of a concentration of carbon species in desired locations.


Although the present disclosure has been described in detail with reference to a particular embodiment, it should be understood that various other changes, substitutions, and alterations may be made hereto without departing from the spirit and scope of the appended claims. For example, although the present disclosure includes a description with reference to a specific ordering of processes, other process sequencing may be followed to achieve the end result discussed herein. Though discussed using specific examples, different materials and process conditions may be used at each point of the fabrication process to create a desired transistor structure. As but one example, the carbon implants may be intermixed with the various boron implants.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained by those skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the spirit and scope of the appended claims. Moreover, the present disclosure is not intended to be limited in any way by any statement in the specification that is not otherwise reflected in the appended claims.

Claims
  • 1. A method for fabricating a transistor device having a gate, a channel, a source and a drain on either side of the channel, the channel having a tuned dopant profile, comprising: defining an implant region;performing a first implantation of a first dopant migration mitigating material into the implant region at a first preselected dopant migration mitigating energy and dose;implanting a screening layer into the implant region at a preselected screening layer energy and screening layer dose, the screening layer defining a depletion width for the transistor channel when a voltage is applied to the gate;wherein the first preselected dopant migration mitigating energy effects a placement of a peak of a dopant profile of the screening layer at a first location and a first thickness.
  • 2. The method of claim 1, comprising: implanting a threshold voltage set layer into the implant region at a preselected threshold voltage set layer energy and threshold voltage set layer dose;wherein the preselected threshold voltage set layer energy and threshold voltage set layer dose effects a placement of the peak of a dopant profile of the threshold voltage layer to be different from the first location;wherein the threshold voltage set layer is coextensive with the screening layer and abuts the source and drain and the screening layer extends laterally across the channel.
  • 3. A method for fabricating a transistor device having a gate, a channel, a source and a drain on either side of the channel, the channel having a tuned dopant profile, comprising: defining an implant region;implanting a screening layer into the implant region at a preselected screening layer energy and screening layer dose, the screening layer defining a depletion width for the transistor channel when a voltage is applied to the gate;depositing an epitaxial layer including a dopant migration mitigating material on the screening layer at a first preselected dopant migration mitigating thickness;wherein a thickness of the epitaxial layer effects a placement of a peak of a dopant profile of the screening layer at a first location and a first thickness.
  • 4. A method of claim 3, wherein the epitaxial layer comprises an epitaxial carbon-infused silicon.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional application of U.S. application Ser. No. 13/828,262 filed Mar. 14, 2013 and entitled “Method for fabricating a Transistor Device With a Tuned Dopant Profile”.

US Referenced Citations (511)
Number Name Date Kind
3958266 Athanas May 1976 A
4000504 Berger Dec 1976 A
4021835 Etoh May 1977 A
4242691 Kotani Dec 1980 A
4276095 Beilstein, Jr. Jun 1981 A
4315781 Henderson Feb 1982 A
4518926 Swanson May 1985 A
4559091 Allen Dec 1985 A
4578128 Mundt Mar 1986 A
4617066 Vasudev Oct 1986 A
4662061 Malhi May 1987 A
4761384 Neppl Aug 1988 A
4780748 Cunningham Oct 1988 A
4819043 Yazawa Apr 1989 A
4885477 Bird Dec 1989 A
4908681 Nishida Mar 1990 A
4945254 Robbins Jul 1990 A
4956311 Liou Sep 1990 A
5034337 Mosher Jul 1991 A
5144378 Hikosaka Sep 1992 A
5156989 Williams Oct 1992 A
5156990 Mitchell Oct 1992 A
5166765 Lee Nov 1992 A
5208473 Komori May 1993 A
5294821 Iwamatsu Mar 1994 A
5298763 Shen Mar 1994 A
5369288 Usuki Nov 1994 A
5373186 Schubert Dec 1994 A
5384476 Nishizawa Jan 1995 A
5426328 Yilmaz Jun 1995 A
5444008 Han Aug 1995 A
5552332 Tseng Sep 1996 A
5559368 Hu Sep 1996 A
5608253 Liu Mar 1997 A
5622880 Burr Apr 1997 A
5624863 Helm Apr 1997 A
5625568 Edwards Apr 1997 A
5641980 Yamaguchi Jun 1997 A
5663583 Matloubian Sep 1997 A
5712501 Davies Jan 1998 A
5719422 Burr Feb 1998 A
5726488 Watanabe Mar 1998 A
5726562 Mizuno Mar 1998 A
5731626 Eaglesham Mar 1998 A
5736419 Naem Apr 1998 A
5753555 Hada May 1998 A
5754826 Gamal May 1998 A
5756365 Kakumu May 1998 A
5763921 Okumura Jun 1998 A
5780899 Hu Jul 1998 A
5847419 Imai Dec 1998 A
5856003 Chiu Jan 1999 A
5861334 Rho Jan 1999 A
5877049 Liu Mar 1999 A
5885876 Dennen Mar 1999 A
5889315 Farrenkopf Mar 1999 A
5895954 Yasumura Apr 1999 A
5899714 Farrenkopf May 1999 A
5918129 Fulford, Jr. Jun 1999 A
5923067 Voldman Jul 1999 A
5923987 Burr Jul 1999 A
5936868 Hall Aug 1999 A
5946214 Heavlin Aug 1999 A
5985705 Seliskar Nov 1999 A
5989963 Luning Nov 1999 A
6001695 Wu Dec 1999 A
6020227 Bulucea Feb 2000 A
6043139 Eaglesham Mar 2000 A
6060345 Hause May 2000 A
6060364 Maszara May 2000 A
6066533 Yu May 2000 A
6072217 Burr Jun 2000 A
6087210 Sohn Jul 2000 A
6087691 Hamamoto Jul 2000 A
6088518 Hsu Jul 2000 A
6091286 Blauschild Jul 2000 A
6096611 Wu Aug 2000 A
6103562 Son Aug 2000 A
6121153 Kikkawa Sep 2000 A
6147383 Kuroda Nov 2000 A
6153920 Gossmann Nov 2000 A
6157073 Lehongres Dec 2000 A
6175582 Naito Jan 2001 B1
6184112 Maszara Feb 2001 B1
6190979 Radens Feb 2001 B1
6194259 Nayak Feb 2001 B1
6198157 Ishida Mar 2001 B1
6218892 Soumyanath Apr 2001 B1
6218895 De Apr 2001 B1
6221724 Yu Apr 2001 B1
6229188 Aoki May 2001 B1
6232164 Tsai May 2001 B1
6235597 Miles May 2001 B1
6245618 An Jun 2001 B1
6268640 Park Jul 2001 B1
6271070 Kotani Aug 2001 B2
6271551 Schmitz Aug 2001 B1
6288429 Iwata Sep 2001 B1
6297132 Zhang Oct 2001 B1
6300177 Sundaresan Oct 2001 B1
6313489 Letavic Nov 2001 B1
6319799 Ouyang Nov 2001 B1
6320222 Forbes Nov 2001 B1
6323525 Noguchi Nov 2001 B1
6326666 Bernstein Dec 2001 B1
6335233 Cho Jan 2002 B1
6358806 Puchner Mar 2002 B1
6380019 Yu Apr 2002 B1
6391752 Colinge May 2002 B1
6426260 Hshieh Jul 2002 B1
6426279 Huster Jul 2002 B1
6432754 Assaderaghi Aug 2002 B1
6444550 Hao Sep 2002 B1
6444551 Ku Sep 2002 B1
6449749 Stine Sep 2002 B1
6461920 Shirahata Oct 2002 B1
6461928 Rodder Oct 2002 B2
6472278 Marshall Oct 2002 B1
6482714 Hieda Nov 2002 B1
6489224 Burr Dec 2002 B1
6492232 Tang Dec 2002 B1
6500739 Wang Dec 2002 B1
6503801 Rouse Jan 2003 B1
6503805 Wang Jan 2003 B2
6506640 Ishida Jan 2003 B1
6518623 Oda Feb 2003 B1
6521470 Lin Feb 2003 B1
6534373 Yu Mar 2003 B1
6541328 Whang Apr 2003 B2
6541829 Nishinohara Apr 2003 B2
6548842 Bulucea Apr 2003 B1
6551885 Yu Apr 2003 B1
6552377 Yu Apr 2003 B1
6573129 Hoke Jun 2003 B2
6576535 Drobny Jun 2003 B2
6600200 Lustig Jul 2003 B1
6620671 Wang Sep 2003 B1
6624488 Kim Sep 2003 B1
6627473 Oikawa Sep 2003 B1
6630710 Augusto Oct 2003 B1
6660605 Liu Dec 2003 B1
6662350 Fried Dec 2003 B2
6667200 Sohn Dec 2003 B2
6670260 Yu Dec 2003 B1
6693333 Yu Feb 2004 B1
6730568 Sohn May 2004 B2
6737724 Hieda May 2004 B2
6743291 Ang Jun 2004 B2
6743684 Liu Jun 2004 B2
6751519 Satya Jun 2004 B1
6753230 Sohn Jun 2004 B2
6760900 Rategh Jul 2004 B2
6770944 Nishinohara Aug 2004 B2
6787424 Yu Sep 2004 B1
6797553 Adkisson Sep 2004 B2
6797602 Kluth Sep 2004 B1
6797994 Hoke Sep 2004 B1
6808004 Kamm Oct 2004 B2
6808994 Wang Oct 2004 B1
6813750 Usami Nov 2004 B2
6821825 Todd Nov 2004 B2
6821852 Rhodes Nov 2004 B2
6822297 Nandakumar Nov 2004 B2
6831292 Currie Dec 2004 B2
6835639 Rotondaro Dec 2004 B2
6852602 Kanzawa Feb 2005 B2
6852603 Chakravarthi Feb 2005 B2
6881641 Wieczorek Apr 2005 B2
6881987 Sohn Apr 2005 B2
6891439 Jachne May 2005 B2
6893947 Martinez May 2005 B2
6900519 Cantell May 2005 B2
6901564 Stine May 2005 B2
6916698 Mocuta Jul 2005 B2
6917237 Tschanz Jul 2005 B1
6927463 Iwata Aug 2005 B2
6928128 Sidiropoulos Aug 2005 B1
6930007 Bu Aug 2005 B2
6930360 Yamauchi Aug 2005 B2
6957163 Ando Oct 2005 B2
6963090 Passlack Nov 2005 B2
6972223 Weimer Dec 2005 B2
6995397 Yamashita Feb 2006 B2
7002214 Boyd Feb 2006 B1
7008836 Algotsson Mar 2006 B2
7013359 Li Mar 2006 B1
7015546 Herr Mar 2006 B2
7015741 Tschanz Mar 2006 B2
7022559 Barnak Apr 2006 B2
7036098 Eleyan Apr 2006 B2
7038258 Liu May 2006 B2
7039881 Regan May 2006 B2
7045456 Murto May 2006 B2
7057216 Ouyang Jun 2006 B2
7061058 Chakravarthi Jun 2006 B2
7064039 Liu Jun 2006 B2
7064399 Babcock Jun 2006 B2
7071103 Chan Jul 2006 B2
7078325 Curello Jul 2006 B2
7078776 Nishinohara Jul 2006 B2
7089513 Bard Aug 2006 B2
7089515 Hanafi Aug 2006 B2
7091093 Noda Aug 2006 B1
7105399 Dakshina-Murthy Sep 2006 B1
7109099 Tan Sep 2006 B2
7119381 Passlack Oct 2006 B2
7122411 Mouli Oct 2006 B2
7127687 Signore Oct 2006 B1
7132323 Haensch Nov 2006 B2
7169675 Tan Jan 2007 B2
7170120 Datta Jan 2007 B2
7176137 Perng Feb 2007 B2
7186598 Yamauchi Mar 2007 B2
7189627 Wu Mar 2007 B2
7199430 Babcock Apr 2007 B2
7202517 Dixit Apr 2007 B2
7208354 Bauer Apr 2007 B2
7211871 Cho May 2007 B2
7221021 Wu May 2007 B2
7223646 Miyashita May 2007 B2
7226833 White Jun 2007 B2
7226843 Weber Jun 2007 B2
7230680 Fujisawa Jun 2007 B2
7235822 Li Jun 2007 B2
7256639 Koniaris Aug 2007 B1
7259428 Inaba Aug 2007 B2
7260562 Czajkowski Aug 2007 B2
7294877 Rueckes Nov 2007 B2
7297994 Wieczorek Nov 2007 B2
7301208 Handa Nov 2007 B2
7304350 Misaki Dec 2007 B2
7307471 Gammie Dec 2007 B2
7312500 Miyashita Dec 2007 B2
7323754 Ema Jan 2008 B2
7332439 Lindert Feb 2008 B2
7339215 Chidambaram Mar 2008 B2
7348629 Chu Mar 2008 B2
7354833 Liaw Apr 2008 B2
7380225 Joshi May 2008 B2
7398497 Sato Jul 2008 B2
7402207 Besser Jul 2008 B1
7402872 Murthy Jul 2008 B2
7416605 Zollner Aug 2008 B2
7427788 Li Sep 2008 B2
7442971 Wirbeleit Oct 2008 B2
7449733 Inaba Nov 2008 B2
7462908 Bol Dec 2008 B2
7469164 Du-Nour Dec 2008 B2
7470593 Rouh Dec 2008 B2
7485536 Jin Feb 2009 B2
7487474 Ciplickas Feb 2009 B2
7491988 Tolchinsky Feb 2009 B2
7494861 Chu Feb 2009 B2
7496862 Chang Feb 2009 B2
7496867 Turner Feb 2009 B2
7498637 Yamaoka Mar 2009 B2
7501324 Babcock Mar 2009 B2
7503020 Allen Mar 2009 B2
7507999 Kusumoto Mar 2009 B2
7514766 Yoshida Apr 2009 B2
7521323 Surdeanu Apr 2009 B2
7524740 Liu Apr 2009 B1
7531393 Doyle May 2009 B2
7531836 Liu May 2009 B2
7538364 Twynam May 2009 B2
7538412 Schulze May 2009 B2
7553717 Chakravarthi Jun 2009 B2
7562233 Sheng Jul 2009 B1
7564105 Chi Jul 2009 B2
7566600 Mouli Jul 2009 B2
7569456 Ko Aug 2009 B2
7586322 Xu Sep 2009 B1
7592241 Takao Sep 2009 B2
7595243 Bulucea Sep 2009 B1
7598142 Ranade Oct 2009 B2
7605041 Ema Oct 2009 B2
7605060 Meunier-Beillard Oct 2009 B2
7605429 Bernstein Oct 2009 B2
7608496 Chu Oct 2009 B2
7615802 Elpelt Nov 2009 B2
7622341 Chudzik Nov 2009 B2
7638380 Pearce Dec 2009 B2
7642140 Bae Jan 2010 B2
7644377 Saxe Jan 2010 B1
7645665 Kubo Jan 2010 B2
7651920 Siprak Jan 2010 B2
7655523 Babcock Feb 2010 B2
7673273 Madurawe Mar 2010 B2
7675126 Cho Mar 2010 B2
7675317 Perisetty Mar 2010 B2
7678631 Murthy Mar 2010 B2
7678638 Chu Mar 2010 B2
7681628 Joshi Mar 2010 B2
7682887 Dokumaci Mar 2010 B2
7683442 Burr Mar 2010 B1
7696000 Liu Apr 2010 B2
7704822 Jeong Apr 2010 B2
7704844 Zhu Apr 2010 B2
7709828 Braithwaite May 2010 B2
7723750 Zhu May 2010 B2
7737472 Kondo Jun 2010 B2
7741138 Cho Jun 2010 B2
7741200 Cho Jun 2010 B2
7745270 Shah Jun 2010 B2
7750374 Capasso Jul 2010 B2
7750381 Hokazono Jul 2010 B2
7750405 Nowak Jul 2010 B2
7750682 Bernstein Jul 2010 B2
7755144 Li Jul 2010 B2
7755146 Helm Jul 2010 B2
7759206 Luo Jul 2010 B2
7759714 Itoh Jul 2010 B2
7761820 Berger Jul 2010 B2
7795677 Bangsaruntip Sep 2010 B2
7808045 Kawahara Oct 2010 B2
7808410 Kim Oct 2010 B2
7811873 Mochizuki Oct 2010 B2
7811881 Cheng Oct 2010 B2
7818702 Mandelman Oct 2010 B2
7821066 Lebby Oct 2010 B2
7829402 Matocha Nov 2010 B2
7831873 Trimberger Nov 2010 B1
7846822 Seebauer Dec 2010 B2
7855118 Hoentschel Dec 2010 B2
7859013 Chen Dec 2010 B2
7863163 Bauer Jan 2011 B2
7867835 Lee Jan 2011 B2
7883977 Babcock Feb 2011 B2
7888205 Herner Feb 2011 B2
7888747 Hokazono Feb 2011 B2
7895546 Lahner Feb 2011 B2
7897495 Ye Mar 2011 B2
7906413 Cardone Mar 2011 B2
7906813 Kato Mar 2011 B2
7910419 Fenouillet-Beranger Mar 2011 B2
7919791 Flynn Apr 2011 B2
7926018 Moroz Apr 2011 B2
7935984 Nakano May 2011 B2
7941776 Majumder May 2011 B2
7945800 Gomm May 2011 B2
7948008 Liu May 2011 B2
7952147 Ueno May 2011 B2
7960232 King Jun 2011 B2
7960238 Kohli Jun 2011 B2
7968400 Cai Jun 2011 B2
7968411 Williford Jun 2011 B2
7968440 Seebauer Jun 2011 B2
7968459 Bedell Jun 2011 B2
7989900 Haensch Aug 2011 B2
7994573 Pan Aug 2011 B2
8004024 Furukawa Aug 2011 B2
8012827 Yu Sep 2011 B2
8029620 Kim Oct 2011 B2
8039332 Bernard Oct 2011 B2
8046598 Lee Oct 2011 B2
8048791 Hargrove Nov 2011 B2
8048810 Tsai Nov 2011 B2
8051340 Cranford, Jr. Nov 2011 B2
8053340 Colombeau Nov 2011 B2
8063466 Kurita Nov 2011 B2
8067279 Sadra Nov 2011 B2
8067280 Wang Nov 2011 B2
8067302 Li Nov 2011 B2
8076719 Zeng Dec 2011 B2
8097529 Krull Jan 2012 B2
8103983 Agarwal Jan 2012 B2
8105891 Yeh Jan 2012 B2
8106424 Schruefer Jan 2012 B2
8106481 Rao Jan 2012 B2
8110487 Griebenow Feb 2012 B2
8114761 Mandrekar Feb 2012 B2
8119482 Bhalla Feb 2012 B2
8120069 Hynecek Feb 2012 B2
8129246 Babcock Mar 2012 B2
8129797 Chen Mar 2012 B2
8134159 Hokazono Mar 2012 B2
8143120 Kerr Mar 2012 B2
8143124 Challa Mar 2012 B2
8143678 Kim Mar 2012 B2
8148774 Mori Apr 2012 B2
8163619 Yang Apr 2012 B2
8169002 Chang May 2012 B2
8170857 Joshi May 2012 B2
8173499 Chung May 2012 B2
8173502 Yan May 2012 B2
8176461 Trimberger May 2012 B1
8178430 Kim May 2012 B2
8179530 Levy May 2012 B2
8183096 Wirbeleit May 2012 B2
8183107 Mathur May 2012 B2
8185865 Gupta May 2012 B2
8187959 Pawlak May 2012 B2
8188542 Yoo May 2012 B2
8196545 Kurosawa Jun 2012 B2
8201122 Dewey, III Jun 2012 B2
8214190 Joshi Jul 2012 B2
8217423 Liu Jul 2012 B2
8225255 Ouyang Jul 2012 B2
8227307 Chen Jul 2012 B2
8236661 Dennard Aug 2012 B2
8239803 Kobayashi Aug 2012 B2
8247300 Babcock Aug 2012 B2
8255843 Chen Aug 2012 B2
8258026 Bulucea Sep 2012 B2
8266567 El Yahyaoui Sep 2012 B2
8273617 Thompson Sep 2012 B2
8286180 Foo Oct 2012 B2
8288798 Passlack Oct 2012 B2
8299562 Li Oct 2012 B2
8324059 Guo Dec 2012 B2
20010014495 Yu Aug 2001 A1
20020042184 Nandakumar Apr 2002 A1
20030006415 Yokogawa Jan 2003 A1
20030047763 Hieda Mar 2003 A1
20030122203 Nishinohara Jul 2003 A1
20030173626 Burr Sep 2003 A1
20030183856 Wieczorek Oct 2003 A1
20030215992 Sohn Nov 2003 A1
20040075118 Heinemann Apr 2004 A1
20040075143 Bae Apr 2004 A1
20040084731 Matsuda May 2004 A1
20040087090 Grudowski May 2004 A1
20040126947 Sohn Jul 2004 A1
20040175893 Vatus Sep 2004 A1
20040180488 Lee Sep 2004 A1
20050106824 Alberto May 2005 A1
20050116282 Pattanayak Jun 2005 A1
20050250289 Babcock Nov 2005 A1
20050280075 Ema Dec 2005 A1
20060022270 Boyd Feb 2006 A1
20060024876 Chidambaram Feb 2006 A1
20060049464 Rao Mar 2006 A1
20060068555 Zhu et al. Mar 2006 A1
20060068586 Pain Mar 2006 A1
20060071278 Takao Apr 2006 A1
20060154428 Dokumaci Jul 2006 A1
20060197158 Babcock Sep 2006 A1
20060203581 Joshi Sep 2006 A1
20060220114 Miyashita Oct 2006 A1
20060223248 Venugopal Oct 2006 A1
20070040222 Van Camp Feb 2007 A1
20070117326 Tan May 2007 A1
20070158790 Rao Jul 2007 A1
20070212861 Chidambarrao Sep 2007 A1
20070238253 Tucker Oct 2007 A1
20080067589 Ito Mar 2008 A1
20080108208 Arevalo May 2008 A1
20080169493 Lee Jul 2008 A1
20080169516 Chung Jul 2008 A1
20080194069 Surdeanu Aug 2008 A1
20080197439 Goerlach Aug 2008 A1
20080199999 Weijtmans Aug 2008 A1
20080227250 Ranade Sep 2008 A1
20080237661 Ranade Oct 2008 A1
20080258198 Bojarczuk Oct 2008 A1
20080272409 Sonkusale Nov 2008 A1
20090057746 Sugll Mar 2009 A1
20090079008 Nandakumar Mar 2009 A1
20090081858 Qin Mar 2009 A1
20090108350 Cai Apr 2009 A1
20090134468 Tsuchiya May 2009 A1
20090179280 Kohli Jul 2009 A1
20090224319 Kohli Sep 2009 A1
20090278209 Noda Nov 2009 A1
20090286367 Krull Nov 2009 A1
20090302388 Cai Dec 2009 A1
20090309140 Khamankar Dec 2009 A1
20090311837 Kapoor Dec 2009 A1
20090321849 Miyamura Dec 2009 A1
20100012988 Yang Jan 2010 A1
20100038724 Anderson Feb 2010 A1
20100078729 Fukutome Apr 2010 A1
20100100856 Mittal Apr 2010 A1
20100133624 Nandakumar Jun 2010 A1
20100148153 Hudait Jun 2010 A1
20100149854 Vora Jun 2010 A1
20100187641 Zhu Jul 2010 A1
20100207182 Paschal Aug 2010 A1
20100270600 Inukai Oct 2010 A1
20100276761 Tung Nov 2010 A1
20110059588 Kang Mar 2011 A1
20110073961 Dennard Mar 2011 A1
20110074498 Thompson Mar 2011 A1
20110079860 Verhulst Apr 2011 A1
20110079861 Shifren Apr 2011 A1
20110095811 Chi Apr 2011 A1
20110147828 Murthy Jun 2011 A1
20110169082 Zhu Jul 2011 A1
20110175140 Taylor Jul 2011 A1
20110175170 Wang Jul 2011 A1
20110180880 Chudzik Jul 2011 A1
20110193164 Zhu Aug 2011 A1
20110212590 Wu Sep 2011 A1
20110230039 Mowry Sep 2011 A1
20110242921 Tran Oct 2011 A1
20110248352 Shifren Oct 2011 A1
20110294278 Eguchi Dec 2011 A1
20110309447 Arghavani Dec 2011 A1
20120021594 Gurtej Jan 2012 A1
20120034745 Colombeau Feb 2012 A1
20120056275 Cai Mar 2012 A1
20120065920 Nagumo Mar 2012 A1
20120108050 Chen May 2012 A1
20120132998 Kwon May 2012 A1
20120138953 Cai Jun 2012 A1
20120146155 Hoentschel Jun 2012 A1
20120161210 Heinrich Jun 2012 A1
20120167025 Gillespie Jun 2012 A1
20120187491 Zhu Jul 2012 A1
20120190177 Kim Jul 2012 A1
20120223363 Kronholz Sep 2012 A1
Foreign Referenced Citations (14)
Number Date Country
0274278 Jul 1988 EP
0312237 Apr 1989 EP
0531621 Mar 1993 EP
0683515 Nov 1995 EP
0889502 Jan 1999 EP
1450394 Aug 2004 EP
59193066 Nov 1984 JP
4186774 Jul 1992 JP
8153873 Jun 1996 JP
8288508 Nov 1996 JP
2004087671 Mar 2004 JP
794094 Jan 2008 KR
WO 2005093831 Oct 2005 WO
WO 2011062788 May 2011 WO
Non-Patent Literature Citations (33)
Entry
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009.
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009.
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009.
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006.
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003.
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993.
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996.
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003.
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798, Nov. 2006.
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, (2004).
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006.
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999.
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995.
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001.
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006.
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006.
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000.
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008.
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009.
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001.
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996.
Laveant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002.
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998.
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999.
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002.
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000.
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998.
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999.
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997.
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998.
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996.
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998.
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992.
Related Publications (1)
Number Date Country
20160172444 A1 Jun 2016 US
Divisions (1)
Number Date Country
Parent 13828262 Mar 2013 US
Child 15053099 US