The present invention relates generally to semiconductor fabrication techniques and, more particularly, to a method for fabricating ultra-small pores for use in phase or state changeable memory devices such as, for example, chalcogenide memory cells.
The use of electrically writable and erasable phase change materials (i.e., materials which can be electrically switched between generally amorphous and generally crystalline states or between different resistive states while in crystalline form) for electronic memory applications is known in the art and is disclosed, for example, in U.S. Pat. No. 5,296,716 to Ovshinsky et al., the disclosure of which is incorporated herein by reference. U.S. Pat. No. 5,296,716 is believed to generally indicate the state of the art, and to contain a discussion of the current theory of operation of chalcogenide materials.
Generally, as disclosed in the aforementioned Ovshinsky patent, such phase change materials can be electrically switched between a first structural state where the material is generally amorphous and a second structural state where the material has a generally crystalline local order. The material may also be electrically switched between different detectable states of local order across the entire spectrum between the completely amorphous and the completely crystalline states. That is, the switching of such materials is not required to take place between completely amorphous and completely crystalline states but rather the material can be switched in incremental steps reflecting changes of local order to provide a “gray scale” represented by a multiplicity of conditions of local order spanning the spectrum from the completely amorphous state to the completely crystalline state.
The material exhibits different electrical characteristics depending upon its state. For instance, in its amorphous state the material exhibits a lower electrical conductivity than it does in its crystalline state.
These memory cells are monolithic, homogeneous, and formed of chalcogenide material selected from the group of Te, Se, Sb, Ni, and Ge. Such chalcogenide materials can be switched between numerous electrically detectable conditions of varying resistivity in nanosecond time periods with the input of picojoules of energy. The resulting memory material is truly non-volatile and will maintain the integrity of the information stored by the memory cell without the need for periodic refresh signals. Furthermore the data integrity of the information stored by these memory cells is not lost when power is removed from the device. The subject memory material is directly overwritable so that the memory cells need not be erased (set to a specified starting point) in order to change information stored within the memory cells. Finally, the large dynamic range offered by the memory material provides for the gray scale storage of multiple bits of binary information in a single cell by mimicking the binary encoded information in analog form and thereby storing multiple bits of binary encoded information as a single resistance value in a single cell.
The operation of chalcogenide memory cells requires that a region of the chalcogenide memory material, called the chalcogenide active region, be subjected to a current pulse typically with a current density between about 105 and 107 amperes/cm2, to change the crystalline state of the chalcogenide material within the active region contained within a small pore. This current density may be accomplished by first creating a small opening 1 in a dielectric material 2 which is itself deposited onto a lower electrode material 3 as illustrated in
Electrically popping the thin silicon nitride layer 4 is not desirable for a high density memory product due to the high current required and the large amount of testing time that is required for the popping.
The active regions of the chalcogenide memory cells within the pores are believed to change crystalline structure in response to applied voltage pulses of a wide range of magnitudes and pulse durations. These changes in crystalline structure alter the bulk resistance of the chalcogenide active region. The wide dynamic range of these devices, the linearity of their response, and lack of hysteresis provide these memory cells with multiple bit storage capabilities.
Factors such as pore dimensions (diameter, thickness, and volume), chalcogenide composition, signal pulse duration and signal pulse waveform shape have an effect on the magnitude of the dynamic range of resistances, the absolute endpoint resistances of the dynamic range, and the voltages required to set the memory cells at these resistances. For example, relatively thick chalcogenide films (e.g., about 4000 Angstroms) will result in higher programming voltage requirements (e.g., about 15-25 volts), while relatively thin chalcogenide layers (e.g., about 500 Angstroms) will result in lower programming voltage requirements (e.g., about 1-7 volts). The most important factor in reducing the required programming voltage is the pore cross sectional area.
The energy input required to adjust the crystalline state of the chalcogenide active region of the memory cell is directly proportional to the dimensions of the minimum lateral dimension of the pore (e.g., smaller pore sizes result in smaller energy input requirement). Conventional chalcogenide memory cell fabrication techniques provide a minimum lateral pore dimension, diameter or width of the pore, that is limited by the photolithographic size limit. This results in pore sizes having minimum lateral dimensions down to approximately 1 micron.
The present invention is directed to overcoming, or at least reducing the affects of, one or more of the problems set forth above. In particular, the present invention provides a method for fabricating ultra-small pores for chalcogenide memory cells with minimum lateral dimensions below the photolithographic limit thereby reducing the required energy input to the chalcogenide active region in operation. The present invention further eliminates the unpredictable prior art method of pore formation by electrical breakdown of a thin silicon nitride layer to form a small pore. As a result, the memory cells may be made smaller to provide denser memory arrays, and the overall power requirements for the memory cell are minimized.
The present invention provides a new method for fabricating an array of ultra-small pores for use in chalcogenide memory cells. A layer of a first material is applied onto a substrate. A portion of the layer of the first material is then removed to define an upper surface with vertical surfaces extending therefrom to a lower surface in the first layer of the first material. A fixed layer of a second material is then applied onto the vertical surfaces of the first layer of the first material. The fixed layer of the second material has a first thickness. A second layer of the first material is then applied onto the fixed layer of the second material. The fixed layer of the second material is then removed to define an array of pores in the first material layers.
The present invention will become more fully understood from the following detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings in which:
A method of fabricating pores is presented that provides pore sizes smaller than that presently provided using conventional photolithographic methods. The method further eliminates the unpredictable results provided by the conventional method of pore formation by dielectric breakdown of a thin silicon nitride layer. In particular, the preferred embodiment of the present invention provides a method of fabricating pores that relies upon the thickness of a thin film of silicon dioxide, having been applied to an edge feature of an underlying layer of silicon nitride, to define the minimum lateral dimension of the pore. In this manner, pore sizes having minimum lateral dimensions as small as around 50 to 500 Angstroms are obtained.
Turning to the drawings and referring initially to
The layer 10 is then etched using conventional anisotropic etching techniques to provide a cross shaped region 30 surrounded by a cavity 40 as illustrated in
As illustrated in
A square area 100 is then masked prior to anisotropic etching of the layer 80 of silicon dioxide using conventional etching techniques as illustrated in FIG. 6. The portion of the layer 80 of silicon dioxide masked off within the square area 100 remains after the etching process as illustrated in
The method of the preferred embodiment provides a means of simultaneously fabricating four equally spaced pores for a memory cell array that comprises four equally spaced memory cells. It further provides a means of fabricating four staggered pores that serve as a basis for a memory cell array that comprises two adjacent memory cells each including a pair of pores. It still further provides a means of fabricating four staggered pores that serve as a basis for a single memory cell that utilizes all four pores. The memory cell that utilizes all four pores is extremely tolerant of misalignment of the square mask 100 and the cross shaped region 30 since the total cross sectional area of the four pores of the memory cell will be constant regardless of misalignment of these features.
A second layer 130 of silicon nitride is then deposited onto the entire structure covering the layer 80 of silicon dioxide and completely filling the cavity region 40 using conventional thin film deposition techniques, as illustrated in FIG. 9. The layer 130 of silicon nitride may be applied to provide a minimum coating thickness over the upper horizontal cross shaped layer 85 of silicon dioxide ranging from approximately 500 to 3000 Angstroms, and preferably provides a minimum coating thickness of at least about 2500 Angstroms.
The entire structure is then subjected to chemical and mechanical polishing (CMP) planarization using conventional techniques to provide a smooth upper planar surface and also to expose the upper portion of the vertical layers 90 of silicon dioxide as shown in FIG. 10.
The entire structure is then subjected to a dry anisotropic, differential etching process, where the etch rate for the silicon dioxide is greater than that for the silicon nitride, using conventional techniques. The resulting structure following the differential etching process includes pores 140 where the vertical layers 90 of silicon dioxide have been removed as illustrated in FIG. 11. The minimum lateral dimensions x of the pores 140 are equal to the selected thickness of the layer 80 of silicon dioxide which may range from approximately 50 to 500 Angstroms, and preferably it is around 250 Angstroms. The pores 140 further have L-shaped cross sections as illustrated in
The larger the overlap of the square mask 100 over the cross shaped region 30, the larger the lengths y of the legs of the L-shaped pores 140. The length y of the L-shaped pores 140 will be equal to the dimension of the side of the square mask 100 minus the width w of the arms of the cross shaped region 30 divided by 2. The cross sectional shapes of the pores 140 may be reduced to square shaped cross sections by proper initial selection of the cross shaped region 30 and the square mask 100 resulting in minimum cross sectional areas for pores 140 equal to x2. In particular for selection of the square mask 100 with corners 101, 102, 103, and 104 coincident with corners 86, 87, 88, and 89 of the cross shaped horizontal layer 85 of silicon dioxide, the resulting cross sectional areas for the pores 140 are equal to x2.
The entire structure is then subjected to an conventional anisotropic etch of the silicon nitride material which extends the pores 140 to the top surface of the substrate 20, as illustrated in FIG. 13. The remaining horizontal layers 95 of silicon dioxide are then removed by a conventional etching process as illustrated in FIG. 14.
Other materials may be utilized in fabricating the array of pores of the final structure. For example, silicon dioxide may utilized in place of the layers of silicon nitride and polysilicon may be utilized in place of silicon dioxide. More generally, the teachings of the present preferred embodiment may be utilized to fabricate a single pore or an array of ultra-small pores utilizing materials capable of use with conventional anisotropic etching and masking processes.
The array of pores 140 of the final structure are preferably symmetrically positioned with respect to each other and separated from adjacent pores by a spacing ranging from approximately 0.25 to 0.50 microns as defined by the selected dimensions for the width w of the arms of the cross shaped region 30. In a preferred embodiment, the final structure of the present preferred embodiment includes four equally spaced pores 140. Staggered pores 140 may be utilized for a memory cell that employs a pair or all four of the pores since a memory cell with multiple pores is tolerant of misalignment in previous masking operations.
The preferred embodiment of the present invention may be utilized to fabricate an array of phase-changeable memory cell such as, for example, a chalcogenide memory cell 200 as illustrated in FIG. 15. In fabricating such chalcogenide memory cells 200 the present preferred embodiment for fabricating an array of ultra-small pores is combined with conventional fabrication techniques utilized in the manufacture of such chalcogenide memory cells to provide one cell or an array of such chalcogenide memory cells. The memory cells fabricated utilizing the method of the preferred embodiment further may utilize a single pore, two pores, or all four of the pores fabricated adjacent to a cross shaped region 30.
A chalcogenide memory cell 200 is illustrated in
A chalcogenide memory cell is illustrated in
The method of the presently preferred embodiment thus provides a means of fabricating memory cells that utilize one or more pores. In particular, the use of all four pores in a memory cell results in a structure that is extremely tolerant of misalignment in the previous masking processes since the total cross sectional area of the pores used will be constant. Likewise a memory cell that employs a pair of adjacent pores will also be tolerant of misalignment.
More generally, the fabrication techniques of the present preferred embodiment may be utilized to fabricate an array of such pores by etching an array of interconnected cross shaped regions 30 in the first layer 10 as illustrated in FIG. 17. The interconnected cross shaped regions 30 are spaced apart by cavity regions 400. Utilizing the method of the presently preferred embodiment, such a structure provides adjacent groupings of such pores 140 equally spaced from other groupings to thereby form a matrix of such pores 140 as illustrated in FIG. 18.
By providing a chalcogenide memory cell centered at a single pore or centered over all four pores fabricated adjacent a cross shaped member by the method of the presently preferred embodiment an array of memory cells is produced. This is facilitated by providing, in a well known manner, a substrate that includes a corresponding array of conductive regions which provide lower electrodes for each of the memory cells. These memory cells are preferably made individually addressable by further providing an x-y matrix of conductive channels above and below the memory cells, in a well known manner, as disclosed in U.S. Pat. No. 5,296,716 to Ovshinsky et al. Preferably these individually addressable memory cells are also electrically isolated from other memory cells in the array, in a well known manner, by the addition of diodes or other similar access devices which are connected in series between each memory cell and one of the x-y conductive channels as also disclosed in the aforementioned Ovshinsky patent.
Typical chalcogenide compositions for these memory cells include average concentrations of Te in the amorphous state well below 70%, typically below about 60% and ranging in general from as low as about 23% up to about 56% Te and most preferably to about 48% to 56% Te. Concentrations of Ge are typically above about 15% and range from a low of about 17% to about 44% average in the high resistance state, remaining generally below 50% Ge, with the remainder of the principal constituent elements in this class being Sb. The percentages given are atomic percentages which total 100% of the atoms of the constituent elements. In a particularly preferred embodiment, the chalcogenide compositions for these memory cells comprise a Te concentration of about 55%, a Ge concentration of about 22%, and a Sb concentration of about 22%. This class of materials are typically characterized as TeaGebSb100−(a+b), where a is equal to or less than about 70% and preferably between about 60% to about 40%, b is above about 15% and less than 50%, preferably between about 17% to about 44% and the remainder is Sb.
A method for fabricating ultra-small pores in a layer of a first material has been presented for use in providing pores whose minimum lateral dimensions are defined by the thickness of a layer of a second material applied to an edge feature of the first material. In an exemplary embodiment, the method provides pores having a minimum lateral dimension of about 500 Angstroms with a minimum cross sectional area of about 0.03 microns2. The method further provides a means of fabricating an array of pores simultaneously to thereby permit a grid of chalcogenide memory cells to be grouped together in close proximity.
The present method may be used to provide pores in a layer of material using raised surfaces with vertical depending surfaces having geometries other than the cross shaped surface disclosed in the description of the preferred embodiment. More generally the teachings of the present method enable the fabrication of ultra small pores based upon any edge feature of a material layer and may be further used to fabricate one or a plurality of such pores simultaneously.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This application is a Divisional of application Ser. No. 09/906,122, filed on Jul. 16, 2001, now U.S. Pat. No. 6,797,978 which is a Divisional of application Ser. No. 09/309,622, filed May 11, 1999, now U.S. Pat. No. 6,800,684 which is a Continuation of application Ser. No. 08/846,728, filed Apr. 30, 1997, which issued as U.S. Pat. No. 6,002,140 on Dec. 14, 1999, which is a Divisional of application Ser. No. 08/473,077, filed Jun. 7, 1995, which issued as U.S. Pat. No. 5,879,955 on Mar. 9, 1999.
Number | Name | Date | Kind |
---|---|---|---|
3241009 | Dewald et al. | Mar 1966 | A |
3423646 | Cubert et al. | Jan 1969 | A |
3602635 | Romankiw | Aug 1971 | A |
3699543 | Neale | Oct 1972 | A |
3796926 | Cole et al. | Mar 1974 | A |
3877049 | Buckley | Apr 1975 | A |
3886577 | Buckley | May 1975 | A |
4099260 | Lynes et al. | Jul 1978 | A |
4115872 | Bluhm | Sep 1978 | A |
4174521 | Neale | Nov 1979 | A |
4194283 | Hoffmann | Mar 1980 | A |
4203123 | Shanks | May 1980 | A |
4227297 | Angerstein | Oct 1980 | A |
4272562 | Wood | Jun 1981 | A |
4420766 | Kasten | Dec 1983 | A |
4433342 | Patel et al. | Feb 1984 | A |
4458260 | McIntyre et al. | Jul 1984 | A |
4499557 | Holmberg et al. | Feb 1985 | A |
4502208 | McPherson | Mar 1985 | A |
4502914 | Trumpp et al. | Mar 1985 | A |
4569698 | Feist | Feb 1986 | A |
4630355 | Johnson | Dec 1986 | A |
4641420 | Lee | Feb 1987 | A |
4642140 | Noufi et al. | Feb 1987 | A |
4666252 | Yaniv et al. | May 1987 | A |
4677742 | Johnson | Jul 1987 | A |
4757359 | Chiao et al. | Jul 1988 | A |
4795657 | Formigoni et al. | Jan 1989 | A |
4804490 | Pryor et al. | Feb 1989 | A |
4809044 | Pryor et al. | Feb 1989 | A |
4823181 | Mohsen et al. | Apr 1989 | A |
4876220 | Mohsen et al. | Oct 1989 | A |
4876668 | Thakoor et al. | Oct 1989 | A |
4881114 | Mohsen et al. | Nov 1989 | A |
4892840 | Esquivel et al. | Jan 1990 | A |
5144404 | Iranmanesh et al. | Sep 1992 | A |
5166096 | Cote et al. | Nov 1992 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5216282 | Cote et al. | Jun 1993 | A |
5233217 | Dixit et al. | Aug 1993 | A |
5293335 | Pernisz et al. | Mar 1994 | A |
5296716 | Ovshinsky et al. | Mar 1994 | A |
5310693 | Hsue | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5341328 | Ovshinsky et al. | Aug 1994 | A |
5359205 | Ovshinsky | Oct 1994 | A |
5363329 | Troyan | Nov 1994 | A |
5406125 | Johnson et al. | Apr 1995 | A |
5414271 | Ovshinsky et al. | May 1995 | A |
5429988 | Huang et al. | Jul 1995 | A |
5510629 | Karpovich et al. | Apr 1996 | A |
5534711 | Ovshinsky et al. | Jul 1996 | A |
5534712 | Ovshinsky et al. | Jul 1996 | A |
5536947 | Klersy et al. | Jul 1996 | A |
5569932 | Shor et al. | Oct 1996 | A |
5578185 | Bergeron et al. | Nov 1996 | A |
5675187 | Numata et al. | Oct 1997 | A |
6002140 | Gonzalez et al. | Dec 1999 | A |
6111264 | Wolstenholme et al. | Aug 2000 | A |
6189582 | Reinberg et al. | Feb 2001 | B1 |
Number | Date | Country |
---|---|---|
0 117 045 | Aug 1984 | EP |
1 319 388 | Jun 1973 | GB |
60109266 | Jun 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20040161895 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09906122 | Jul 2001 | US |
Child | 10780858 | US | |
Parent | 09309622 | May 1999 | US |
Child | 09906122 | US | |
Parent | 08473077 | Jun 1995 | US |
Child | 08846728 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08846728 | Apr 1997 | US |
Child | 09309622 | US |