Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate

Information

  • Patent Grant
  • 6916717
  • Patent Number
    6,916,717
  • Date Filed
    Friday, May 3, 2002
    22 years ago
  • Date Issued
    Tuesday, July 12, 2005
    18 years ago
Abstract
High quality monocrystalline metal oxide layers are grown on a monocrystalline substrate such as a silicon wafer. The monocrystalline metal oxide is grown on the silicon substrate at a temperature low enough to prevent deleterious and simultaneous oxidation of the silicon substrate. After a layer of 1-3 monolayers of the monocrystalline oxide is grown, the growth is stopped and the crystal quality of that layer is improved by a higher temperature anneal. Following the anneal, the thickness of the layer can be increased by restarting the low temperature growth. An amorphous silicon oxide layer can be grown at the interface between the monocrystalline metal oxide layer and the silicon substrate after the thickness of the monocrystalline oxide reaches a few monolayers.
Description
FIELD OF THE INVENTION

This invention relates generally to method for fabricating semiconductor structures and devices, and more specifically to a method for growing a monocrystalline oxide layer on a monocrystalline substrate and to a method for fabricating semiconductor structures and devices that include such an oxide layer.


BACKGROUND OF THE INVENTION

Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and band gap of semiconductive layers improves as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improves as the crystallinity of these layers increases.


For many years, attempts have been made to grow various monolithic thin films on a foreign substrate such as silicon (Si). To achieve optimal characteristics of the various monolithic layers, however, a monocrystalline film of high crystalline quality is desired. Attempts have been made, for example, to grow various monocrystalline layers on a substrate such as germanium, silicon, and various insulators. These attempts have generally been unsuccessful because lattice mismatches between the host crystal and the grown crystal have caused the resulting layer of monocrystalline material to be of low crystalline quality.


If a large area thin film of high quality monocrystalline material was available at low cost, a variety of semiconductor devices could advantageously be fabricated in or using that film at a low cost compared to the cost of fabricating such devices beginning with a bulk wafer of the monocrystalline material or in an epitaxial film of such material on a bulk wafer of the same material. In addition, if a thin film of high quality monocrystalline material could be realized beginning with a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the high quality monocrystalline material.


Accordingly, a need exists for a method of fabricating a heterogeneous semiconductor structure that provides a high quality monocrystalline film or layer over another monocrystalline material. Further, there is a need for a method for fabricating semiconductor structures having a grown monocrystalline film, either semiconductor, compound semiconductor, insulative, or metallic, overlying a monocrystalline oxide film that, in turn, overlies a monocrystalline substrate. To achieve these needs, there is a further need for a method for growing a monocrystalline oxide of high crystalline quality on a monocrystalline semiconductor substrate.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like references indicate similar elements, and in which:



FIGS. 1-4 illustrate schematically, in cross section, device structures in accordance with various embodiments of the invention;



FIG. 5 illustrates graphically the relationship between maximum attainable film thickness and lattice mismatch between a host crystal and a grown crystalline overlayer;



FIG. 6 illustrates a high resolution Transmission Electron Micrograph of a structure including a monocrystalline accommodating buffer layer;



FIG. 7 illustrates an x-ray diffraction spectrum of a structure including a monocrystalline accommodating buffer layer;



FIG. 8 illustrates a high resolution Transmission Electron Micrograph of a structure including an amorphous oxide layer;



FIG. 9 illustrates an x-ray diffraction spectrum of a structure including an amorphous oxide layer;



FIGS. 10-13 illustrate schematically, in cross-section, the formation of a device structure in accordance with another embodiment of the invention; and



FIG. 14 illustrates schematically, in cross-section, the formation of a device structure in accordance with still another embodiment of the invention.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates schematically, in cross section, a portion of a semiconductor structure 20 in accordance with an embodiment of the invention. Semiconductor structure 20 includes a monocrystalline substrate 22, accommodating buffer layer 24 comprising a monocrystalline material, and a monocrystalline material layer 26. In this context, the term “monocrystalline” shall have the meaning commonly used within the semiconductor industry. The term shall refer to materials that are a single crystal or that are substantially a single crystal and shall include those materials having a relatively small number of defects such as dislocations and the like as are commonly found in substrates of silicon or germanium or mixtures of silicon and germanium and epitaxial layers of such materials commonly used in the semiconductor industry.


In accordance with one embodiment of the invention, structure 20 also includes an amorphous intermediate layer 28 positioned between substrate 22 and accommodating buffer layer 24. Structure 20 may also include a template layer 30 between the accommodating buffer layer and monocrystalline material layer 26. As will be explained more fully below, the template layer helps to initiate the growth of the monocrystalline material layer on the accommodating buffer layer. The amorphous intermediate layer helps to relieve the strain in the accommodating buffer layer and, by doing so, aids in the growth of a high crystalline quality accommodating buffer layer.


Substrate 22, in accordance with an embodiment of the invention, is a monocrystalline semiconductor or compound semiconductor wafer, preferably of large diameter. The wafer can be of, for example, a material from Group IV of the periodic table. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. Preferably substrate 22 is a wafer containing silicon or germanium, and most preferably is a high quality monocrystalline silicon wafer as used in the semiconductor industry. Substrate 22 may also include an epitaxial layer (not illustrated) to facilitate the fabrication of semiconductor devices as will be explained more fully below. Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material epitaxially grown on the underlying substrate. In accordance with one embodiment of the invention, amorphous intermediate layer 28 is grown on substrate 22 at the interface between substrate 22 and the growing accommodating buffer layer by the oxidation of substrate 22 during the growth of layer 24. The amorphous intermediate layer serves to relieve strain that might otherwise occur in the monocrystalline accommodating buffer layer as a result of differences in the lattice constants of the substrate and the buffer layer. As used herein, lattice constant refers to the distance between atoms of a cell measured in the plane of the surface. If such strain is not relieved by the amorphous intermediate layer, the strain may cause defects in the crystalline structure of the accommodating buffer layer. Defects in the crystalline structure of the accommodating buffer layer, in turn, would make it difficult to achieve a high quality crystalline structure in monocrystalline material layer 26 which may comprise a semiconductor material, a compound semiconductor material, a monocrystalline oxide layer, or another type of material such as a metal or a non-metal.


Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material selected for its crystalline compatibility with the underlying substrate and with the overlying material layer. For example, the material could be an oxide or nitride having a lattice structure closely matched to the substrate and to the subsequently applied monocrystalline material layer. Materials that are suitable for the accommodating buffer layer include metal oxides such as the alkaline earth metal/transition metal oxides such as alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, gadolinium oxide, other perovskite oxide materials, and other monocrystalline metal oxides. Additionally, various nitrides such as gallium nitride, aluminum nitride, and boron nitride may also be used for the accommodating buffer layer. Most of these materials are insulators, although strontium ruthenate, for example, is a conductor. Generally, these materials are metal oxides or metal nitrides, and more particularly, these metal oxide or nitrides typically, although not necessarily, include at least two different metallic elements. In some specific applications, the metal oxides or nitrides may include three or more different metallic elements.


Amorphous interface layer 28 is preferably an oxide formed by the oxidation of the surface of substrate 22, and more preferably is composed of a silicon oxide. The thickness of layer 28 is sufficient to relieve strain attributed to mismatches between the lattice constants of substrate 22 and accommodating buffer layer 24. Typically, layer 28 has a thickness in the range of approximately 0.5-5 nanometers (nm). As will be explained more fully below, in certain applications the thickness of the amorphous layer should be minimized, especially during the initial stages of the growth of the monocrystalline buffer layer.


The material for monocrystalline material layer 26 can be selected, as necessary, for a particular structure or application. For example, the monocrystalline material of layer 26 may comprise a compound semiconductor which can be selected, as needed for a particular semiconductor structure, from any of the Group IIIA and VA elements (III-V semiconductor compounds), mixed III-V compounds, Group II (A or B) and VIA elements (II-VI semiconductor compounds), mixed II-VI compounds, Group IV and VI elements (IV-VI semiconductor compounds), mixed IV-VI compounds, Group IV element (Group IV semiconductors), and mixed Group IV compounds. Examples include gallium arsenide (GaAs), gallium indium arsenide (GaInAs), gallium aluminum arsenide (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), cadmium mercury telluride (CdHgTe), zinc selenide (ZnSe), zinc sulfur selenide (ZnSSe), lead selenide (PbSe), lead telluride (PbTe), lead sulfide selenide (PbSSe), silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon germanium carbide (SiGeC), and the like. However, monocrystalline material layer 26 may also comprise other semiconductor materials, monocrystalline oxides, metals, or non-metal materials which are used in the formation of semiconductor structures, devices and/or integrated circuits.


Appropriate materials for template 30 are discussed below. Suitable template materials chemically bond to the surface of the accommodating buffer layer 24 at selected sites and provide sites for the nucleation of the epitaxial growth of monocrystalline material layer 26. When used, template layer 30 has a thickness ranging from about 1 to about 10 monolayers. Here a monolayer of a perovskite oxide, such as SrTiO3, is defined as a layer of such an oxide having a thickness of its unit cell length along the growth direction. A monolayer of one of its components, such as a monolayer of Sr, is defined as the equivalent amount of atoms of this type, in this case the Sr atoms, contained in a monolayer of such an oxide. The template may also incorporate a wetting layer which helps to initiate high quality two dimensional crystalline growth.



FIG. 2 illustrates, in cross section, a portion of a semiconductor structure 40 in accordance with a further embodiment of the invention. Structure 40 is similar to the previously described semiconductor structure 20, except that an additional buffer layer 32 is positioned between accommodating buffer layer 24 and monocrystalline material layer 26. Specifically, the additional buffer layer is positioned between template layer 30 and the overlying layer of monocrystalline material. The additional buffer layer, formed of a semiconductor or compound semiconductor material when the monocrystalline material layer 26 comprises a semiconductor or compound semiconductor material, serves to provide a lattice compensation when the lattice constant of the accommodating buffer layer cannot be adequately matched to the overlying monocrystalline semiconductor or compound semiconductor material layer.


The structures and materials described above in connection with FIGS. 1 and 2 illustrate structures for growing monocrystalline material layers over a monocrystalline substrate. In some applications a monocrystalline material layer such as layer 26 is a necessary part of the device being fabricated. In other applications the accommodating buffer layer may become an integral part of the device being fabricated, such as a gate insulator of a field effect transistor. In such other applications the material layer formed overlying the monocrystalline accommodating buffer layer may or may not be monocrystalline. For example, as illustrated in FIG. 3, semiconductor structure 31 includes, in accordance with a further embodiment of the invention, a monocrystalline semiconductor substrate 22, amorphous intermediate layer 28, accommodating buffer layer 24, and overlying layer 33. The overlying layer may or may not be monocrystalline. For example, if semiconductor structure 31 is used in the fabrication of a field effect transistor, layer 33 may be polycrystalline silicon used for the fabrication of a gate electrode. Accommodating buffer layer 24, in such embodiment, could be used as a gate dielectric of the field effect transistor. Hence in such a structure, layer 24 is not an “accommodating buffer” as that term is used elsewhere in this disclosure, i.e., a monocrystalline layer providing an accommodation of underlying and overlying crystal lattice constants; but for sake of consistency, any monocrystalline layer grown overlying substrate 22 will be referred to by that term.



FIG. 4 schematically illustrates, in cross section, a portion of a semiconductor structure 34 in accordance with another exemplary embodiment of the invention. Structure 34 is similar to structure 20, except that structure 34 includes an amorphous layer 36, rather than accommodating buffer layer 24 and amorphous interface layer 28, and an additional monocrystalline layer 38.


As explained in greater detail below, amorphous layer 36 may be formed by first forming an accommodating buffer layer and an amorphous interface layer in a similar manner to that described above. Monocrystalline layer 38 is then formed (by epitaxial growth) overlying the monocrystalline accommodating buffer layer. The accommodating buffer layer then optionally may be exposed to an anneal process to convert at least a portion of the monocrystalline accommodating buffer layer to an amorphous layer. Amorphous layer 36 formed in this manner comprises materials from both the accommodating buffer and interface layers, which amorphous layers may or may not amalgamate. Thus, layer 36 may comprise one or two amorphous layers. Formation of amorphous layer 36 between substrate 22 and additional monocrystalline layer 26 (subsequent to layer 38 formation) relieves stresses between layers 22 and 38 and provides a true compliant substrate for subsequent processing—e.g., monocrystalline material layer 26 formation.


Additional monocrystalline layer 38 may include any of the materials described throughout this application in connection with either of monocrystalline material layer 26 or additional buffer layer 32. For example, when monocrystalline material layer 26 comprises a semiconductor or compound semiconductor material, layer 38 may include monocrystalline Group IV or monocrystalline compound semiconductor materials.


In accordance with one embodiment of the present invention, additional monocrystalline layer 38 serves as an anneal cap during layer 36 formation and as a template for subsequent monocrystalline layer 26 formation. Accordingly, layer 38 is preferably thick enough to provide a suitable template for layer 26 growth (at least one monolayer) and thin enough to allow layer 38 to form as a substantially defect free monocrystalline material layer.


In accordance with another embodiment of the invention, additional monocrystalline layer 38 comprises monocrystalline material (e.g., a material discussed above in connection with monocrystalline layer 26) that is thick enough to allow the formation of devices therein. In this case, a semiconductor structure in accordance with the present invention does not include monocrystalline material layer 26. In other words, the semiconductor structure in accordance with this embodiment includes only one monocrystalline layer disposed above amorphous oxide layer 36.


The following non-limiting, illustrative examples illustrate various combinations of materials useful in structures 20, 40, 31, and 34 in accordance with various alternative embodiments of the invention. These examples are merely illustrative, and it is not intended that the invention be limited to these illustrative examples.


EXAMPLE 1

In accordance with one embodiment of the invention, monocrystalline substrate 22 is a silicon substrate oriented in the (100) direction. The silicon substrate can be, for example, a silicon substrate as is commonly used in making complementary metal oxide semiconductor (CMOS) integrated circuits having a diameter of about 200-300 mm. In accordance with this embodiment of the invention, accommodating buffer layer 24 is a monocrystalline layer of SrzBa1−zTiO3 where z ranges from 0 to 1 and the amorphous intermediate layer is a layer of silicon oxide (SiOx) formed at the interface between the silicon substrate and the accommodating buffer layer. The value of z is selected to obtain one or more lattice constants closely matched to corresponding lattice constants of the underlying substrate and subsequently formed layer 26. The accommodating buffer layer can have a thickness of about 2 to about 100 nanometers (nm) and preferably has a thickness of about 5 nm. In general, it is desired to have an accommodating buffer layer thick enough to isolate the monocrystalline material layer 26 from the substrate to obtain the desired electrical and optical properties. Layers thicker than 100 nm usually provide little additional benefit while increasing cost unnecessarily; however, thicker layers may be fabricated if needed. The amorphous intermediate layer of silicon oxide can have a thickness of about 0.5-5 nm, and preferably a thickness of about 1 to 2 nm.


In accordance with this embodiment of the invention, monocrystalline material layer 26 is a compound semiconductor layer of gallium arsenide (GaAs) or aluminum gallium arsenide (AlGaAs) having a thickness of about 1 nm to about 100 micrometers (μm) and preferably having a thickness of about 0.5 μm to 10 μm. The thickness generally depends on the application for which the layer is being prepared. To facilitate the epitaxial growth of the gallium arsenide or aluminum gallium arsenide on the monocrystalline oxide, the oxide layer is capped with a template layer. The template layer is preferably 0.5-10 monolayers of Ti—As, Ti—O—As, Ti—O—Ga, Sr—O—As, Sr—Ga—O, or Sr—Al—O. By way of a preferred example, 0.5-2 monolayers of Ti—As or Ti—O—As have been found effective to successfully grow GaAs layers. To facilitate high quality two dimensional monocrystalline growth of layer 26, the template layer can also include a wetting layer on its upper surface. As explained more fully below, the wetting layer is formed of a material that changes the surface energy of the accommodating buffer layer to aid in the monocrystalline growth of the overlying layer. Suitable materials for the wetting layer include, for example, metals, intermetallics, and metal oxides having a cubic crystalline structure. Examples of such materials include NiAl, FeAl, CoAl, Ni, Co, Fe, Cu, Ag, Au, Ir, Rh, Pt, Pd, Rb, Cs, CoO, FeO, Cu2O, Rb2O3, Cs2O3, and NiO. The thickness of the wetting layer is preferably 0.5-5.0 monolayers.


EXAMPLE 2

In accordance with a further embodiment of the invention, monocrystalline substrate 22 is a silicon substrate as described above. The accommodating buffer layer is a monocrystalline oxide of strontium or barium zirconate or hafnate in a cubic or orthorhombic phase with an amorphous intermediate layer of silicon oxide formed at the interface between the silicon substrate and the accommodating buffer layer. The accommodating buffer layer can have a thickness of about 2-100 nm and preferably has a thickness of at least 4 nm to ensure adequate crystalline and surface quality and is formed of a monocrystalline SrZrO3, BaZrO3, SrHfO3, BaSnO3 or BaHfO3. For example, the accommodating buffer layer can be a monocrystalline oxide layer of BaZrO3 grown at a temperature of about 700 degrees C. The lattice structure of the resulting crystalline oxide exhibits a 45 degree rotation with respect to the substrate silicon lattice structure.


An accommodating buffer layer formed of these zirconate or hafnate materials is suitable for the growth of a monocrystalline material layer which comprises compound semiconductor materials in the indium phosphide (InP) system. In this system, the compound semiconductor material can be, for example, indium phosphide (InP), indium gallium arsenide (InGaAs), aluminum indium arsenide, (AlInAs), or aluminum gallium indium arsenide phosphide (AlGaInAsP), having a thickness of about 1.0 nm to 10 μm. A suitable template for this structure is about 0.5-10 monolayers of one of a material M—N or a material M—O—N, wherein M is selected from at least one of Zr, Hf, Ti, Sr, and Ba and N is selected from at least one of As, P, Ga, Al, and In. Preferably the template is about 0.5-2 monolayers of one of these materials. By way of an example, for a barium zirconate accommodating buffer layer, the surface is terminated with 0.5-2 monolayers of zirconium followed by deposition of 0.5-2 monolayers of arsenic to form a Zr—As template. As with the example above, the template layer may be completed with an appropriate wetting layer to facilitate the two dimensional monocrystalline growth of a subsequent layer. A monocrystalline layer of the compound semiconductor material from the indium phosphide system is then grown on the template layer. The resulting lattice structure of the compound semiconductor material exhibits a 45 degree rotation with respect to the accommodating buffer layer lattice structure and a lattice mismatch to (100) InP of less than 2.5%, and preferably less than about 1.0%.


EXAMPLE 3

In accordance with a further embodiment of the invention, a structure is provided that is suitable for the growth of an epitaxial film of a monocrystalline material comprising a II-VI material overlying a silicon substrate. The substrate is preferably a silicon wafer as described above. A suitable accommodating buffer layer material is SrxBa1−xTiO3, where x ranges from 0 to 1, having a thickness of about 2-100 nm and preferably a thickness of about 3-10 nm. The monocrystalline II-VI compound semiconductor material grown epitaxially overlying the accommodating buffer layer can be, for example, zinc selenide (ZnSe) or zinc sulfur selenide (ZnSSe). A suitable template for this material system includes 0.5-10 monolayers of zinc-oxygen (Zn—O) followed by 0.5-2 monolayers of an excess of zinc followed by the selenidation of zinc on the surface. Alternatively, a template can be, for example, 0.5-10 monolayers of strontium-sulfur (Sr—S) followed by the ZnSSe. Again, the template can also include an appropriate wetting layer.


EXAMPLE 4

This embodiment of the invention is an example of structure 40 illustrated in FIG. 2. Substrate 22, accommodating buffer layer 24, and monocrystalline material layer 26 can be similar to those described in example 1. In addition, an additional buffer layer 32 serves to alleviate any strains that might result from a mismatch between the crystal lattice of the accommodating buffer layer and the lattice of the overlying monocrystalline material. Buffer layer 32 can be a layer of germanium or a strain compensated superlattice of GaAs, aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), aluminum gallium phosphide (AlGaP), indium gallium arsenide (InGaAs), aluminum indium phosphide (AlInP), gallium arsenide phosphide (GaAsP), or indium gallium phosphide (InGaP). In accordance with one aspect of this embodiment, buffer layer 32 includes a GaAsxP1−x superlattice, wherein the value of x ranges from 0 to 1. In accordance with another aspect, buffer layer 32 includes an InyGa1−yP superlattice, wherein the value of y ranges from 0 to 1. By varying the value of x or y, as the case may be, the lattice constant is varied from bottom to top across the superlattice to create a match between lattice constants of the underlying oxide and the overlying monocrystalline material which, in this example, is a compound semiconductor material. The compositions of other compound semiconductor materials, such as those listed above, may also be similarly varied to manipulate the lattice constant of layer 32 in a like manner. The superlattice can have a thickness of about 50-500 nm and preferably has a thickness of about 100-200 nm. The superlattice period can have a thickness of about 2-15 nm, preferably, 2-10 nm. The template for this structure can be the same of that described in Example 1. Alternatively, buffer layer 32 can be a layer of monocrystalline germanium having a thickness of 1-50 nm and preferably having a thickness of about 2-20 nm. In using a germanium buffer layer, a template layer of either germanium-strontium (Ge—Sr) or germanium-titanium (Ge—Ti) having a thickness of about 0.5-2 monolayers can be used as a nucleating site for the subsequent growth of the monocrystalline germanium layer. The formation of the accommodating buffer layer is capped with either 0.5-1 monolayer of strontium or 0.5-1 monolayer of titanium to act as a nucleating site for the subsequent deposition of the monocrystalline germanium. The layer of strontium or titanium provides a nucleating site to which the first monolayer of germanium can bond. The same wetting agents described above in Example 1 can be used to initiate high quality two dimensional growth of the germanium layer.


EXAMPLE 5

This example also illustrates materials useful in a structure 40 as illustrated in FIG. 2. Substrate material 22, accommodating buffer layer 24, monocrystalline material layer 26 and template layer 30 can be the same as those described above in Example 2. In addition, additional buffer layer 32 is inserted between the accommodating buffer layer and the overlying monocrystalline material layer. The buffer layer, a further monocrystalline material which, in this example, comprises a semiconductor material, can be, for example, a graded layer of indium gallium arsenide (InGaAs) or indium aluminum arsenide (InAlAs). In accordance with one aspect of this embodiment, additional buffer layer 32 includes InGaAs in which the indium in the composition varies from 0 to about 50%. The additional buffer layer 32 preferably has a thickness of about 10-30 nm. Varying the composition of the buffer layer from GaAs to InGaAs serves to provide a lattice match between the underlying monocrystalline oxide material and the overlying layer of monocrystalline material which in this example is a compound semiconductor material. Such a buffer layer is especially advantageous if there is a lattice mismatch between accommodating buffer layer 24 and monocrystalline material layer 26.


EXAMPLE 6

This example provides exemplary materials useful in structure 31, as illustrated in FIG. 3. Substrate material 22 is, for example, a monocrystalline silicon wafer as commonly used in the semiconductor industry for the fabrication of semiconductor devices and integrated circuits. Depending on the device or integrated circuit to be fabricated, the wafer may be a bulk wafer or it may be a bulk wafer having an epitaxial silicon layer formed on the top surface thereof. Impurity doped regions may be formed in the substrate as, for example, source and drain regions of a field effect transistor. Amorphous intermediate layer 28 is a silicon oxide formed by the oxidation of the surface of the silicon substrate. Accommodating buffer layer 24 is a monocrystalline layer of strontium titanate having an initial thickness of 1-10 monolayers, and preferably an initial thickness of 3-6 monolayers. Layer 33 formed overlying the accommodating buffer layer is a layer of polycrystalline silicon from which a gate electrode of the field effect transistor will be formed. The layer of strontium titanate serves as a gate dielectric of the transistor. In an alternate embodiment, layer 33 can be a layer of monocrystalline strontium zirconate to form a so called “medium k” dielectric of the transistor. A gate electrode would then be formed overlying the strontium zirconate dielectric layer. In the fabrication of semiconductor structure 31, it may be advantageous to minimize the thickness of amorphous intermediate layer 28. The amorphous intermediate layer is one component of the gate dielectric of the field effect transistor, and it is usually desirable to minimize that dielectric thickness. Additionally, the silicon oxide that forms the amorphous intermediate layer is also a relatively “low k” dielectric and is thus to be minimized.


EXAMPLE 7

This example provides exemplary materials useful in structure 34, as illustrated in FIG. 4. Substrate material 22, template layer 30, and monocrystalline material layer 26 may be the same as those described above in connection with example 1.


Amorphous layer 36 is an amorphous oxide layer which is suitably formed of a combination of amorphous intermediate layer materials (e.g., layer 28 materials as described above) and accommodating buffer layer materials (e.g., layer 24 materials as described above). For example, amorphous layer 36 may include a combination of SiOx and SrzBa1−zTiO3 (where z ranges from 0 to 1) which combine or mix, at least partially, during an anneal process to form amorphous oxide layer 36.


The thickness of amorphous layer 36 may vary from application to application and may depend on such factors as desired insulating properties of layer 36, type of monocrystalline material comprising layer 26, and the like. In accordance with one exemplary aspect of the present embodiment, layer 36 thickness is about 1 nm to about 100 nm, preferably about 1-10 nm, and more preferably about 3-5 nm.


Layer 38 comprises a monocrystalline material that can be grown epitaxially over a monocrystalline oxide material such as the material used to form accommodating buffer layer 24. In accordance with one embodiment of the invention, layer 38 includes the same materials as those comprising layer 26. For example, if layer 26 includes GaAs, layer 38 also includes GaAs. However, in accordance with other embodiments of the present invention, layer 38 may include materials different from those used to form layer 26. In accordance with one exemplary embodiment of the invention, layer 38 if formed to a thickness of about 1 nm to about 500 nm.


Referring again to FIGS. 1-4, substrate 22 is a monocrystalline substrate such as, for example, a monocrystalline silicon or gallium arsenide substrate. The crystalline structure of the monocrystalline substrate is characterized by a lattice constant and by a lattice orientation. In similar manner, accommodating buffer layer 24 is also a monocrystalline material and the lattice of that monocrystalline material is characterized by a lattice constant and a crystal orientation. The lattice constants of the accommodating buffer layer and the monocrystalline substrate must be substantially equal or, alternatively, must be such that upon rotation of one crystal orientation with respect to the other crystal orientation, a substantial match in lattice constants is achieved. In this context the terms “substantially equal” and “substantial match” mean that there is sufficient similarity between the lattice constants to permit the growth of a high quality crystalline layer on the underlying layer.



FIG. 5 illustrates graphically the relationship of the achievable thickness of a grown crystal layer of high crystalline quality as a function of the mismatch between the lattice constants of the host crystal and the grown crystal. Curve 42 illustrates the boundary of high crystalline quality material. The area to the right of curve 42 represents layers that have a large number of defects. With no lattice mismatch, it is theoretically possible to grow an infinitely thick, high quality epitaxial layer on the host crystal. As the mismatch in lattice constants increases, the thickness of achievable, high quality crystalline layer decreases rapidly. As a reference point, for example, if the lattice constants between the host crystal and the grown layer are mismatched by more than about 2%, monocrystalline epitaxial layers in excess of about 20 nm cannot be achieved.


In accordance with one embodiment of the invention, substrate 22 is a (100) oriented monocrystalline silicon wafer and accommodating buffer layer 24 is a layer of strontium barium titanate. Substantial matching of lattice constants between these two materials is achieved by suitably choosing the ratio of strontium to barium and by rotating the crystal orientation of the titanate material by 45° with respect to the crystal orientation of the silicon substrate wafer. The inclusion in the structure of amorphous interface layer 28, a silicon oxide layer in this example, if it is of sufficient thickness, serves to reduce strain in the monocrystalline titanate layer that might result from any mismatch in the lattice constants of the host silicon wafer and the grown titanate layer. As a result, in accordance with an embodiment of the invention, a high quality, thick, monocrystalline titanate layer is achievable.


Still referring to FIGS. 1-4, layer 26 is a layer of epitaxially grown monocrystalline material and that crystalline material is also characterized by a crystal lattice constant and a crystal orientation. In accordance with one embodiment of the invention, the lattice constant of layer 26 differs from the lattice constant of substrate 22. To achieve high crystalline quality in this epitaxially grown monocrystalline layer, the accommodating buffer layer must be of high crystalline quality. In addition, in order to achieve high crystalline quality in layer 26, substantial matching between the crystal lattice constant of the host crystal, in this case, the monocrystalline accommodating buffer layer, and the grown crystal is desired. With properly selected materials this substantial matching of lattice constants is achieved as a result of rotation of the crystal orientation of the grown crystal with respect to the orientation of the host crystal. For example, if the grown crystal is gallium arsenide, aluminum gallium arsenide, zinc selenide, or zinc sulfur selenide and the accommodating buffer layer is monocrystalline SrxBa1−xTiO3, substantial matching of crystal lattice constants of the two materials is achieved by a suitable choice for x and by rotating the crystal orientation of the grown layer by 45° with respect to the orientation of the host monocrystalline oxide. Similarly, if the host material is a strontium or barium zirconate or a strontium or barium hafnate or barium tin oxide and the compound semiconductor layer is indium phosphide or gallium indium arsenide or aluminum indium arsenide, substantial matching of crystal lattice constants can be achieved proper choice of the host oxide material and by rotating the orientation of the grown crystal layer by 45° with respect to the host oxide crystal. In some instances, a crystalline semiconductor buffer layer between the host oxide and the grown monocrystalline material layer can be used to reduce strain in the grown monocrystalline material layer that might result from small differences in lattice constants. Better crystalline quality in the grown monocrystalline material layer can thereby be achieved.


The following example illustrates a process, in accordance with one embodiment of the invention, for fabricating a semiconductor structure such as the structures depicted in FIGS. 1-4. The process starts by providing a monocrystalline semiconductor substrate comprising silicon or germanium. In accordance with a preferred embodiment of the invention, the semiconductor substrate is a silicon wafer having a (100) orientation. The substrate is oriented on axis or, if desired, up to 8° off axis towards any desired crystallographic direction. At least a portion of the semiconductor substrate has a bare surface, although other portions of the substrate may encompass other structures. The term “bare” in this context means that the surface in that portion of the substrate has been cleaned to remove any oxides, contaminants, or other foreign material. As is well known, bare silicon is highly reactive and readily forms a native oxide. The term “bare” is intended to encompass such a native oxide. In accordance with one embodiment of the invention, a thin silicon oxide is then intentionally grown on the semiconductor substrate. The thin silicon oxide is grown immediately prior to the formation of the monocrystalline accommodating buffer layer, and can be grown by thermal or chemical oxidation of the silicon surface. In accordance with one embodiment of the invention, the thin silicon oxide is grown by exposing the substrate surface to an ultraviolet (UV) lamp in the presence of ozone for a time period of up to about 20 minutes. The wafer is initially at ambient room temperature, but is heated by the UV lamp to a temperature of between 20° C. and 100° C. by the end of the treatment. Alternatively, in accordance with a further embodiment of the invention, the semiconductor substrate can be exposed to an rf or an ECR oxygen plasma. During such treatment the temperature of the substrate is maintained at a temperature of between 100° C. and 600° C. with an oxygen partial pressure of 10−5 to 10−8 millibar (mbar). In accordance with yet another embodiment of the invention, the thin silicon oxide can be grown by exposing the substrate to an ozone ambient at an elevated temperature in the same processing apparatus, such as a molecular beam epitaxial (MBE) reactor, used for the subsequent deposition of the accommodating buffer layer. Use of an ozone treatment to grow the oxide has the beneficial effect of removing carbon contamination from the surface of the substrate. In order to epitaxially grow a monocrystalline oxide layer overlying the monocrystalline substrate, the native and/or grown oxide layer must first be removed to expose the crystalline structure of the underlying substrate. The following process is preferably carried out by molecular beam epitaxy, although other epitaxial processes may also be used in accordance with the present invention. The native oxide can be removed by first depositing a thin layer (preferably 1-3 monolayers) of strontium, barium, a combination of strontium and barium, or other alkaline earth metals or combinations of alkaline earth metals onto the substrate in an MBE apparatus. In the case where strontium is used, the substrate is then heated to a temperature above 700° C. to cause the strontium to react with the native silicon oxide layer. The strontium serves to reduce the silicon oxide to leave a silicon oxide-free surface. The resultant surface may exhibit an ordered 2×1 structure. If an ordered (2×1) reconstruction has not been achieved at this stage of the process, the structure may be exposed to additional strontium until an ordered (2×1) reconstruction is obtained. The ordered 2×1 reconstruction forms a template for the ordered growth of an overlying layer of a monocrystalline oxide. The template provides the necessary chemical and physical properties to nucleate the crystalline growth of an overlying layer.


In accordance with an alternate embodiment of the invention, the native silicon oxide can be converted and the substrate surface can be prepared for the growth of a monocrystalline oxide layer by depositing an alkaline earth metal oxide, such as strontium oxide, strontium barium oxide, or barium oxide, onto the substrate surface by MBE at a low temperature and by subsequently heating the structure to a temperature of above 700° C. At this temperature a solid state reaction takes place between the strontium oxide and the native silicon oxide causing the reduction of the native silicon oxide and leaving an ordered 2×1 reconstruction on the substrate surface. If an ordered (2×1) reconstruction has not been achieved at this stage of the process, the structure may be exposed to additional strontium until an ordered (2×1) reconstruction is obtained. Again, this forms a template for the subsequent growth of an ordered monocrystalline oxide layer. In either method for removing the oxide layer and preparing the surface for the subsequent formation of a monocrystalline accommodating buffer layer, surface reconstruction can be monitored in real time, for example by using reflection high energy electron diffraction (RHEED). Other well known real time monitoring techniques may also be used.


Following the removal of the silicon oxide and formation of a template layer on the surface of the substrate, growth of a monocrystalline oxide layer on the substrate can begin. This growth is accomplished in the same apparatus, preferably an MBE reactor, as is the surface preparation. During the growth of the monocrystalline oxide layer overlying the monocrystalline silicon substrate, reactants, including oxygen, are introduced to the MBE reactor. Under proper conditions the reactants react at the silicon surface to grow the desired monocrystalline oxide. Because of the presence of the oxygen, however, a competing reaction, that of oxidizing the silicon substrate, can also occur. To achieve a high quality two dimensional growth of the monocrystalline oxide layer, the growth process should be controlled to suppress the competing reaction of the oxygen with the silicon substrate, a reaction that causes oxidation of the silicon substrate and disrupts the ordered two dimensional growth of the monocrystalline oxide layer. Although a layer of amorphous oxide underlying the monocrystalline oxide layer may be desirable for reducing strain in the monocrystalline oxide layer, that amorphous layer must be grown after the monocrystalline growth has been sufficiently initiated. In accordance with one embodiment of the invention, the ordered two dimensional growth of a high quality monocrystalline oxide layer, such as a layer of monocrystalline strontium titanate, overlying an oxidizable monocrystalline substrate, such as a silicon substrate, can be accomplished by the following process. The process suppresses the oxidation of the substrate material (i.e., in the case of a silicon substrate, oxidation of the silicon substrate to grow an amorphous silicon oxide layer) while allowing the oxidation of strontium and titanium to grow monocrystalline strontium titanate.


Following the removal of the silicon oxide layer from the substrate surface in a manner such as that described above, the substrate is cooled to a temperature between room temperature and about 400° C., and preferably to a temperature of about 300° C. The initial growth of the strontium titanate monocrystalline layer will take place at this lowered temperature. At the lowered temperature the oxidation of strontium and titanium to form strontium titanate is favored over the oxidation of the silicon substrate. The higher the temperature, the greater the oxidation rate of both the silicon oxide and the strontium titanate components. Similarly, the higher the partial pressure of oxygen in the reactor, the greater the oxidation rate of both the silicon substrate and the strontium titanate components strontium and titanium. However, the oxidation of strontium and titanium at low temperatures and at appropriate oxygen partial pressures is favored in contrast to the oxidation of silicon. Accordingly, to facilitate the growth of the strontium titanate in the most efficient manner, the temperature selected should be as high as possible without incurring deleterious amounts of silicon oxidation. Once the lowered temperature is stabilized, oxygen is introduced into the reactor to establish a partial pressure of oxygen in the reactor of between about 2×10−8 mbar and about 3×10−7 mbar. The exact pressure selected will depend on some physical parameters of the reactor such as the size of the reactor chamber and the reactor pumping capacity. The partial pressure selected should be high enough to grow stoichiometric strontium titanate but not too high to cause significant oxidation of Si. The strontium and titanium shutters of the MBE reactor are then opened to introduce strontium and titanium to the reaction. The ratio of strontium and titanium is adjusted to approximately 1:1 to grow stoichiometric strontium titanate. After about 1-3 monolayers of strontium titanate are grown on the silicon substrate surface the shutters are closed and the oxygen flow is terminated to reduce the oxygen partial pressure in the reactor chamber to less than about 5×10−9 mbar. Under the above conditions the 1-3 monolayers of strontium titanate form on the silicon surface as an ordered two dimensional monocrystalline layer without significant oxidation of the silicon surface. Grown at 300° C., the order parameter of the strontium titanate layer is not high. That is, the film, although monocrystalline, is not of high crystalline quality. The temperature of the substrate is then raised to about 500-750° C. and preferably to about 650° C. to anneal the monocrystalline strontium titanate layer and to thereby improve the crystalline quality of the layer. At this elevated temperature the titanate layer becomes much more ordered. The ordering of the layer can be monitored in real time, preferably by observing RHEED patterns from the surface. The substrate is maintained at the elevated temperature until the intensity of the RHEED pattern begins to flatten out. This indicates that the ordering of the monocrystalline strontium titanate layer has saturated. The anneal at the elevated temperature, preferably less than 15 minutes, is terminated after the saturation is observed. Following the annealing process, the temperature of the substrate is again reduced and the growth process is initiated again. Because the silicon surface is not exposed, but is covered by the initial 1-3 monolayers of titanate, the growth temperature can be raised, for example to 400° C. Once the substrate reaches the lowered temperature, oxygen is again introduced into the reactor chamber and the partial pressure of oxygen is set to a value equal to or greater than the partial pressure maintained during the previous deposition. The titanium and strontium shutters are opened and an additional 1-3 monolayers of monocrystalline strontium titanate is grown overlying the silicon substrate. The additional strontium titanate can then be annealed, as above, to improve the crystallinity of the layer.


The steps of growth followed by anneal can be repeated to increase the thickness of the monocrystalline oxide layer. After a monocrystalline strontium titanate layer having a thickness greater than about 5 monolayers has been grown on the silicon substrate, the silicon substrate will be sufficiently isolated from the reactants and additional monocrystalline strontium titanate (if additional strontium titanate is necessary for the device structure being fabricated) can be grown at a higher temperature. For example, additional strontium titanate can be grown at a temperature between about 550° C. and about 950° C. and preferably at a temperature greater than about 650° C. Additionally, after the thickness of the monocrystalline strontium titanate layer exceeds about 10 monolayers, the partial pressure of oxygen can be increased above the initial minimum value to cause the growth of an amorphous silicon oxide layer at the interface between the monocrystalline silicon substrate and the monocrystalline strontium titanate layer. This silicon oxidation step may be applied either during or after the growth of the strontium titanate layer. The growth of the silicon oxide layer results from the diffusion of oxygen through the strontium titanate layer to the interface where the oxygen reacts with silicon at the surface of the underlying substrate. Strain that otherwise might exist in the strontium titanate layer because of the small mismatch in lattice constant between the silicon substrate and the growing crystal is relieved in the amorphous silicon oxide intermediate layer.


In the foregoing, a process has been disclosed for growing a high quality monocrystalline strontium titanate layer on a silicon substrate. Other monocrystalline oxides, and specifically metal oxides, can be grown on monocrystalline substrates in similar manner by oxidizing the metal without oxidizing the underlying substrate. This includes a series oxides such as SrZrO3, BaTiO3, Pb(Zr, Ti)O3, (Pb, La)(Zr, Ti)O3, LaAlO3, SrRuO3, YBCO, CeO2, ZrO2, and MgO etc. The principles of initiating growth at a low temperature to prevent the oxidization of the substrate and then anneal without the presence of the oxidant to improve the crystallinity at a small film thickness can be applied to any other oxides on any oxidizable substrates. In addition, the oxidants are not limited to oxygen but can be any other reactants that oxidize the substrate, such as O3, H2O, N2O, N2, F2, Cl2, etc. The monocrystalline oxide grown in this manner overlying a monocrystalline substrate can be used as a starting material for many device structures. For example, without going into great detail, a monocrystalline oxide such as strontium titanate may be used by itself as a high dielectric constant (“high k”) insulator of a field effect transistor. In such a device a thin monocrystalline layer with a minimum of amorphous silicon oxide may be desired. Other field effect devices may be formed in which the strontium titanate layer is used as an accommodating buffer layer for the growth of a medium k dielectric such as monocrystalline strontium zirconate. Monocrystalline strontium zirconate is difficult to grow on monocrystalline silicon, but can be grown on strontium titanate by a MBE process or by a sol-gel process. The monocrystalline strontium titanate layer can also be used as an accommodating buffer layer for forming other monocrystalline insulator layers such as PZT, PLZT, conducting layers such as SrRuO3, (La, Sr)CoO3, superconducting layers such as YBCO, BSCCO, binary oxides such as MgO, ZrO2, and even thick layers of strontium titanate. All of these can be formed on the monocrystalline strontium titanate by MBE, CBE, CVD, PVD, PLD, sol-gel process or by one of the other epitaxial growth processes described elsewhere in this disclosure. Other processes in which a monocrystalline accommodating buffer layer is formed on a monocrystalline substrate and a monocrystalline layer is formed on that accommodating buffer layer are described below in greater detail.


After the strontium titanate layer has been grown to the desired thickness, the monocrystalline strontium titanate may be capped by a template layer that is conducive to the subsequent growth of an epitaxial layer of a desired monocrystalline material. For example, for the subsequent growth of a monocrystalline compound semiconductor material layer of gallium arsenide, the MBE growth of the strontium titanate monocrystalline layer can be capped by terminating the growth with 0.5-2 monolayers of titanium, 0.5-2 monolayers of titanium-oxygen or with 0.5-2 monolayers of strontium-oxygen. Following the formation of this capping layer, arsenic is deposited to form a Ti—As bond, a Ti—O—As bond or a Sr—O—As bond. Any of these form an appropriate template for deposition and formation of a monocrystalline gallium arsenide layer. Following the formation of the template, gallium is subsequently introduced to the reaction with the arsenic to form gallium arsenide. Alternatively, gallium can be deposited on the capping layer to form a Sr—O—Ga bond, a Ti—Ga bond, or a Ti—O—Ga bond, and arsenic is subsequently introduced with the gallium to form the GaAs.


In accordance with a further embodiment of the invention, before growth of the GaAs layer, the template layer is enhanced by adding a wetting layer to the top thereof. Without the wetting layer, three dimensional growth of the compound semiconductor layer often occurs at the initial nucleation stage. The occurrence of three dimensional growth is due to low surface and interface energies associated with the oxide (in this example strontium titanate) surface. Oxides are typically chemically and energetically more stable than metals and most electronic materials such as GaAs. The three dimensional growth results in the spotty localized growth of discrete GaAs patches. Upon further growth the patches may grow together, but not as a monocrystalline layer. To achieve the desired two dimensional growth, a wetting layer is epitaxially grown on the upper surface of the accommodating buffer layer to raise the surface energy at the surface of the oxide layer. Useful wetting agents include materials having a cubic crystalline structure selected from the group of metals, intermetallics, and metal oxides. Representative materials meeting these criteria include NiAl, FeAl, CoAl, Ni, Co, Fe, Cu, Ag, Au, Ir, Rh, Pt, Pd, Rb, Cs, CoO, FeO, Cu2O, Rb2O3, Cs2O3, and NiO. The selected wetting agent is deposited to a thickness of 0.5-5.0 monolayers on and as part of the template layer in the same process apparatus used for the deposition of the accommodating buffer layer. For example, if the accommodating buffer layer is strontium titanate, barium titanate, or barium stontium titanate and the desired monocrystalline compound semiconductor layer is GaAs or AlGaAs, 0.5-5.0 monolayers of NiAl form a suitable wetting layer. Preferably the deposition of the NiAl is initiated with the deposition of Ni.



FIG. 6 is a high resolution Transmission Electron Micrograph (TEM) of semiconductor material manufactured in accordance with one embodiment of the present invention. Single crystal SrTiO3 accommodating buffer layer 24 was grown epitaxially on silicon substrate 22. During this growth process, amorphous interfacial layer 28 was formed which relieves strain due to lattice mismatch. GaAs compound semiconductor layer 26 was then grown epitaxially using template layer 30.



FIG. 7 illustrates an x-ray diffraction spectrum taken on a structure including GaAs monocrystalline layer 26 grown on silicon substrate 22 using accommodating buffer layer 24. The peaks in the spectrum indicate that both accommodating buffer layer 24 and GaAs compound semiconductor layer 26 are single crystal and (100) orientated.


The structure illustrated in FIG. 2 can be formed by the process discussed above with the addition of an additional buffer layer deposition step. The additional buffer layer 32 is formed overlying the template layer before the deposition of the monocrystalline material layer. If the buffer layer is a monocrystalline material comprising a compound semiconductor superlattice, such a superlattice can be deposited, for example by MBE, on the template, including a wetting layer, as described above. If the buffer layer is a monocrystalline material layer comprising a layer of germanium, the process above is modified to cap the strontium titanate monocrystalline layer with a final layer of either strontium or titanium and then depositing a wetting layer formed of one of the wetting agents described above. The germanium buffer layer then can be deposited directly on this template/wetting layer.


Structure 34, illustrated in FIG. 4, may be formed by growing an accommodating buffer layer 24, forming an amorphous oxide layer 28 over substrate 22, and growing semiconductor layer 38 over the accommodating buffer layer, as described above. The accommodating buffer layer and the amorphous oxide layer are then exposed to an anneal process sufficient to change the crystalline structure of the accommodating buffer layer from monocrystalline to amorphous, thereby forming an amorphous layer such that the combination of the amorphous oxide layer and the now amorphous accommodating buffer layer form a single amorphous oxide layer 36. Layer 26 is then subsequently grown over layer 38. Alternatively, the anneal process may be carried out subsequent to growth of layer 26.


In accordance with one aspect of this embodiment, layer 36 is formed by exposing substrate 22, the accommodating buffer layer, the amorphous oxide layer, and monocrystalline layer 38 to a rapid thermal anneal process with a peak temperature of about 700° C. to about 1000° C. and a process time of about 5 seconds to about 20 minutes. However, other suitable anneal processes may be employed to convert the accommodating buffer layer to an amorphous layer in accordance with the present invention. For example, laser annealing, electron beam annealing, or “conventional” thermal annealing processes (in the proper environment) may be used to form layer 36. When conventional thermal annealing is employed to form layer 36, an overpressure of one or more constituents of layer 38 may be required to prevent degradation of that layer during the anneal process. For example, when layer 38 includes GaAs, the anneal environment preferably includes an overpressure of arsenic to mitigate degradation of layer 38.


As noted above, layer 38 of structure 34 may include any materials suitable for either of layers 32 or 26. Accordingly, any deposition or growth methods described in connection with either layer 32 or 26, may be employed to deposit layer 38.



FIG. 8 is a high resolution TEM of semiconductor material manufactured in accordance with the embodiment of the invention illustrated in FIG. 4. In accordance with this embodiment, a single crystal SrTiO3 accommodating buffer layer was grown epitaxially on silicon substrate 22. During this growth process, an amorphous interfacial layer was formed as described above. Next, additional monocrystalline layer 38 comprising a compound semiconductor layer of GaAs was formed above the accommodating buffer layer and the accommodating buffer layer was exposed to an anneal process to form amorphous oxide layer 36.



FIG. 9 illustrates an x-ray diffraction spectrum taken on a structure including additional monocrystalline layer 38 comprising a GaAs compound semiconductor layer and amorphous oxide layer 36 formed on silicon substrate 22. The peaks in the spectrum indicate that GaAs compound semiconductor layer 38 is single crystal and (100) orientated and the lack of peaks around 40 to 50 degrees indicates that layer 36 is amorphous.


The process described above illustrates a process for forming a semiconductor structure including a silicon substrate, an overlying oxide layer, and a monocrystalline material layer comprising a gallium arsenide compound semiconductor layer by the process of molecular beam epitaxy. The process can also be carried out by the process of chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like. Further, by a similar process, other monocrystalline accommodating buffer layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, and niobates, alkaline earth metal tin-based perovskites, other perovskites, lanthanum aluminate, lanthanum scandium oxide, gadolinium oxide, and other metal oxides can also be grown. Further, by a similar process such as MBE, other monocrystalline material layers comprising other III-V, II-VI, and IV-VI monocrystalline compound semiconductors, semiconductors, metals and non-metals can be deposited overlying the monocrystalline oxide accommodating buffer layer.


Each of the variations of monocrystalline material layer and monocrystalline oxide accommodating buffer layer uses an appropriate template for initiating the growth of the monocrystalline material layer. For example, if the accommodating buffer layer is an alkaline earth metal zirconate, the oxide can be capped by a thin layer of zirconium. The deposition of zirconium can be followed by the deposition of arsenic or phosphorus to react with the zirconium as a precursor to depositing indium gallium arsenide, indium aluminum arsenide, or indium phosphide respectively. Similarly, if the monocrystalline oxide accommodating buffer layer is an alkaline earth metal hafnate, the oxide layer can be capped by a thin layer of hafnium. The deposition of hafnium is followed by the deposition of arsenic or phosphorous to react with the hafnium as a precursor to the growth of an indium gallium arsenide, indium aluminum arsenide, or indium phosphide layer, respectively. In a similar manner, strontium titanate can be capped with a layer of strontium or strontium and oxygen and barium titanate can be capped with a layer of barium or barium and oxygen. Each of these depositions can be followed by the deposition of arsenic or phosphorus to react with the capping material to form a template for the deposition of a monocrystalline material layer comprising compound semiconductors such as indium gallium arsenide, indium aluminum arsenide, or indium phosphide. In each of the above examples, high quality two dimensional growth of the monocrystalline material layers overlying the monocrystalline oxide accommodating buffer layer can be promoted by incorporating an appropriate wetting layer into the template layer. The wetting layer, deposited to a thickness of 0.5-5.0 monolayers in the same apparatus used for the deposition or growth of the monocrystalline material layer, serves to alter the surface energy of the monocrystalline oxide. For example, if the accommodating buffer layer is SrTiO3 and the monocrystalline material layer is GaAs, to maintain a true layer by layer growth (Frank Van der Merwe growth), the following relationship must be satisfied:

δSTO>(δINTGaAs)

where the surface energy of the monocrystalline SrTiO3 accommodating buffer oxide layer must be greater than the energy of the interface between the accommodating buffer layer and the GaAs layer added to the surface energy of the GaAs layer. A wetting layer, formed, for example from epitaxially grown NiAl, increases the surface energy of the monocrystalline oxide layer and also shifts the crystalline structure of the template to a diamond-like structure that is in compliance with the GaAs layer.


In this embodiment, a wetting agent containing template layer aids in the formation of a compliant substrate for the monolithic integration of various material layers including those comprised of Group III-V compounds to form high quality semiconductor structures, devices and integrated circuits. For example, a wetting agent containing template may be used for the monolithic integration of a monocrystalline material layer such as a layer comprising germanium to form high efficiency photocells.


Turning now to FIGS. 10-13, the formation of a device structure in accordance with still another embodiment of the invention is illustrated in cross-section. This embodiment utilizes the formation of a compliant substrate which relies on the epitaxial growth of single crystal oxides on silicon followed by the epitaxial growth of single crystal silicon onto the oxide.


An accommodating buffer layer 74 such as a monocrystalline oxide layer is first grown on a substrate layer 72, such as silicon, with an amorphous interface layer 78 as illustrated in FIG. 10. Monocrystalline oxide layer 74 may be comprised of any of those materials previously discussed with reference to layer 24 in FIGS. 1-4, while amorphous interface layer 78 is preferably comprised of any of those materials previously described with reference to the layer 28 illustrated in FIGS. 1-4. Substrate 72, although preferably silicon, may also comprise any of those materials previously described with reference to substrate 22 in FIGS. 1-4.


Next, a silicon layer 81 is deposited over monocrystalline oxide layer 74 via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, and the like as illustrated in FIG. 11 with a thickness of a few tens of nanometers but preferably with a thickness of about 5 nm. Monocrystalline oxide layer 74 preferably has a thickness of about 2 to 10 nm.


Rapid thermal annealing is then conducted in the presence of a carbon source such as acetylene or methane, for example at a temperature within a range of about 800° C. to 1000° C., to form capping layer 82 and amorphous silicate layer 86. Other suitable carbon sources may also be used. The purpose of the rapid thermal annealing step in the presence of a carbon source is to amorphize monocrystalline oxide layer 74 and to convert that monocrystalline layer into an amorphous silicate layer 86. The rapid thermal annealing also serves to carbonize the topmost portion of silicon layer 81 to form capping layer 82. The capping layer is a silicon carbide (SiC) layer as illustrated in FIG. 12. The formation of amorphous layer 86 is similar to the formation of layer 36 illustrated in FIG. 4 and may comprise any of those materials described with reference to layer 36 in FIG. 4.


Finally, a compound semiconductor layer 96, such as gallium nitride (GaN) is grown over the SiC surface by MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, or the like to form a high quality compound semiconductor material for device formation as illustrated in FIG. 13. More specifically, the deposition of GaN and GaN based systems such as GaInN and AlGaN will result in the formation of dislocation nets confined at the silicon/amorphous region. The resulting nitride containing compound semiconductor material may comprise elements from groups III, IV and V of the periodic table and is defect free.


Although GaN has been grown on SiC substrate in the past, this embodiment of the invention possesses a one step formation of the compliant substrate containing a SiC top surface and an amorphous layer on a Si surface. More specifically, this embodiment of the invention uses an intermediate single crystal oxide layer that is amorphized to form a silicate layer which adsorbs the strain between the layers. Moreover, unlike past use of a SiC substrate, this embodiment of the invention is not limited by wafer size which has usually been less than 50 mm in diameter for prior art SiC substrates.


The monolithic integration of nitride containing semiconductor compounds containing group III-V nitrides and silicon devices can be used for high temperature and high power RF applications and optoelectronics. GaN systems have particular use in the photonic industry for the blue/green and UV light sources and detection. High brightness light emitting diodes (LEDs) and lasers may also be formed within the GaN system.



FIG. 14 illustrates schematically, in cross section, a device structure 50 in accordance with a further embodiment of the invention. Device structure 50 includes a monocrystalline semiconductor substrate 52, preferably a monocrystalline silicon wafer. In some applications substrate 52 may also include an epitaxial silicon layer 51. Monocrystalline semiconductor substrate 52 includes two regions, 53 and 57. An electrical semiconductor component generally indicated by the dashed line 56 is formed, at least partially, in region 53. Electrical component 56 can be a resistor, a capacitor, an active semiconductor component such as a diode or a transistor or an integrated circuit such as a CMOS integrated circuit. For example, electrical semiconductor component 56 can be a CMOS integrated circuit configured to perform digital signal processing or another function for which silicon integrated circuits are well suited. The electrical semiconductor component in region 53 can be formed by conventional semiconductor processing as well known and widely practiced in the semiconductor industry. A layer of insulating material 59 such as a layer of silicon dioxide or the like may overlie electrical semiconductor component 56.


Insulating material 59 and any other layers that may have been formed or deposited during the processing of semiconductor component 56 in region 53 are removed from the surface of region 57 to provide a bare silicon surface in that region. As previously explained, bare silicon surfaces are highly reactive and a native silicon oxide layer can quickly form on the bare surface. A layer of barium or barium and oxygen is deposited onto the native oxide layer on the surface of region 57 and is reacted with the oxidized surface to reduce the native oxide and to form a first template layer (not shown). In accordance with one embodiment, a monocrystalline oxide layer 65 is formed overlying the template layer by a process of molecular beam epitaxy. Reactants including barium, titanium and oxygen are reacted on the template layer to form a monocrystalline barium titanante layer in a manner similar to that discussed in detail above. After a suitable layer of monocrystalline oxide is formed, the partial pressure of oxygen in the MBE reactor chamber is then increased to provide an overpressure of oxygen and to allow oxygen to diffuse through the growing monocrystalline oxide layer. The oxygen diffusing through the barium titanate layer reacts with silicon at the surface of region 57 to form an amorphous layer of silicon oxide 62 on second region 57 at the interface between silicon substrate 52 and monocrystalline oxide layer 65. Layers 65 and 62 may be subject to an annealing process as described above in connection with FIG. 4 to form a single amorphous accommodating layer.


In accordance with an embodiment of the invention, the step of depositing monocrystalline oxide layer 65 is terminated by depositing a second template layer 64, which can be 0.5-10 monolayers of titanium, barium, barium and oxygen, or titanium and oxygen. A layer 66 of a monocrystalline compound semiconductor material is then deposited overlying second template layer 64 by a process of molecular beam epitaxy in a manner similar to that described in detail above. The deposition of layer 66 is initiated by depositing a layer of arsenic onto template 64. This initial step is followed by depositing gallium and arsenic to form monocrystalline gallium arsenide 66. Alternatively, strontium can be substituted for barium in the above example.


In accordance with a further embodiment, a semiconductor component, generally indicated by a dashed line 68, is formed in compound semiconductor layer 66. Semiconductor component 68 can be formed by processing steps conventionally used in the fabrication of gallium arsenide or other III-V compound semiconductor material devices. Semiconductor component 68 can be any active or passive component, and preferably is a semiconductor laser, light emitting diode, photodetector, heterojunction bipolar transistor (HBT), high frequency MESFET, or other component that utilizes and takes advantage of the physical properties of compound semiconductor materials. A metallic conductor schematically indicated by the line 70 can be formed to electrically couple device 68 and device 56, thus implementing an integrated device that includes at least one component formed in silicon substrate 52 and one device formed in monocrystalline compound semiconductor material layer 66. Although illustrative structure 50 has been described as a structure formed on a silicon substrate 52 and having a barium (or strontium) titanate layer 65 and a gallium arsenide layer 66, similar devices can be fabricated using other substrates, other monocrystalline oxide layers and other compound semiconductor layers as described elsewhere in this disclosure.


Clearly, those embodiments specifically describing structures having compound semiconductor portions and Group IV semiconductor portions, are meant to illustrate embodiments of the present invention and not to limit the present invention. There are a multiplicity of other combinations and other embodiments of the present invention. For example, the present invention includes structures and methods for fabricating material layers which form semiconductor structures, devices and integrated circuits including other layers such as metal and non-metal layers. More specifically, the invention includes structures and methods for forming a compliant substrate which is used in the fabrication of semiconductor structures, devices and integrated circuits and the material layers suitable for fabricating those structures, devices, and integrated circuits. By using embodiments of the present invention, it is now simpler to integrate devices that include monocrystalline layers comprising semiconductor and compound semiconductor materials as well as other material layers that are used to form those devices with other components that work better or are easily and/or inexpensively formed within semiconductor or compound semiconductor materials. This allows the size of a device to be reduced, the manufacturing costs to decrease, and yield and reliability to increase.


In accordance with one embodiment of this invention, a monocrystalline semiconductor or compound semiconductor wafer can be used in forming monocrystalline material layers over the wafer. In this manner, the wafer is essentially a “handle” wafer used during the fabrication of semiconductor electrical components within a monocrystalline layer overlying the wafer. Therefore, electrical components can be formed within semiconductor material layers formed over large diameter wafers such as wafers having diameters of 200 millimeters or more.


By the use of this type of substrate, a relatively inexpensive “handle” wafer overcomes the fragile nature of compound semiconductor or other monocrystalline material wafers by placing them over a relatively more durable and easy to fabricate base material. Therefore, an integrated circuit can be formed such that all electrical components, and particularly all active electronic devices, can be formed within or using the monocrystalline material layer even though the substrate itself may include a monocrystalline semiconductor material. Fabrication costs for compound semiconductor devices and other devices employing non-silicon monocrystalline materials should decrease because larger substrates can be processed more economically and more readily compared to the relatively smaller and more fragile substrates (e.g. conventional compound semiconductor wafers).


In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications and changes are intended to be included within the scope of the present invention.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims
  • 1. A method for growing a monocrystalline oxide layer on a monocrystalline substrate comprising: positioning a monocrystalline substrate having a surface within a reaction chamber; removing any oxide that may be present on the surface of the substrate; heating the substrate to a first temperature; introducing oxygen to the reaction chamber to establish a first partial pressure of to oxygen in the reaction chamber, where the chosen combination of said first temperature and said first partial pressure is such that the substrate will not substantially react with the oxygen; introducing at least one reactant to the reaction chamber and reacting the at least one reactant and the oxygen to form a first layer of oxide; stopping the introduction of said at least one reactant to the reaction chamber; reducing the partial pressure of oxygen in the reaction chamber to a second partial pressure of oxygen less than the first partial pressure of oxygen; and heating the substrate to a second temperature greater than the first temperature, where the second temperature is high enough to improve the crystalline quality of the first layer, and the second temperature is not so high as to cause the substrate to react with the first layer.
  • 2. The method of claim 1 further comprising: after heating the substrate to a second temperature, lowering the temperature of the substrate to a third temperature less than the second temperature; introducing oxygen to the reaction chamber to establish a third partial pressure of oxygen in the reaction chamber, the third partial pressure of oxygen equal to or greater than the second partial pressure of oxygen; again introducing at least one reactant to the reaction chamber and reacting the at least one reactant and the oxygen to form a second layer of oxide overlying the first layer; stopping again introducing said at least one reactant to the reaction chamber; reducing the partial pressure of oxygen in the reaction chamber to a fourth partial pressure of oxygen less than or equal to the third partial pressure of oxygen; and heating the substrate to a fourth temperature greater than the third temperature, where the fourth temperature is high enough to improve the crystalline quality of the second layer.
  • 3. The method of claim 2 further comprising forming a template overlying the second layer.
  • 4. The method of claim 3 further comprising forming a third monocrystalline layer overlying the second layer.
  • 5. The method of claim 4 wherein forming a third monocrystalline layer comprises forming a monocrystalline layer of semiconductor material, compound semiconductor material, oxide material, metal or non-metal material.
  • 6. The method of claim 2 further comprising forming a layer of gate electrode material overlying the second layer.
  • 7. The method of claim 1 wherein the monocrystalline substrate is a monocrystalline silicon substrate.
  • 8. The method of claim 7 further comprising: after heating the substrate to a second temperature, heating the substrate in an oxygen ambient to form an amorphous layer of silicon oxide between the monocrystalline silicon substrate and the first layer.
  • 9. The method of claim 7 wherein introducing at least one reactant comprises introducing constituent elements of perovskite oxides.
  • 10. The method of claim 7 wherein introducing at least one reactant comprises introducing an alkaline earth metal and a transition metal to the reaction chamber.
  • 11. The method of claim 10 wherein introducing at least one reactant comprises introducing strontium and titanium to the reaction chamber.
  • 12. The method of claim 1 wherein removing any oxide comprises depositing an alkaline earth metal overlying the any oxide and reacting the alkaline earth metal with the any oxide to reduce the any oxide.
  • 13. The method of claim 12 further comprising depositing additional alkaline earth metal onto the surface of the monocrystalline substrate after reacting the alkaline earth metal with the any oxide to reduce the any oxide.
  • 14. The method of claim 1 further comprising monitoring the first layer of oxide using RHEED during heating the substrate to a second temperature.
  • 15. The method of claim 11 wherein heating the substrate to a first temperature comprises heating the substrate to a temperature less than 400° C.
  • 16. The method of claim 15 wherein heating the substrate to a first temperature comprises heating the substrate to a temperature of about 300° C.
  • 17. The method of claim 15 wherein heating the substrate to a second temperature comprises heating the substrate to a temperature between 600° C. and 750° C.
  • 18. The method of claim 17 where the first layer has a thickness of about 1-15 angstroms.
  • 19. The method of claim 1 further comprising forming a second monocrystalline layer overlying the first layer.
  • 20. The method of claim 19 wherein forming a second monocrystalline layer comprises forming a monocrystalline layer of material selected from the group consisting of semiconductor material, compound semiconductor material, oxide material, metal and non-metal material.
  • 21. The method of claim 1 further comprising forming a layer of gate electrode material overlying the first layer.
  • 22. A method for fabricating a semiconductor structure comprising: positioning an oxidizable monocrystalline substrate having a surface within a reaction chamber; removing any oxide that may be present on the surface of the substrate; heating the substrate to a first temperature; introducing oxygen to the reaction chamber to establish a partial pressure of oxygen in the reaction chamber; introducing at least one reactant to the reaction chamber; reacting the oxygen and the at least one reactant at the surface of the substrate to grow an oxide on the surface; decreasing the partial pressure of oxygen in the reaction chamber; terminating introducing a metal reactant; and heating the substrate to a second temperature greater than the first temperature to improve the crystalline quality of the oxide; wherein the first temperature is a temperature at which oxidation of the at least one reactant is kinetically favored in comparison to oxidation of the oxidizable substrate.
  • 23. A process for fabricating a semiconductor structure comprising: providing a monocrystalline silicon substrate; and depositing a monocrystalline perovskite oxide film overlying the monocrystalline silicon substrate, comprising: placing the substrate in a reactor chamber; removing any oxide that may be present on the surface of the substrate; heating the substrate to a temperature less than about 400° C.; introducing oxygen and a plurality of metal reactants to the reactor chamber to grow about 1-15 angstroms of a first layer of perovskite oxide on the substrate; heating the substrate to a second temperature between about 600° C. and about 750° C. to improve the crystalline quality of the perovskite oxide.
  • 24. The process of claim 23 further comprising forming a second layer overlying the monocrystalline perovskite oxide film.
  • 25. The process of claim 24 wherein forming a second layer comprises epitaxially forming a monocrystalline layer of material selected from the group consisting of semiconductor material, compound semiconductor material, oxide material, metal and non-metal material.
US Referenced Citations (574)
Number Name Date Kind
3617951 Anderson Nov 1971 A
3670213 Nakagawa et al. Jun 1972 A
3758199 Thaxter Sep 1973 A
3766370 Walther Oct 1973 A
3802967 Ladany et al. Apr 1974 A
3818451 Coleman Jun 1974 A
3914137 Huffman et al. Oct 1975 A
3935031 Adler Jan 1976 A
4006989 Andringa Feb 1977 A
4084130 Holton Apr 1978 A
4120588 Chaum Oct 1978 A
4146297 Alferness et al. Mar 1979 A
4174422 Matthews et al. Nov 1979 A
4174504 Chenausky et al. Nov 1979 A
4177094 Kroon Dec 1979 A
4242595 Lehovec Dec 1980 A
4284329 Smith et al. Aug 1981 A
4289920 Hovel Sep 1981 A
4297656 Pan Oct 1981 A
4298247 Michelet et al. Nov 1981 A
4378259 Hasegawa et al. Mar 1983 A
4392297 Little Jul 1983 A
4398342 Pitt et al. Aug 1983 A
4404265 Manasevit Sep 1983 A
4424589 Thomas et al. Jan 1984 A
4439014 Stacy et al. Mar 1984 A
4442590 Stockton et al. Apr 1984 A
4447116 King et al. May 1984 A
4452720 Harada et al. Jun 1984 A
4459325 Nozawa et al. Jul 1984 A
4482422 McGinn et al. Nov 1984 A
4482906 Hovel et al. Nov 1984 A
4484332 Hawrylo Nov 1984 A
4503540 Nakashima et al. Mar 1985 A
4523211 Morimoto et al. Jun 1985 A
4525871 Foyt et al. Jun 1985 A
4594000 Falk et al. Jun 1986 A
4626878 Kuwano et al. Dec 1986 A
4629821 Bronstein-Bonte et al. Dec 1986 A
4661176 Manasevit Apr 1987 A
4667088 Kramer et al. May 1987 A
4667212 Nakamura May 1987 A
4681982 Yoshida Jul 1987 A
4695120 Holder Sep 1987 A
4723321 Saleh Feb 1988 A
4748485 Vasudev May 1988 A
4756007 Qureshi et al. Jul 1988 A
4772929 Manchester et al. Sep 1988 A
4773063 Hunsperger et al. Sep 1988 A
4774205 Choi et al. Sep 1988 A
4777613 Shahan et al. Oct 1988 A
4793872 Meunier et al. Dec 1988 A
4801184 Revelli Jan 1989 A
4802182 Thornton et al. Jan 1989 A
4804866 Akiyama Feb 1989 A
4815084 Scifres et al. Mar 1989 A
4841775 Ikeda et al. Jun 1989 A
4843609 Ohya et al. Jun 1989 A
4845044 Ariyoshi et al. Jul 1989 A
4846926 Kay et al. Jul 1989 A
4855249 Akasaki et al. Aug 1989 A
4866489 Yokogawa et al. Sep 1989 A
4868376 Lessin et al. Sep 1989 A
4872046 Morkoc et al. Oct 1989 A
4876208 Gustafson et al. Oct 1989 A
4876218 Pessa et al. Oct 1989 A
4876219 Eshita et al. Oct 1989 A
4882300 Inoue et al. Nov 1989 A
4885376 Verkade Dec 1989 A
4888202 Murakami et al. Dec 1989 A
4889402 Reinhart Dec 1989 A
4891091 Shastry Jan 1990 A
4896194 Suzuki Jan 1990 A
4901133 Curran et al. Feb 1990 A
4910164 Shichijo Mar 1990 A
4912087 Aslam et al. Mar 1990 A
4928154 Umeno et al. May 1990 A
4934777 Jou et al. Jun 1990 A
4952420 Walters Aug 1990 A
4959702 Moyer et al. Sep 1990 A
4963508 Umeno et al. Oct 1990 A
4963949 Wanlass et al. Oct 1990 A
4965649 Zanio et al. Oct 1990 A
4981714 Ohno et al. Jan 1991 A
4984043 Vinal Jan 1991 A
4999842 Huang et al. Mar 1991 A
5018816 Murray et al. May 1991 A
5028563 Feit et al. Jul 1991 A
5028976 Ozaki et al. Jul 1991 A
5051790 Hammer Sep 1991 A
5053835 Horikawa et al. Oct 1991 A
5055445 Belt et al. Oct 1991 A
5055835 Sutton Oct 1991 A
5057694 Idaka et al. Oct 1991 A
5060031 Abrokwah et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5063166 Mooney et al. Nov 1991 A
5067809 Tsubota Nov 1991 A
5073981 Giles et al. Dec 1991 A
5075743 Behfar-Rad Dec 1991 A
5081062 Vasudev et al. Jan 1992 A
5081519 Nishimura et al. Jan 1992 A
5087829 Ishibashi et al. Feb 1992 A
5103494 Mozer Apr 1992 A
5116461 Lebby et al. May 1992 A
5119448 Schaefer et al. Jun 1992 A
5122852 Chan et al. Jun 1992 A
5127067 Delcoco et al. Jun 1992 A
5130762 Kulick Jul 1992 A
5132648 Trinh et al. Jul 1992 A
5140387 Okazaki et al. Aug 1992 A
5140651 Soref et al. Aug 1992 A
5141894 Bisaro et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5144409 Ma Sep 1992 A
5148504 Levi et al. Sep 1992 A
5155658 Inam et al. Oct 1992 A
5159413 Calviello et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5166761 Olson et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5181085 Moon et al. Jan 1993 A
5185589 Krishnaswamy et al. Feb 1993 A
5188976 Kume et al. Feb 1993 A
5191625 Gustavsson Mar 1993 A
5194397 Cook et al. Mar 1993 A
5194917 Regener Mar 1993 A
5198269 Swartz et al. Mar 1993 A
5208182 Narayan et al. May 1993 A
5210763 Lewis et al. May 1993 A
5216359 Makki et al. Jun 1993 A
5216729 Berger et al. Jun 1993 A
5221367 Chisholm et al. Jun 1993 A
5225031 McKee et al. Jul 1993 A
5227196 Itoh Jul 1993 A
5238877 Russell Aug 1993 A
5244818 Jokers et al. Sep 1993 A
5248564 Ramesh Sep 1993 A
5260394 Tazaki et al. Nov 1993 A
5262659 Grudkowski et al. Nov 1993 A
5266355 Wernberg et al. Nov 1993 A
5268327 Vernon Dec 1993 A
5270298 Ramesh Dec 1993 A
5280013 Newman et al. Jan 1994 A
5281834 Cambou et al. Jan 1994 A
5283462 Stengel Feb 1994 A
5286985 Taddiken Feb 1994 A
5293050 Chapple-Sokol et al. Mar 1994 A
5306649 Hebert Apr 1994 A
5310707 Oishi et al. May 1994 A
5312765 Kanber May 1994 A
5313058 Friederich et al. May 1994 A
5314547 Heremans et al. May 1994 A
5315128 Hunt et al. May 1994 A
5323023 Fork Jun 1994 A
5326721 Summerfelt Jul 1994 A
5334556 Guldi Aug 1994 A
5352926 Andrews Oct 1994 A
5356509 Terranova et al. Oct 1994 A
5356831 Calviello et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5358925 Neville Connell et al. Oct 1994 A
5362972 Yazawa et al. Nov 1994 A
5362998 Iwamura et al. Nov 1994 A
5365477 Cooper, Jr. et al. Nov 1994 A
5371621 Stevens Dec 1994 A
5371734 Fischer Dec 1994 A
5372992 Itozaki et al. Dec 1994 A
5373166 Buchan et al. Dec 1994 A
5387811 Saigoh Feb 1995 A
5391515 Kao et al. Feb 1995 A
5393352 Summerfelt Feb 1995 A
5394489 Koch Feb 1995 A
5395663 Tabata et al. Mar 1995 A
5397428 Stoner et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404581 Honjo Apr 1995 A
5405802 Yamagata et al. Apr 1995 A
5406202 Mehrgardt et al. Apr 1995 A
5410622 Okada et al. Apr 1995 A
5418216 Fork May 1995 A
5418389 Watanabe May 1995 A
5420102 Harshavardhan et al. May 1995 A
5427988 Sengupta et al. Jun 1995 A
5436759 Dijail et al. Jul 1995 A
5438584 Paoli et al. Aug 1995 A
5441577 Sasaki et al. Aug 1995 A
5442191 Ma Aug 1995 A
5442561 Yoshizawa et al. Aug 1995 A
5444016 Abrokwah et al. Aug 1995 A
5446719 Yoshida et al. Aug 1995 A
5450812 McKee et al. Sep 1995 A
5452118 Maruska Sep 1995 A
5453727 Shibasaki et al. Sep 1995 A
5466631 Ichikawa et al. Nov 1995 A
5473047 Shi Dec 1995 A
5473171 Summerfelt Dec 1995 A
5477363 Matsuda Dec 1995 A
5478653 Guenzer Dec 1995 A
5479033 Baca et al. Dec 1995 A
5479317 Ramesh Dec 1995 A
5480829 Abrokwah et al. Jan 1996 A
5481102 Hazelrigg, Jr. Jan 1996 A
5482003 McKee et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5486406 Shi Jan 1996 A
5491461 Partin et al. Feb 1996 A
5492859 Sakaguchi et al. Feb 1996 A
5494711 Takeda et al. Feb 1996 A
5504035 Rostoker et al. Apr 1996 A
5504183 Shi Apr 1996 A
5508554 Takatani et al. Apr 1996 A
5510665 Conley Apr 1996 A
5511238 Bayraktaroglu Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5514484 Nashimoto May 1996 A
5514904 Onga et al. May 1996 A
5515047 Yamakido et al. May 1996 A
5515810 Yamashita May 1996 A
5516725 Chang et al. May 1996 A
5519235 Ramesh May 1996 A
5523602 Horiuchi et al. Jun 1996 A
5528057 Yanagase et al. Jun 1996 A
5528067 Farb Jun 1996 A
5528209 Macdonald et al. Jun 1996 A
5528414 Oakley Jun 1996 A
5530235 Stefik et al. Jun 1996 A
5538941 Findikoglu et al. Jul 1996 A
5540785 Dennard et al. Jul 1996 A
5541422 Wolf et al. Jul 1996 A
5548141 Morris et al. Aug 1996 A
5549977 Jin et al. Aug 1996 A
5551238 Prueitt Sep 1996 A
5552547 Shi Sep 1996 A
5556463 Guenzer Sep 1996 A
5559368 Hu et al. Sep 1996 A
5561305 Smith Oct 1996 A
5569953 Kikkawa et al. Oct 1996 A
5570226 Ota Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5574296 Park et al. Nov 1996 A
5574589 Feuer et al. Nov 1996 A
5574744 Gaw et al. Nov 1996 A
5576879 Nashimoto Nov 1996 A
5578162 D'Asaro et al. Nov 1996 A
5585167 Satoh et al. Dec 1996 A
5585288 Davis et al. Dec 1996 A
5588995 Sheldon Dec 1996 A
5589284 Summerfelt et al. Dec 1996 A
5593069 Seki et al. Jan 1997 A
5596205 Reedy et al. Jan 1997 A
5596214 Endo Jan 1997 A
5602418 Imai et al. Feb 1997 A
5603764 Matsuda et al. Feb 1997 A
5606184 Abrokwah et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610744 Ho et al. Mar 1997 A
5614739 Abrokwah et al. Mar 1997 A
5619051 Endo Apr 1997 A
5621227 Joshi Apr 1997 A
5623439 Gotoh et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629534 Inuzuka et al. May 1997 A
5633724 King et al. May 1997 A
5635433 Sengupta Jun 1997 A
5635453 Pique et al. Jun 1997 A
5640267 May et al. Jun 1997 A
5642371 Tohyama et al. Jun 1997 A
5650646 Summerfelt Jul 1997 A
5656382 Nashimoto Aug 1997 A
5659180 Shen et al. Aug 1997 A
5661112 Hatta et al. Aug 1997 A
5666376 Cheng Sep 1997 A
5667586 Ek et al. Sep 1997 A
5668048 Kondo et al. Sep 1997 A
5670798 Schetzina Sep 1997 A
5670800 Nakao et al. Sep 1997 A
5674366 Hayashi et al. Oct 1997 A
5674813 Nakamura et al. Oct 1997 A
5679947 Doi et al. Oct 1997 A
5679965 Schetzina Oct 1997 A
5682046 Takahashi et al. Oct 1997 A
5684302 Wersing et al. Nov 1997 A
5686741 Ohori et al. Nov 1997 A
5689123 Major et al. Nov 1997 A
5693140 McKee et al. Dec 1997 A
5719417 Roeder et al. Feb 1998 A
5725641 MacLeod Mar 1998 A
5729394 Sevier et al. Mar 1998 A
5729641 Chandonnet et al. Mar 1998 A
5731220 Tsu et al. Mar 1998 A
5733641 Fork et al. Mar 1998 A
5734672 McMinn et al. Mar 1998 A
5735949 Mantl et al. Apr 1998 A
5741724 Ramdani et al. Apr 1998 A
5745631 Reinker Apr 1998 A
5753300 Wessels et al. May 1998 A
5753928 Krause May 1998 A
5753934 Yano et al. May 1998 A
5754319 Van De Voorde et al. May 1998 A
5754714 Suzuki et al. May 1998 A
5760426 Marx et al. Jun 1998 A
5760427 Onda Jun 1998 A
5760740 Blodgett Jun 1998 A
5764676 Paoli et al. Jun 1998 A
5767543 Ooms et al. Jun 1998 A
5770887 Tadatomo et al. Jun 1998 A
5772758 Collins et al. Jun 1998 A
5776359 Schultz et al. Jul 1998 A
5776621 Nashimoto Jul 1998 A
5777350 Nakamura et al. Jul 1998 A
5777762 Yamamoto Jul 1998 A
5778018 Yoshikawa et al. Jul 1998 A
5778116 Tomich Jul 1998 A
5780311 Beasom et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5789845 Wadaka et al. Aug 1998 A
5790583 Ho Aug 1998 A
5792569 Sun et al. Aug 1998 A
5792679 Nakato Aug 1998 A
5796648 Kawakubo et al. Aug 1998 A
5801072 Barber Sep 1998 A
5801105 Yano et al. Sep 1998 A
5807440 Kubota et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5814583 Itozaki et al. Sep 1998 A
5825055 Summerfelt Oct 1998 A
5825799 Ho et al. Oct 1998 A
5827755 Yonehara et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5830270 McKee et al. Nov 1998 A
5831960 Jiang et al. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834362 Miyagaki et al. Nov 1998 A
5838035 Ramesh Nov 1998 A
5838053 Bevan et al. Nov 1998 A
5844260 Ohori Dec 1998 A
5846846 Suh et al. Dec 1998 A
5852687 Wickham Dec 1998 A
5857049 Beranek et al. Jan 1999 A
5858814 Goossen et al. Jan 1999 A
5861966 Ortel Jan 1999 A
5863326 Nause et al. Jan 1999 A
5864171 Yamamoto et al. Jan 1999 A
5869845 Vander Wagt et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873977 Desu et al. Feb 1999 A
5874860 Brunel et al. Feb 1999 A
5878175 Sonoda et al. Mar 1999 A
5879956 Seon et al. Mar 1999 A
5880452 Plesko Mar 1999 A
5882948 Jewell Mar 1999 A
5883564 Partin Mar 1999 A
5883996 Knapp et al. Mar 1999 A
5886867 Chivukula et al. Mar 1999 A
5888296 Ooms et al. Mar 1999 A
5889296 Imamura et al. Mar 1999 A
5896476 Wisseman et al. Apr 1999 A
5905571 Butler et al. May 1999 A
5907792 Droopad et al. May 1999 A
5912068 Jia Jun 1999 A
5919515 Yano et al. Jul 1999 A
5919522 Baum et al. Jul 1999 A
5926493 O'Brien et al. Jul 1999 A
5926496 Ho et al. Jul 1999 A
5937115 Domash Aug 1999 A
5937274 Kondow et al. Aug 1999 A
5937285 Abrokwah et al. Aug 1999 A
5948161 Kizuki Sep 1999 A
5953468 Finnila et al. Sep 1999 A
5955591 Imbach et al. Sep 1999 A
5959308 Shichijo et al. Sep 1999 A
5959879 Koo Sep 1999 A
5962069 Schindler et al. Oct 1999 A
5963291 Wu et al. Oct 1999 A
5966323 Chen et al. Oct 1999 A
5976953 Zavracky et al. Nov 1999 A
5977567 Verdiell Nov 1999 A
5981400 Lo Nov 1999 A
5981976 Murasato Nov 1999 A
5981980 Miyajima et al. Nov 1999 A
5984190 Nevill Nov 1999 A
5985404 Yano et al. Nov 1999 A
5987011 Toh Nov 1999 A
5987196 Noble Nov 1999 A
5990495 Ohba Nov 1999 A
5995359 Klee et al. Nov 1999 A
5995528 Fukunaga et al. Nov 1999 A
5997638 Copel et al. Dec 1999 A
5998781 Vawter et al. Dec 1999 A
5998819 Yokoyama et al. Dec 1999 A
6002375 Corman et al. Dec 1999 A
6008762 Nghiem Dec 1999 A
6011641 Shin et al. Jan 2000 A
6011646 Mirkarimi et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6020222 Wollesen Feb 2000 A
6022140 Fraden et al. Feb 2000 A
6022410 Yu et al. Feb 2000 A
6022671 Binkley et al. Feb 2000 A
6022963 McGall et al. Feb 2000 A
6023082 McKee et al. Feb 2000 A
6028853 Haartsen Feb 2000 A
6039803 Fitzgerald et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6046464 Schetzina Apr 2000 A
6048751 D'Asaro et al. Apr 2000 A
6049110 Koh Apr 2000 A
6049702 Tham et al. Apr 2000 A
6051858 Uchida et al. Apr 2000 A
6051874 Masuda Apr 2000 A
6055179 Koganei et al. Apr 2000 A
6058131 Pan May 2000 A
6059895 Chu et al. May 2000 A
6064078 Northrup et al. May 2000 A
6064092 Park May 2000 A
6064783 Congdon et al. May 2000 A
6078717 Nashimoto et al. Jun 2000 A
6080378 Yokota et al. Jun 2000 A
6083697 Beecher et al. Jul 2000 A
6087681 Shakuda Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090659 Laibowitz et al. Jul 2000 A
6093302 Montgomery Jul 2000 A
6096584 Ellis-Monaghan et al. Aug 2000 A
6100578 Suzuki Aug 2000 A
6103008 McKee et al. Aug 2000 A
6103403 Grigorian et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6107721 Lakin Aug 2000 A
6108125 Yano Aug 2000 A
6110813 Ota et al. Aug 2000 A
6110840 Yu Aug 2000 A
6113225 Miyata et al. Sep 2000 A
6113690 Yu et al. Sep 2000 A
6114996 Nghiem Sep 2000 A
6121642 Newns Sep 2000 A
6121647 Yano et al. Sep 2000 A
6128178 Newns Oct 2000 A
6134114 Ungermann et al. Oct 2000 A
6136666 So Oct 2000 A
6137603 Henmi Oct 2000 A
6139483 Seabaugh et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6143072 McKee et al. Nov 2000 A
6143366 Lu Nov 2000 A
6146906 Inoue et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6153454 Krivokapic Nov 2000 A
6156581 Vaudo et al. Dec 2000 A
6173474 Conrad Jan 2001 B1
6174755 Manning Jan 2001 B1
6175497 Tseng et al. Jan 2001 B1
6175555 Hoole Jan 2001 B1
6180252 Farrell et al. Jan 2001 B1
6180486 Leobandung et al. Jan 2001 B1
6181920 Dent et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184144 Lo Feb 2001 B1
6191011 Gilboa et al. Feb 2001 B1
6194753 Seon et al. Feb 2001 B1
6197503 Vo-Dinh et al. Mar 2001 B1
6198119 Nabatame et al. Mar 2001 B1
6204525 Sakurai et al. Mar 2001 B1
6204737 Ella Mar 2001 B1
6208453 Wessels et al. Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6211096 Allman et al. Apr 2001 B1
6222654 Frigo Apr 2001 B1
6224669 Yi et al. May 2001 B1
6225051 Sugiyama et al. May 2001 B1
6229159 Suzuki May 2001 B1
6232242 Hata et al. May 2001 B1
6232910 Bell et al. May 2001 B1
6233435 Wong May 2001 B1
6235145 Li et al. May 2001 B1
6238946 Ziegler May 2001 B1
6239012 Kinsman May 2001 B1
6239449 Fafard et al. May 2001 B1
6241821 Yu et al. Jun 2001 B1
6242686 Kishimoto et al. Jun 2001 B1
6248459 Wang et al. Jun 2001 B1
6248621 Wilk et al. Jun 2001 B1
6252261 Usui et al. Jun 2001 B1
6253649 Shinjo Jul 2001 B1
6255198 Linthicum et al. Jul 2001 B1
6256426 Duchet Jul 2001 B1
6265749 Gardner et al. Jul 2001 B1
6268269 Lee et al. Jul 2001 B1
6271619 Yamada et al. Aug 2001 B1
6275122 Speidell et al. Aug 2001 B1
6277436 Stauf et al. Aug 2001 B1
6278137 Shimoyama et al. Aug 2001 B1
6278138 Suzuki Aug 2001 B1
6278523 Gorecki Aug 2001 B1
6278541 Baker Aug 2001 B1
6291319 Yu et al. Sep 2001 B1
6291866 Wallace Sep 2001 B1
6297598 Wang et al. Oct 2001 B1
6297842 Koizumi et al. Oct 2001 B1
6300615 Shinohara et al. Oct 2001 B1
6306668 McKee et al. Oct 2001 B1
6307996 Nashimoto et al. Oct 2001 B1
6312819 Jia et al. Nov 2001 B1
6313486 Kencke et al. Nov 2001 B1
6316785 Nunoue et al. Nov 2001 B1
6316832 Tsuzuki et al. Nov 2001 B1
6319730 Ramdani et al. Nov 2001 B1
6320238 Kizilyalli et al. Nov 2001 B1
6326637 Parkin et al. Dec 2001 B1
6326645 Kadota Dec 2001 B1
6326667 Sugiyama et al. Dec 2001 B1
6338756 Dietze Jan 2002 B2
6339664 Farjady et al. Jan 2002 B1
6340788 King et al. Jan 2002 B1
6341851 Takayama et al. Jan 2002 B1
6343171 Yoshimura et al. Jan 2002 B1
6345424 Hasegawa et al. Feb 2002 B1
6348373 Ma et al. Feb 2002 B1
6355945 Kadota et al. Mar 2002 B1
6359330 Goudard Mar 2002 B1
6362017 Manabe et al. Mar 2002 B1
6362558 Fukui Mar 2002 B1
6367699 Ackley Apr 2002 B2
6372356 Thornton et al. Apr 2002 B1
6372813 Johnson et al. Apr 2002 B1
6376337 Wang et al. Apr 2002 B1
6389209 Suhir May 2002 B1
6391674 Ziegler May 2002 B2
6392253 Saxena May 2002 B1
6392257 Ramdani et al. May 2002 B1
6393167 Davis et al. May 2002 B1
6404027 Hong et al. Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6410947 Wada Jun 2002 B1
6411756 Sadot et al. Jun 2002 B2
6415140 Benjamin et al. Jul 2002 B1
6417059 Huang Jul 2002 B2
6419849 Qiu et al. Jul 2002 B1
6427066 Grube Jul 2002 B1
6432546 Ramesh et al. Aug 2002 B1
6438281 Tsukamoto et al. Aug 2002 B1
6445724 Abeles Sep 2002 B2
6452232 Adan Sep 2002 B1
6461927 Mochizuki et al. Oct 2002 B1
6462360 Higgins, Jr. et al. Oct 2002 B1
6477285 Shanley Nov 2002 B1
6496469 Uchizaki Dec 2002 B1
6498358 Lach et al. Dec 2002 B1
6501121 Yu et al. Dec 2002 B1
6504189 Matsuda et al. Jan 2003 B1
6524651 Gan et al. Feb 2003 B2
6538359 Hiraku et al. Mar 2003 B1
20010013313 Droopad et al. Aug 2001 A1
20010020278 Saito Sep 2001 A1
20010036142 Kadowaki et al. Nov 2001 A1
20010055820 Sakurai et al. Dec 2001 A1
20020006245 Kubota et al. Jan 2002 A1
20020008234 Emrick Jan 2002 A1
20020021855 Kim Feb 2002 A1
20020030246 Eisenberger et al. Mar 2002 A1
20020047123 Ramdani et al. Apr 2002 A1
20020047143 Ramdani et al. Apr 2002 A1
20020072245 Ooms et al. Jun 2002 A1
20020076878 Wasa et al. Jun 2002 A1
20020079578 Seshan Jun 2002 A1
20020131675 Litvin Sep 2002 A1
20020140012 Droopad Oct 2002 A1
20020145168 Bojarczuk, Jr. et al. Oct 2002 A1
20020179000 Lee et al. Dec 2002 A1
20020195610 Klosowlak Dec 2002 A1
Foreign Referenced Citations (155)
Number Date Country
196 07 107 Aug 1997 DE
197 12 496 Oct 1997 DE
100 17 137 Oct 2000 DE
0 247 722 Dec 1987 EP
0 250 171 Dec 1987 EP
0 300 499 Jan 1989 EP
0 309 270 Mar 1989 EP
0 331 338 Sep 1989 EP
0 331 467 Sep 1989 EP
0 342 937 Nov 1989 EP
0 392 714 Oct 1990 EP
0 412 002 Feb 1991 EP
0 455 526 Jun 1991 EP
0 483 993 May 1992 EP
0 494 514 Jul 1992 EP
0 514 018 Nov 1992 EP
0 538 611 Apr 1993 EP
0 581 239 Feb 1994 EP
0 600 668 Jun 1994 EP
0 602 568 Jun 1994 EP
0 607 435 Jul 1994 EP
0 614 256 Sep 1994 EP
0 619 263 Oct 1994 EP
0 630 057 Dec 1994 EP
0 661 561 Jul 1995 EP
0 860 913 Aug 1995 EP
0 682 266 Nov 1995 EP
0 711 853 May 1996 EP
0 884 767 Dec 1996 EP
0 777 379 Jun 1997 EP
0 810 666 Dec 1997 EP
0 852 416 Jul 1998 EP
0 875 922 Nov 1998 EP
0 861 669 Dec 1998 EP
0 926 739 Jun 1999 EP
0 957 522 Nov 1999 EP
0 964 259 Dec 1999 EP
0 964 453 Dec 1999 EP
0 993 027 Apr 2000 EP
0 999 600 May 2000 EP
1 001 468 May 2000 EP
1 035 759 Sep 2000 EP
1 037 272 Sep 2000 EP
1 043 426 Oct 2000 EP
1 043 427 Oct 2000 EP
1 043 765 Oct 2000 EP
1 054 442 Nov 2000 EP
1 069 605 Jan 2001 EP
1 069 606 Jan 2001 EP
1 085 319 Mar 2001 EP
1 089 338 Apr 2001 EP
1 109 212 Jun 2001 EP
2 779 843 Dec 1999 FR
1 319 311 Jun 1970 GB
2 152 315 Jul 1985 GB
2 335 792 Sep 1999 GB
52-88354 Jul 1977 JP
52-89070 Jul 1977 JP
52-135684 Nov 1977 JP
54-134554 Oct 1979 JP
55-87424 Jul 1980 JP
58-075868 May 1983 JP
5-152529 Jun 1983 JP
58-213412 Dec 1983 JP
59-044004 Mar 1984 JP
59066183 Apr 1984 JP
59-073498 Apr 1984 JP
6-232126 Aug 1984 JP
6-291299 Oct 1984 JP
60-161635 Aug 1985 JP
60-210018 Oct 1985 JP
60-212018 Oct 1985 JP
61-36981 Feb 1986 JP
61-63015 Apr 1986 JP
61-108187 May 1986 JP
62-245205 Oct 1987 JP
63-34994 Feb 1988 JP
63-131104 Jun 1988 JP
63-198365 Aug 1988 JP
63-289812 Nov 1988 JP
64-50575 Feb 1989 JP
64-52329 Feb 1989 JP
1-102435 Apr 1989 JP
1-179411 Jul 1989 JP
01-196809 Aug 1989 JP
03-149882 Nov 1989 JP
HEI 2-931 Jan 1990 JP
02051220 Feb 1990 JP
3-41783 Feb 1991 JP
03046384 Feb 1991 JP
3-171617 Jul 1991 JP
03-188619 Aug 1991 JP
5-48072 Feb 1993 JP
5-086477 Apr 1993 JP
05150143 Jun 1993 JP
05 221800 Aug 1993 JP
5-232307 Sep 1993 JP
5-238894 Sep 1993 JP
5-243525 Sep 1993 JP
5-291299 Nov 1993 JP
06-069490 Mar 1994 JP
6-334168 Dec 1994 JP
0812494 Jan 1996 JP
9-67193 Mar 1997 JP
9-82913 Mar 1997 JP
10-256154 Sep 1998 JP
10-269842 Oct 1998 JP
10-303396 Nov 1998 JP
10-321943 Dec 1998 JP
11135614 May 1999 JP
11-238683 Aug 1999 JP
11-260835 Sep 1999 JP
01 294594 Nov 1999 JP
11340542 Dec 1999 JP
2000-068466 Mar 2000 JP
2 000 1645 Jun 2000 JP
2000-278085 Oct 2000 JP
2000-349278 Dec 2000 JP
2000-351692 Dec 2000 JP
2001-196892 Jul 2001 JP
2002-9366 Jan 2002 JP
WO 9210875 Jun 1992 WO
WO 9307647 Apr 1993 WO
WO 9403908 Feb 1994 WO
WO 9745827 Dec 1997 WO
WO 9805807 Jan 1998 WO
WO 9820606 May 1998 WO
WO 9914797 Mar 1999 WO
WO 9914804 Mar 1999 WO
WO 9919546 Apr 1999 WO
WO 9963580 Dec 1999 WO
WO 0006612 Feb 2000 WO
WO 0016378 Mar 2000 WO
WO 0033363 Jun 2000 WO
WO 0048239 Aug 2000 WO
WO 0104943 Jan 2001 WO
WO 0116395 Mar 2001 WO
WO 0133585 May 2001 WO
WO 0137330 May 2001 WO
WO 0159814 Aug 2001 WO
WO 0159820 Aug 2001 WO
WO 0159821 Aug 2001 WO
WO 0159837 Aug 2001 WO
WO 02 01648 Jan 2002 WO
WO 0203113 Jan 2002 WO
WO 0203467 Jan 2002 WO
WO 0203480 Jan 2002 WO
WO 0208806 Jan 2002 WO
WO 0209160 Jan 2002 WO
WO 0211254 Feb 2002 WO
WO 0233385 Apr 2002 WO
WO 0247127 Jun 2002 WO
WO 0250879 Jun 2002 WO
WO 02099885 Dec 2002 WO
WO 03012874 Feb 2003 WO
Related Publications (1)
Number Date Country
20030207589 A1 Nov 2003 US