1. Field of the Invention
This invention relates to methods of making micromechanical structures having at least one lateral, small gap therebetween and micromechanical devices produced thereby.
2. Background Art
Vibrating mechanical tank components, such as crystal and SAW resonators, are widely used for frequency selection in communication sub-systems because of their high quality factor (Q's in tens of thousands) and exceptional stability against thermal variations and aging. In particular, the majority of heterodyning communication transceivers rely heavily on the high Q of SAW and bulk acoustic mechanical resonators to achieve adequate frequency selection in RF and IF filtering stages and to realize the required low phase noise and stability in their local oscillators. In addition, discrete inductors and variable capacitors are used to properly tune and couple the front end sense and power amplifiers, and to implement widely tunable voltage-controlled oscillators.
At present, the aforementioned resonators and discrete elements are off-chip components, and must interface with integrated electronics at board level, often consuming a sizable portion of the total sub-system area. In this respect, these devices pose an important bottleneck against the ultimate miniaturization and portability of wireless transceivers. For this reason, many research efforts have been focused on strategies for either miniaturizing these components or eliminating the need for them altogether.
The rapid growth of IC-compatible micromachining technologies that yield micro-scale, high-Q tank components may now bring the first of the above strategies closer to reality. Specifically, the high-Q RF and IF filters, oscillators, and couplers, currently implemented via off-chip resonators and discrete passives may now potentially be realized on the micro-scale using micromachined equivalents based on a variety of novel devices, including high-Q, on-chip, vibrating mechanical resonators, voltage-tunable, on-chip capacitors, isolated, low-loss inductors, microwave/mm-wave medium-Q filters, structures for high frequency isolation packaging, and low-loss mechanical switches. Once these miniaturized filters and oscillators become available, the fundamental bases on which communication systems are developed may also evolve, giving rise to new system architectures with possible power and bandwidth efficiency advantages.
Prototype high-Q oscillators featuring lateral comb-driven micromechanical resonators integrated together with sustaining electronics, all in a single chip, using a planar process that combines surface-micromachining and integrated circuits, have been demonstrated. The gap between the electrodes and the structure of the comb-driven micromechanical resonator is limited by lithography capability. Therefore, a submicron gap is very difficult to do. As the frequency of the resonator goes higher, the size of the resonator becomes smaller. So the electromechanical coupling is smaller. In order to increase the electromechanical coupling, a small-gap between the electrode and the structure is necessary. Although the capacitive gap of vertical micromechanical resonators, which is defined by the thickness of a sacrificial layer, can be very small, clamped-clamped beam vertical micromechanical resonators suffer from lower Q due to anchor dissipation. Also, it normally has only one port which limits its application range. Lateral resonators, on the other hand, have advantages of greater geometric design flexibility and more ports than normally attainable via vertical resonators. However, the electrode-to-resonator gap for capacitively-driven lateral resonators has historically been implemented via lithography and etching, and this greatly limits the degree by which the electrode-to-resonator gap spacing can be reduced.
In order to increase the electromechanical coupling for a lateral micromechanical resonator, a process to form a lateral submicron gap between an electrode and the resonator structure, without the need for advanced lithography tools, is desired.
An object of the present invention is to provide an improved method of making micromechanical structures having at least one lateral, small gap therebetween and a micromechanical device produced thereby.
In carrying out the above object and other objects of the present invention, a method is provided for making micromechanical structures having at least one lateral gap therebetween. The method includes providing a substrate, and surface micromachining the substrate to form a first micromechanical structure having a first vertical sidewall and a sacrificial spacer layer on the first vertical sidewall. The method also includes forming a second micromechanical structure on the substrate. The second micromechanical structure includes a second vertical sidewall separated from the first vertical sidewall by the spacer layer. The method further includes removing the spacer layer to form a first lateral gap between the first and second micromechanical structures.
The step of surface micromachining may further form a third vertical sidewall on the first micromechanical structure with the sacrificial spacer layer thereon and the method may further include forming a third micromechanical structure including a fourth vertical sidewall separated from the third vertical sidewall by the spacer layer. The step of removing may further form a second lateral gap between the first and third micromechanical structures.
The second micromechanical structure may include an electrode. The first micromechanical structure may include a resonator wherein the first lateral gap is an electrode-to-resonator capacitive gap.
The step of forming may include the step of plating metal on the substrate wherein the second micromechanical structure is a plated metal electrode.
The step of forming may include the step of selective epitaxial growth (SEG) to define the second micromechanical structure.
The method may further include preventing metal from being plated on the first micromechanical structure.
The first lateral gap is preferably a submicron gap.
Further in carrying out the above objects and other objects of the present invention, a micromechanical device is provided. The device includes a substrate, a first micromechanical structure supported on the substrate and having a first vertical sidewall, and a second micromechanical structure supported on the substrate and having a second vertical sidewall. The device further includes a first submicron lateral gap between the first and second vertical sidewalls to increase electromechanical coupling of the first and second micromechanical structures.
The second micromechanical structure may be a plated metal electrode or an SEG grown electrode and the first micromechanical structure may be a lateral resonator.
The first micromechanical structure may have a third vertical sidewall and the device may further include a third micromechanical structure supported on the substrate and having a fourth vertical sidewall and a second submicron lateral gap between the third and fourth vertical sidewalls to increase electromechanical coupling of the first and third micromechanical structures.
The lateral resonator may be a polysilicon resonator such as a flexural-mode resonator beam.
The substrate may be a semiconductor substrate such as a silicon substrate.
The first submicron lateral gap may be a capacitive gap.
The second and third micromechanical structures may be electrodes such as plated metal electrodes.
The first and second submicron lateral gaps may be capacitive gaps.
The above object and other objects, features, and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.
a is a side sectional schematic view of an insulation layer comprising oxide and nitride layers formed on a substrate, a patterned polysilicon layer and a sacrificial oxide layer deposited thereon;
b is a side sectional schematic view of the layers of
c is a side sectional schematic view of the sacrificial oxide after etching and an evaporated seed layer together with the structures of
d is a side sectional schematic view of a thick photoresist for planarization etch back which has been spun on the structures of
e is a side sectional schematic view with the PR etched back to the top of the structures and the seed layer etched on the top of the structures;
f is a side sectional schematic view of the structures of
g is a side sectional schematic view of the structures of
h is a side sectional schematic view of the structures of
A preferred embodiment for a small-gap, lateral resonator process flow of the present invention is presented in
As shown in
As shown in
As shown in
As shown in
As shown in
g shows the PR mold 30 and the portions of the seed layer 26 removed.
As shown in
Benefits accruing to the invention are numerous. For example, the main advantages and contributions of this invention are:
The method of the invention can be used to form:
(1) micromechanical structures (including resonators, gyroscopes, and accelerometers, etc.) driven and sensed by metal electrodes plated along the side walls of the structure; and
(2) small capacitive gaps between the micromechanical structure and plated metal electrodes defined by the thickness of sacrificial layer (not only oxide, this sacrificial layer can be any kind of material).
The etch back process used to prevent metal plated on top of the resonator structure 23 (
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
This application is a continuation of U.S. Ser. No. 09/938,411 filed Aug. 23, 2003, entitled “Method For Making Micromechanical Structures Having At Least One Lateral, Small Gap Therebetween And Micromechanical Device Produced Thereby” which claims the benefit of U.S. provisional patent application Ser. No. 60/227,507 filed Aug. 24, 2000 and entitled “Process Technology For Lateral Small-Gap Micromechanical Structures”.
This invention was made with Government support under DARPA Contract No. F30602-97-2-0101. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5082242 | Bonne et al. | Jan 1992 | A |
5455547 | Lin et al. | Oct 1995 | A |
5491604 | Nguyen et al. | Feb 1996 | A |
5537083 | Lin et al. | Jul 1996 | A |
5589082 | Lin et al. | Dec 1996 | A |
5620931 | Tsang et al. | Apr 1997 | A |
5640133 | MacDonald et al. | Jun 1997 | A |
5839062 | Nguyen et al. | Nov 1998 | A |
5914553 | Adams et al. | Jun 1999 | A |
5955932 | Nguyen et al. | Sep 1999 | A |
6167757 | Yazdi et al. | Jan 2001 | B1 |
6204737 | Ella | Mar 2001 | B1 |
6236281 | Nguyen et al. | May 2001 | B1 |
6249073 | Nguyen et al. | Jun 2001 | B1 |
6265806 | Suzuki | Jul 2001 | B1 |
6305779 | Capurso et al. | Oct 2001 | B1 |
6316827 | Asano et al. | Nov 2001 | B1 |
6347237 | Eden et al. | Feb 2002 | B1 |
6393913 | Dyck et al. | May 2002 | B1 |
6429034 | Pai et al. | Aug 2002 | B1 |
6448622 | Franke et al. | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040150057 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60227507 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09938411 | Aug 2003 | US |
Child | 10625992 | US |