The field of the invention is the field of scanning charged particle beam microscopes.
In a scanning electron microscope (SEM), a focused electron beam is scanned across the surface of a specimen. Signals (typically electrons) emitted from the region of the surface struck by the incident electron beam are detected, typically by a solid state diode or by a scintillator or phosphor that is optically coupled to a photomultiplier, and the current generated by the detected signal determines the current of a beam of electrons in a cathode ray tube (CRT). As the focused electron beam is scanned over the surface, an image is built up on the CRT. SEM's are well known in the art and well described, for example, in numerous publications, among the first of which is by D. McMullan entitled “An improved scanning electron microscope for opaque specimens.” published in Proc. IEE vol. 100 Part II, 245-259 (1953).
A particular type of SEM is one in which the specimen is placed in the high field region of the magnetic lens of the microscope. Such microscopes are called immersion lens SEM's, and can produce better resolution for the same beam energy.
In particular, the magnetic field at the focus of an SEM can be used to energy analyze the backscattered electrons from a specimen, as explained in great detail by U.S. Pat. No. 4,962,306 issued Oct. 9, 1990.
U.S. Pat. Nos. 7,105,817, 6,768,111, and 5,408,098 give further details of the use of SEM's in imaging and in topographical measurement. All of the above applications are hereby incorporated herein by reference in their entirety including incorporated material.
The above identified patents and patent applications are assigned to the assignee of the present invention and are incorporated herein by reference in their entirety including incorporated material.
It is an object of the invention to produce a method of using a a beam of charged particle focused on a specimen in a magnetic field to produce backscattered and secondary electrons, which are analyzed by an array detector to produce images and measurements of the specimen.
An array detector detects charged particles scattered from a portion of a surface of a specimen placed in a magnetic field at a focus of the scanning charged particle microscope. The charged particles scattered from surface impinge on the array detector substantially non-tangentially to the surface of the array detector.
A charged particle beam microscope generates a beam of electrons or ions and focuses the charged particle beam on the surface of a specimen. A preferred embodiment of the invention uses a beam of ions to probe the surface. Preferred ions are protons, deuterons, or helium ions. Other preferred ions are cesium ions and argon ions. The most preferred embodiment of the invention uses a beam of electrons to probe the surface of the specimen.
Electrons emitted from the surface are captured and used to construct an image of the surface or a topographical map of the surface. The image contrasts that are shown in a backscattered electron (BSE) image in the SEM will depend on the tilt angle of the specimen, the incident beam energy, the energy sensitivity of the BSE detector, the position of the BSE detector relative to the sample and the incident electron beam and other factors. In particular, the electrons which have lost the least energy are the electrons which are emitted from the surface or from a very shallow depth into the surface of the specimen, as the electrons lose energy at a constant rate as they move through the material of the specimen. Thus, the lowest energy loss backscattered electrons give a unique picture of the surface of the speciment.
A particular type of SEM is one in which the specimen is placed in a magnetic lens of the SEM. Such microscopes are called immersion lens SEM's, and can produce better resolution for the same beam energy.
In particular, the magnetic field at the focus of an SEM can be used to energy analyze the backscattered electrons from a specimen, as explained in great detail by U.S. Pat. No. 4,962,306 issued Oct. 9, 1990.
The sketch of the of the invention is shown in side elevation
The electron detecting array device 16 required for the method of the invention is shown in side elevation intercepting electrons 18 and 19. Images constructed from signals from imaging device 16 are displayed on display device 17.
Electrons which have horizontal components component nearly perpendicular to the plane 30 of the surface of detector 16 but with different angles with respect to the field B are focused into a thin line on detector 16 as shown in
The method of the invention is also used to construct a topographic image of the surface of the specimen 12 by either using features on the surface of the specimen or an electron opaque material spaced apart from the surface of the specimen.
The electron imaging device 16 has a large plurality of individual detector elements, preferably 9 individual detector elements, more preferably 16 individual element, and most preferably at least 256 elements. For the purposes of this specification, a large plurality of individual detector elements is defined as 9 elements or greater. Electron imaging devices of 1024 elements and up to millions of individual elements are currently available. The signals from a number of individual detector elements may be binned together in regions. The signals from such individual detector elements or combinations of elements may be used to construct and display an image of the surface 12 on a display device as the electron beam 10 is scanned over the surface, or to construct and display a plurality of images of the surface taken with, for example, low energy loss electrons and higher energy loss electrons.
Using the apparatus of the invention, the method of measurement of features on a surface of a specimen, comprises:
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application is a continuation-in-part (CIP) of copending U.S. application Ser. No. 11/518,860 filed Sept. 11, 2006, which claims priority pursuant to 35 U.S.C. 119(e) to the U.S. application Ser. No. 11/037,613, filed Jan. 18, 2005 (now U.S. Pat. No. 7,105,817) all of the above applications being incorporated herein by reference in their entirety including incorporated material.
Number | Date | Country | |
---|---|---|---|
Parent | 11037613 | Jan 2005 | US |
Child | 11518860 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11518860 | Sep 2006 | US |
Child | 11581498 | Oct 2006 | US |