1. Field of the Invention
The present invention relates generally to a method of controlling an etching process for forming an epitaxial structure, and more specifically to a method of controlling an etching process for forming an epitaxial structure that adjusts the parameters of an etching process according to a thickness of a spacer to control the position of the formed epitaxial structure.
2. Description of the Prior Art
For decades, chip manufacturers have made metal-oxide-semiconductor (MOS) transistors faster by making them smaller. As the semiconductor processes advance to very deep sub micron era, such as the 65-nm node or beyond, how to increase the driving current for MOS transistors has become a critical issue. In order to improve devices performances, crystal strain technology has been developed. Crystal strain technology is becoming more and more attractive as a means for getting better performances in the field of MOS transistor fabrication. Putting a strain on a semiconductor crystal alters the speed at which charges move through that crystal. Strains make the CMOS transistors work better by enabling electrical charges, such as electrons, to pass more easily through the silicon lattice of the gate channel. In the known arts, attempts have been made to use a strained silicon layer that was grown epitaxially on a silicon substrate with a silicon germanium (SiGe) structure or a silicon carbide structure disposed in between. In this type of MOS transistor, a biaxial tensile strain occurs in the epitaxy silicon layer due to the silicon germanium structure or the silicon carbide structure having a larger or a smaller lattice constant than silicon, and, as a result, altering the band structure, thereby increasing the carrier mobility. This enhances the speed performances of the MOS transistors. Furthermore, the volume, the shape and the horizontal distance to gate of the epitaxial structure would also affect the electrical performances of the formed transistor.
The present invention provides a method of controlling an etching process for forming an epitaxial structure, which sets the etching time of the etching process according to a thickness of a spacer to form a recess for forming the epitaxial structure therein, so that the distance of the epitaxial structure to gate (i.e. the horizontal distance between the epitaxial structure and the gate) can be controlled.
The present invention provides a method of controlling an etching process for forming an epitaxial structure including the following steps. A substrate having a gate thereon is provided. A spacer is formed on the substrate beside the gate to define the position of the epitaxial structure. A thickness of the spacer is measured. The etching time of a first etching process is set according to the thickness. The first etching process is performed to form a recess in the substrate beside the spacer. The epitaxial structure is formed in the recess.
According to the above, the present invention provides a method of controlling an etching process for forming an epitaxial structure, which sets the etching time of the first etching process according to the thickness, to form a recess having a desired recess to gate distance (i.e. the horizontal distance between the recess and the gate). Moreover, the offset of the thickness of the spacer can be measured firstly, and the offset can be compensated by adjusting the etching time of the first etching process to form a predetermined distance of the epitaxial structure to gate. Therefore, the process can be controlled precisely and the desired epitaxial structure to gate distance can be obtained by applying the present invention, including offsets in the thickness of the spacer caused by unstable processing parameters or by the differences between different platform machines that can be compensated, thereby enhancing semiconductor structures, such as formed transistors, to be more accurate.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to the Step S1 of FIG. 1—providing a substrate having a gate thereon, which is illustrated in
The present invention can be applied to a polysilicon gate process, a gate-first process, a gate-last for high-K first process, a gate-last for high-K last with a buffer layer first process or a gate-last for high-K last with a buffer layer last process, etc. Thus, the dielectric layer 122 may include an oxide layer, a buffer layer or/and a dielectric layer having a high dielectric constant, but it is not limited thereto. For example, when the present invention is applied in a polysilicon gate process, the dielectric layer 122 is a dielectric suitable for a polysilicon gate such as an oxide layer; when the present invention is applied in a gate-first process or a gate-last for high-K first process, the dielectric layer 122 may include a buffer layer and a dielectric layer having a high dielectric constant; when the present invention is applied in a gate-last for high-K last with a buffer layer first process, the dielectric layer 122 may include a buffer layer and a sacrificial dielectric layer, wherein the sacrificial dielectric layer will be replaced by a dielectric layer having a high dielectric constant in a later performed metal gate replacement process; when the present invention is applied in a gate-last for high-K last with a buffer layer last process, the dielectric layer 122 may be a sacrificial dielectric layer, wherein the sacrificial dielectric layer will be replaced by a buffer layer and a dielectric layer having a high dielectric constant in a later performed metal gate replacement process. The buffer layer may be an oxide layer, which may be formed through a chemical oxide process or a thermal oxide process, or other processes. The dielectric layer having a high dielectric constant may be the group selected from hafnium oxide (HfO2), hafnium silicon oxide (HfSiO4), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), zirconium oxide (ZrO2), strontium titanate oxide (SrTiO3), zirconium silicon oxide (ZrSiO4), hafnium zirconium oxide (HfZrO4), strontium bismuth tantalite (SrBi2Ta2O9, SBT), lead zirconate titanate (PbZrxTi1-xO3, PZT) and barium strontium titanate (BaxSr1-xTiO3, BST).
Please refer now to the Step S2 of FIG. 1—forming a spacer on the substrate beside the gate to define the position of an epitaxial structure, which is illustrated in
Please refer now to the Step S3 of FIG. 1—measuring a thickness of the spacer through a non-destructive measurement method such as an electron microscopy method or a spectrum detection method to measure the spacer beside the gate in a test area or a grain area, that is illustrated in
Please refer now to the Step S4 of FIG. 1—setting the etching time of a first etching process according to the thickness of the spacer; and then to the Step S5 of FIG. 1—performing the first etching process to form a recess in the substrate beside the spacer, which are illustrated in
Moreover, the horizontal distance of the peaks T of recess R to the gate 120 is related to the thickness d1 of the spacer 130 and the first etching process E1, especially for the lateral etching step of the first etching process E1. When the thickness d1 of the spacer 130 is larger, the etching time of the first etching process E1 (especially for the lateral etching step of the first etching process E1) is longer to approach a predetermined horizontal distance d2. In contrast, when the thickness d1 of the spacer 130 is thinner, the etching time of the first etching process E1 (especially for the lateral etching step of the first etching process E1) is shorter to approach a predetermined horizontal distance d2. Therefore, processes can be controlled, the recess R with a desired distance d2 of the recess R (epitaxial structure) to the gate 120 and the thickness d1 of the spacer 130 can be obtained in the present invention by setting the etching time of the first etching process E1 according to the measured thickness d1 of the spacer 130.
In one case, the etching time of the first etching process E1 can be adjusted with a cardinal number as unit considering multiples of 10 angstroms. For example, when the thickness of the spacer 130 increases/decreases by 10×n angstroms from a predetermined thickness, the etching time of the first etching process increases/decreases by 1×n seconds from a predetermined etching time, wherein n is a positive integer, so that the horizontal distance d2 between the recess R and the gate 120 can be approached. Therefore, a same thickness d1 of the spacer 130 can be obtained in the following two circumstances: when a predetermined thickness of the spacer 130 is 188 angstroms and the predetermined etching time of the first etching process E1 is increased by 1 second, and when a predetermined thickness of a spacer 130 is 198 angstroms, and the predetermined etching time of the first etching process E1 is increased by 2 seconds. This means that the thickness d1 of the spacer 130 and the etching time of the first etching process E1 (especially for the lateral etching step of the first etching process E1) have a linear relation. Thus, the recess R having a desired horizontal distance d2 and a desired thickness d1 of the spacer 130 can be formed by adjusting the etching time of the first etching process E1 according to the thickness d1 of the spacer 130. Furthermore, the offset of the thickness d1 of the spacer 130 can be compensated by adjusting the etching time of the first etching process E1 to obtain a predetermined recess R having a desired horizontal distance d2 and a predetermined thickness d1 of the spacer 130. Therefore, the variation of the thickness d1 of the spacer 130 caused by practical circumstances, such as processes performed by unstable processing parameters, or the differences between different machines, can be compensated in the present invention, thereby correcting semiconductor structures, such as formed transistors, to be more accurate.
In this embodiment, the first etching process E1 may include sequentially performing a vertical etching step, a lateral etching step and a vertical etching step. In a preferred embodiment, the two vertical etching steps all import hydrogen bromide (HBr), and the lateral etching step imports sulfur hexafluoride (SF6), but it is not limited thereto. Moreover, an etching process may include sequentially performing the second etching process E2 and first etching process E1, i.e. performing the second etching process E2 to form the spacer 130 and possibly further over-etch parts of the substrate 110 between the gate 120 selectively, measuring the thickness d1 of the spacer 130, and then performing the first etching process E1 to form a recess R in the substrate 110 beside the spacer 130. In this embodiment, the second etching process E2 and the first etching process E1 are all dry etching processes. Because of the non-isotropic etching characteristic of dry etching processes, they are more suitable to etch the spacer 130 having a uniform boat or other shaped cross-sectional profile and to control the depth, the shape and the distance to the gate 120 of the recess R than wet etching processes having isotropic etching characteristic.
In this embodiment, the first etching process E1 (especially for the lateral etching step of the first etching process E1) is performed after the thickness d1 is measured. However, in another embodiment, the thickness d1 of the spacer 130 may be measured during the first etching process E1. For instance, the first etching process E1 may include a vertical etching step, a lateral etching step and a vertical etching step, so that the order of processes may be performing the vertical etching step, measuring the thickness d1 of the spacer 130, performing the lateral etching step and performing the vertical etching step.
Please refer now to Step S6 of FIG. 1—i.e. forming an epitaxial structure in the recess, which is illustrated in
To summarize, the present invention provides a method of controlling an etching process for forming an epitaxial structure, which sets the etching time of the first etching process (especially for the lateral etching step of the first etching process) according to the thickness of the bottom surface of the spacer connecting the substrate, to form the recess having the desired recess to gate distance for forming the epitaxial structure therein. Moreover, the offset of the thickness of the spacer can be first measured, and the offset can be compensated by adjusting the etching time of the first etching process to form a predetermined epitaxial structure to gate distance. Therefore, processes can be controlled and the desired epitaxial structure to gate distance can be obtained by applying the present invention, including compensating offsets of the thickness of the spacer caused by unstable processing parameters or by the differences between different platform machines, thereby correcting semiconductor structures, such as formed transistors, to be more accurate.
More precisely, the relation of the thickness of the bottom surface of the spacer connecting the substrate versus the etching time of the first etching process has a liner relation. For instance, as the thickness of the spacer increases/decreases by 10×n angstroms from a predetermined thickness, the etching time of the first etching process increases/decreases by 1×n seconds from a predetermined etching time, wherein n is a positive integer.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4891303 | Garza | Jan 1990 | A |
5217910 | Shimizu | Jun 1993 | A |
5273930 | Steele | Dec 1993 | A |
5356830 | Yoshikawa | Oct 1994 | A |
5372957 | Liang | Dec 1994 | A |
5385630 | Philipossian | Jan 1995 | A |
5399506 | Tsukamoto | Mar 1995 | A |
5625217 | Chau | Apr 1997 | A |
5777364 | Crabbe | Jul 1998 | A |
5783478 | Chau | Jul 1998 | A |
5783479 | Lin | Jul 1998 | A |
5960322 | Xiang | Sep 1999 | A |
6030874 | Grider | Feb 2000 | A |
6048756 | Lee | Apr 2000 | A |
6074954 | Lill | Jun 2000 | A |
6100171 | Ishida | Aug 2000 | A |
6110787 | Chan | Aug 2000 | A |
6165826 | Chau | Dec 2000 | A |
6165881 | Tao | Dec 2000 | A |
6191052 | Wang | Feb 2001 | B1 |
6228730 | Chen | May 2001 | B1 |
6274447 | Takasou | Aug 2001 | B1 |
6355533 | Lee | Mar 2002 | B2 |
6365476 | Talwar | Apr 2002 | B1 |
6368926 | Wu | Apr 2002 | B1 |
6444591 | Schuegraf | Sep 2002 | B1 |
6537370 | Hernandez | Mar 2003 | B1 |
6544822 | Kim | Apr 2003 | B2 |
6605498 | Murthy | Aug 2003 | B1 |
6613695 | Pomarede | Sep 2003 | B2 |
6621131 | Murthy | Sep 2003 | B2 |
6624068 | Thakar | Sep 2003 | B2 |
6632718 | Grider | Oct 2003 | B1 |
6642122 | Yu | Nov 2003 | B1 |
6664156 | Ang | Dec 2003 | B1 |
6676764 | Joo | Jan 2004 | B2 |
6699763 | Grider | Mar 2004 | B2 |
6703271 | Yeo | Mar 2004 | B2 |
6777275 | Kluth | Aug 2004 | B1 |
6806151 | Wasshuber | Oct 2004 | B2 |
6809402 | Hopper | Oct 2004 | B1 |
6855607 | Achuthan | Feb 2005 | B2 |
6858506 | Chang | Feb 2005 | B2 |
6861318 | Murthy | Mar 2005 | B2 |
6864135 | Grudowski | Mar 2005 | B2 |
6869867 | Miyashita | Mar 2005 | B2 |
6887751 | Chidambarrao | May 2005 | B2 |
6887762 | Murthy | May 2005 | B1 |
6891192 | Chen | May 2005 | B2 |
6930007 | Bu | Aug 2005 | B2 |
6946350 | Lindert | Sep 2005 | B2 |
6962856 | Park | Nov 2005 | B2 |
6972461 | Chen | Dec 2005 | B1 |
6991979 | Ajmera | Jan 2006 | B2 |
6991991 | Cheng | Jan 2006 | B2 |
7013446 | Ohba | Mar 2006 | B2 |
7037773 | Wang | May 2006 | B2 |
7060576 | Lindert | Jun 2006 | B2 |
7060579 | Chidambaram | Jun 2006 | B2 |
7112495 | Ko | Sep 2006 | B2 |
7118952 | Chen | Oct 2006 | B2 |
7132338 | Samoilov | Nov 2006 | B2 |
7169675 | Tan | Jan 2007 | B2 |
7183596 | Wu | Feb 2007 | B2 |
7202124 | Fitzgerald | Apr 2007 | B2 |
7217627 | Kim | May 2007 | B2 |
7250658 | Doris | Jul 2007 | B2 |
7288822 | Ting | Oct 2007 | B1 |
7303999 | Sriraman | Dec 2007 | B1 |
7335959 | Curello | Feb 2008 | B2 |
7410859 | Peidous | Aug 2008 | B1 |
7462239 | Brabant | Dec 2008 | B2 |
7491615 | Wu | Feb 2009 | B2 |
7494856 | Zhang | Feb 2009 | B2 |
7494858 | Bohr | Feb 2009 | B2 |
7521324 | Ohmi | Apr 2009 | B2 |
7531437 | Brask | May 2009 | B2 |
7592231 | Cheng | Sep 2009 | B2 |
7592270 | Teo | Sep 2009 | B2 |
7667227 | Shimamune | Feb 2010 | B2 |
7691752 | Ranade | Apr 2010 | B2 |
7838370 | Mehta | Nov 2010 | B2 |
20020160587 | Jagannathan | Oct 2002 | A1 |
20020182423 | Chu | Dec 2002 | A1 |
20030181005 | Hachimine | Sep 2003 | A1 |
20030203599 | Kanzawa | Oct 2003 | A1 |
20040045499 | Langdo | Mar 2004 | A1 |
20040067631 | Bu | Apr 2004 | A1 |
20040227164 | Lee | Nov 2004 | A1 |
20050070076 | Dion | Mar 2005 | A1 |
20050079692 | Samoilov | Apr 2005 | A1 |
20050082616 | Chen | Apr 2005 | A1 |
20050139231 | Abadie | Jun 2005 | A1 |
20050260830 | Kwon | Nov 2005 | A1 |
20050285193 | Lee | Dec 2005 | A1 |
20050287752 | Nouri | Dec 2005 | A1 |
20060051922 | Huang | Mar 2006 | A1 |
20060057859 | Chen | Mar 2006 | A1 |
20060076627 | Chen | Apr 2006 | A1 |
20060088968 | Shin | Apr 2006 | A1 |
20060115949 | Zhang | Jun 2006 | A1 |
20060163558 | Lee | Jul 2006 | A1 |
20060228842 | Zhang | Oct 2006 | A1 |
20060231826 | Kohyama | Oct 2006 | A1 |
20060258126 | Shiono | Nov 2006 | A1 |
20060281288 | Kawamura | Dec 2006 | A1 |
20060292779 | Chen | Dec 2006 | A1 |
20060292783 | Lee | Dec 2006 | A1 |
20070015365 | Chen | Jan 2007 | A1 |
20070023847 | Rhee | Feb 2007 | A1 |
20070034906 | Wang | Feb 2007 | A1 |
20070049014 | Chen | Mar 2007 | A1 |
20070072353 | Wu | Mar 2007 | A1 |
20070072376 | Chen | Mar 2007 | A1 |
20070082451 | Samoilov | Apr 2007 | A1 |
20070128783 | Ting | Jun 2007 | A1 |
20070166929 | Matsumoto | Jul 2007 | A1 |
20070218661 | Shroff | Sep 2007 | A1 |
20070262396 | Zhu | Nov 2007 | A1 |
20080014688 | Thean | Jan 2008 | A1 |
20080061366 | Liu | Mar 2008 | A1 |
20080067545 | Rhee | Mar 2008 | A1 |
20080076236 | Chiang | Mar 2008 | A1 |
20080085577 | Shih | Apr 2008 | A1 |
20080116525 | Liu | May 2008 | A1 |
20080124874 | Park | May 2008 | A1 |
20080128746 | Wang | Jun 2008 | A1 |
20080142886 | Liao | Jun 2008 | A1 |
20080220579 | Pal | Sep 2008 | A1 |
20080233722 | Liao | Sep 2008 | A1 |
20080233746 | Huang | Sep 2008 | A1 |
20090039389 | Tseng | Feb 2009 | A1 |
20090045456 | Chen | Feb 2009 | A1 |
20090057759 | Obradovic | Mar 2009 | A1 |
20090095992 | Sanuki | Apr 2009 | A1 |
20090117715 | Fukuda | May 2009 | A1 |
20090124056 | Chen | May 2009 | A1 |
20090124097 | Cheng | May 2009 | A1 |
20090166625 | Ting | Jul 2009 | A1 |
20090184402 | Chen | Jul 2009 | A1 |
20090186475 | Ting | Jul 2009 | A1 |
20090200494 | Hatem | Aug 2009 | A1 |
20090246922 | Wu | Oct 2009 | A1 |
20090278170 | Yang | Nov 2009 | A1 |
20090302348 | Adam | Dec 2009 | A1 |
20100001317 | Chen | Jan 2010 | A1 |
20100044783 | Chuang | Feb 2010 | A1 |
20100048027 | Cheng | Feb 2010 | A1 |
20100093147 | Liao | Apr 2010 | A1 |
20100129994 | Awad | May 2010 | A1 |
20130130461 | Wang | May 2013 | A1 |
20130203188 | Vaid et al. | Aug 2013 | A1 |
20130256701 | Yang et al. | Oct 2013 | A1 |
20130299876 | Chen et al. | Nov 2013 | A1 |