This invention relates to, in general, a method of fabricating a silicon-on-insulator structure of the type, for example, used in the fabrication of sensors, such as acceleration sensors.
In the field of sensor fabrication, for example silicon acceleration sensors, a Silicon-On-Insulator (SOI) wafer is typically required as an initial structure. However, such initial structures need to be patterned prior to addition of an epitaxial layer, resulting in the SOI wafer being costly.
Several known techniques exist for forming SOI wafers. For example, U.S. Pat. No. 5,493,470 discloses a diaphragm pressure sensor formed by use of a so-called Zone Melting Re-crystallisation (ZMR) silicon-on-insulator technology, where re-crystallised silicon is used to form a diaphragm. U.S. Pat. No. 6,232,140 relates to a capacitive acceleration sensor formed in a monocrystalline SOI wafer, the monocrystalline SOI wafer comprising two bonded silicon wafers having an air gap therebetween due to the presence of a patterned oxide layer. U.S. Pat. No. 6,029,517 discloses a miniaturised accelerometer of the type having spring compensation for gravitational effects, an SOI wafer being used as a starting material. U.S. Pat. No. 6,130,464 relates to a surface micro-machined micro-accelerometer including a cantilever formed on a substrate and having a fixed end and a free end, the fixed end being anchored to the substrate; an SOI wafer (formed using one of the: BESOI, SmartCut or SIMOX fabrication techniques) is the starting material. U.S. Pat. No. 6,294,400 discloses a precision micro-mechanical semiconductor accelerometer of the differential-capacitor type comprising a pair of etched opposing cover layers fusion bonded to opposite sides of an etched proof mass layer to form an hermetically sealed assembly. WO-A-03 069355 relates to fabrication of a low-cost breakable inertial threshold acceleration sensor mainly using micro-machining silicon technology. The sensor is of the capacitive type and made of commercially available SOI wafers. U.S. Pat. No. 5,747,353 discloses a surface micro-machined accelerometer using an SOI wafer structure.
However, the above described SOI wafers are either complex to form or require specialised substrates as a starting material for the fabrication of the SOI wafer. Consequently, the cost per device is relatively high.
According to the present invention, there is provided a method of fabricating a silicon-on-insulator structure as set forth in the claims herein.
At least one embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Throughout the following description, identical reference numerals will be used to identify like parts.
Referring to
Turning to
Thereafter (FIG. 1(C)), the etched wafer is placed in an Epitaxial (EPI) reactor (not shown), for example a Chemical Vapour Deposition (CVD) Epitaxial reactor, and silicon is grown (Step 206) over the exposed surface of the silicon substrate 102 and the Poly-Si seed layer 106 to a thickness of about 30 μm. However, it should be appreciated that epitaxial growth takes place in the form of a monocrystalline silicon layer 108 forming over the exposed surface of the silicon substrate 102, whereas a polysilicon layer 110 forms in the EPI reactor over the surface of the Poly-Si seed layer 106 due to the polycrystalline structure of the Poly-Si seed layer 106. The thickness of the silicon grown can vary depending upon the dimensional requirements of the sensor ultimately being manufactured. Therefore, the overgrown silicon can be at least about 10 μm thick, for example between about 10 μm and about 60 μm, such as between about 20 μm and about 50 μm.
Referring to
The capped wafer 114 is then placed (Step 210) in a Rapid Thermal Processing (RTP) furnace (not shown) for a predetermined period of time. In the furnace, the capped wafer 114 is subjected to, in this example, a temperature of 1410° C. in order to cause the overgrown polysilicon to re-crystallises into monocrystalline silicon; the monocrystalline silicon formed over the previously exposed surface of the substrate 102 acts as a seed for the re-crystallising polysilicon as the temperature in the furnace ramps-down. The predetermined period of time is set so that all of the overgrown polysilicon is heated so as to completely re-crystallise into monocrystalline silicon.
The capped wafer 114 is then removed from the furnace and the capping layer 114 is removed by a wet-etching technique. Thereafter, the uncapped wafer is subjected to a Chemical Micro-Polishing (CMP) process in order to planarise (Step 212) the wafer, thereby removing about 3 μm of the surface of the monocrystalline silicon 108, leaving a wafer having a smooth upper surface and comprising the insulating material 104 buried beneath a layer of the monocrystalline silicon 108. The resulting silicon-on-insulator wafer is particularly suitable as a starting wafer for the production of a sensor, for example an acceleration sensor.
In another embodiment (
However, in a further embodiment (
Referring to
Alternatively or additionally (
Even after the CMP stage described above, the one or more recesses 600, 702 described in the above two embodiments remain to a depth of at least 0.3 μm.
It is thus possible to provide a Silicon-On-Oxide wafer produced using a so-called Lateral Epitaxial Growth over Oxide (LEGO) fabrication technique that therefore requires fewer process steps than existing processes for fabricating a silicon-on-oxide wafer. Further, the processing technique uses a standard bulk silicon substrate as raw material, thereby reducing production costs. Additionally, since the dielectric material used as the insulating material need not necessarily be oxide, and/or indeed insulating materials can be deposited together on the same silicon substrate and/or patterned, greater design flexibility is afforded. The provision of an alignment region facilitates accurate fabrication of sensor devices.
Although specific examples of insulators have been set forth herein, it should be appreciated that any suitable insulating material can be employed that can withstand the temperature of the re-crystallisation stage.
Whilst specific, and preferred, implementations of the present invention are described above, it is clear that one skilled in the art could readily apply variations and modifications of such inventive concepts.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/000446 | 1/31/2005 | WO | 00 | 4/3/2008 |