This Non-Provisional patent application is based on and claims priority to Provisional Patent Application No. 61/392,565, titled M
The present invention relates generally to techniques using bulk gallium and nitrogen containing substrates. More particularly, the present invention provides a method and device using bulk gallium and nitrogen containing substrates configured in a semi-polar orientation. Merely by way of example, the invention has been applied to use bulk GaN substrates to form overlying epitaxial regions in a bi-axially relaxed state, but it would be recognized that the invention has a broader range of applicability.
Today's state-of-the-art visible-spectrum light-emitting diodes (LEDs) and laser diodes (LDs) in the ultraviolet to green (380-550 nm) regime are based on InGaN active layers grown pseudomorphic to wurtzite GaN. This is true whether the growth substrate is GaN itself, or a foreign substrate such as sapphire or SiC, since in the latter cases GaN-based nucleation layers are employed. To our knowledge, successful demonstration of InGaN-based nucleation layers has not been achieved, and may not be possible given the growth morphology evolution of low-temperature InGaN layers on foreign substrates.
The resulting built-in stress within the InGaN active layers can be problematic for achieving high quality material and good device operation as the InN mole fraction increases, a requirement for longer wavelength devices. For c-plane grown devices, increasing InN increases the built-in electric fields across the active layers due to spontaneous and piezoelectric polarization fields, reducing the overlap between electrons and holes and decreasing radiative efficiency. Moreover, there is evidence for material breakdown as the stress level becomes too high, resulting in so-called “phase separation,” beyond a critical limit of a certain InN mole fraction combined with a certain layer thickness. See, e.g. N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 72, pp. 40-42, 1998. Such a limit is observed for InGaN layers of about 10% InN grown more than 0.2 um thick, for example, resulting in “black” or “grey” wafers.
Non-polar (1-100), (11-20), and semi-polar planes of GaN can address some of the problems above. In particular, for certain growth planes the combined spontaneous and piezoelectric polarization vector can be reduced to zero or near-zero, eliminating the electron-hole overlap problem prevalent in c-plane-based devices. Also, improved material quality with increased InN can be observed, such as demonstrated for semi-polar material which has resulted in continuous-wave (CW) true-green LDs for the first time. See, e.g. Y. Enya et al., “531 nm green lasing of InGaN based laser diodes on semi-polar {20-21} free-standing GaN substrates,” Appl. Phys. Express 2, 082101, 2009 and J. W. Raring et al., “High-power high-efficiency continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes,” SPIE Photonics West 7602-43, 2010. The performance of longer-wavelength devices grown on these structures, however, still suffers considerably compared to that of shorter-wavelength counterparts. In addition, it is not clear that these growth plane orientations would eliminate the materials quality problems associated with strain. Recent characterization of semi-polar (Al,In,Ga)N heterostructures reveals the formation of a large density of misfit dislocations at heterointerfaces between AlGaN and GaN. See, for example, A. Tyagi et al., “Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,In)GaN epitaxial layers grown on semipolar (11-22) GaN free standing substrates,” Appl. Phys. Lett. 95, 251905, 2009. These dislocations may act as non-radiative recombination centers as well as potential degradation mechanisms which may prevent long-life operation necessary for applications such as solid-state lighting. Finally, the best-reported external quantum efficiencies versus wavelength for LEDs show a strong reduction with increasing InN mole fraction, regardless of growth plane orientation, as illustrated by
According to the present invention, techniques related generally to using bulk gallium and nitrogen containing substrates are provided. More particularly, the present invention provides a method and device using bulk gallium and nitrogen containing substrates configured in a semi-polar orientation. Merely by way of example, the invention has been applied to use bulk GaN substrates to form overlying epitaxial regions in a bi-axially relaxed state, but it would be recognized that the invention has a broader range of applicability.
In this invention we activate the (0001)/1/3<11-20> slip planes in GaN by using semi-polar oriented material and controlled stress at heterointerfaces to form a relaxed InGaN layer which will become a seed for growth of a relaxed InGaN substrate or layer. In one embodiment, a GaN growth surface of a predetermined growth plane (other than c-plane) is provided. This may be accomplished by growing thick c-oriented boules of GaN by techniques such as hydride vapor-phase epitaxy (HVPE) and cutting these boules along predetermined orientations to provide a semi-polar GaN growth surfaces. Next, an InGaN seed layer of a specified InN mole fraction is grown upon the GaN layer by a desired technique such as metal-organic chemical vapor deposition (MOCVD), ammonothermal growth, molecular beam epitaxy (MBE), HVPE, or other methods. The predetermined growth plane combined with stress at the InGaN/GaN heterointerface results in the formation of a network of dislocations which allows the InGaN seed layer to relax. Continued growth of InGaN (by any one or a combination of the methods) results in a thicker, relaxed, InGaN layer with the dislocation density becoming reduced as layer thickness increases, due to annihilation of colliding dislocations. Once the total dislocation density is reduced to a level of about 108 cm−2, the InGaN layer is suitable to use for LED device fabrication. To reduce the dislocation density further, the total InGaN layer thickness is increased, and at a dislocation density level of 107 cm−2 or less, may be suitable for the growth of LD devices. The original GaN growth substrate may be removed at several points along the process flow.
In a specific embodiment, the present invention provides a method for forming at least one relaxed epitaxial AlxInyGa(1-x-y)N layer. The method includes providing a substrate having a semipolar surface orientation. In a preferred embodiment, the substrate may be GaN or other gallium and nitrogen containing material and the like. The method includes forming at least one epitaxial AlxInyGa(1-x-y)N layer having a thickness of at least 100 nanometers formed overlying at least a portion of the semipolar surface orientation such that a plurality of misfit dislocations are included in one or more portions of the thickness to reduce a bi-axial strain in the thickness to a relaxed state. The term “relaxed state” is ordinarily understood to mean substantially free from strain or in the preferred embodiment bi-axial strain. In a preferred embodiment, the forming comprising providing a predetermined thickness in the bi-axial strain and thereafter providing the plurality of misfit dislocations to reduce the bi-axial stain to or toward the relaxed state. The predetermined thickness is a critical thickness between a strained state and the relaxed state, which is substantially relaxed bi-axially. Of course, there can be other variations, modifications, and alternatives.
In an alternative specific embodiment, the present invention provides a device. The device includes a semi-polar bulk GaN substrate having a surface orientation within about 1 degree of one of (4 3 −7 1), (3 2 −5 1), (2 1 −3 1), (3 1 −4 2), (4 1 −5 3), (8 1 −9 8), and (3 0 −3 4), among others. The device includes at least one active layer comprising AlxInyGa1-x-yN, where 0≦x, y, x+y≦1. Preferably, the active layer has a thickness between about 1 nanometer and about 100 nanometer and a concentration of threading dislocations less than about 108 cm−2. In a specific embodiment, the device is selected from among a light emitting diode, a laser diode, a photodetector, an avalanche photodiode, a transistor, a rectifier, and a thyristor; one of a transistor, a rectifier, a Schottky rectifier, a thyristor, a p-i-n diode, a metal-semiconductor-metal diode, high-electron mobility transistor, a metal semiconductor field effect transistor, a metal oxide field effect transistor, a power metal oxide semiconductor field effect transistor, a power metal insulator semiconductor field effect transistor, a bipolar junction transistor, a metal insulator field effect transistor, a heterojunction bipolar transistor, a power insulated gate bipolar transistor, a power vertical junction field effect transistor, a cascode switch, an inner sub-band emitter, a quantum well infrared photodetector, a quantum dot infrared photodetector, a solar cell, and a diode for photoelectrochemical water splitting and hydrogen generation, among others.
In an alternative specific embodiment, the present invention provides a method for forming a relaxed epitaxial AlxInyGa(1-x-y)N layer. The method includes providing a substrate having an orientation within about 5 degrees of a c-plane and forming at least one epitaxial AlxInyGa(1-x-y)N layer with a thickness of at least 100 nanometers such that a plurality of misfit dislocations are included to reduce a bi-axial strain within the thickness or form a relaxed state.
One or more benefits may be achieved using one or more of the specific embodiments. As an example, the present device and method provides a substantially relaxed region for device fabrication using a gallium and nitrogen containing substrate. In a specific embodiment, the present method and device can be made using conventional techniques and is cost effective. In a preferred embodiment, dislocations are introduced into a thickness of the epitaxial layer to cause relaxation that is substantially biaxial. Depending upon the embodiment, one or more of these benefits can be achieved. These and other benefits are further described throughout the present specification and more particularly below.
The present invention achieves these benefits and others in the context of known process technology. However, a further understanding of the nature and advantages of the present invention may be realized by reference to the latter portions of the specification and attached drawings.
According to the present invention, techniques related generally to using bulk gallium and nitrogen containing substrates are provided. More particularly, the present invention provides a method and device using bulk gallium and nitrogen containing substrates configured in a semi-polar orientation. Merely by way of example, the invention has been applied to use bulk GaN substrates to form overlying epitaxial regions in a bi-axially relaxed state, but it would be recognized that the invention has a broader range of applicability.
Some semi-polar surface orientations, for example, {1 1 −2 2}, may be generated by tilting the [0 0 0 1] c axis toward an <1 1 −2 0> a axis. Other semi-polar surface orientations, for example, {1 0 −1 −1}, {1 0 −1 2}, {1 0 −1 3}, and {2 0 −2 1}, may be generated by tilting the [0 0 0 1] c axis toward an <1 0 −1 0> m axis. A number of authors have investigated epitaxial AlInGaN layers on bulk GaN substrates of such orientations. Still other semi-polar surface orientations may be generated by tilting the [0 0 0 1] c axis toward an axis intermediate in orientation intermediate between an a axis and an m axis. Such lower-symmetry orientations have not received much attention to date.
In the nitrides, slip may occur relatively readily in the (0 0 0 1) basal plane, or c-plane, with a Burger's vector of ⅓ [1 1 −2 0] or a3. See A. Tyagi et al., “Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,In)GaN epitaxial layers grown on semipolar (11-22) GaN free standing substrates,” Appl. Phys. Lett. 95, 251905, 2009 and Z. H. Wu et al., Appl. Phys. Lett. 96, 071909 (2010). Strain relaxation may occur by formation of misfit dislocations and slip motion of existing threading and/or misfit dislocations along (0 0 0 1) glide planes. Strain relaxation may also occur by formation of misfit dislocations with other orientations, dislocation climb, formation of stacking faults, cracking, roughening of the growth surface, and the like. In some or many cases the latter mechanisms for strain relaxation, however, may give rise to inferior crystallographic quality of the epitaxial layer. This invention seeks to maximize the extent of strain relaxation by generation of misfit dislocations.
Referring to
Generation of an array of misfit dislocations, with a Burger's vector b equal to a, a line direction along {1 −1 0 0} and an average separation of d, may be expected to produce an in-plane (cf.
Relaxation along surface 305 may be approximately equiaxial if cos θ=tan λ. This relation will hold for a single symmetry-equivalent set of tilt angles λ for a given off-c-axis tilt angle θ. For wurtzite structures with a near-ideal c/a ratios that are fairly similar between epitaxial layer and substrate, such as AlxInyGa(1-x-y)N on GaN, near-equiaxed relaxation may occur by generation of misfit dislocations for semi-polar surface orientations such as (4 3 −7 1), (3 2 −5 1), (2 1 −3 1), (3 1 −4 2), (4 1 −5 3), (8 1 −9 8), and (3 0 −3 4). These surfaces are tilted from the c axis by angles θ between about 85° and about 55° and have values of λ between about 5° and 30°.
As one example, consider growth of an epitaxial layer of In0.2Ga0.8N on the (2 1 −3 1) surface of bulk GaN. For this geometry θ is about 79° and λ is about 11°. Assuming Vegard's law, the lattice constants for the epitaxial layer are about 2% larger than those for GaN. Full relaxation of the strain may be achieved with misfit dislocations laterally separated by about 6 Å.
In one set of embodiments, a device is fabricated on a gallium-containing nitride substrate 305 whose semi-polar surface orientation is chosen such that cos θ=tan λ. In a specific embodiment, the orientation of gallium-containing nitride substrate 305 is selected to be within about 5 degrees, within about 2 degrees, within about 1 degree, or within about 0.5 degree from one of (4 3 −7 1), (3 2 −5 1), (2 1 −3 1), (3 1 −4 2), (4 1 −5 3), (8 1 −9 8), and (3 0 −3 4). One or more epitaxial and/or active layers may be deposited on the surface of substrate 305. In a preferred embodiment, the at least one epitaxial layer comprises AlxInyGa1-x-yN, where 0≦x, y, x+y≦1. An epitaxial or active layer may be subjected to a treatment, for example, a thermal treatment, that initiates the formation of misfit dislocations and avoids or minimizes the formation of threading dislocations in the active layer. The at least one active layer may have a value of y that is greater than 0.05, greater than 0.10, greater than 0.15, greater than 0.20, greater than 0.25, greater than 0.30, greater than 0.35, greater than 0.40, greater than 0.45, or greater than 0.50.
The active layer may be deposited by metalorganic chemical vapor deposition (MOCVD), by molecular beam epitaxy (MBE), by hydride vapor phase epitaxy (HVPE), or by other methods that are known in the art. The active layer may have a thickness between about 1 nanometer and about 100 nanometers. The active layer also may comprise a stack or superlattice of layers with alternating compositions. The active layer may have a concentration of threading dislocations less than about 107 cm−2, less than about 106 cm−2, less than about 105 cm−2, less than about 104 cm−2, or less than about 103 cm−2. At least one electrical contact is preferably deposited. In a preferred embodiment, the device is processed further to form a light emitting diode (LED) or a laser diode. In other embodiments, the device will be configured to be a photodetector, an avalanche photodiode, a transistor, a rectifier, and a thyristor; one of a transistor, a rectifier, a Schottky rectifier, a thyristor, a p-i-n diode, a metal-semiconductor-metal diode, high-electron mobility transistor, a metal semiconductor field effect transistor, a metal oxide field effect transistor, a power metal oxide semiconductor field effect transistor, a power metal insulator semiconductor field effect transistor, a bipolar junction transistor, a metal insulator field effect transistor, a heterojunction bipolar transistor, a power insulated gate bipolar transistor, a power vertical junction field effect transistor, a cascode switch, an inner sub-band emitter, a quantum well infrared photodetector, a quantum dot infrared photodetector, a solar cell, or a diode for photoelectrochemical water splitting and hydrogen generation.
In another set of embodiments, at least one epitaxial layer is grown on a substrate with a surface orientation within about 5 degrees of c-plane, and at least one of the substrate and at least one epitaxial layer are patterned to facilitate atom transport along glide planes to form misfit dislocations. If desired, a pattern, for example to provide stripes, bottom pillars, holes, or a grid, is formed on the substrate or on an epitaxial layer on the substrate by conventional photolithography.
In one set of embodiments, illustrated in
Referring to
In another embodiment, the mask with a predetermined lattice constant is formed by nanoimprint lithography, as shown in
Two consecutive etching treatments, for example, by reactive ion etching, can be used to transfer the photonic crystal pattern from the photoresist to the SiO2 layer and then into the silicon wafer or other nanoimprint substrate. The final depth of the pattern in the silicon wafer or other nanoimprint substrate surface may be between about 100 nm and about 500 nm. In some embodiments, a different dry etch chemistry is selected to etch the nanoimprint substrate than is used to etch the photoresist and/or a SiO2 layer. Next, referring again to
Referring to
In an alternative embodiment, the desired pattern is transferred to the substrate or epitaxial layer by masking. A suitable mask material, for example, silica (SiO2), silicon nitride (Si3N4), tungsten, gold, or the like, is deposited onto the patterned photoresist. The photoresist is then dissolved, removing excess masking material, except above the original openings in the patterned photoresist.
Following the patterning process, at least one epitaxial layer 803 is deposited on the patterned substrate or patterned epitaxial layer 801, as shown schematically in
In still another embodiment, the substrate is macroscopically patterned, with the pitch of the pattern between approximately 1 micron and about 1 millimeter. The pattern may comprise regions where the local crystallographic orientation is nonpolar or semipolar, rather than c-plane. Growth on these regions is expected to exhibit similar relaxation behavior as growth on a flat surface of the given orientation.
In one specific embodiment, a single epitaxial layer of the desired composition is grown directly on substrate 301. In another set of embodiments, a series of epitaxial layers of graded compositions, where each layer is much thicker than the Matthews-Blakeslee critical thickness, are grown on substrate 301. For example, a layer of In0.05Ga0.95N at least 1 micron thick, at least 10 microns thick, or at least 100 microns thick, may be deposited on the GaN substrate, followed by similarly-thick layers of In0.1Ga0.9N, In0.15Ga0.55N and In0.2Ga0.8N. The layer thicknesses may be similar to one another, or one or more layers may be substantially thicker than other layers.
In another embodiment, a series of epitaxial layers of graded compositions, where at least the first layer is thicker than the critical thickness and the indium fraction may decrease in sequential layers, are grown on substrate 301. For example, a layer of In0.3Ga0.7N at least 100 nanometers thick, at least 1 micron thick, at least 10 microns thick, or at least 100 microns thick, may be deposited on the GaN substrate, followed by layers of In0.25Ga0.75N, and In0.2Ga0.8N. The layer thicknesses may be similar to one another, or one or more layers may be substantially thicker than other layers. In a similar embodiment, the series of epitaxial layers of graded compositions may be grown without decreasing indium compositions in sequential layers, but instead sequential layers may have increasing or decreasing indium concentrations. For example, a layer of In0.3Ga0.7N at least 100 nanometers thick, at least 1 micron thick, at least 10 microns thick, or at least 100 microns thick, may be deposited on the GaN substrate, followed by layers of In0.1Ga0.9N, and of In0.2Ga0.8N. The layer thicknesses may be similar to one another, or one or more layers may be substantially thicker than other layers.
In still another set of embodiments, a graded AlxInyGa(1-x-y)N layer, with at least one stoichiometric coefficient x or y varying continuously as a function of vertical position within the layer, followed by an epitaxial layer of the desired, fixed composition, for example, In0.2Ga0.8N. The grading may be linear, nonlinear, quadratic, exponential, or the like. The grading may intentionally overshoot the final composition, followed by reverse grading to the final composition.
Generation of misfit dislocations may be facilitated by roughening the growth surface before deposition, for example, by deposition of nano-dots, islands, ion bombardment, ion implantation, or by light etching. Misfit dislocations may also preferentially be formed by modifying the lattice parameter of the substrate near the epitaxial by a process such as atomic diffusion, atomic doping, ion implantation, and/or mechanically straining the substrate. Generation of misfit dislocations may also be facilitated by deposition of a thin layer of AlxGa(1-x)N, for example, thinner than about 10 to 100 nanometers, followed by annealing to a temperature between about 1000 degrees and about 1400 degrees Celsius in an ammonia-rich atmosphere.
The relaxation and/or growth processes may also generate a significant concentration of threading dislocations. In preferred embodiments, the epitaxial layer is grown thick enough so that a substantial fraction of these dislocations annihilate one another by a similar mechanism as occurs on GaN, as illustrated in
In one specific embodiment, the epitaxial layer(s) is deposited by metalorganic chemical vapor deposition (MOCVD). In other embodiments, the epitaxial layer(s) is deposited by molecular beam epitaxy (MBE), by ammonothermal crystal growth, by liquid phase epitaxy (LPE) using a flux, or by a combination of these processes.
In further embodiments, an epitaxial layer is deposited by hydride vapor phase epitaxy or by halide vapor phase epitaxy. For example, a hydrogen halide HX (X═F, Cl, Br, or I) may be passed over one or more crucibles containing at least one of Al, Ga, and/or In, forming a group III metal halide, for example, MX or MX3 plus H2. In some embodiments, halogen X2 (X═F, Cl, Br, or I) is passed over one or more crucibles containing at least one of Al, Ga, and/or In, forming a group III metal halide, for example, MX or MX3. If the halogen is a solid or liquid at room temperature, halogen vapor may be formed by pre-heating, for example, using apparatus similar to that described by Suscavage and co-workers. See M. Suscavage et al., Phys. Stat. Solidi (a) 188, 477 (2001); V. Tassev et al., J. Crystal Growth 235, 140 (2002). The group III metal halide may then be mixed with a nitrogen source, such as ammonia (NH3), hydrazine (N2H4), or hydrazoic acid (HN3), and brought into contact with a substrate to deposit an AlxInyGa(1-x-y)N epitaxial layer on the substrate. Transport of the group III metal halide and/or the nitrogen source may be facilitated by the use of one or more carrier gases such as nitrogen, hydrogen, and argon, as is known in the art. The thermodynamics of formation of the group III metal bromides and iodides are generally not as favorable as those of the corresponding chlorides or fluorides, but they may decompose more readily on the substrate surface, which may be particularly useful for formation of indium-rich epitaxial layers. An example of a suitable apparatus is described in U.S. Pat. No. 6,955,719, which is hereby incorporated by reference in its entirety. The materials of construction of the apparatus may include silica, quartz, alumina, silicon carbide, boron nitride, pyrolytic boron nitride, or MCxNyOz, where 0≦x, y, z≦3 and M represents at least one metal selected from B, Al, Si, Ti, V, Cr, Y, Zr, Nb, Mo, La, Hf, Ta, or W.
In some embodiments, following deposition of an AlxInyGa(1-x-y)N epitaxial layer on one surface of the substrate, the substrate is turned over and a second AlxInyGa(1-x-y)N epitaxial layer is deposited on the back side of the substrate, as described in U.S. Patent Application Ser. Nos. 61/096,304, 61/148,361, 61/181,513 and 61/178,460, each of which is incorporated by reference in its entirety. Following the deposition of the backside AlxInyGa(1-x-y)N epitaxial layer, the substrate may be cut to a desired shape and a protective coating deposited on the edges. The substrate may then be used as a seed crystal for ammonothermal crystal growth of AlxInyGa(1-x-y)N epitaxial layers on both sides of the substrate simultaneously. The ammonothermal growth may be performed using techniques described by U.S. Patent Application Ser. No. 61/181,608 and/or by U.S. Pat. No. 7,642,122, each of which is hereby incorporated by reference in their entirety.
In one embodiment, the InGaN seed layer is grown out to provide a low dislocation density boule of InGaN, which is subsequently cut along predetermined orientations to provide an InGaN substrate of any preferred orientation. For example, InGaN substrates of orientations such as (0001), (1-100), (11-20), (10-11), (20-21), (30-34), (21-31), and other orientations are possible. Using the technique described, InGaN substrates with InN mole fractions from 0.5% to 50% may be provided, for example. These substrates can be used for growth of LED and LD devices at longer emission wavelengths with improved performance compared to devices grown on GaN. For example, high-performance green, yellow, amber, and even red LEDs and LDs can be provided. The amber and red devices based on InGaN can be expected to outperform the incumbent devices based on the cubic (Al,In,Ga)P material system due to the inherent bandstructure limitations of the latter such as low hetero-barrier potentials and presence of indirect bandgap minima close in energy to the direct bandgap, resulting in lower efficiency with increased InAlP mole fraction (for shorter wavelength emission) and poor thermal performance at nearly all emission wavelengths. See J. M. Phillips et al., “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1, 307-333, 2007. Examples of laser diode structures are described in U.S. Patent Application Ser. No. 61/181,608.
After growth, the AlxInyGa(1-x-y)N epitaxial layer may be removed from the substrate by methods that are known in the art to form a free-standing AlxInyGa(1-x-y)N layer, crystal, wafer, or boule. At least one surface may be lapped, polished, and/or chemical-mechanically polished. The free-standing AlxInyGa(1-x-y)N layer, crystal, wafer, or boule may have a semipolar orientation; a thickness of at least 100 nanometers, a threading dislocation density below about 109 cm−2, a stacking fault density less than about 103 cm−1, and a strain less than about 0.1%. The thickness may be at least 1 micron, at least 10 microns, at least 100 microns, or at least 1 millimeter. The dislocation density may be less than 108 cm−2, less than 107 cm−2, or less than 106 cm−2. The stacking fault density may be less than about 102 cm−1, less than about 10 cm−1, or less than about 1 cm−1. The strain may be less than about 0.01%, less than about 10−5, or less than about 10−6.
Active layer(s) may be deposited on the AlxInyGa(1-x-y)N epitaxial layer or on the free-standing AlxInyGa(1-x-y)N layer, crystal, wafer, or boule. The active layer may be incorporated into an optoelectronic or electronic devices such as at least one of a light emitting diode, a laser diode, a photodetector, an avalanche photodiode, a transistor, a rectifier, and a thyristor; one of a transistor, a rectifier, a Schottky rectifier, a thyristor, a p-i-n diode, a metal-semiconductor-metal diode, high-electron mobility transistor, a metal semiconductor field effect transistor, a metal oxide field effect transistor, a power metal oxide semiconductor field effect transistor, a power metal insulator semiconductor field effect transistor, a bipolar junction transistor, a metal insulator field effect transistor, a heterojunction bipolar transistor, a power insulated gate bipolar transistor, a power vertical junction field effect transistor, a cascode switch, an inner sub-band emitter, a quantum well infrared photodetector, a quantum dot infrared photodetector, a solar cell, and a diode for photoelectrochemical water splitting and hydrogen generation.
The InGaN substrates described herein allows the development of a new class of III-nitride visible-spectrum devices that will have superior performance throughout the visible spectrum and allows the realization of maximum efficiencies for systems employing these in applications, such as illumination and displays.
The embodiments described herein are examples of compositions, structures, systems and methods having elements corresponding to the elements of the invention recited in the claims. This written description enables one of ordinary skill in the art to make and use embodiments having alternative elements that likewise correspond to the elements of the invention recited in the claims. The scope thus includes compositions, structures, systems and methods that do not differ from the literal language of the claims, and further includes other compositions, structures, systems and methods with insubstantial differences from the literal language of the claims. While only certain features and embodiments have been illustrated and described herein, many modifications and changes may occur to one of ordinary skill in the relevant art. The appended claims are intended to cover all such modifications and changes.
Number | Name | Date | Kind |
---|---|---|---|
3245760 | Sawyer | Apr 1966 | A |
3303053 | Strong et al. | Feb 1967 | A |
3335084 | Hall | Aug 1967 | A |
4030966 | Hornig et al. | Jun 1977 | A |
4066868 | Witkin et al. | Jan 1978 | A |
4350560 | Helgeland et al. | Sep 1982 | A |
4430051 | Von Platen | Feb 1984 | A |
5098673 | Engel et al. | Mar 1992 | A |
5169486 | Young et al. | Dec 1992 | A |
5868837 | DiSalvo et al. | Feb 1999 | A |
6090202 | Klipov | Jul 2000 | A |
6129900 | Satoh et al. | Oct 2000 | A |
6152977 | D'Evelyn | Nov 2000 | A |
6273948 | Porowski et al. | Aug 2001 | B1 |
6350191 | D'Evelyn et al. | Feb 2002 | B1 |
6372002 | D'Evelyn et al. | Apr 2002 | B1 |
6398867 | D'Evelyn et al. | Jun 2002 | B1 |
6406540 | Harris et al. | Jun 2002 | B1 |
6406776 | D'Evelyn | Jun 2002 | B1 |
6455877 | Ogawa et al. | Sep 2002 | B1 |
6475254 | Saak et al. | Nov 2002 | B1 |
6528427 | Chebi et al. | Mar 2003 | B2 |
6533874 | Vaudo et al. | Mar 2003 | B1 |
6541115 | Pender et al. | Apr 2003 | B2 |
6596040 | Saak et al. | Jul 2003 | B2 |
6596079 | Vaudo et al. | Jul 2003 | B1 |
6639925 | Niwa et al. | Oct 2003 | B2 |
6656615 | Dwilinski et al. | Dec 2003 | B2 |
6686608 | Takahira | Feb 2004 | B1 |
6764297 | Godwin et al. | Jul 2004 | B2 |
6765240 | Tischler et al. | Jul 2004 | B2 |
6784463 | Camras et al. | Aug 2004 | B2 |
6787814 | Udagawa | Sep 2004 | B2 |
6806508 | D'Evelyn et al. | Oct 2004 | B2 |
6858882 | Tsuda et al. | Feb 2005 | B2 |
6861130 | D'Evelyn et al. | Mar 2005 | B2 |
6887144 | D'Evelyn et al. | May 2005 | B2 |
6936488 | D'Evelyn et al. | Aug 2005 | B2 |
6955719 | Dmitriev et al. | Oct 2005 | B2 |
7001577 | Zimmerman et al. | Feb 2006 | B2 |
7009199 | Hall et al. | Mar 2006 | B2 |
7009215 | D'Evelyn et al. | Mar 2006 | B2 |
7012279 | Wierer, Jr. et al. | Mar 2006 | B2 |
7026756 | Shimizu et al. | Apr 2006 | B2 |
7033858 | Chai et al. | Apr 2006 | B2 |
7053413 | D'Evelyn et al. | May 2006 | B2 |
7063741 | D'Evelyn et al. | Jun 2006 | B2 |
7067407 | Kostamo et al. | Jun 2006 | B2 |
7078731 | D'Evelyn et al. | Jul 2006 | B2 |
7098487 | D'Evelyn et al. | Aug 2006 | B2 |
7101433 | D'Evelyn et al. | Sep 2006 | B2 |
7102158 | Tysoe et al. | Sep 2006 | B2 |
7105865 | Nakahata et al. | Sep 2006 | B2 |
7112829 | Picard et al. | Sep 2006 | B2 |
7119372 | Stokes et al. | Oct 2006 | B2 |
7122827 | Alizadeh et al. | Oct 2006 | B2 |
7125453 | D'Evelyn et al. | Oct 2006 | B2 |
7160388 | Dwilinski et al. | Jan 2007 | B2 |
7160531 | Jacques et al. | Jan 2007 | B1 |
7170095 | Vaudo et al. | Jan 2007 | B2 |
7175704 | D'Evelyn et al. | Feb 2007 | B2 |
7198671 | Ueda | Apr 2007 | B2 |
7208393 | Haskell et al. | Apr 2007 | B2 |
7220658 | Haskell et al. | May 2007 | B2 |
7252712 | Dwilinski et al. | Aug 2007 | B2 |
7279040 | Wang | Oct 2007 | B1 |
7285801 | Eliashevich et al. | Oct 2007 | B2 |
7291544 | D'Evelyn et al. | Nov 2007 | B2 |
7316746 | D'Evelyn et al. | Jan 2008 | B2 |
7335262 | Dwilinski et al. | Feb 2008 | B2 |
7338828 | Imer et al. | Mar 2008 | B2 |
7364619 | Dwilinski et al. | Apr 2008 | B2 |
7368015 | D'Evelyn et al. | May 2008 | B2 |
7381391 | Spencer et al. | Jun 2008 | B2 |
7420261 | Dwilinski et al. | Sep 2008 | B2 |
7569206 | Spencer et al. | Aug 2009 | B2 |
7572425 | McNulty et al. | Aug 2009 | B2 |
7625446 | D'Evelyn et al. | Dec 2009 | B2 |
7642122 | Tysoe et al. | Jan 2010 | B2 |
7704324 | D'Evelyn et al. | Apr 2010 | B2 |
7705276 | Giddings et al. | Apr 2010 | B2 |
7759710 | Chiu et al. | Jul 2010 | B1 |
7871839 | Lee et al. | Jan 2011 | B2 |
7976630 | Poblenz et al. | Jul 2011 | B2 |
8021481 | D'Evelyn | Sep 2011 | B2 |
8048225 | Poblenz et al. | Nov 2011 | B2 |
8097081 | D'Evelyn | Jan 2012 | B2 |
8148801 | D'Evelyn | Apr 2012 | B2 |
8188504 | Lee | May 2012 | B2 |
8198643 | Lee et al. | Jun 2012 | B2 |
8207548 | Nagai | Jun 2012 | B2 |
8278656 | Mattmann et al. | Oct 2012 | B2 |
8284810 | Sharma et al. | Oct 2012 | B1 |
8299473 | D'Evelyn et al. | Oct 2012 | B1 |
8303710 | D'Evelyn | Nov 2012 | B2 |
8306081 | Schmidt et al. | Nov 2012 | B1 |
8323405 | D'Evelyn | Dec 2012 | B2 |
8329511 | D'Evelyn | Dec 2012 | B2 |
8354679 | D'Evelyn et al. | Jan 2013 | B1 |
8430958 | D'Evelyn | Apr 2013 | B2 |
8435347 | D'Evelyn et al. | May 2013 | B2 |
8444765 | D'Evelyn | May 2013 | B2 |
8461071 | D'Evelyn | Jun 2013 | B2 |
8465588 | Poblenz et al. | Jun 2013 | B2 |
8482104 | D'Evelyn et al. | Jul 2013 | B2 |
8492185 | D'Evelyn et al. | Jul 2013 | B1 |
20010009134 | Kim et al. | Jul 2001 | A1 |
20010011935 | Lee et al. | Aug 2001 | A1 |
20010048114 | Morita et al. | Dec 2001 | A1 |
20020070416 | Morse et al. | Jun 2002 | A1 |
20020105986 | Yamasaki | Aug 2002 | A1 |
20020182768 | Morse et al. | Dec 2002 | A1 |
20020189532 | Motoki et al. | Dec 2002 | A1 |
20030027014 | Johnson et al. | Feb 2003 | A1 |
20030140845 | D'Evelyn et al. | Jul 2003 | A1 |
20030145784 | Thompson et al. | Aug 2003 | A1 |
20030164507 | Edmond et al. | Sep 2003 | A1 |
20030183155 | D'Evelyn et al. | Oct 2003 | A1 |
20030209191 | Purdy | Nov 2003 | A1 |
20030232512 | Dickinson et al. | Dec 2003 | A1 |
20040000266 | D'Evelyn et al. | Jan 2004 | A1 |
20040023427 | Chua et al. | Feb 2004 | A1 |
20040104391 | Maeda et al. | Jun 2004 | A1 |
20040124435 | D'Evelyn et al. | Jul 2004 | A1 |
20040161222 | Niida et al. | Aug 2004 | A1 |
20040222357 | King et al. | Nov 2004 | A1 |
20050087753 | D'Evelyn et al. | Apr 2005 | A1 |
20050098095 | D'Evelyn et al. | May 2005 | A1 |
20050109240 | Maeta et al. | May 2005 | A1 |
20050121679 | Nagahama et al. | Jun 2005 | A1 |
20050128469 | Hall et al. | Jun 2005 | A1 |
20050152820 | D'Evelyn et al. | Jul 2005 | A1 |
20050167680 | Shei et al. | Aug 2005 | A1 |
20050191773 | Suzuki et al. | Sep 2005 | A1 |
20050205215 | Giddings et al. | Sep 2005 | A1 |
20050263791 | Yanagihara et al. | Dec 2005 | A1 |
20060030738 | Vanmaele et al. | Feb 2006 | A1 |
20060032428 | Dwilinski et al. | Feb 2006 | A1 |
20060037529 | D'Evelyn et al. | Feb 2006 | A1 |
20060037530 | Dwilinski et al. | Feb 2006 | A1 |
20060038193 | Wu et al. | Feb 2006 | A1 |
20060048699 | D'Evelyn et al. | Mar 2006 | A1 |
20060096521 | D'Evelyn et al. | May 2006 | A1 |
20060118799 | D'Evelyn et al. | Jun 2006 | A1 |
20060124051 | Yoshioka et al. | Jun 2006 | A1 |
20060163589 | Fan et al. | Jul 2006 | A1 |
20060169993 | Fan et al. | Aug 2006 | A1 |
20060177362 | D'Evelyn et al. | Aug 2006 | A1 |
20060207497 | D'Evelyn et al. | Sep 2006 | A1 |
20060213429 | Motoki et al. | Sep 2006 | A1 |
20060214287 | Ogihara et al. | Sep 2006 | A1 |
20060228870 | Oshima | Oct 2006 | A1 |
20060246687 | Kaiser et al. | Nov 2006 | A1 |
20060255343 | Ogihara et al. | Nov 2006 | A1 |
20060288927 | Chodelka et al. | Dec 2006 | A1 |
20060289386 | Tysoe et al. | Dec 2006 | A1 |
20070015345 | Baker et al. | Jan 2007 | A1 |
20070057337 | Kano et al. | Mar 2007 | A1 |
20070077674 | Okuyama et al. | Apr 2007 | A1 |
20070096239 | Cao et al. | May 2007 | A1 |
20070105351 | Motoki et al. | May 2007 | A1 |
20070114569 | Wu et al. | May 2007 | A1 |
20070121690 | Fujii et al. | May 2007 | A1 |
20070131967 | Kawaguchi et al. | Jun 2007 | A1 |
20070141819 | Park et al. | Jun 2007 | A1 |
20070142204 | Park et al. | Jun 2007 | A1 |
20070151509 | Park et al. | Jul 2007 | A1 |
20070158785 | D'Evelyn et al. | Jul 2007 | A1 |
20070164292 | Okuyama | Jul 2007 | A1 |
20070166853 | Guenther et al. | Jul 2007 | A1 |
20070178039 | D'Evelyn et al. | Aug 2007 | A1 |
20070181056 | D'Evelyn et al. | Aug 2007 | A1 |
20070190758 | Kaeding et al. | Aug 2007 | A1 |
20070197004 | Dadgar et al. | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070215033 | Imaeda et al. | Sep 2007 | A1 |
20070218703 | Kaeding et al. | Sep 2007 | A1 |
20070228404 | Tran et al. | Oct 2007 | A1 |
20070234946 | Hashimoto et al. | Oct 2007 | A1 |
20070252164 | Zhong et al. | Nov 2007 | A1 |
20070274359 | Takeuchi et al. | Nov 2007 | A1 |
20070290224 | Ogawa | Dec 2007 | A1 |
20080006831 | Ng | Jan 2008 | A1 |
20080008855 | D'Evelyn et al. | Jan 2008 | A1 |
20080023691 | Jang et al. | Jan 2008 | A1 |
20080025360 | Eichler et al. | Jan 2008 | A1 |
20080073660 | Ohno et al. | Mar 2008 | A1 |
20080083741 | Giddings et al. | Apr 2008 | A1 |
20080083929 | Fan et al. | Apr 2008 | A1 |
20080083970 | Kamber et al. | Apr 2008 | A1 |
20080087919 | Tysoe et al. | Apr 2008 | A1 |
20080106212 | Yen et al. | May 2008 | A1 |
20080121906 | Yakushiji | May 2008 | A1 |
20080128752 | Wu | Jun 2008 | A1 |
20080156254 | Dwilinski et al. | Jul 2008 | A1 |
20080193363 | Tsuji | Aug 2008 | A1 |
20080198881 | Farrell et al. | Aug 2008 | A1 |
20080211416 | Negley et al. | Sep 2008 | A1 |
20080230765 | Yoon et al. | Sep 2008 | A1 |
20080272462 | Shimamoto | Nov 2008 | A1 |
20080282978 | Butcher et al. | Nov 2008 | A1 |
20080285609 | Ohta et al. | Nov 2008 | A1 |
20080298409 | Yamashita et al. | Dec 2008 | A1 |
20090078955 | Fan et al. | Mar 2009 | A1 |
20090092536 | Kawabata et al. | Apr 2009 | A1 |
20090146170 | Zhong et al. | Jun 2009 | A1 |
20090218593 | Kamikawa et al. | Sep 2009 | A1 |
20090250686 | Sato et al. | Oct 2009 | A1 |
20090301387 | D'Evelyn | Dec 2009 | A1 |
20090301388 | D'Evelyn | Dec 2009 | A1 |
20090309105 | Letts et al. | Dec 2009 | A1 |
20090309110 | Raring et al. | Dec 2009 | A1 |
20090320744 | D'Evelyn et al. | Dec 2009 | A1 |
20090320745 | D'Evelyn et al. | Dec 2009 | A1 |
20100001300 | Raring et al. | Jan 2010 | A1 |
20100003492 | D'Evelyn | Jan 2010 | A1 |
20100003942 | Ikeda et al. | Jan 2010 | A1 |
20100025656 | Raring et al. | Feb 2010 | A1 |
20100031872 | D'Evelyn | Feb 2010 | A1 |
20100031873 | D'Evelyn | Feb 2010 | A1 |
20100031874 | D'Evelyn | Feb 2010 | A1 |
20100031875 | D'Evelyn | Feb 2010 | A1 |
20100031876 | D'Evelyn | Feb 2010 | A1 |
20100032691 | Kim | Feb 2010 | A1 |
20100075175 | Poblenz et al. | Mar 2010 | A1 |
20100104495 | Kawabata et al. | Apr 2010 | A1 |
20100108985 | Chung et al. | May 2010 | A1 |
20100109030 | Krames et al. | May 2010 | A1 |
20100109126 | Arena | May 2010 | A1 |
20100117101 | Kim et al. | May 2010 | A1 |
20100117118 | Dabiran et al. | May 2010 | A1 |
20100147210 | D'Evelyn | Jun 2010 | A1 |
20100151194 | D'Evelyn | Jun 2010 | A1 |
20100189981 | Poblenz et al. | Jul 2010 | A1 |
20100219505 | D'Evelyn | Sep 2010 | A1 |
20100295088 | D'Evelyn et al. | Nov 2010 | A1 |
20110017298 | Lee | Jan 2011 | A1 |
20110062415 | Ohta et al. | Mar 2011 | A1 |
20110064103 | Ohta et al. | Mar 2011 | A1 |
20110100291 | D'Evelyn | May 2011 | A1 |
20110108081 | Werthen et al. | May 2011 | A1 |
20110121331 | Simonian et al. | May 2011 | A1 |
20110175200 | Yoshida | Jul 2011 | A1 |
20110183498 | D'Evelyn | Jul 2011 | A1 |
20110220912 | D'Evelyn | Sep 2011 | A1 |
20110256693 | D'Evelyn et al. | Oct 2011 | A1 |
20110262773 | Poblenz et al. | Oct 2011 | A1 |
20120000415 | D'Evelyn et al. | Jan 2012 | A1 |
20120007102 | Feezell et al. | Jan 2012 | A1 |
20120073494 | D'Evelyn | Mar 2012 | A1 |
20120118223 | D'Evelyn | May 2012 | A1 |
20120119218 | Su | May 2012 | A1 |
20120137966 | D'Evelyn et al. | Jun 2012 | A1 |
20120178215 | D'Evelyn | Jul 2012 | A1 |
20120187412 | D'Evelyn et al. | Jul 2012 | A1 |
20120199952 | D'Evelyn et al. | Aug 2012 | A1 |
20130119401 | D'Evelyn et al. | May 2013 | A1 |
20130251615 | D'Evelyn et al. | Sep 2013 | A1 |
20130323490 | D'Evelyn et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
101061570 | Oct 2007 | CN |
2005-289797 | Oct 2005 | JP |
2007-039321 | Feb 2007 | JP |
WO 2005121415 | Dec 2005 | WO |
2006057463 | Jun 2006 | WO |
WO2007-004495 | Jan 2007 | WO |
WO 2010068916 | Jun 2010 | WO |
WO2012-016033 | Feb 2012 | WO |
Entry |
---|
Anurag Tyagi et al “Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,In)GaN epitaxial layers grown on semipolar (1122) GaN free standing substrate”, App. Phys. Lett 95. 251905 (2009). |
Altoukhov et al., ‘High reflectivity airgap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers’, Applied Physics Letters, vol. 95, 2009, pp. 191102-1-191102-3. |
Dorsaz et al., ‘Selective oxidation of AlInN Layers for current confinement in III-nitride devices’, Applied Physics Letters, vol. 87, 2005, pp. 072102-1 to 072102-3. |
Ehrentraut et al., ‘The ammonothermal crystal growth of gallium nitride—A technique on the up rise’, Proceedings IEEE, 2010, 98(7), pp. 1316-1323. |
Fang., ‘Deep centers in semi-insulating Fe-doped native GaN substrates grown by hydride vapour phase epitaxy’, Physica Status Solidi, vol. 5, No. 6, 2008, pp. 1508-1511. |
Fujito et al., ‘Development of bulk GaN crystals and nonpolar/semipolar substrates by HVPE’, MRS Bulletin, 2009, 34, 5, pp. 313-317. |
Gladkov et al., ‘Effect of Fe doping on optical properties of freestanding semi-insulating HVPE GaN:Fe’, Journal of Crystal Growth, vol. 312, 2010, pp. 1205-1209. |
Grzegory, ‘High pressure growth of bulk GaN from Solutions in gallium’, Journal of Physics Condensed Matter, vol. 13, 2001, pp. 6875-6892. |
Moutanabbir et al., ‘Bulk GaN Ion Cleaving’, Journal of Electronic Materials, vol. 39, No. 5, 2010, pp. 482-488. |
Oshima et al., ‘Thermal and optical properties of bulk GaN crystals fabricated through hydride vapor phase epitaxy with void-assisted separation’, Journal of Applied Physics, vol. 98, 2005, pp. 103509-1-103509-4. |
International Search Report of PCT Application No. PCT/US2009/67745, dated Feb. 5, 2010, 1 page total. |
Porowski, ‘High Resistivity GaN Single Crystalline Substrates’, Acta Physica Polonica A, vol. 92, No. 5, 1997, pp. 958-962. |
Porowski, ‘Near Defect Free GaN Substrates’, Journal of Nitride Semiconductor, 1999, pp. 1-11. |
Sharma et al., ‘Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching’, Applied Physics Letters, vol. 87, 2005, pp. 051107-1 to 051107-3. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated May 13, 2013. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated May 16, 2013. |
USPTO Office Action for U.S. Appl. No. 12/636,683 dated Jun. 12, 2013. |
USPTO Office Action for U.S. Appl. No. 12/891,668 dated Jan. 10, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 12/891,668 dated Mar. 20, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 13/175,739 dated Mar. 21, 2013. |
USPTO Office Action for U.S. Appl. No. 13/346,507 dated Dec. 21, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 13/346,507 dated Apr. 22, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 13/548,931 dated Jun. 3, 2013. |
Byrappa et al., “Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing,” Noyes Publications, Park Ridge, New Jersey, 2001, pp. 94-96 and 152. |
Callahan et al., “Synthesis and Growth of Gallium Nitride by the Chemical Vapor Reaction Process (CVRP),” 1999, MRS Internet Journal Nitride Semiconductor Research, vol. 4, Issue No. 10, pp. 1-6. |
Chiang et al. “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects,” Journal of the Electrochemical Society 155:B517-B520 (2008). |
Chiu et al. “Synthesis and Luminescence Properties of Intensely Red-Emitting M5Eu (WO4)4-x (MoO4)x (M=Li, Na, K) Phosphors,” Journal of the Electrochemical Society 15:J71-J78 (2008). |
Ci et al. “Ca1-xMo1-yNbyO4:Eux3+: A novel red phosphor for white light emitting diodes,” Journal of Physics 152:670-674 (2008). |
D'Evelyn et al., “Bulk GaN Crystal Growth by the High-Pressure Ammonothermal Method,” Journal of Crystal Growth, 2007, vol. 300, pp. 11-16. |
Dwiliński et al, Ammono Method of BN, AIN, and GaN Synthesis and Crystal Growth,: Journal of Nitride Semiconductor Research, 1998, 3,25, MRS, Internet: http://nsr.mij.mrs.org. |
Dwilinski et al., “Excellent Crystallinity of Truly Bulk Ammonothermal GaN,” Journal of Crystal Growth, 2008, vol. 310, pp. 3911-3916. |
Ehrentraut et al., “Prospects for the Ammonothermal Growth of Large GaN Crystal,” Journal of Crystal Growth, 2007, vol. 305, pp. 304-310. |
Farrell et al., “Continuous-wave Operation of AIGaN-cladding-free Nonpolar m-Plane InGaN/GaN Laser Diodes,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 32, pp. L761-L763. |
Feezell et al., “AIGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Japanese Journal of Applied Physics, vol. 46, No. 13, pp. L284-L286 (Mar. 2007). |
Frayssinet et al., “Evidence of Free Carrier Concentration Gradient Along the c-axis for Undoped GaN Single Crystals,” Journal of Crystal Growth, 2001, vol. 230, pp. 442-447. |
Fukuda et al. “Prospects for the ammonothermal growth of large GaN crystal,” Journal of Crystal Growth 305: 304-310 (Jul. 2007). |
Happek “Development of Efficient UV-LED Phosphor Coatings for Energy Saving Solid State Lighting” University of Georgia (Jan. 2007). |
Hashimoto et al. “Ammonothermal growth of bulk GaN,” Journal of Crystal Growth 310:3907-3910 (Aug. 2008). |
Hashimoto et al. “A GaN bulk crystal wit improved structural quality grown by the ammonothermal method,” Nature Materials 6:568-671 (Jul. 2007). |
Höppe et al. “Luminescence in Eu2+-doped Ba2Si5 N8: fluorescence, thernoliminescence, and upconversion”; Journal of Physics and Chemistry of Solids 61:2001-2006 (2000). |
Iso et al., “High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 40, pp. L960-L962. |
Kim et al, “Improved Electroluminescence on Nonpolar m-plane InGaN/GaN Qantum Well LEDs”, 2007, Physica Status Solidi (RRL), vol. 1, No. 3, pp. 125-127. |
Kojima et al., “Stimulated Emission at 474 nm from an InGaN Laser Diode Structure Grown on a (1122) GaN Substrate ,” 2007, Applied Physics Letter, vol. 91, No. 25, pp. 251107-251107-3. |
Kolis et al., “Crystal Growth of Gallium Nitride in Supercritical Ammonia,” Journal of Crystal Growth, 2001, vol. 222, pp. 431-434. |
Kolis et al., “Materials Chemistry and Bulk Crystal Growth of Group III Nitrides in Supercritical Ammonia” Mat. Res. Soc. Symp. Proc., 1998, vol. 495, pp. 367-372. |
Kubota et al., “Temperature Dependence of Polarized Photoluminescence from Nonpolar m-plane InGaN Multiple Quantum Wells for Blue Laser Diodes” 2008, Applied Physics Letter, vol. 92, pp. 011920-011920-3. |
Li et al. “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” Journal of Solid State Chemistry 181:515-524 (2008). |
Mirwald et al., “Low-Friction Cell for Piston-Cylinder High Pressure Apparatus,” Journal of Geophysical Research, 1975, vol. 80, No. 11, pp. 1519-1525. |
Motoki et al. “Growth and Characterization of Freestanding GaN Substrates,” Journal of Crystal Growth, 2002, vol. 237-239, pp. 912-921. |
Mueller-Mach et al. “Highly efficient all-nitride phosphor-converted white light emitting diode,” Physica Status Solidi (a) 202:1727-1732 (Jul. 2005). |
Murota et al., “Solid State Light Source Fabricated with YAG:Ce Single Crystal,” 2002, Japanese Journal of Applied Physics, vol. 46, No. 41, Part 2, No. 8A, pp. L887-L888. |
Okamoto et al., “Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 9, pp. L187-L189. |
Okamoto et al., “Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 35, pp. L820-L822. |
Oshima et al., “Thermal and Optical Properties of Bulk GaN Crystals Fabricated Through Hydride Vapor Phase Epitaxy with Void-Assisted Separation,” 2005, Journal of Applied Physics, vol. 98, pp. 103509-1-103509-3. |
Peters, “Ammonothermal Synthesis of Aluminium Nitride,” Journal of Crystal Growth, 1999, vol. 4, pp. 411-418. |
Sarva, et al. “Dynamic compressive strength of silicon carbide under uniaxial compression,” Mat. Sci. & Eng. A 317,140 (2001). |
Sato et al., “High Power and High Efficiency Green Light Emitting Diode on free-Standing Semipolar (1122) Bulk GaN Substrate,” 2007.Physica Status Solidi (RRL), vol. 1, pp. 162-164. |
Sato et al., “Optical Properties of Yellow Light-Emitting-Diodes Grown on Semipolar (1122) Bulk GaN Substrate,” 2008, Applied Physics Letter, vol. 92, No. 22, pp. 221110-1-221110-3. |
Schmidt et al., “Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes ,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 9, L190-L191. |
Setlur et al. “Crystal chemistry and luminescence of Ce3+-doped (Lu2CaMg2)-Ca-2(Si, Ge)O12 and its use in LED based lighting,” Chemistry of Materials 18: 3314-3322 (2006). |
Sizov et al., “500-nm Optical Gain Anisotropy of Semipolar (1122) InGaN Quantum Wells,” 2009, Applied Physics Express, vol. 2, pp. 071001-1-071001-3. |
Tsuda et al., “Blue Laser Diodes Fabricated on m-Plane GaN Substrates,” 2008, Applied Physics Express, vol. 1, pp. 011104-011104-03. |
Tyagi et al., “Semipolar (1011) InGaN/GaN Laser Diodes on Bulk GaN Substrates,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 19, pp. L444-L445. |
Wang et al. “Ammonothermal growth of GaN crystals in alkaline solutions,” Journal of crystal Growth 287:376-380 (Jan. 2006). |
Wang et al. “New red Y0.85Bi0.1Eu0.05V1-yMyO4 (M=Nb, P) phosphors for light-emitting diodes,” Physica B: Condensed Matter 403:2071-2075 (Jun. 2008). |
Wang et al., “Ammonothermal Synthesis of III-Nitride Crystals,” Crystal Growth & Design, 2006, vol. 6, Issue No. 6, pp. 1227-1246. |
Wang et al., “Synthesis of Dense Polycrystaline GaN of High Purity by the Chemical Vapor Reaction Process,” Journal of Crystal Growth, 2006, vol. 286, pp. 50-54. |
Yamamoto “White LED phosphors: the next step,” Proceeding of . SPIE (2010). |
Yang et al. “Preparation and luminescence properties of LED conversion novel phosphors SrZnO2:Sm,” Materials Letters 62:907-910 (Mar. 2008). |
Zhong et al., “Demonstration of High Power Blue-Green Light Emitting Diode on Semipolar (1122) Bulk GaN Substrate,” 2007, Electron Letter, vol. 43, No. 15, pp. 825-826. |
Zhong et al., “High Power and High Efficiency Blue Light Emitting Diode on Freestanding Semipolar (1122) Bulk GaN Substrate,” 2007, Applied Physics Letter, vol. 90, No. 23, pp. 233504-233504-3. |
Lide et al., ‘Thermal Conductivity of Ceramics and Other Insulating Materials,’ CRC Handbook of Chemistry and Physics, 91st Edition, 2010-2011, pp. 12-203 and 12-204. |
http://www.matbase.com/material/non-ferrous-metals/other/molybdenum/properties, Data Table for: Non-Ferrous Metals: Other Metals: Molybdenum. |
Pattison et al., ‘Gallium Nitride Based Microcavity Light Emitting Diodes With 2λ Effective Cavity Thickness’, Applied Physics Letters, vol. 90, Issue 3, 031111 (2007) 3pg. |
USPTO Office Action for U.S. Appl. No. 12/133,364 dated Nov. 26, 2010. |
USPTO Office Action for U.S. Appl. No. 12/133,364 dated Jun. 1, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/133,364 dated Oct. 11, 2011. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated Jun. 9, 2011. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated Oct. 18, 2011. |
USPTO Office Action for U.S. Appl. No. 12/334,418 dated Apr. 5, 2011. |
USPTO Office Action for U.S. Appl. No. 12/334,418 dated Oct. 19, 2011. |
USPTO Office Action for U.S. Appl. No. 12/478,736 dated Sep. 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/478,736 dated Feb. 7, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/478,736 dated Apr. 23, 2012. |
USPTO Office Action for U.S. Appl. No. 12/484,095 dated Nov. 10, 2010. |
USPTO Office Action for U.S. Appl. No. 12/484,095 dated Jul. 8, 2011. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated Feb. 2, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated May 3, 2011. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated Jan. 13, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated Mar. 20, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,838 dated Jun. 8, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,844 dated Sep. 16, 2010. |
USPTO Office Action for U.S. Appl. No. 12/534,844 dated Feb. 2, 2011. |
USPTO Office Action for U.S. Appl. No. 12/534,857 dated Sep. 1, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,857 dated May 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/546,458 dated Jul. 20, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/546,458 dated Nov. 28, 2011. |
USPTO Office Action for U.S. Appl. No. 12/556,558 dated Sep. 16, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/556,558 dated Mar. 22, 2011. |
USPTO Office Action for U.S. Appl. No. 12/556,562 dated Sep. 15, 2010. |
USPTO Office Action for U.S. Appl. No. 12/556,562 dated Mar. 21, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/556,562 dated Jul. 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/569,337 dated May 9, 2012. |
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Dec. 23, 2011. |
USPTO Office Action for U.S. Appl. No. 12/634,665 dated Apr. 25, 2012. |
USPTO Office Action for U.S. Appl. No. 12/724,983 dated Mar. 5, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated May 17, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 5, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 20, 2012. |
USPTO Office Action for U.S. Appl. No. 12/785,404 dated Mar. 6, 2012. |
Copel et al., ‘Surfactants in Epitaxial Growth’, Physical Review Letters, Aug. 7, 1989, vol. 63, No. 6, p. 632-635. |
Lu et al., ‘Structure of the CI-passivated GaAs(111) surface’, Physical Review B, Nov. 15, 1998, vol. 58, No. 20, pp. 13820-13823. |
Massies et al., ‘Surfactant mediated epitaxial growth of InxGal-xAs on GaAs (001)’, Applied Physics Letters, vol. 61, No. 1, Jul. 6, 1992, pp. 99-101. |
Sumiya et al., ‘High-pressure synthesis of high-purity diamond crystal’, Diamond and Related Materials, 1996, vol. 5, pp. 1359-1365. |
Communication from the Chinese Patent Office re 200980134876.2 dated Jul. 3, 2013. |
Communication from the Polish Patent Office re P394857 dated Aug. 14, 2013. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated Aug. 21, 2013, 29 pages. |
USPTO Office Action for U.S. Appl. No. 12/334,418 dated Sep. 17, 2013, 27 pages. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated Sep. 6, 2013, 21 pages. |
USPTO Office Action for U.S. Appl. No. 12/636,683 dated Aug. 16, 2013, 16 pages. |
USPTO Office Action for U.S. Appl. No. 12/697,171 dated Jun. 20, 2013, 17 pages. |
USPTO Office Action for U.S. Appl. No. 12/697,171 dated Aug. 20, 2013, 17 pages. |
USPTO Office Action for U.S. Appl. No. 13/472,356 dated Dec. 9, 2013, 11 pages. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated Jul. 5, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,843 dated Sep. 10, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,849 dated Jul. 31, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/785,404 dated Jul. 16, 2012. |
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Aug. 17, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 13/425,304 dated Aug. 22, 2012. |
Choi et al., ‘2.51 microcavity InGaN light-emitting diodes fabricated by a selective dry-etch thinning process’, Applied Physics Letters, 2007, 91(6), 061120. |
Weisbuch et al., ‘Recent results and latest views on microcavity LEDs’, Light-Emitting Diodes: Research, Manufacturing, and Applications VIII, ed. By S.A. Stockman et al., Proc. SPIE, vol. 5366, p. 1-19 (2004). |
USPTO Notice of Allowance for U.S. Appl. No. 12/478,736 dated Oct. 9, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/569,337 dated Nov. 15, 2012. |
USPTO Office Action for U.S. Appl. No. 12/569,844 dated Oct. 12, 2012. |
USPTO Office Action for U.S. Appl. No. 12/634,665 dated Oct. 1, 2012. |
USPTO Office Action for U.S. Appl. No. 12/891,668 dated Sep. 25, 2012. |
USPTO Office Action for U.S. Appl. No. 13/025,833 dated Jul. 12, 2012. |
USPTO Office Action for U.S. Appl. No. 13/041,199 dated Nov. 30, 2012. |
USPTO Office Action for U.S. Appl. No. 13/175,739 dated Dec. 7, 2012. |
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Dec. 13, 2012. |
USPTO Office Action for U.S. Appl. No. 13/226,249 dated Oct. 10, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,843 dated Jan. 24, 2013. |
Communication from the Polish Patent Office re P394857 dated Jan. 22, 2013, 2 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/634,665 dated Feb. 15, 2013. |
USPTO Office Action for U.S. Appl. No. 13/041,199 dated Mar. 12, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 13/226,249 dated Feb. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20120091465 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61392565 | Oct 2010 | US |