Embodiments described herein relate generally to a method of patterning.
Conventionally, as a manufacturing method of a semiconductor device, a patterning method for forming a resist pattern using a photolithography technique, etching a processing target film using the resist pattern as a mask, and thereby forming desired patterns on the processing target film is used. In recent years, there is proposed DSA (Directed Self Assembly) Lithography technology for forming fine patterns in a self-aligned manner using a block copolymer so as to form finer patterns.
According to the DSA, the patterns are formed using microphase-separated structures formed in the block copolymer coated onto a processing target film as masks. At this time, a physical guide pattern (a line and space pattern) referred to as “Grapho-epitaxy” is often formed on the processing target film. When the guide pattern is formed, then the microphase-separated structures in the block copolymer coated onto concave portions of the guide pattern are formed along the guide pattern, and the microphase-separated structures regularly arrayed along the guide pattern can be formed on the processing target film.
However, with this patterning method, it is disadvantageously difficult to form patterns on the entire surface of the processing target film because it is impossible to form the regularly arrayed microphase-separated structures on convex portions of the guide pattern.
b show an example of a pattern ng method according to a first embodiment;
a to 8f show an example of etching processes of a patterning method according to a second embodiment; and
a and 9b show an example of a patter ding method according to a third embodiment.
Embodiments will now be explained with reference to the accompanying drawings. The present invention is not limited to the embodiments.
In a patterning method according to the present embodiment, a guide pattern is formed on a processing target film. The guide pattern is configured by concave portions and convex portions extending in a predetermined direction. A block copolymer layer is formed on the guide pattern. The block copolymer layer contains at least two block chains. A layer of microphase-separated structures is formed on the concave portions and the convex portions, respectively by microphase-separating the block copolymer layer. The processing target film is formed into predetermined patterns by selectively removing the processing target film. At least a part of the block copolymer layer is used as a mask.
b show an example of a patterning method according to a first embodiment. In the patterning method according to the first embodiment, a processing target film 2 is formed first on a substrate 1 as shown in
As shown in
For example, the guide pattern 3 can be formed by coating a material containing silicon oxide (SiO2 or the like) or a C (carbon)-based material such as a resist material on the processing target film 2, and removing a part of the coated material by a dry etching method. Alternatively, a resist pattern formed on the processing target film 2 by a photolithography technique or the like can be used as the guide pattern 3 as it is.
A width W31 of each concave portion 31 and a width W32 of each convex portion 32 of the guide pattern 3 are designed to satisfy predetermined width conditions so as to suppress the formation of defects or a grain structure in the microphase-separated structures in processes of forming the microphase-separated structures (described later). For example, the width W31 of each concave portion 31 is designed so as to be substantially an integer multiple of a phase separation cycle of the block copolymer, that is, a length L between two proximal microdomains 41 formed in a block copolymer layer 4 (see
The height of the guide pattern 3, that is, a height H3 from surfaces of the concave portions 31 to surfaces of the convex portions 32 is designed to satisfy predetermined height conditions so as to form only one layer of the microphase-separated structures on each of the concave portions 31. For example, the height H3 is designed to be equal to or larger than a 0.5-fold of the length L and equal to or smaller than a 1.5-fold of the length L. Preferably, the height H3 is designed to be equal to or larger than the 0.5-fold of the length L and equal to or smaller than a 1.0-fold of the length L so as to ensure forming only one layer of the microphase-separated structures on each of the concave portions 31.
The concave portions 31 of the guide pattern 3 are formed so that the processing target film 2 is exposed to a surface as shown in
As shown in
Heights of respective parts of the block copolymer layer 4 are designed to satisfy the predetermined height conditions so as to form only one layer of the microphase-separated structures on the guide pattern 3 in the processes of forming the microphase-separated structures (described later). For example, a height H41 from the surfaces of the concave portions 31 to a surface of the block copolymer layer 4 is designed to be equal to or larger than the 0.5-fold of the length L and equal to or smaller than the 1.5-fold of the length L similarly to the height. H3. Similarly, a height H42 from the surfaces of the convex portions 32 to the surface of the block copolymer layer 4 is designed to be equal to or larger than the 0.5-fold of the length L and equal to or smaller than the 1.5-fold of the length L.
In
At the time of forming the block copolymer layer 4, the number of rotations, rotation time, and the like in relation to the spin-coating method are adjusted so that the heights of the respective parts of the block copolymer layer 4 can be made equal to the designed heights as described above.
The block copolymer layer 4 is formed by using a diblock copolymer or a triblock copolymer that contains at least two block chains and that forms the microphase-separated structures. Examples of such block copolymer include polybutadiene-polydimethylsiloxane, polybutadiene-4-vinylpyridine, polybutadiene-methyl methacrylate, polybutadiene-poly-t-butyl methacrylate, polybutadiene-t-butyl acrylate, poly-t-butyl methacrylate-poly-4-vinylpyridine, polyethylene-polymethyl methacrylate, poly-t-butyl methacrylate-poly-2-vinylpyridine, polyethylene-poly-2-vinylpyridine, polyethylene-poly-4-vinylpyridine, polyisoprene-poly-2-vinylpyridine, poly-t-butyl methacrylate-polystyrene, polymethyl acrylate-polystyrene, polybutadiene-polystyrene, polystyrene-poly-2-vinylpyridine, polystyrene-poly-N, N-di methyl acrylamide, polybutadiene-sodium polyacrylate, polybutadiene-polyethylene oxide, poly-t-butyl methacrylate-polyethylene oxide, polystyrene-polyacrylate, polystyrene-polymethacrylic acid, polystyrene-polymethyl methacrylate (PS-PMMA), polystyrene-polyethylene oxide (PS-PEO), polystyrene-polydimethylsiloxane (PS-PDMS), polystyrene-polyisoprene (PS-PI), polystyrene-poly-4-vinylpyridine (PS-P4VD), and polymethyl methacrylate-polymethacrylate containing polyhedral oligomeric silsesquioxane (PMMA-PMAPOSS).
Next, a heat treatment is performed to the block copolymer layer 4 to cause microphase separation of the block copolymer 4, thereby forming cylindrical microdomains 41 in the block copolymer layer 4 as shown in
When microphase-separating the block copolymer layer 4, self-assembled microphase-separated structures are formed in the block copolymer layer 4. As shown in
b is a plan view of
The microdomains 41 formed on the concave portions 31 and the convex portions 32 of the guide pattern 3 are regularly arrayed at a predetermined interval (the length L) from the proximal microdomains 41. The length L is determined according to a composition ratio or the like of the block chains contained in the block copolymer. The number of the microdomains 41 formed on each of the concave portions 31 or each of the convex portions 32 is determined according to the width W31 or W32. For example, when the widths W31 and W32 are designed to be about N times (where N is an integer) as large as the length L, N microdomains 41 are formed on each of the concave portions 31 and the convex portions 32.
In this embodiment, because the widths W31 and W32 of the guide pattern 3 is designed so as to satisfy the width conditions, the formation of defects or the grain structure is suppressed. A length M between the microdomain 41 formed on one concave portion 31 and the microdomain 41 formed on one convex portion 32 can be adjusted by designing the widths W31 and W32 according to the block copolymer to be used.
The processing target film 2 is dry etched using at least a part of the block copolymer layer 4 as a mask. In this embodiment, the processing target film 2 is dry etched using the microdomains 41 as masks as shown in
As shown in
As shown in
Either the same method or different methods can be used as the etching methods used in tree respective processes shown in
Next, as shown in
A width W21 of each of line parts 21 of the formed line and space patterns is substantially equal to a size in a radial direction of each of the microdomains 41. Therefore, it is possible to form the equal-width line parts 21 on the entire surface of the substrate 1.
A width W22 (W22a, W22b) of each of space parts 22 of the line and space patterns is equal to the length between end portions of the two proximal microdomains 41. Therefore, the width W22 of the space part 22 between the line parts 21 formed using the microdomains 41 formed on one concave portion 31 of the guide pattern 3 as masks and the width W22 of the space part 22 between the line parts 21 formed using the microdomains 41 formed on one convex portion 32 of the guide pattern 3 as masks are equal, that is, W22a. The width W22a of each space part 22 is a value obtained by subtracting the width W21 of the line part 21 from the length L between the two proximal microdomains 41 (W22a=L−W21).
Because the length L and the width W21 are determined according to the block copolymer to be used, the width W22a is also determined according to the block copolymer to be used. Therefore, it is possible to form the line and space pattern that includes the predetermined-width line parts 21 and the predetermined-width space parts 22 in a portion on the processing target film 2 where each of the concave portions 31 and the convex portions 32 is formed.
The width W21 of each line part 21 and the width W22 of each space part 22 are determined according to the block copolymer to be used, and at least one of the widths W21 and W22 can be set to be equal to or smaller than 10 nm. Preferably, examples of the block copolymer for forming the line and space patterns for which at least one of the width W21 of the line part 21 and the width W22 of the space part 22 is equal to or smaller than 10 nm include polystyrene-polyethylene oxide (PS-PEO), polystyrene-polydimethylsiloxane (PS-PDMS), polystyrene-polyisoprene (PS-PI), polystyrene-poly-4-vinylpyridine (PS-P4VD), and polymethyl methacrylate-polymethacrylate containing polyhedral oligomeric silsesquioxane (PMMA-PMAPOSS).
The width W22b of the space part 22 between the line part 21 formed using the microdomains 41 formed on one concave portion 31 of the guide pattern 3 as masks and the line part 21 formed using the microdomains 41 formed on one convex portion 32 of the guide pattern 3 as masks can be designed to a predetermined value by adjusting the width W31 of the concave portion 31 and the width W32 of the convex portion 32. For example, the widths W31 and 132 are designed so that the length M is equal to the length L, thereby it is possible to make the width W22b equal to the width W22a. It is thereby possible to form the line and space patterns including the predetermined-width line parts 21 and the predetermined-width space parts 22 on the entire surface of the substrate 1.
As described above, with the patterning method according to this embodiment, one layer of the microphase-separated structures can be formed on each of the concave portions 31 and the convex portions 32 of the guide pattern 3, and the processing target film 2 can be etched using a part of the formed microphase-separated structures as masks. It is thereby possible to form the line and space pattern having the predetermined widths determined according to the microphase-separated structures in the one layer of which is formed on each concave portion 31 in the portion on the processing target film 2 where the concave portion 31 is formed. Similarly, it is possible to form the line and space pattern having the predetermined widths determined according to the microphase-separated structures in the one layer of which is formed on each convex portion 32 in the portion on the processing target film 2 where the convex portion 32 is formed. Therefore, it is possible to form finer patterns than those formed by means of a photolithography technique on the entire surface of the substrate 1 without using any complicated processes such as double patterning processes.
Furthermore, it is possible to suppress the formation of the defects or the grain structure in the microphase-separated structures because the widths and heights of the respective parts of the guide pattern 3 and the block copolymer layer 4 are designed to satisfy the width conditions and the height conditions described above. Therefore, it is possible to form the regularly arrayed line and space patterns.
A patterning method according to a second embodiment is described with reference to
First, as shown in
After the microdomains 41 are exposed to the surface, the microdomains 41 are removed by an etching method as shown in
After removing the microdomains 41, the continuous phase 42 is removed by an etching method until the microdomains 41 are exposed to the surface as shown in
After the microdomains 41 are exposed to the surface, the microdomains 41 are removed by an etching method as shown in
When the residues are present on the processing target film 2 at the time of forming the line and space patterns shown in
A patterning method according to a third embodiment is described with reference to
In this embodiment, when the microphase separation of the block copolymer layer 4 is caused, one layer of the microphase-separated structures (the microdomains 41) is formed on each of the concave portions 31 and the convex portions 32 of the guide pattern 3.
b is a plan view of
By etching the processing target film 2 using such microdomains 41 as masks, cylindrical holes can be formed in the processing target films 2. By etching the processing target film 2 using the continuous phase 42 as a mask, cylindrical protrusions can be formed on the processing target film 2. The processing target film 2 can be etched by the method explained in the first or second embodiment.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fail within the scope and spirit of the inventions.
This application is based upon and claims the benefit of priority from the prior U.S. Provisional Patent Application No. 61/901,703 filed on Nov. 8, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7723009 | Sandhu et al. | May 2010 | B2 |
8039196 | Kim et al. | Oct 2011 | B2 |
8053163 | Yi et al. | Nov 2011 | B2 |
8114573 | Sandhu et al. | Feb 2012 | B2 |
8592940 | Sandhu et al. | Nov 2013 | B2 |
8853101 | Farrell et al. | Oct 2014 | B1 |
20120220136 | Azuma | Aug 2012 | A1 |
20120238109 | Hattori et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2007-125699 | May 2007 | JP |
2008-38491 | Feb 2008 | JP |
2010-53263 | Mar 2010 | JP |
2012-178428 | Sep 2012 | JP |
WO 2011035816 | Mar 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20150132964 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61901703 | Nov 2013 | US |