Method of reforming insulating film deposited on substrate with recess pattern

Information

  • Patent Grant
  • 10283353
  • Patent Number
    10,283,353
  • Date Filed
    Wednesday, March 29, 2017
    7 years ago
  • Date Issued
    Tuesday, May 7, 2019
    5 years ago
Abstract
A method of reforming an insulating film deposited on a substrate having a recess pattern constituted by a bottom and sidewalls, includes: providing the film deposited on the substrate having the recess pattern in an evacuatable reaction chamber, wherein a property of a portion of the film deposited on the sidewalls is inferior to that of a portion of the film deposited on a top surface of the substrate; adjusting a pressure of an atmosphere of the reaction chamber to 10 Pa or less, which atmosphere is constituted by H2 and/or He without a precursor and without a reactant; and applying RF power to the atmosphere of the pressure-adjusted reaction chamber to generate a plasma to which the film is exposed, thereby reforming the portion of the film deposited on the sidewalls to improve the property of the sidewall portion of the film.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention generally relates to a method of reforming an insulating film deposited on a substrate having a recess pattern, particularly reforming a portion of the film deposited on sidewalls of the recess pattern.


Description of the Related Art


A SiO2 film deposited by plasma-enhanced atomic layer deposition (PEALD) is widely used in the Semiconductor manufacturing industry, since the conformality of such a film is very high, e.g., 100%, when being deposited in a trench having an aspect ratio of about 10. This film profile is important to fabrication processes such as a process of pattern transfer and target etching using spacer-defined double patterning (SDDP), wherein forming vertical spacers with accurate dimensions is important to improve resolution. However, even though a film deposited by PEALD has a high conformality, the quality of the film is not uniform throughout the film and varies depending on the geometrical location of a portion of the film. That is, a portion of the film deposited on a top surface typically has high quality, whereas a portion of the film deposited on sidewalls of a trench typically has poor quality. The poor quality of the sidewall portion of the film becomes a problem when forming a vertical spacer in the process of SDDP, for example, wherein the film deposited by PEALD on a recess pattern of a substrate is subjected to etching to remove portions of the film deposited on a top surface and on a bottom surface of the recess pattern, leaving a portion of the film deposited on sidewalls of the recess pattern, so as to form vertical spacers which are used as a mask to transfer a pattern to a template. Since the mask is subjected to etching, the sidewall portion of the film is required to have good quality such as resistance to wet etching. As such, the quality of the sidewall portion of a film is often important to patterning processes having recesses. For example, in a FinFET device, a gate oxide formed along the surfaces of trenches (including sidewalls thereof) having a high aspect ratio must have high quality. PEALD uses a plasma containing ions which have directionality (anisotropy), and thus, insufficient ion bombardment occurs on sidewalls of a trench, and as a result, the quality of a portion of the film deposited on the sidewalls is inferior to that of a portion of the film deposited on a top surface or bottom surface of the trench.


In order to improve the quality of a sidewall portion of a film, various surface-reforming processes have been developed such as those disclosed in U.S. Pat. No. 8,647,722, and No. 8,722,546. However, as miniaturization of a recess pattern becomes more prevalent, it becomes more difficult to obtain a film having satisfactory profiles, particularly, satisfactory quality of sidewall portion of the film.


Any discussion of problems and solutions in relation to the related art has been included in this disclosure solely for the purposes of providing a context for the present invention, and should not be taken as an admission that any or all of the discussion was known at the time the invention was made.


SUMMARY OF THE INVENTION

Normally, deposition cycles of a film use a pressure of 100 Pa to 1,000 Pa, and when post-deposition reforming treatment is conducted to reform the film, the same pressure as in the deposition cycles is used according to conventional reforming processes. In contrast, in some embodiments of the present invention, by using an extremely low pressure such as about 1 Pa (with high RF power such as about 4 W/cm2) in post-deposition cycle reforming treatment, a sidewall portion of a film can significantly be reformed so as to improve properties of the sidewall portion of the film even when the aspect ratio of the trench is as high as 10. In some embodiments, all gas(es) used in the reforming treatment is/are an inert gas (e.g., inactive in a non-excited state) having a low atomic weight. In some embodiments, the reforming gas is constituted by or consists of H2. The film such as that deposited by PEALD contains hydrogen as an impurity, and in non-limiting theory, by exposing the film to hydrogen ions and radicals under certain conditions (e.g., at an extremely low pressure), contaminant hydrogen can be dissociated and removed from the film, effectively from the sidewall portion, thereby converting the film to a film with a high purity. In some embodiments, He is used in combination with or in place of H2. In some embodiments, when the pressure of the reforming treatment is 10 Pa or less, improvement on the properties of the sidewall portion (such as resistance to wet etching) becomes pronounced, and when the pressure is 2 Pa or less, the properties of the sidewall portion of the film can become equivalent to those of the top portion of the film. In non-limiting theory, by using an extremely low pressure during the reforming treatment, the mean free path of ions/radicals of small molecules can be prolonged and ions/radicals can travel through the gas phase and reach the sidewalls of a trench at an increased probability, and also, radicals having an extended life may be generated by ions, thereby reaching the sidewalls of a trench at an increased probability.


For purposes of summarizing aspects of the invention and the advantages achieved over the related art, certain objects and advantages of the invention are described in this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.


Further aspects, features and advantages of this invention will become apparent from the detailed description which follows.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will now be described with reference to the drawings of preferred embodiments which are intended to illustrate and not to limit the invention. The drawings are greatly simplified for illustrative purposes and are not necessarily to scale.



FIG. 1 is a schematic representation of a PEALD (plasma-enhanced atomic layer deposition) apparatus for depositing a dielectric film usable in an embodiment of the present invention.



FIG. 2 shows schematic cross sectional views of an insulating film (e.g., SiO2 film) deposited by PEALD, for example, wherein (a) is a view of the film profiles before being subjected to wet etching, (b) is a view of the film profiles without reforming treatment after being subjected to wet etching, (c) is a view of the film profiles with conventional reforming treatment after being subjected to wet etching, and (d) is a view of the film profiles with reforming treatment according to an embodiment of the present invention after being subjected to wet etching.



FIG. 3 is a STEM photograph showing a cross sectional view of an insulating film without reforming treatment after being subjected to wet etching.



FIG. 4 is a STEM photograph showing a cross sectional view of an insulating film with reforming treatment according to a comparative example after being subjected to wet etching.



FIG. 5 is a STEM photograph showing a cross sectional view of an insulating film with reforming treatment according to another comparative example after being subjected to wet etching.



FIG. 6 is a STEM photograph showing a cross sectional view of an insulating film with reforming treatment according to an embodiment of the present invention after being subjected to wet etching.



FIG. 7 shows schematic illustrations of profile changes of a trench in film evaluation processes according to an embodiment of the present invention, wherein (A) illustrates a profile of the trench with an underlying layer, (B) illustrates a profile of the trench with a SiO2 film, (C) illustrates a profile of the trench subjected to reforming treatment, and (D) illustrates a profile of the trench after wet-etching.



FIG. 8 is a graph showing the pressure dependency of wet etch rate of surface-reformed insulating films deposited on a top surface, sidewall, and bottom surface of a trench.



FIG. 9 is a graph showing the pressure dependency of wet etch rate of surface-reformed insulating films deposited on a top surface and sidewall of a trench, which films were surface-reformed with low RF power and high RF power.



FIG. 10 is a graph showing the RF power dependency of wet etch rate of surface-reformed insulating films deposited on a top surface, sidewall, and bottom surface of a trench.



FIG. 11 is a graph showing the effect of plasma treatment time of reforming treatment on thickness of insulating films on top surfaces subjected to wet etching.



FIG. 12 is a schematic representation of an apparatus conducting an extremely-low-pressure reforming treatment according to an embodiment of the present invention.



FIG. 13 shows a schematic process sequence of extremely-low-pressure surface-reforming treatment according to an embodiment of the present invention wherein a step-up line represents an ON state or an increased-quantity state whereas a step-down line represents an OFF state or a decreased-quantity state, and the height and duration of each section are not necessarily to scale.



FIG. 14 shows a schematic process sequence of a film deposition process continuously followed by extremely-low-pressure surface-reforming treatment according to an embodiment of the present invention wherein a step-up line represents an ON state wherein a step-up line represents an ON state or an increased-quantity state whereas a step-down line represents an OFF state or a decreased-quantity state, and the height and duration of each section are not necessarily to scale.



FIG. 15 shows schematic illustrations of processes to keep only a bottom portion of film in a trench or hole according to an embodiment of the present invention, wherein (A) illustrates a process of depositing a film in a trench or hole, (B) illustrates a process of reforming treatment, and (C) illustrates a process of selectively removing a sidewall portion and a top portion of the film.



FIG. 16 is a schematic representation of an application of a reformed film according to an embodiment of the present invention, which film is used in a double-gate FinFET device.





DETAILED DESCRIPTION OF EMBODIMENTS

In this disclosure, “gas” may include vaporized solid and/or liquid and may be constituted by a single gas or a mixture of gases, depending on the context. Likewise, an article “a” or “an” refers to a species or a genus including multiple species, depending on the context. In this disclosure, a process gas for deposition introduced to a reaction chamber through a showerhead may be comprised of, consist essentially of, or consist of a silicon-containing precursor and an additive gas. The additive gas may include a reactant gas for oxidizing, nitriding and/or carbonizing the precursor, and an inert gas (e.g., noble gas) for exciting the precursor, when RF power is applied to the additive gas. The inert gas may be fed to a reaction chamber as a carrier gas and/or a dilution gas. Further, in some embodiments, no reactant gas is used, and only noble gas (as a carrier gas and/or a dilution gas) is used. The precursor and the additive gas can be introduced as a mixed gas or separately to a reaction space. The precursor can be introduced with a carrier gas such as a rare gas. A gas other than the process gas, i.e., a gas introduced without passing through the showerhead, may be used for, e.g., sealing the reaction space, which includes a seal gas such as a rare gas. In some embodiments, the term “precursor” refers generally to a compound that participates in the chemical reaction that produces another compound, and particularly to a compound that constitutes a film matrix or a main skeleton of a film, whereas the term “reactant” refers to a compound, other than precursors, that is used in association with a precursor and activates the precursor, modifies the precursor, or catalyzes a reaction of the precursor, wherein the reactant may provide an element (such as O, N, and/or C) to a film matrix and become a part of the film matrix, when RF power is applied. The term “inert gas” refers to a gas that is inactive when RF power (or other electromagnetic energy) is not applied but can become a plasma state to excite a precursor or reform a film when RF power (or other electromagnetic energy) is applied, but unlike a reactant, it may not become a part of or incorporated into a film matrix.


In some embodiments, “film” refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface. In some embodiments, “layer” refers to a structure having a certain thickness formed on a surface or a synonym of film or a non-film structure. A film or layer may be constituted by a discrete single film or layer having certain characteristics or multiple films or layers, and a boundary between adjacent films or layers may or may not be clear and may be established based on physical, chemical, and/or any other characteristics, formation processes or sequence, and/or functions or purposes of the adjacent films or layers. Further, in this disclosure, any two numbers of a variable can constitute a workable range of the variable as the workable range can be determined based on routine work, and any ranges indicated may include or exclude the endpoints. Additionally, any values of variables indicated (regardless of whether they are indicated with “about” or not) may refer to precise values or approximate values and include equivalents, and may refer to average, median, representative, majority, etc. in some embodiments. Further, in this disclosure, the terms “constituted by” and “having” refer independently to “typically or broadly comprising”, “comprising”, “consisting essentially of”, or “consisting of” in some embodiments. In this disclosure, any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments.


In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.


In all of the disclosed embodiments, any element used in an embodiment can be replaced with any elements equivalent thereto, including those explicitly, necessarily, or inherently disclosed herein, for the intended purposes. Further, the present invention can equally be applied to apparatuses and methods.


The embodiments will be explained with respect to preferred embodiments. However, the present invention is not limited to the preferred embodiments.


In an embodiment, a method of reforming an insulating film deposited on a substrate having a recess pattern constituted by a bottom and sidewalls, comprises: (i) providing the film deposited on the substrate having the recess pattern in an evacuatable reaction chamber, wherein a property of a portion of the film deposited on the sidewalls is inferior to that of a portion of the film deposited on a top surface of the substrate; (ii) adjusting a pressure of an atmosphere of the reaction chamber to 10 Pa or less, which atmosphere is constituted by H2 and/or He without a precursor; and (iii) applying RF power to the pressure-adjusted reaction chamber to generate a plasma to which the film is exposed, thereby reforming the portion of the film deposited on the sidewalls to improve the property of the sidewall portion of the film.


In this disclosure, the insulating film provided in step (i) includes, but is not limited to, an oxide film or nitride film, which is selected from the group consisting of SiO2, SiN, SiOC, SiCN, GeOx, GeN, AlOx, AlN, TiO2, and TaO2, for example. In some embodiments, the insulating film has a dielectric constant of about 1.9 to 5.0, typically about 2.1 to 3.0, preferably less than 2.5. In some embodiments, the dielectric film is formed in trenches or vias including side walls and bottom surfaces, and/or flat surfaces (top surfaces), by plasma-enhanced CVD, thermal CVD, cyclic CVD, plasma-enhanced ALD, thermal ALD, radical-enhanced ALD, or any other thin film deposition methods. Typically, the thickness of the insulating film (typically the thickness of film deposited on a top surface unless otherwise specified) is 10 nm or less (e.g., 7 nm or less, more than 1 nm) so that the surface-reforming effect can be exerted on the film substantially in its entirety. In some embodiments, by repeating the surface-reforming step (steps (ii) and (iii)) after every deposition of a film having a thickness of 10 nm or less, the total thickness of a reformed film can be more than 10 nm, e.g., in a range of about 20 nm to about 500 nm (a desired film thickness can be selected as deemed appropriate according to the application and purpose of film, etc.).


In some embodiments, step (i) comprises depositing the film in the reaction chamber by cyclic deposition, wherein the film is deposited by one cycle or multiple cycles of the cyclic deposition. That is, in the embodiments, the deposition step and the reforming step are continuously performed in the same reaction chamber. In this disclosure, “continuously” refers to without breaking a vacuum, without interruption as a timeline, without any material intervening step, without changing treatment conditions, immediately thereafter, as a next step, or without an intervening discrete physical or chemical structure between two structures other than the two structures in some embodiments. Alternatively, the deposition step can be performed in a different reaction chamber, and the substrate is transferred to another reaction chamber for the reforming step. For the purpose, a cluster type apparatus equipped with multiple reaction chambers connected to a common wafer transfer chamber can be used. In some embodiments, the cyclic deposition is plasma-enhanced atomic layer deposition (PEALD). In some embodiments, steps (i) through (iii) are repeated. In the present disclosure where conditions and/or structures are not specified for deposition of an insulating film, a skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.


In this disclosure, a recess between adjacent vertical spacers and any other recess pattern constituted by a bottom and sidewalls are referred to as a “trench”. That is, the trench is any recess pattern including a pattern formed by vertical spacers and which has, in some embodiments, a width of about 20 nm to about 100 nm (typically about 30 nm to about 50 nm) (wherein when the trench has a length substantially the same as the width, it is referred to as a hole/via, and a diameter thereof is about 20 nm to about 100 nm), a depth of about 30 nm to about 100 nm (typically about 40 nm to about 60 nm), and an aspect ratio of about 2 to about 10 (typically about 2 to about 5). In this disclosure, the dimensions of the trench refer to those of the trench covered with a target film which is subjected to the reforming treatment, not those of the naked trench to which no film has not been deposited. The proper dimensions of the trench may vary depending on the process conditions, film compositions, intended applications, etc.


In some embodiments, the film deposited in the recess pattern has a conformality (a ratio of thickness of film deposited on sidewalls to thickness of film deposited on a top surface or on a bottom surface) of 80% to 100%, typically approximately 90% or higher. In this regard, preferably, the film is deposited by PEALD. However, typically, such film has a problem in that a property of a portion of the film deposited on the sidewalls is substantially inferior to that of a portion of the film deposited on a top surface of the substrate. In the disclosure, “substantially inferior”, “substantially different”, “substantially less” or the like may refer to a material difference or a difference recognized by a skilled artisan such as those of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or any ranges thereof in some embodiments. Also, in the disclosure, “substantially the same”, “substantially uniform”, or the like may refer to an immaterial difference or a difference recognized by a skilled artisan such as those of less than 10%, less than 5%, less than 1%, or any ranges thereof in some embodiments.


In this disclosure, the property of the film includes, but is not limited to, resistance to wet etching which can be evaluated by immersing a film in a solution of DHF (diluted hydrogen fluoride) having a dilution ratio of 1/1,000, for example.


In step (ii), the pressure of an atmosphere of the reaction chamber is adjusted to 10 Pa or less, which atmosphere is constituted by an inert gas such as H2 and/or He without a precursor and without a reactant. As defined in this disclosure, the term “inert gas” in step (ii) refers to a gas that is inactive when RF power (or other electromagnetic energy) is not applied but can become a plasma state to excite a precursor or reform a film when RF power (or other electromagnetic energy) is applied, but unlike a reactant, it may not become a part of or incorporated into a film matrix. In step (ii), the term “precursor” refers generally to a compound that participates in the chemical reaction that produces another compound, and particularly to a compound that constitutes a film matrix or a main skeleton of a film, whereas the term “reactant” refers to a compound, other than precursors, that is used in association with a precursor and activates the precursor, modifies the precursor, or catalyzes a reaction of the precursor, wherein the reactant may provide an element (such as O, N, and/or C) to a film matrix and become a part of the film matrix, when RF power is applied. In some embodiments, the inert gas in step (ii) has an atomic weight of less than that of oxygen (16). When the molecule of the inert gas has a small diameter, and the number of molecules per unit volume is high, the mean free path of ions generated from the inert gas can be long since the mean free path can be defined as follows (simplified as a mean distance per collision):






1

π






d
2



n
v







wherein d is a diameter of a molecule, and nv is the number of molecules per unit volume. When the mean free path of ions becomes long, the ions can travel a long distance, i.e., reaching a film deposited on sidewalls of a trench having a high aspect ratio (increasing ion bombardments on the sidewalls), and improving the properties of the film. Also, by decreasing the pressure, nv is decreased, thereby prolonging the mean free path of ions. As a result, reforming of the film, particularly at the sidewall (also the bottom), deposited in a trench can effectively be performed, thereby improving substantially the properties of the film deposited on the sidewalls. In view of the above, H2 is preferably used as the inert gas. He also can be used for similar reasons. In the deposition process, H2 can generally be used as a reactant gas; however, in step (ii), H2 is used as the inert gas since it is not used in association with a precursor. In non-limiting theory, in step (iii), H2 generates a hydrogen plasma and removes contaminant hydrogen contained in the film as an impurity, thereby improving the properties of the film, particularly the sidewall portion of the film.


In some embodiments, in step (ii), the atmosphere of the reaction chamber further contains N2 at a concentration of 1% or less (e.g., 0.05% to 0.2%, typically 0.1%), wherein N2 is used predominantly as an inert gas, and does not substantially function as a reactant gas (see the definitions of the terms described in this disclosure). By using a small quantity of N2, removal of contaminant hydrogen from the film can be promoted in step (iii), although it may slightly contribute to nitridization of the film. In some embodiments, in step (ii), the atmosphere contains no gas other than H2, He, and N2. In some embodiments, the atmosphere consists of H2.


In step (ii), the pressure of an atmosphere of the reaction chamber is adjusted to 10 Pa or less so as to perform the reforming of film effectively. Preferably, the pressure of the atmosphere of the reaction chamber is extremely low such as 2 Pa or less, 1 Pa or less, or less than 1 Pa. The lowest pressure can be determined depending on whether a plasma is ignited, and typically, the pressure is 10−2 Pa or higher. In some embodiments, in step (i), a pressure of an atmosphere of the reaction chamber is controlled using a dry pump connected to the reaction chamber, and in step (ii), the pressure of the atmosphere of the reaction chamber is controlled using a turbomolecular pump connected to the reaction chamber. The use of a turbomolecular pump can effectively reduce the pressure to an extremely low level. For example, the lowest pressure achieved by a dry pump may be 1 Pa, whereas the lowest pressure achieved by a turbomolecular pump may be 10−5 Pa. For deposition, a dry pump is normally used because the dry pump has a high capacity of evacuation. If the exhaust rate is set high, and the inert gas such as H2 is fed to the reaction chamber at a flow rate of approximately 3 sccm, for example, the sole use of a dry pump may be able to reduce the pressure to a desired level.


In some embodiments, between steps (i) and (ii), the reaction chamber is evacuated to reduce the pressure to less than the pressure used in step (ii), i.e., the pressure of the reaction chamber is reduced to nearly zero before setting the atmosphere of the reaction chamber in step (ii), and then, in step (ii), the inert gas is introduced to set the pressure at a desired level. For example, after step (i) before step (ii), the pressure is reduced to 10−2 Pa, and then, is increased to 1 Pa for step (ii). By evacuating the reaction chamber to reduce the pressure to less than the pressure used in step (ii) between steps (i) and (ii), residual gas remaining in the reaction chamber can effectively be removed before step (ii).


In step (iii), RF power is applied to the atmosphere of the pressure-adjusted reaction chamber to generate a plasma to which the film is exposed, thereby reforming the portion of the film deposited on the sidewalls to improve the property of the sidewall portion of the film. In some embodiments, in step (iii), RF power is applied at a power of 2 W/cm2 or higher (e.g., 3, 4, 5, 6, 7, 8, 9, or 10 W/cm2 or a value between any two numbers of the foregoing) relative to the top surface of the substrate. The frequency of RF power is in a range of 1 to 100 MHz, preferably 13.5 to 60 MHz, and in some embodiments, the frequency of RF power for the reforming process is higher than that used for the deposition process.


When the pressure in step (ii) is higher, RF power in step (iii) may need to be higher to achieve desired reforming effects. For example, when the pressure is less than 2 Pa, RF power is approximately 2 to 6 W/cm2 whereas when the pressure is 2 Pa to 10 Pa, RF power is approximately 6 to 10 W/cm2. If RF power is too low, no plasma is ignited or no sufficient improvement on properties of a film can be obtained, whereas if RF power is too high, even though sufficient improvement on properties of a film on sidewalls can be obtained, a film on a top surface will be damaged. Thus, if improvement on properties of a film mainly on sidewalls is the goal, relatively high RF power can be used. In some embodiments, in step (iii), the reforming the sidewall portion of the film is accomplished by removing hydrogen contained in the film as an impurity using the plasma, thereby improving the properties of the sidewall portion of the film. Typically, the film contains hydrogen as an impurity, and by removing the hydrogen, the film properties can be improved. For example, the concentration of hydrogen in the film can be reduced by step (iii) from approximately 7×1021 atms/cm3 to approximately 2×1021 atms/cm3 (in some embodiments, the hydrogen concentration in the film is reduced by 50% to 90% or 70% to 80% by the reforming treatment). In some embodiments, step (iii) is conducted until the property of the sidewall portion of the film is improved to be substantially equivalent the property of a portion of the film deposited on the bottom of the recess pattern or a top surface of the substrate. In some embodiments, in step (iii), RF power is applied to an upper electrode which is capacitively coupled with a lower electrode on which the substrate is placed.


In some embodiments, in step (i), a portion of the film deposited on the bottom of the recess pattern is thicker than the portion at the sidewalls of the recess pattern and the portion at the top surface of the substrate. According to conventional reforming treatment, the properties of the top portion of the film can be improved, whereas those of the sidewall portion and the bottom portion cannot be improved as much as that of the top portion. However, through step (iii), not only the property of the sidewall portion of the film but also those of the bottom portion can be improved. Thus, some embodiments are modified so as to use the bottom portion of the film, rather than the sidewall portion of the film. In semiconductor manufacturing processes, controlling the profile of film deposited in a recess pattern is very important. For example, when etching a recess pattern having a high aspect ratio, even when a bottom portion of the film is intended to be maintained, since the bottom portion of the film is easily etched, the bottom portion of the film may undesirably be removed. After forming a trench or via hole having a high aspect ratio, in some cases, there is a demand to form an etch stop layer (using, e.g., a SiO or SiN film) only on the bottom of the trench or via hole.


The embodiments will be explained with respect to the drawings. However, the present invention is not limited to the drawings.



FIG. 2 shows schematic cross sectional views of an insulating film (e.g., SiO2 film) deposited by PEALD, for example, wherein (a) is a view of the film profile before being subjected to wet etching, (b) is a view of the film profile without reforming treatment after being subjected to wet etching, (c) is a view of the film profile with conventional reforming treatment after being subjected to wet etching, and (d) is a view of the film profile with reforming treatment according to an embodiment of the present invention after being subjected to wet etching.


In (a), a conformal film 32 is deposited by PEALD, for example, on a surface of a substrate 31 having a trench 30. The conformal film 32 has a conformality of approximately 100%. In (b), the conformal film 32 is subjected to wet etching without surface-reforming treatment. Since the conformal film 32 is not densified and also contains hydrogen as an impurity, the film is etched rather uniformly at a high wet etch rate, resulting in an etched film profile 33 having a thin film thickness and a relatively high conformality (60% to 80%). In (c), the conformal film 32 is subjected to wet etching after conducting conventional surface-reforming treatment (e.g., using Ar/O2 gas at a pressure of 100 Pa, for example). Although the conformal film 32 is densified on a top surface and hydrogen is removed therefrom as an impurity by the surface-reforming treatment, the conformal film 32 is not sufficiently densified on sidewalls and hydrogen is not removed therefrom, and thus, the film deposited on the top surface can have good resistance to wet etching, but the film on the sidewalls does not and is etched at a high wet etch rate, resulting in an etched film profile 34 having a thin film thickness on the sidewalls and a thick film thickness on the top surface and a relatively low conformality (40% to 60%). In (d), the conformal film 32 is subjected to wet etching after conducting surface-reforming treatment according to an embodiment of the present invention (e.g., using H2 gas at a pressure of 1 Pa, for example). Since the conformal film 32 is densified not only on the top surface but also on the sidewalls, and hydrogen is removed therefrom as an impurity by the surface-reforming treatment, the conformal film 32 is sufficiently densified not only on the top surface but also on the sidewalls and hydrogen is removed therefrom, and thus, the film deposited on the top surface and the sidewalls can have good resistance to wet etching and is etched at a low wet etch rate, resulting in an etched film profile 35 having a thick film thickness along the entire surface of the trench and a high conformality (e.g., 90% to 110%).



FIG. 13 shows a schematic process sequence of extremely-low-pressure surface-reforming treatment according to an embodiment of the present invention wherein a step-up line represents an ON state or an increased-quantity state whereas a step-down line represents an OFF state or a decreased-quantity state, and the height and duration of each section are not necessarily to scale. In the sequence illustrated in FIG. 13, step a is a transition step where the reaction chamber accommodating a Si wafer (having trenches) is fully evacuated to remove substantially all residual gas remaining in the reaction chamber from a deposition process or the like. In step a, no gas is fed to the reaction chamber, no RF power is applied to the reaction chamber, and the pressure of the reaction chamber is reduced to substantially a fully vacuumed level, e.g., less than 1 Pa (e.g., 10−2 Pa or less). Next, the surface-reforming treatment begins in step b which is a stabilizing step where a reforming gas is fed to the reaction chamber at a low flow rate (e.g., less than 10 sccm) without applying RF power, while adjusting the pressure to a desired extremely low level such as 1 Pa, so as to establish an atmosphere of the reaction chamber for surface-reforming. The reforming gas is an inert gas such as H2 and/or He. In step c, RF power is applied to the atmosphere of the reaction chamber to conduct surface-reforming by a plasma while maintaining the extremely low pressure. In step d which is a stabilizing step, application of RF power is stopped while maintaining the reforming gas flow and the extremely low pressure, wherein the reforming gas flow can be gradually reduced and stopped so as to suppress generation of particles. In step e which is a transition step, the reaction chamber is fully evacuated without feeding the reforming gas. In some embodiments, in steps a and e, the pressure of the reaction chamber need not be reduced to substantially a fully vacuumed level, but the pressure can be the same as that in steps b to d.



FIG. 14 shows a schematic process sequence of a film deposition process continuously followed by extremely-low-pressure reforming treatment according to an embodiment of the present invention wherein a step-up line represents an ON state wherein a step-up line represents an ON state or an increased-quantity state whereas a step-down line represents an OFF state or a decreased-quantity state, and the height and duration of each section are not necessarily to scale. In this process sequence, the deposition process and the reforming process are conducted continuously in the same reaction chamber accommodating a Si wafer having trenches. Steps A to D constitute one cycle of PEALD. In step A, a precursor (such as alkylaminosilane) is fed in a pulse to the reaction chamber to chemisorb a precursor on a surface of the wafer while continuously feeding a reactant gas (e.g., O2) and dilution/carrier gas (e.g., Ar) through steps A to D, wherein the pressure of the reaction chamber is set at a deposition pressure such as 200 Pa using a dry pump (DP) through steps A to D. In step C, RF power is applied to the reaction chamber to expose the precursor-adsorbed wafer to a plasma of the reaction gas so as to form a monolayer on the surface of the wafer including the trenches. Steps B and D are purging steps, wherein the continuous flows of the reactant gas and the dilution/carrier gas function as purging gases. The one cycle is repeated until a desired thickness of film is obtained on the wafer. The desired thickness of film may be 10 nm or less because the surface-reforming process may reform a film from the top surface to a portion approximately 10 nm or less deep from the surface, if the entire film is intended to be reformed. By repeating the deposition process and the reforming process, a film fully reformed can be formed at a desired final thickness.


After the deposition process is complete, a reforming process begins. Step P is a first transition steps where the reaction gas flow is completely stopped, and the dilution/carrier gas flow is gradually stopped so as to suppress generation of particles, and the pressure of the reaction chamber is reduced using the dry pump. Step Q is a second transition step where the dilution/carrier gas flow is completely stopped, and the vacuum pump is switched from the dry pump (DP) to a turbomolecular pump (TMP) so as to reduce the pressure to substantially a fully vacuumed level, e.g., less than 1 Pa (e.g., 10−2 Pa or less) so that the reaction chamber is fully evacuated to remove substantially all residual gas remaining in the reaction chamber from the deposition process. In step Q, no gas is fed to the reaction chamber, and no RF power is applied to the reaction chamber. Next, the surface-reforming treatment begins in step R which is a stabilizing step where a reforming gas is fed to the reaction chamber at a low flow rate (e.g., less than 10 sccm) without applying RF power, while adjusting the pressure to a desired extremely low level such as 1 Pa using the TMP, so as to establish an atmosphere of the reaction chamber for surface-reforming. The reforming gas is an inert gas such as H2 and/or He. In step S, RF power is applied to the atmosphere of the reaction chamber to conduct surface-reforming by a plasma while maintaining the extremely low pressure. In step T which is a stabilizing step, application of RF power is stopped while maintaining the reforming gas flow and the extremely low pressure, wherein the reforming gas flow can be gradually reduced and stopped so as to suppress generation of particles. In step U which is a first transition step, the reaction chamber is fully evacuated without feeding the reforming gas, and flow of the dilution/carrier gas (without the precursor) starts and gradually increases so as to suppress generation of particles, while the pressure is also gradually increased. In step V which is a second transition step, the dilution/carrier gas flows constantly, and the vacuum pump is switched from the TMP to the DP so as to increase the pressure for the next deposition process (e.g., 200 Pa).


The process cycle can be performed using any suitable apparatus including an apparatus illustrated in FIG. 1, for example. FIG. 1 is a schematic view of a PEALD apparatus, desirably in conjunction with controls programmed to conduct the sequences described below, usable in some embodiments of the present invention. In this figure, by providing a pair of electrically conductive flat-plate electrodes 4, 2 in parallel and facing each other in the interior 11 (reaction zone) of a reaction chamber 3, applying HRF power (13.56 MHz or 27 MHz) 25 to one side, and electrically grounding the other side 12, a plasma is excited between the electrodes. A temperature regulator is provided in a lower stage 2 (the lower electrode), and a temperature of a substrate 1 placed thereon is kept constant at a given temperature. The upper electrode 4 serves as a shower plate as well, and reactant gas and/or dilution gas, if any, and precursor gas are introduced into the reaction chamber 3 through a gas line 21 and a gas line 22, respectively, and through the shower plate 4. Additionally, in the reaction chamber 3, a circular duct 13 with an exhaust line 7 is provided, through which gas in the interior 11 of the reaction chamber 3 is exhausted. Additionally, a transfer chamber 5 disposed below the reaction chamber 3 is provided with a seal gas line 24 to introduce seal gas into the interior 11 of the reaction chamber 3 via the interior 16 (transfer zone) of the transfer chamber 5 wherein a separation plate 14 for separating the reaction zone and the transfer zone is provided (a gate valve through which a wafer is transferred into or from the transfer chamber 5 is omitted from this figure). The transfer chamber is also provided with an exhaust line 6. In some embodiments, the deposition of multi-element film and reforming treatment are performed in the same reaction space, so that all the steps can continuously be conducted without exposing the substrate to air or other oxygen-containing atmosphere.


The reforming process can be conducted in a different reaction chamber or in the same reaction chamber as the deposition process. FIG. 12 is a schematic representation of an apparatus conducting an extremely-low-pressure reforming treatment according to an embodiment of the present invention, which can also be used for the deposition process (when the deposition process uses RF power which is different from that used for the reforming process, the apparatus needs to be equipped with two RF power sources for different frequencies). In this figure, by providing a pair of electrically conductive flat-plate electrodes 92, 93 in parallel and facing each other in the interior (reaction zone) of a reaction chamber 91, applying HRF power (1 MHz to 100 MHz, typically 60 MHz) from an RF power source 95 to the upper electrode 93, and electrically grounding the lower electrode 92, a plasma is excited between the electrodes. A temperature regulator is provided in a lower stage 92 (the lower electrode), and a temperature of a substrate 94 placed thereon is kept constant at a given temperature. The upper electrode 93 serves as a shower plate as well, and reforming gas or gases are introduced into the reaction chamber 91 through gas lines provided with mass flow controllers 97, 98, respectively, and merged into a gas line with a valve 96, through the shower plate 93. Further, the reaction chamber 91 is equipped with two exhaust systems. One exhaust system is provided with a dry pump 105 connected to the reaction chamber 91 via a throttle valve 102, and the other exhaust system is provided with a turbomolecular pump 104 (with an RP pump filter 103) connected to the reaction chamber 91 via a throttle valve 101. The throttle valve 101 and the turbomolecular pump 104 and the throttle valve 102 and the dry pump 105 are controlled by one or more controller(s) (not shown) so as to switch from one to another, according to the process recipe.


A skilled artisan will appreciate that the apparatus includes one or more controller(s) (not shown) programmed or otherwise configured to cause the deposition and reactor cleaning processes described elsewhere herein to be conducted. The controller(s) are communicated with the various power sources, heating systems, pumps, robotics and gas flow controllers or valves of the reactor, as will be appreciated by the skilled artisan.


In some embodiments, a dual chamber reactor (two sections or compartments for processing wafers disposed closely to each other) can be used, wherein a reactant gas and a noble gas can be supplied through a shared line whereas a precursor gas is supplied through unshared lines.



FIG. 15 shows another aspect of the present invention, which shows schematic illustrations of processes to keep only a bottom portion of film in a trench or hole, wherein (A) illustrates a process of depositing a film in a trench or hole, (B) illustrates a process of reforming treatment, and (C) illustrates a process of selectively removing a sidewall portion and a top portion of the film. Through the reforming treatment process, not only the property of the sidewall portion of the film but also those of the bottom portion can be improved. Thus, some embodiments can be modified so as to use the bottom portion of the film, rather than the sidewall portion of the film. In (A), a film 82 is deposited in a trench or hole of a substrate 81, wherein a bottom portion of the film is much thicker than a sidewall portion and a top portion of the film. Such a film profile can be achieved by using gap-fill CVD method or reflow method which is known in the art. In (B), reforming treatment is conducted so that the film is exposed to a plasma at a low pressure, thereby reforming the film from the surface toward the inside in a thickness direction (a region 83 with hatching is a reformed portion). By the reforming treatment, not only the sidewall portion of the film but also the bottom portion (also the top portion) of the film can be reformed. In (C), the reformed film is subjected to dry etching or wet etching so as to remove the sidewall and top portions of the film, selectively leaving the bottom portion 84 of the film. The bottom portion 84 of the film can be used as an etch stop layer, etc.



FIG. 16 is a schematic representation of an application of a reformed film according to an embodiment of the present invention, which film is used in a double-gate FinFET device which has a configuration wherein a silicon substrate (Fin) 93 with trenches (having a high-aspect ratio) has an oxide layer 91 (SiO2) at the bottoms of the trenches, and a gate is formed in the trenches, wherein the surfaces of the trenches are covered with a gate oxide 94 (SiO2), and a metal gate 92 is formed thereon. The gate oxide requires high quality in order to properly function as a gate. By using a reformed film according to some embodiments as the gate oxide 94, a high quality FinFET device can be obtained.


In some embodiments, the reforming process may be conducted under the conditions shown in Table 1 below.









TABLE 1





(numbers are approximate)


Conditions for Reforming Process
















Substrate temperature
0 to 400° C. (preferably 50 to 300° C.)


Electrode gap (a thickness of a
5 to 100 mm (preferably 10 to 80 mm)


substrate is about 0.7 mm)


Pressure during steps R to T in FIG. 14
10−3 to 10 Pa (preferably 10−2 to 2 Pa)









Flow rate of H2
At least one of them
0 to 200 sccm (preferably 10 to 50 sccm)


Flow rate of He
is not zero
0 to 200 sccm (preferably 10 to 50 sccm)








Flow rate of N2
0 to 1 sccm (preferably 0 to 0.5 sccm); less than



1% (preferably less than 0.2%) of the reforming



gas


RF power frequency
1 to 100 MHz, preferably 13.5 to 60 MHz


RF power density
1.5 to 15 W/cm2 (preferably 2.0 to 6.0 W/cm2 for a



pressure of 10−2 to 2 Pa; preferably 6.0 to 10.0 W/cm2



for a pressure of 2 to 10 Pa)


Duration of step P in FIG. 14
3 to 10 sec. (preferably 3 to 5 sec.)


Duration of step Q in FIG. 14
3 to 20 sec. (preferably 3 to 5 sec.)


Duration of step R in FIG. 14
3 to 5 sec. (preferably 3 to 5 sec.)


Duration of step S in FIG. 14
10 to 600 sec. (preferably 10 to 300 sec.)


Duration of step T in FIG. 14
0 to 20 sec. (preferably 0 to 5 sec.)


Duration of step U in FIG. 14
2 to 30 sec. (preferably 5 to 10 sec.)


Duration of step V in FIG. 14
3 to 30 sec. (preferably 3 to 10 sec.)


Thickness of Film subjected to the
0.1 to 20 nm (preferably 0.1 to 10 nm) on top


reforming treatment
surface


Conformality of Film subjected to the
0.5 to 80 (preferably 2 to 20)


reforming treatment









The above-indicated RF power is expressed as applied wattage (W) per cm2 of an apparent top surface of a substrate (assuming that the top surface is continuous and ignoring the areas of trenches) which can apply to a wafer having a different diameter such as 100 mm or 450 mm.


In some embodiments, when H2 and He are mixed, a ratio of H2 flow to He flow is 5 to 200, preferably 10 to 50. In some embodiments, when only a top portion of a target film (e.g., a top portion having a depth of 10 nm or less) is required to be reformed, the target film can have a thickness of more than 10 nm, e.g., 50 nm to 500 nm). Typically, the reforming process is repeated after every deposition process until a desired thickness of a film is obtained. For example, when a growth rate of a film per cycle of PEALD is about 0.1 nm, the cycle of PEALD is repeated 100 times so as to obtain a first layer having a thickness of about 10 nm, and then, the reforming process is conducted; thereafter, the cycle of PEALD is again repeated 100 times so as to deposit a second layer having a thickness of about 10 nm, followed by the reforming process; and the above process is repeated until the total thickness of a film reaches about 50 nm, i.e., repeated five times (five layers).


The reforming process can be used in various applications, including spacer-defined double patterning (SDDP), wherein a silicon oxide film reformed according any of the disclosed embodiments or equivalents thereto can be used as a vertical spacer.


The surface-reformed insulating film may be resistant to not only HF, HCl, and TMAH wet etch, but also e.g. to BCl3, BCl3/Ar, dry etch; On the other hand, the surface-reformed insulating film may be sensitive to oxidation, a combination of wet etch chemistry alternating oxidizing and HF (common in semiconductor processing), or dry etch based on oxygen or CF4, for example, and thus, the surface-reformed insulating film can effectively be stripped according to the process recipe and application.


The present invention is further explained with reference to working examples below. However, the examples are not intended to limit the present invention. In the examples where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. Also, the numbers applied in the specific examples can be modified by a range of at least ±50% in some embodiments, and the numbers are approximate.


EXAMPLES
Example 1

A substrate (having a diameter of 100 mm and a thickness of 0.7 mm) having a SiO2 film deposited by PEALD was provided wherein the substrate had trenches with an opening width of approximately 30 nm and a depth of approximately 300 nm (an aspect ratio of 10). The SiO2 film was formed on an underlying layer (SiN) by PECVD with a thickness of about 15 nm on the substrate, which underlying layer was formed in order to adjust the shapes of the trenches before depositing the SiO2 film wherein the trenches of the substrate with the underlying film had an opening width of approximately 60 nm and a depth of approximately 300 nm (an aspect ratio of 5). Reforming treatment was conducted on the substrate using a sequence illustrated in FIG. 13 under the conditions shown in Table 2 below using the apparatus illustrated in FIG. 12, wherein the film was deposited using the apparatus illustrated in FIG. 1 which was hermetically connected to the apparatus for reforming process via a wafer handling chamber so that the substrate could continuously be transferred from the deposition chamber to the reforming chamber without breaking a vacuum state. Multiple films were treated under partially different conditions of reforming treatment for analysis (see Table 3). The reformed film was subjected to wet etching (dipped in a solution of DHF 1000:1 for 10 minutes) and analyzed for resistance to wet etching. The results are shown in Table 3 below.



FIG. 7 shows schematic illustrations of the profile changes of the trench in the above steps, wherein (A) illustrates the profile of the trench with the underlying layer 71, (B) illustrates the profile of the trench with the SiO2 film 72, (C) illustrates the profile of the trench with the SiO2 film 72′ subjected to the reforming treatment, and (D) illustrates the profile of the trench the SiO2 film 72″ after the wet-etching. “ΔTop”, “ΔSide”, and “ΔBtm” in Table 3 are illustrated in (D) of FIG. 7, i.e., the difference between the thickness of the SiO2 film after the reforming treatment as shown in (C) and the thickness of the SiO2 film after the wet etching at the top surface (“ΔTop”), at the sidewall (“ΔSide”), and at the bottom (“ΔBtm”).









TABLE 2





(numbers are approximate)


Conditions for Reforming Process
















Substrate temperature
No heating (room temperature)


Electrode gap
80 mm


Pressure during steps b to d in FIG. 13
See Table 3 (using TMP)


Flow rate of reforming gas
See Table 3


RF power frequency
60 MHz


RF power density
2.5 W/cm2


Duration of step a in FIG. 13
120 sec.


Duration of step b in FIG. 13
60 sec.


Duration of step c in FIG. 13
300 sec.


Duration of step d in FIG. 13
20 sec.


Duration of step e in FIG. 13
30 sec.
















TABLE 3







(numbers are approximate)











No
Comparative




reforming
reforming treatment
Reforming












treatment
Comp.
Comp.
treatment



Comp. Ex. 1
Ex. 2
Ex. 3
Example 1















Reforming gas

Ar/O2
H2
H2


Flow rate

180/20 sccm
200 sccm
25 sccm


Pressure

100 Pa
100 Pa
1 Pa


Film profile (after
See FIG. 3
See FIG. 4
See FIG. 5
See FIG. 6


wet etching)












Etched
Δ Top
 Δ 9 nm
Δ 2 nm
Δ 2 nm
Δ 1 nm


thickness
Δ Side
Δ 11 nm
Δ 7 nm
Δ 8 nm
Δ 1 nm



Δ Btm
Δ 10 nm
Δ 3 nm
Δ 6 nm
Δ 2 nm









In Comparative Examples 2 and 3 and Examples 1 and 2, in steps a and e in FIG. 13, the pressure was reduced to about 10−3 Pa (which was substantially equivalent to a base pressure) In Table 3, the Etched amount is an approximate or averaged amount. As shown in Table 3, by conducting the extremely low pressure reforming process (with a H2 plasma) in Example 1, all the portions including the top portion, sidewall portion, and bottom portion of the film exhibited high resistance to wet etching. When conducting the comparative reforming process at a conventional pressure (100 Pa) with a H2 plasma in Comparative Example 2, the reforming effect manifested mainly at the top portion, and least at the sidewall portion. Further, when conducting the comparative reforming process at a conventional pressure (100 Pa) with an Ar/O2 plasma in Comparative Example 1, the reforming effect manifested mainly at the top portion, and least at the sidewall portion, in a manner similar to that in Comparative Example 2. Also, a H2 plasma was highly effective to reform the film as shown in Example 1 at an extremely low pressure; however, when the conventional pressure (100 Pa) was used, a H2 plasma did not show any advantageous effect on resistance to wet etching as compared with an Ar/O2 plasma as shown in Comparative Examples 2 and 3.



FIG. 3 is a STEM photograph showing a cross sectional view of the insulating film without reforming treatment after being subjected to wet etching in Comparative Example 1. FIG. 4 is a STEM photograph showing a cross sectional view of the insulating film with reforming treatment according to Comparative Example 2 after being subjected to wet etching. FIG. 5 is a STEM photograph showing a cross sectional view of the insulating film with reforming treatment according to Comparative Example 1 after being subjected to wet etching. FIG. 6 is a STEM photograph showing a cross sectional view of the insulating film with reforming treatment according to Example 1 after being subjected to wet etching.


Example 2

Substrates with insulating films (with an aspect ratio of 10) were provided as described in Example 1 and were reformed under the conditions used in Example 1 (a pressure of 1 Pa) except that the reforming gas was changed as shown in Table 4 below, to determine resistance to wet etching at the sidewalls of trenches.









TABLE 4







(numbers are approximate)










Reforming gas
ΔSide - Etched thickness (nm)















Example 2
H2
2



Comp. Ex. 3
N2
5



Comp. Ex. 4
O2
8



Comp. Ex. 5
Ar
8










As shown in Table 4, when using H2 gas, the resistance to wet etching was significantly improved in Example 2, as compared with the use of N2 (Comparative Example 3), O2 (Comparative Example 4), and Ar (Comparative Example 5).


Further, in Example 2, the concentration of hydrogen atoms in the film before the reforming treatment was 7×1021 atms/cm3, and the concentration of hydrogen atoms in the film after the reforming treatment was reduced to 2×1021 atms/cm3 (which was determined using X-ray fluorescence analysis).


Example 3

A substrate (having a diameter of 100 mm and a thickness of 0.7 mm) having a SiO2 film deposited by PEALD was provided wherein the substrate had trenches with a width of approximately 30 nm and a depth of approximately 300 nm (with an aspect ratio of 10). The SiO2 film was formed by PEALD with a thickness of about 7 nm on the substrate and a conformality of about 100%. Reforming treatment was conducted on the substrate using a sequence illustrated in FIG. 13 under the conditions shown in Table 5 below using the apparatus illustrated in FIG. 12. Multiple films were treated under partially different conditions of reforming treatment for analysis (see FIG. 8). The reformed film was subjected to wet etching (dipped in a solution of DHF 1000:1 for 10 minutes) and analyzed for resistance to wet etching. The results are shown in FIG. 8.









TABLE 5





(numbers are approximate)


Conditions for Reforming Process
















Substrate temperature
No heating (room temperature)


Electrode gap
80 mm


Pressure during steps b to d in FIG. 13
See FIG. 8 (using TMP)


Flow rate of H2
10~200 sccm


RF power frequency
60 MHz


RF power density
2.5 W/cm2 (200 W)


Duration of step a in FIG. 13
120 sec.


Duration of step b in FIG. 13
60 sec.


Duration of step c in FIG. 13
300 sec.


Duration of step d in FIG. 13
20 sec.


Duration of step e in FIG. 13
30 sec.










FIG. 8 is a graph showing the pressure dependency of wet etch rate of surface-reformed insulating films deposited on a top surface, sidewall, and bottom surface of a trench. As shown in FIG. 8, when the pressure was less than 10 Pa, the reforming effect on the resistance to wet etching of the sidewall portion of the film began to show, and when the pressure was as low as 2 Pa or less, the sidewall portion of the film was significantly reformed and the resistance to wet etching of the sidewall portion of the film became substantially equivalent to those of the top portion and the bottom portion of the film.


Example 4

Substrates with insulating films were provided and subjected to the reforming treatment under the conditions described in Example 3 except that RF power varied as shown in FIG. 9. FIG. 9 is a graph showing the pressure dependency of wet etch rate of surface-reformed insulating films deposited on a top surface and sidewall of the trench, which films were surface-reformed with low RF power (200 W; 2.55 W/cm2) and high RF power (500 W; 6.37 W/cm2). As shown in FIG. 9, when RF power was 200 W, the same pressure dependency of the property of wet etch resistance as in Example 3 was observed. However, when RF power was 500 W, regardless of the pressure, the top portion of the film showed higher wet etch rates than the sidewall portion of the film, indicating that the top portion appeared to have undertaken damage by a plasma. However, the sidewall portion of the film showed low wet etch rates even when the pressure was 10 Pa, indicating that the reforming effect on the resistance to wet etching of the sidewall portion of the film began to manifest at a pressure of 10 Pa when RF power was high. Thus, if reforming is intended to be performed only for a sidewall portion of a film, slightly higher pressure (e.g., 2 to 10 Pa) can be used in combination with high RF power (e.g., 6 to 10 W/cm2).


Example 5

Substrates with insulating films were provided and subjected to the reforming treatment under the conditions described in Example 3 except that the pressure was 1 Pa, and RF power varied as shown in FIG. 10. FIG. 10 is a graph showing the RF power dependency of wet etch rate of surface-reformed insulating films deposited on a top surface, sidewall, and bottom surface of the trench. As shown in FIG. 10, when RF power was 100 W (1.27 W/cm2), the reforming effect on the resistance to wet etching of the sidewall portion of the film did not manifest, whereas when RF power was 200 W (2.55 W/cm2) or higher, the reforming effect on the resistance to wet etching of the sidewall portion of the film was significant. However, when RF power was 500 W (6.37 W/cm2) or higher, the reforming effect on the resistance to wet etching of the top portion of the film did not manifest. In some embodiments, for 300-mm substrates with a distance between electrodes of shorter than 80 mm such as 5 to 20 mm, good reforming effect can be obtained when RF power is in a range of 700 to 7,000 W (about 1 W/cm2 to 10 W/cm2). Considering that the mean free path of hydrogen ions is about 10 mm, when the distance between electrodes is in a range of 5 to 20 mm, due to increased influence of hydrogen ion bombardment, the RF power level effective to perform desired reforming treatment may be changed with reference to RF power used when the distance between electrodes is greater, such as 80 mm.


Example 6

Substrates with insulating films were provided and subjected to the reforming treatment under the conditions described in Example 3 except that the pressure was 1 Pa, and RF power was 200 W (2.55 W/cm2), and the duration of step c in FIG. 13 varied as shown in FIG. 11. FIG. 11 is a graph showing the effect of plasma treatment time of reforming treatment on thickness of insulating films on the top surfaces subjected to wet etching. As shown in FIG. 11, when the plasma treatment time was 3 minutes, the reforming effect on the resistance to wet etching of the film reached deeper in the film than when the plasma treatment time was 1 minute, indicating that the depth of the reformed portion of the film depended on the plasma treatment time. If the reforming effect reaches a portion 7 nm deep from a surface, the reforming can be accomplished in a shorter period of time when a film is thin. If the thickness of the film is about 2 nm, the plasma treatment time of 20 seconds can reform the film to provide properties which are geometrically uniform.


Example 7 (Prophetic)

On a substrate (having a diameter of 300 mm and a thickness of 0.7 mm), a SiO2 film is deposited by PEALD using a sequence illustrated in FIG. 14 under the conditions shown in Table 6 below using the apparatus illustrated in FIG. 1 except that the apparatus is equipped with a turbomolecular pump as illustrated in FIG. 12. After 100 cycles of PEALD, reforming treatment is conducted on the substrate using a sequence illustrated in FIG. 14 under the conditions shown in Table 6 below using the same apparatus. The reformed film is subjected to wet etching (dipped in a solution of DHF 1000:1 for 10 minutes) and analyzed for resistance to wet etching. While depositing the film, the dry pump is used because a large amount of gases is fed to the chamber and discharged from the chamber. Before the reforming process begins, the dry pump line is closed and the turbomolecular pump line opens. The switching of the pumps requires time, and thus, alternatively, by increasing the evacuation speed of the dry pump and decreasing the reforming gas flow rate (e.g., 3 sccm), the extremely low pressure can be realized without using the turbomolecular pump, so as to eliminate the time for switching the pumps and to shorten the overall process duration. As a result, it will be confirmed that the sidewall portion of the film has as good resistance to wet etching as does the top portion of the film.









TABLE 6







(numbers are approximate)









Conditions for Deposition Process and Reforming Process













Deposition Process
Substrate temperature
300° C.



Electrode gap
8.5 mm



Pressure
200 Pa



Carrier/Dilution gas
Ar



Flow rate of carrier/dilution gas (continuous)
1000 sccm



Precursor
BDEAS



Flow rate of precursor
5 sccm



RF power (13.56 MHz) for a 300-mm wafer
100 W



Duration of step A in FIG. 14
0.3 sec.



Duration of step B in FIG. 14
0.8 sec.



Duration of step C in FIG. 14
1.0 sec.



Duration of step D in FIG. 14
0.1 sec.



Number of cycles
100



Thickness of film
5 nm


Reforming Process
Substrate temperature
300° C.



Electrode gap
8.5 mm



Pressure during steps R to T in FIG. 14
1 Pa (using TMP)



Pressure during steps Q and U in FIG. 14
10−2 Pa (using TMP)



Flow rate of H2
25 sccm



RF power frequency
13.56 MHz



RF power
2,000 W



Duration of step P in FIG. 14
3 sec.



Duration of step Q in FIG. 14
5 sec.



Duration of step R in FIG. 14
2 sec.



Duration of step S in FIG. 14
60 sec.



Duration of step T in FIG. 14
5 sec.



Duration of step U in FIG. 14
5 sec.



Duration of step V in FIG. 14
5 sec.



Number of combined cycles
3 (i.e., the total thickness of the




film was 15 nm)









Example 8 (Prophetic)

In this example, a SiN film is deposited by PECVD, transferred to another chamber for reforming treatment (atmospheric exposure), and then subjected to reforming treatment using a H2 plasma.


A substrate having a diameter of 300 mm with trenches each having an opening width of 50 nm and a depth of 300 nm is provided. The substrate is loaded in a reaction chamber for deposition, and a SiN film having a thickness of 15 nm is deposited on the substrate in the reaction chamber by PECVD using an RF power of 500 W at 350° C. using SiH4 and NH3 as a process gas. The substrate with the SiN film is then exposed to the atmosphere and transferred to a reaction chamber for plasma treatment which is evacuatable to a desired low pressure using a turbomolecular pump and is equipped with parallel plate electrodes. A susceptor is controlled at a temperature of 150° C., and a pressure of the reaction chamber is controlled at 1 Pa using H2 flowing at a rate of 25 sccm, and RF power (13.56 MHz) of 2 kW is applied to the electrodes for 3 minutes, thereby exposing the film to a H2 plasma. The resultant SiN film on the substrate has a decreased hydrogen content as compared with that of the SiN film as deposited, thereby rendering the film high-quality, particularly at the sidewalls of the trenches. In the above, the reaction chamber for deposition and the reaction chamber for plasma treatment both have configurations corresponding to those illustrated in FIG. 1, and exhausting the former chamber is conducted using a dry pump whereas exhausting the latter chamber is conducted using a turbomolecular pump.


Example 9 (Prophetic)

In this example, a SiO2 film is deposited by PEALD, transferred to another chamber for reforming treatment (without atmospheric exposure), and then subjected to reforming treatment using a He/H2 plasma.


A substrate having a diameter of 300 mm with holes each having an opening diameter of 30 nm and a depth of 300 nm is provided. The substrate is loaded in a reaction chamber for deposition, and a SiO2 film having a thickness of 5 nm is deposited on the substrate in the reaction chamber by PEALD at a substrate temperature of 300° C. using BDMAS (bisdimethylaminosilane) and an O2 plasma. The substrate with the SiO2 film is then transferred to a reaction chamber for plasma treatment (while continuously maintaining a vacuum without atmospheric exposure) which is evacuatable to a desired low pressure using a turbomolecular pump and is equipped with parallel plate electrodes. A susceptor is controlled at a temperature of 300° C., and a pressure of the reaction chamber is controlled at 1 Pa using He flowing at a rate of 20 sccm and H2 flowing at a rate of 25 sccm, and RF power (13.56 MHz) of 2 kW is applied to the electrodes for 3 minutes, thereby exposing the film to a He/H2 plasma. The resultant SiO2 film on the substrate has high quality as compared with the SiO2 film as deposited, particularly at the sidewalls of the holes. In the above, by additionally feeding N2 at 1 sccm to the reaction chamber for plasma treatment deposition, a further reduction of hydrogen impurities can be realized.


Example 10 (Prophetic)

In this example, a SiO2 film is deposited by PEALD, transferred to another chamber for reforming treatment (without atmospheric exposure), and then subjected to reforming treatment using a He/H2 plasma.


A substrate having a diameter of 300 mm with trenches each having an opening width of 100 nm and a depth of 2000 nm is provided. The substrate is loaded in a reaction chamber for deposition, and a SiO2 film having a thickness of 5 nm is deposited on the substrate in the reaction chamber by PEALD at a substrate temperature of 300° C. using BDMAS (bisdimethylaminosilane) and an O2 plasma. The substrate with the SiO2 film is then transferred to a reaction chamber for plasma treatment (while continuously maintaining a vacuum without atmospheric exposure) which is evacuatable to a desired low pressure using a turbomolecular pump and is equipped with parallel plate electrodes. A susceptor is controlled at a temperature of 300° C., and a pressure of the reaction chamber is controlled at 1 Pa using He flowing at a rate of 20 sccm and H2 flowing at a rate of 25 sccm, and RF power (13.56 MHz) of 2 kW is applied to the electrodes for 3 minutes, thereby exposing the film to a He/H2 plasma. The resultant SiO2 film on the substrate has high quality as compared with the SiO2 film as deposited, particularly at the sidewalls of the trenches. In the above, alternatively, by feeding H2 at 20 sccm and Ar at 5 sccm to the reaction chamber for plasma treatment deposition, reforming effect at the sidewalls can also be confirmed.


Example 11 (Prophetic)

In this example, an AlN film is deposited by PEALD, transferred to another chamber for reforming treatment (without atmospheric exposure), and then subjected to reforming treatment using a He plasma, and the above processes are repeated.


A substrate having a diameter of 300 mm with trenches each having an opening width of 100 nm and a depth of 2000 nm is provided. The substrate is loaded in a reaction chamber for deposition, and an AlN film having a thickness of 5 nm is deposited on the substrate in the reaction chamber by PEALD at a substrate temperature of 400° C. using TMA (trimethylaluminum) and an NH3 plasma. The substrate with the AlN film is then transferred to a reaction chamber for plasma treatment (while continuously maintaining a vacuum without atmospheric exposure) which is evacuatable to a desired low pressure using a turbomolecular pump and is equipped with parallel plate electrodes. A pressure of the reaction chamber is controlled at 1 Pa using He flowing at a rate of 25 sccm, and RF power (13.56 MHz) of 2 kW is applied to the electrodes for 2 minutes, thereby exposing the film to a He plasma. The substrate with the treated AlN film is then transferred back to the reaction chamber for deposition to deposit a second AlN film having a thickness of 5 nm thereon. The substrate with the second AlN film is then transferred back to the reaction chamber for plasma treatment to expose the second AlN film to a He plasma for three minutes. The resultant first and second AlN films on the substrate have high quality as compared with the AlN film as deposited, particularly at the sidewalls of the trenches.


Example 12 (Prophetic)

In this example, a bottom portion of a SiO2 film is selectively kept in a trench. A substrate having a diameter of 300 mm with trenches is provided, which trenches are covered with a SiO2 film, wherein a bottom portion of the film (having a thickness of 25 nm) is significantly thicker than a top portion (having a thickness of 10 nm) and a sidewall portion (having a thickness of 5 nm) as illustrated in FIG. 15 (A). Such a film profile can be achieved by using gap-fill CVD method or reflow method which is known in the art. Next, the substrate is transferred to a reaction chamber for reforming treatment, where a pressure of the reaction chamber is controlled at 1 Pa using H2 flowing at a rate of 25 sccm, and RF power (60 MHz) of 4 kW is applied to the electrodes for 2 minutes, thereby exposing the film to a H2 plasma for five minutes as illustrated in FIG. 15 (B). All the portions of the film are reformed. Next, the substrate is transferred to a chamber for etching, wherein wet etching is conducted by adjusting a duration of wet etching. For example, wet etching is conducted using a DHF (100:1) for two minutes. As a result, only the bottom portion of the film is selectively left as illustrated in FIG. 15 (C). In the reforming treatment, by properly setting plasma conditions, reforming progresses at a lower portion more than at an upper portion of the film, and further, by adjusting plasma power, etc., the thickness of a portion of the film consequently left in the trenches can be adjusted. In this example, a reformed bottom portion of the film can be selectively formed.


It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims
  • 1. A method of reforming a conformal insulating film deposited on a substrate having a recess pattern constituted by a bottom and sidewalls, comprising: (i) providing the film deposited on the substrate having the recess pattern in an evacuatable reaction chamber, wherein a wet-etching property of a portion of the film deposited on the sidewalls is inferior to that of a portion of the film deposited on a top surface of the substrate;(ii) adjusting a pressure of an atmosphere of the reaction chamber to 10 Pa or less, which atmosphere is constituted by H2 and/or He without a precursor and without a reactant; and(iii) applying RF power to the atmosphere of the pressure-adjusted reaction chamber to generate a plasma to which the film is exposed, thereby reforming the portion of the film deposited on the sidewalls, without forming a film, to improve the property of the sidewall portion of the film.
  • 2. The method according to claim 1, wherein the pressure of the atmosphere of the reaction chamber is 2 Pa or less.
  • 3. The method according to claim 1, wherein in step (iii), RF power is applied at a power of 2 W/cm2 or higher relative to the top surface of the substrate.
  • 4. The method according to claim 1, wherein in step (ii), the atmosphere of the reaction chamber further contains N2 at a concentration of 1% or less.
  • 5. The method according to claim 1, wherein in step (i), a pressure of an atmosphere of the reaction chamber is controlled using a dry pump connected to the reaction chamber, and in step (ii), the pressure of the atmosphere of the reaction chamber is controlled using a turbomolecular pump connected to the reaction chamber.
  • 6. The method according to claim 1, wherein in step (iii), the reforming of the portion of the film is accomplished by removing hydrogen contained in the film as an impurity, using the plasma.
  • 7. The method according to claim 1, wherein in step (i), the film has a thickness of 10 nm or less.
  • 8. The method according to claim 1, wherein step (iii) is conducted until the property of the sidewall portion of the film is improved to be substantially equivalent to the property of a portion of the film deposited on the bottom of the recess pattern or a top surface of the substrate.
  • 9. The method according to claim 1, wherein the property of the film is resistance to wet etching.
  • 10. The method according to claim 1, wherein the film is an oxide film or nitride film.
  • 11. The method according to claim 10, wherein the film is selected from the group consisting of SiO2, SiN, SiOC, SiCN, GeOx, GeN, AlOx, AlN, TiO2, and TaO2.
  • 12. The method according to claim 1, wherein step (i) comprises depositing the film in the reaction chamber by cyclic deposition.
  • 13. The method according to claim 12, wherein the film is deposited by one cycle or multiple cycles of the cyclic deposition.
  • 14. The method according to claim 13, wherein the cyclic deposition is plasma-enhanced atomic layer deposition (PEALD).
  • 15. The method according to claim 13, wherein steps (i) through (iii) are repeated.
  • 16. The method according to claim 1, further comprising, between steps (i) and (ii), evacuating the reaction chamber to reduce the pressure to less than the pressure used in step (ii).
  • 17. The method according to claim 1, wherein in step (ii), the atmosphere contains no gas other than H2, He, and N2.
  • 18. The method according to claim 17, wherein the atmosphere consists of H2.
  • 19. The method according to claim 1, wherein the recess pattern is constituted by trenches having a width of 20 nm to 100 nm and an aspect ratio of 2 to 10.
  • 20. The method according to claim 1, wherein in step (iii), RF power is applied to an upper electrode which is capacitively coupled with a lower electrode on which the substrate is placed.
  • 21. The method according to claim 1, wherein in step (i), a portion of the film deposited on the bottom of the recess pattern is thicker than the portion at the sidewalls of the recess pattern and the portion at the top surface of the substrate.
US Referenced Citations (2563)
Number Name Date Kind
D30036 Rhind Jan 1899 S
D31889 Gill Nov 1899 S
D56051 Cohn Aug 1920 S
2059480 Obermaier Nov 1936 A
2161626 Loughner et al. Jun 1939 A
2266416 Duclos Dec 1941 A
2280778 Anderson Apr 1942 A
2410420 Bennett Nov 1946 A
2563931 Harrison Aug 1951 A
2660061 Lewis Nov 1953 A
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3038951 Mead Jun 1962 A
3089507 Drake et al. May 1963 A
3094396 Flugge et al. Jun 1963 A
3232437 Hultgren Feb 1966 A
3263502 Springfield Aug 1966 A
3410349 Troutman Nov 1968 A
3588192 Drutchas et al. Jun 1971 A
3647387 Benson Mar 1972 A
3647716 Koches Mar 1972 A
3713899 Sebestyen Jan 1973 A
3718429 Williamson Feb 1973 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3867205 Schley Feb 1975 A
3885504 Baermann May 1975 A
3887790 Ferguson Jun 1975 A
3904371 Neti Sep 1975 A
3913058 Nishio et al. Oct 1975 A
3913617 van Laar Oct 1975 A
3947685 Meinel Mar 1976 A
3960559 Suzuki Jun 1976 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4093491 Whelpton et al. Jun 1978 A
D249341 Mertz Sep 1978 S
4126027 Smith et al. Nov 1978 A
4134425 Gussefeld et al. Jan 1979 A
4145699 Hu et al. Mar 1979 A
4164959 Wurzburger Aug 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4217463 Swearingen Aug 1980 A
4234449 Wolson et al. Nov 1980 A
4322592 Martin Mar 1982 A
4333735 Hardy Jun 1982 A
4355912 Haak Oct 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4401507 Engle Aug 1983 A
4414492 Hanlet Nov 1983 A
4436674 McMenamin Mar 1984 A
4444990 Villar Apr 1984 A
4454370 Voznick Jun 1984 A
4455193 Jeuch et al. Jun 1984 A
4466766 Geren et al. Aug 1984 A
4479831 Sandow Oct 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4527005 McKelvey et al. Jul 1985 A
4537001 Uppstrom Aug 1985 A
4548688 Mathews Oct 1985 A
4570328 Price et al. Feb 1986 A
4575636 Caprari Mar 1986 A
4578560 Tanaka et al. Mar 1986 A
4579378 Snyders Apr 1986 A
4579623 Suzuki et al. Apr 1986 A
4590326 Woldy May 1986 A
4611966 Johnson Sep 1986 A
4620998 Lalvani Nov 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4654226 Jackson et al. Mar 1987 A
4664769 Cuomo et al. May 1987 A
4681134 Paris Jul 1987 A
4718637 Contin Jan 1988 A
4721533 Phillippi et al. Jan 1988 A
4722298 Rubin et al. Feb 1988 A
4724272 Raniere et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4749416 Greenspan Jun 1988 A
4753192 Goldsmith et al. Jun 1988 A
4756794 Yoder Jul 1988 A
4771015 Kanai Sep 1988 A
4780169 Stark et al. Oct 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4830515 Cortes May 1989 A
4837113 Luttmer et al. Jun 1989 A
4837185 Yau et al. Jun 1989 A
4854263 Chang et al. Aug 1989 A
4854266 Simson et al. Aug 1989 A
4857137 Tashiro et al. Aug 1989 A
4857382 Sheng et al. Aug 1989 A
4882199 Sadoway et al. Nov 1989 A
4916091 Freeman et al. Apr 1990 A
4934831 Volbrecht Jun 1990 A
4949848 Kos Aug 1990 A
D311126 Crowley Oct 1990 S
4976996 Monkowski et al. Dec 1990 A
4978567 Miller Dec 1990 A
4984904 Nakano et al. Jan 1991 A
4985114 Okudaira Jan 1991 A
4986215 Yamada Jan 1991 A
4987856 Hey Jan 1991 A
4989992 Piai Feb 1991 A
4991614 Hammel Feb 1991 A
5013691 Lory et al. May 1991 A
5027746 Frijlink Jul 1991 A
5028366 Harakal et al. Jul 1991 A
5057436 Ball Oct 1991 A
5060322 Delepine Oct 1991 A
5061083 Grimm et al. Oct 1991 A
5062386 Christensen Nov 1991 A
5065698 Koike Nov 1991 A
5071258 Usher et al. Dec 1991 A
5074017 Toya et al. Dec 1991 A
5098638 Sawada Mar 1992 A
5098865 Machado Mar 1992 A
5104514 Quartarone Apr 1992 A
5108192 Mailliet et al. Apr 1992 A
5116018 Friemoth et al. May 1992 A
D327534 Manville Jun 1992 S
5119760 McMillan et al. Jun 1992 A
5130003 Conrad Jul 1992 A
5137286 Whitford Aug 1992 A
5154301 Kos Oct 1992 A
5158128 Inoue et al. Oct 1992 A
5167716 Boitnott et al. Dec 1992 A
5176451 Sasada Jan 1993 A
5178682 Tsukamoto et al. Jan 1993 A
5181779 Shia et al. Jan 1993 A
5183511 Yamazaki et al. Feb 1993 A
5192717 Kawakami Mar 1993 A
5194401 Adams et al. Mar 1993 A
5199603 Prescott Apr 1993 A
5213650 Wang et al. May 1993 A
5221556 Hawkins et al. Jun 1993 A
5225366 Yoder et al. Jul 1993 A
5226383 Bhat Jul 1993 A
5228114 Suzuki Jul 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5243202 Mori et al. Sep 1993 A
5246218 Yap et al. Sep 1993 A
5246500 Samata et al. Sep 1993 A
5259881 Edwards et al. Nov 1993 A
5266526 Aoyama Nov 1993 A
5271967 Kramer et al. Dec 1993 A
5278494 Obigane Jan 1994 A
5284519 Gadgil Feb 1994 A
5288684 Yamazaki et al. Feb 1994 A
5294778 Carman et al. Mar 1994 A
5306666 Izumi Apr 1994 A
5306946 Yamamoto Apr 1994 A
5310456 Kadomura May 1994 A
5314570 Ikegaya et al. May 1994 A
5315092 Takahashi et al. May 1994 A
5326427 Jerbic Jul 1994 A
5336327 Lee Aug 1994 A
5354580 Goela et al. Oct 1994 A
5356478 Chen et al. Oct 1994 A
5356672 Schmitt et al. Oct 1994 A
5360269 Ogawa et al. Nov 1994 A
5364667 Rhieu Nov 1994 A
D353452 Groenhoff Dec 1994 S
5374315 Deboer et al. Dec 1994 A
5380367 Bertone Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5388945 Garric et al. Feb 1995 A
5404082 Hernandez et al. Apr 1995 A
5407449 Zinger Apr 1995 A
5413813 Cruse et al. May 1995 A
5414221 Gardner May 1995 A
5415753 Hurwitt et al. May 1995 A
5421893 Perlov Jun 1995 A
5422139 Fischer Jun 1995 A
5423942 Robbins et al. Jun 1995 A
5430011 Tanaka et al. Jul 1995 A
5444217 Moore Aug 1995 A
5453124 Moslehi et al. Sep 1995 A
5494494 Mizuno et al. Feb 1996 A
5496408 Motoda et al. Mar 1996 A
5504042 Cho et al. Apr 1996 A
5514439 Sibley May 1996 A
5518549 Hellwig May 1996 A
5523616 Yasuhide Jun 1996 A
5527111 Lysen et al. Jun 1996 A
5527417 Iida et al. Jun 1996 A
5531835 Fodor et al. Jul 1996 A
5540898 Davidson Jul 1996 A
5558717 Zhao et al. Sep 1996 A
5559046 Oishi et al. Sep 1996 A
5574247 Nishitani et al. Nov 1996 A
5576629 Turner Nov 1996 A
5577331 Suzuki Nov 1996 A
5583736 Anderson et al. Dec 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5595606 Fujikawa et al. Jan 1997 A
5601641 Stephens Feb 1997 A
5604410 Vollkommer et al. Feb 1997 A
5616264 Nishi et al. Apr 1997 A
5616947 Tamura Apr 1997 A
5621982 Yamashita Apr 1997 A
5632919 MacCracken et al. May 1997 A
D380527 Velez Jul 1997 S
5656093 Burkhart et al. Aug 1997 A
5663899 Zvonar et al. Sep 1997 A
5665608 Chapple-Sokol et al. Sep 1997 A
5679215 Barnes et al. Oct 1997 A
5681779 Pasch et al. Oct 1997 A
5683517 Shan Nov 1997 A
5695567 Kordina Dec 1997 A
5697706 Ciaravino et al. Dec 1997 A
5700729 Lee et al. Dec 1997 A
5708825 Sotomayor Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5716133 Hosokawa et al. Feb 1998 A
5718574 Shimazu Feb 1998 A
D392855 Pillow Mar 1998 S
5724748 Brooks Mar 1998 A
5728223 Murakarni et al. Mar 1998 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5753835 Gustin May 1998 A
5761328 Solberg et al. Jun 1998 A
5777838 Tamagawa et al. Jul 1998 A
5779203 Edlinger Jul 1998 A
5781693 Balance et al. Jul 1998 A
5782979 Kaneno Jul 1998 A
5791782 Wooten et al. Aug 1998 A
5792272 Van Os et al. Aug 1998 A
5796074 Edelstein et al. Aug 1998 A
5801104 Schuegraf et al. Sep 1998 A
5806980 Berrian Sep 1998 A
5813851 Nakao Sep 1998 A
5819092 Ferguson et al. Oct 1998 A
5819434 Herchen et al. Oct 1998 A
5827435 Seiji Oct 1998 A
5827757 Robinson, Jr. et al. Oct 1998 A
5836483 Disel Nov 1998 A
5837058 Chen et al. Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5844683 Pavloski et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5851294 Young et al. Dec 1998 A
5852879 Schumaier Dec 1998 A
5853484 Jeong Dec 1998 A
5855680 Soininen et al. Jan 1999 A
5855681 Maydan et al. Jan 1999 A
5857777 Schuh Jan 1999 A
5863123 Lee Jan 1999 A
5865205 Wilmer Feb 1999 A
5873942 Park Feb 1999 A
5877095 Tamura et al. Mar 1999 A
5879128 Tietz et al. Mar 1999 A
5884640 Fishkin et al. Mar 1999 A
D409894 McClurg May 1999 S
5908672 Ryu Jun 1999 A
5916365 Sherman Jun 1999 A
D412270 Fredrickson Jul 1999 S
5920798 Higuchi et al. Jul 1999 A
5937323 Orczyk et al. Aug 1999 A
5947718 Weaver Sep 1999 A
5954375 Trickle et al. Sep 1999 A
5961775 Fujimura Oct 1999 A
5968275 Lee et al. Oct 1999 A
5970621 Bazydola Oct 1999 A
5975492 Brenes Nov 1999 A
5979506 Aarseth Nov 1999 A
5982931 Ishimaru Nov 1999 A
5984391 Vanderpot et al. Nov 1999 A
5987480 Donohue et al. Nov 1999 A
5997588 Goodwin Dec 1999 A
5997768 Scully Dec 1999 A
5998870 Lee et al. Dec 1999 A
6001267 Van Os et al. Dec 1999 A
D419652 Hall et al. Jan 2000 S
6013553 Wallace Jan 2000 A
6013920 Gordon et al. Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6017779 Miyasaka Jan 2000 A
6017818 Lu Jan 2000 A
6024799 Chen Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6042652 Hyun Mar 2000 A
6044860 Nue Apr 2000 A
6045260 Schwartz et al. Apr 2000 A
6048154 Wytman Apr 2000 A
6050506 Guo et al. Apr 2000 A
6054678 Miyazaki Apr 2000 A
6060691 Minami et al. May 2000 A
6060721 Huang May 2000 A
6068441 Raaijmakers et al. May 2000 A
6072163 Armstrong Jun 2000 A
6073973 Boscaljon et al. Jun 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6091062 Pfahnl et al. Jul 2000 A
6093252 Wengert et al. Jul 2000 A
6093253 Lofgren Jul 2000 A
6096267 Kishkovich Aug 2000 A
6099302 Hong et al. Aug 2000 A
6102565 Kita et al. Aug 2000 A
6104011 Juliano Aug 2000 A
6104401 Parsons Aug 2000 A
6106678 Shufflebotham Aug 2000 A
6119710 Brown Sep 2000 A
6121061 Van Bilsen et al. Sep 2000 A
6121158 Benchikha et al. Sep 2000 A
6122036 Yamasaki et al. Sep 2000 A
6124600 Moroishi et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6126848 Li et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6129546 Sada Oct 2000 A
6134807 Komino Oct 2000 A
6137240 Bogdan et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6158941 Muka et al. Dec 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6162323 Koshimizu et al. Dec 2000 A
6174809 Kang et al. Jan 2001 B1
6178918 Van Os et al. Jan 2001 B1
6180979 Hofman et al. Jan 2001 B1
6187672 Zhao Feb 2001 B1
6187691 Fukuda Feb 2001 B1
6190634 Lieber et al. Feb 2001 B1
6191399 Van Bilsen Feb 2001 B1
6194037 Terasaki et al. Feb 2001 B1
6201999 Jevtic Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6207932 Yoo Mar 2001 B1
6212789 Kato Apr 2001 B1
6214122 Thompson Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6218288 Li et al. Apr 2001 B1
6225020 Jung et al. May 2001 B1
6235858 Swamp et al. May 2001 B1
6242359 Misra Jun 2001 B1
6243654 Johnson et al. Jun 2001 B1
6245665 Yokoyama Jun 2001 B1
6250250 Maishev et al. Jun 2001 B1
6257758 Culbertson Jul 2001 B1
6264467 Andreas et al. Jul 2001 B1
6271148 Kao Aug 2001 B1
6274878 Li et al. Aug 2001 B1
6281098 Wang Aug 2001 B1
6281141 Das et al. Aug 2001 B1
6284050 Shi et al. Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6293700 Lund et al. Sep 2001 B1
D449873 Bronson Oct 2001 S
6296909 Spitsberg Oct 2001 B1
6299133 Waragai et al. Oct 2001 B2
6302964 Umotoy et al. Oct 2001 B1
6303523 Cheung Oct 2001 B2
6305898 Yamagishi et al. Oct 2001 B1
6311016 Yanagawa et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6315512 Tabrizi et al. Nov 2001 B1
6316162 Jung et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6325858 Wengert Dec 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6329297 Balish Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6344084 Koinuma et al. Feb 2002 B1
6344232 Jones et al. Feb 2002 B1
6347636 Xia Feb 2002 B1
6350391 Livshits et al. Feb 2002 B1
6352945 Matsuki Mar 2002 B1
D455024 Mimick et al. Apr 2002 S
6367410 Leahey et al. Apr 2002 B1
6368773 Jung et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6370796 Zucker Apr 2002 B1
6372583 Tyagi Apr 2002 B1
6374831 Chandran Apr 2002 B1
6375312 Ikeda et al. Apr 2002 B1
6375750 Van Os et al. Apr 2002 B1
D457609 Piano May 2002 S
6383566 Zagdoun May 2002 B1
6383955 Matsuki May 2002 B1
6387207 Janakiraman May 2002 B1
6391803 Kim et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6398184 Sowada et al. Jun 2002 B1
6410459 Blalock et al. Jun 2002 B2
6413321 Kim et al. Jul 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
D461233 Whalen Aug 2002 S
D461882 Piano Aug 2002 S
6432849 Endo et al. Aug 2002 B1
6435798 Satoh Aug 2002 B1
6435865 Tseng et al. Aug 2002 B1
6436819 Zhang Aug 2002 B1
6437444 Andideh Aug 2002 B2
6438502 Awtrey Aug 2002 B1
6441350 Stoddard et al. Aug 2002 B1
6445574 Saw et al. Sep 2002 B1
6446573 Hirayama et al. Sep 2002 B2
6447232 Davis et al. Sep 2002 B1
6447651 Ishikawa et al. Sep 2002 B1
6448192 Kaushik Sep 2002 B1
6450757 Saeki Sep 2002 B1
6451713 Tay et al. Sep 2002 B1
6454860 Metzner et al. Sep 2002 B2
6455225 Kong et al. Sep 2002 B1
6455445 Matsuki Sep 2002 B2
6461435 Littau et al. Oct 2002 B1
6468924 Lee Oct 2002 B2
6471779 Nishio et al. Oct 2002 B1
6472266 Yu et al. Oct 2002 B1
6475276 Elers et al. Nov 2002 B1
6475930 Junker et al. Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6482663 Buckland Nov 2002 B1
6483989 Okada et al. Nov 2002 B1
6494065 Babbitt Dec 2002 B2
6494998 Brcka Dec 2002 B1
6496819 Bello et al. Dec 2002 B1
6499533 Yamada Dec 2002 B2
6503079 Kogano et al. Jan 2003 B2
6503562 Saito et al. Jan 2003 B1
6503826 Oda Jan 2003 B1
6506253 Sakuma Jan 2003 B2
6507410 Robertson et al. Jan 2003 B1
6511539 Raaijmakers Jan 2003 B1
6514313 Spiegelman Feb 2003 B1
6514666 Choi et al. Feb 2003 B1
6521295 Remington Feb 2003 B1
6521547 Chang et al. Feb 2003 B1
6528430 Kwan Mar 2003 B2
6528767 Bagley et al. Mar 2003 B2
6531193 Fonash et al. Mar 2003 B2
6531412 Conti et al. Mar 2003 B2
6534133 Kaloyeros et al. Mar 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6536950 Green Mar 2003 B1
6544906 Rotondaro et al. Apr 2003 B2
6552209 Lei et al. Apr 2003 B1
6558755 Berry et al. May 2003 B2
6559026 Rossman et al. May 2003 B1
6566278 Harvey et al. May 2003 B1
6569239 Arai et al. May 2003 B2
6569971 Roh et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6574644 Hsu et al. Jun 2003 B2
6576062 Matsuse Jun 2003 B2
6576064 Griffiths et al. Jun 2003 B2
6576300 Berry et al. Jun 2003 B1
6576564 Agarwal Jun 2003 B2
6578589 Mayusumi Jun 2003 B1
6579833 McNallan et al. Jun 2003 B1
6580050 Miller et al. Jun 2003 B1
6583048 Vincent et al. Jun 2003 B1
6589707 Lee et al. Jul 2003 B2
6589868 Rossman Jul 2003 B2
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6596653 Tan Jul 2003 B2
6598559 Vellore et al. Jul 2003 B1
6607868 Choi Aug 2003 B2
6607948 Sugiyama et al. Aug 2003 B1
6608745 Tsuruta et al. Aug 2003 B2
6620251 Kitano Sep 2003 B2
6624064 Sahin Sep 2003 B1
6627268 Fair et al. Sep 2003 B1
6627503 Ma et al. Sep 2003 B2
6632478 Gaillard et al. Oct 2003 B2
6633364 Hayashi Oct 2003 B2
6635117 Kinnard et al. Oct 2003 B1
6638839 Deng et al. Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6649921 Cekic et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6656281 Ueda Dec 2003 B1
6660662 Ishikawa et al. Dec 2003 B2
6662817 Yamagishi Dec 2003 B2
6673196 Oyabu Jan 2004 B1
6676290 Lu Jan 2004 B1
6682971 Tsuneda et al. Jan 2004 B2
6682973 Paton et al. Jan 2004 B1
D486891 Cronce Feb 2004 S
6684659 Tanaka et al. Feb 2004 B1
6688784 Templeton Feb 2004 B1
6689220 Nguyen Feb 2004 B1
6692575 Omstead et al. Feb 2004 B1
6692576 Halpin et al. Feb 2004 B2
6699003 Saeki Mar 2004 B2
6699399 Qian et al. Mar 2004 B1
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6710857 Kondo Mar 2004 B2
6713824 Mikata Mar 2004 B1
6716571 Gabriel Apr 2004 B2
6720260 Fair et al. Apr 2004 B1
6722837 Inui Apr 2004 B2
6723642 Lim et al. Apr 2004 B1
6730614 Lim et al. May 2004 B1
6732006 Haanstra et al. May 2004 B2
6734090 Agarwala et al. May 2004 B2
6740853 Kitayama et al. May 2004 B1
6743475 Skarp et al. Jun 2004 B2
6743738 Todd et al. Jun 2004 B2
6745095 Ben-Dov Jun 2004 B1
6753507 Fure et al. Jun 2004 B2
6755221 Jeong et al. Jun 2004 B2
6756085 Waldfried Jun 2004 B2
6756293 Li et al. Jun 2004 B2
6756318 Nguyen et al. Jun 2004 B2
6759098 Han Jul 2004 B2
6760981 Leap Jul 2004 B2
6784108 Donohoe et al. Aug 2004 B1
D497977 Engelbrektsson Nov 2004 S
6811960 Lee et al. Nov 2004 B2
6815350 Kim et al. Nov 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6828235 Takano Dec 2004 B2
6831004 Byun Dec 2004 B2
6835039 Van Den Berg Dec 2004 B2
6846146 Inui Jan 2005 B2
6846515 Vrtis Jan 2005 B2
6846742 Rossman Jan 2005 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6863281 Endou et al. Mar 2005 B2
6864041 Brown Mar 2005 B2
6872258 Park et al. Mar 2005 B2
6872259 Strang Mar 2005 B2
6874247 Hsu Apr 2005 B1
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6876017 Goodner Apr 2005 B2
6878402 Chiang et al. Apr 2005 B2
6884066 Nguyen et al. Apr 2005 B2
6884295 Ishii Apr 2005 B2
6884319 Kim Apr 2005 B2
D505590 Greiner May 2005 S
6889211 Yoshiura et al. May 2005 B1
6889864 Lindfors et al. May 2005 B2
6895158 Alyward et al. May 2005 B2
6899507 Yamagishi et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6911092 Sneh Jun 2005 B2
6913152 Zuk Jul 2005 B2
6913796 Albano et al. Jul 2005 B2
6917755 Nguyen et al. Jul 2005 B2
6924078 Lee et al. Aug 2005 B2
6929700 Tan et al. Aug 2005 B2
6930041 Agarwal Aug 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6939817 Sandhu et al. Sep 2005 B2
6942753 Choi et al. Sep 2005 B2
6951587 Narushima Oct 2005 B1
6953609 Carollo Oct 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972055 Sferlazzo Dec 2005 B2
6972478 Waite et al. Dec 2005 B1
6974781 Timmermans et al. Dec 2005 B2
6975921 Verhaar Dec 2005 B2
6976822 Woodruff Dec 2005 B2
6981832 Zinger et al. Jan 2006 B2
6982046 Srivastava et al. Jan 2006 B2
6984595 Yamazaki Jan 2006 B1
6985788 Haanstra et al. Jan 2006 B2
6987155 Roh et al. Jan 2006 B2
6990430 Hosek Jan 2006 B2
7005227 Yueh et al. Feb 2006 B2
7005391 Min Feb 2006 B2
7010580 Fu et al. Mar 2006 B1
7017514 Shepherd et al. Mar 2006 B1
7018941 Cui et al. Mar 2006 B2
7021881 Yamagishi Apr 2006 B2
7036453 Ishikawa et al. May 2006 B2
7041609 Vaartstra May 2006 B2
7045430 Ahn et al. May 2006 B2
7049247 Gates et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7055875 Bonora Jun 2006 B2
7062161 Kusuda et al. Jun 2006 B2
7070178 Van Der Toorn et al. Jul 2006 B2
7071051 Jeon et al. Jul 2006 B1
7073834 Matsumoto et al. Jul 2006 B2
7080545 Dimeo et al. Jul 2006 B2
7084060 Furukawa Aug 2006 B1
7084079 Conti et al. Aug 2006 B2
7085623 Siegers Aug 2006 B2
7088003 Gates et al. Aug 2006 B2
7090394 Hashikura et al. Aug 2006 B2
7092287 Beulens et al. Aug 2006 B2
7098149 Lukas Aug 2006 B2
7101763 Anderson et al. Sep 2006 B1
7109098 Ramaswamy et al. Sep 2006 B1
7109114 Chen et al. Sep 2006 B2
7111232 Bascom Sep 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7122222 Xiao et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7143897 Guzman et al. Dec 2006 B1
7147766 Uzoh et al. Dec 2006 B2
7153542 Nguyen et al. Dec 2006 B2
7156380 Soininen Jan 2007 B2
7163393 Adachi et al. Jan 2007 B2
7163721 Zhang et al. Jan 2007 B2
7163900 Weber Jan 2007 B2
7168852 Linnarsson Jan 2007 B2
7172497 Basol et al. Feb 2007 B2
7186648 Rozbicki Mar 2007 B1
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7201943 Park et al. Apr 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205246 MacNeil et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7207763 Lee Apr 2007 B2
7208389 Tipton et al. Apr 2007 B1
7210925 Adachi May 2007 B2
7211524 Ryu et al. May 2007 B2
7211525 Shanker May 2007 B1
7214630 Varadarajan et al. May 2007 B1
7223014 Lojen May 2007 B2
7208413 Byun et al. Jun 2007 B2
7234476 Arai Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7235482 Wu Jun 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
7238616 Agarwal Jul 2007 B2
7238653 Lee et al. Jul 2007 B2
7265061 Cho et al. Sep 2007 B1
7274867 Peukert Sep 2007 B2
D553104 Oohashi et al. Oct 2007 S
7279256 Son Oct 2007 B2
7290813 Bonora Nov 2007 B2
7294581 Haverkort et al. Nov 2007 B2
7296460 Dimeo et al. Nov 2007 B2
7297641 Todd et al. Nov 2007 B2
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7307028 Goto et al. Dec 2007 B2
7307178 Kiyomori et al. Dec 2007 B2
7312148 Ramaswamy et al. Dec 2007 B2
7312162 Ramaswamy et al. Dec 2007 B2
7312494 Ahn et al. Dec 2007 B2
7320544 Hsieh Jan 2008 B2
7323401 Ramaswamy et al. Jan 2008 B2
7326657 Xia et al. Feb 2008 B2
7327948 Shrinivasan Feb 2008 B1
7329947 Adachi et al. Feb 2008 B2
7335611 Ramaswamy et al. Feb 2008 B2
7351057 Berenbak et al. Apr 2008 B2
7354847 Chan et al. Apr 2008 B2
7354873 Fukazawa et al. Apr 2008 B2
7356762 van Driel Apr 2008 B2
7357138 Ji et al. Apr 2008 B2
7361447 Jung Apr 2008 B2
7376520 Wong May 2008 B2
7379785 Higashi et al. May 2008 B2
7381644 Soubramonium et al. Jun 2008 B1
7387685 Choi et al. Jun 2008 B2
7393207 Imai Jul 2008 B2
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7393765 Hanawa et al. Jul 2008 B2
7396491 Marking et al. Jul 2008 B2
7399388 Moghadam et al. Jul 2008 B2
7399570 Lee et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
D575713 Ratcliffe Aug 2008 S
7410290 Tanaka Aug 2008 B2
7410666 Elers Aug 2008 B2
7411352 Madocks Aug 2008 B2
7414281 Fastow Aug 2008 B1
D576001 Brunderman Sep 2008 S
7422635 Zheng et al. Sep 2008 B2
7422653 Blahnik et al. Sep 2008 B2
7422775 Ramaswamy et al. Sep 2008 B2
7429532 Ramaswamy et al. Sep 2008 B2
7431966 Derderian et al. Oct 2008 B2
7432476 Morita et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7467632 Lee et al. Dec 2008 B2
7475588 Dimeo et al. Jan 2009 B2
7476291 Wang et al. Jan 2009 B2
7479198 Guffrey Jan 2009 B2
7482247 Papasouliotis Jan 2009 B1
7482283 Yamasaki et al. Jan 2009 B2
D585968 Elkins et al. Feb 2009 S
7489389 Shibazaki et al. Feb 2009 B2
7494882 Vitale Feb 2009 B2
7497614 Gaff Mar 2009 B2
7498242 Kumar et al. Mar 2009 B2
7501292 Matsushita et al. Mar 2009 B2
7501355 Bhatia et al. Mar 2009 B2
7503980 Kida et al. Mar 2009 B2
D590933 Vansell Apr 2009 S
7514375 Shanker et al. Apr 2009 B1
7541297 Mallick et al. Apr 2009 B2
D593969 Li Jun 2009 S
7547363 Tomiyasu et al. Jun 2009 B2
7547633 Ravish et al. Jun 2009 B2
7550396 Frohberg et al. Jun 2009 B2
7561982 Rund et al. Jul 2009 B2
7563715 Haukka et al. Jul 2009 B2
7566891 Rocha-Alvarez et al. Jul 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7579285 Zimmerman et al. Aug 2009 B2
7579785 DeVincentis et al. Aug 2009 B2
D600223 Aggarwal Sep 2009 S
7582555 Lang Sep 2009 B1
7582575 Fukazawa et al. Sep 2009 B2
7589003 Kouvetakis et al. Sep 2009 B2
7589029 Derderian et al. Sep 2009 B2
7591601 Matsuoka et al. Sep 2009 B2
D602575 Breda Oct 2009 S
7598513 Kouvetakis et al. Oct 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7601652 Singh et al. Oct 2009 B2
7611751 Elers Nov 2009 B2
7611980 Wells et al. Nov 2009 B2
7618226 Takizawa Nov 2009 B2
7621672 Ripley Nov 2009 B2
7622369 Lee et al. Nov 2009 B1
7622378 Liu et al. Nov 2009 B2
7623940 Huskamp et al. Nov 2009 B2
D606952 Lee Dec 2009 S
7625820 Papasouliotis Dec 2009 B1
7629277 Ghatnagar Dec 2009 B2
7632549 Goundar Dec 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7645341 Kennedy et al. Jan 2010 B2
7645484 Ishizaka Jan 2010 B2
7648927 Singh et al. Jan 2010 B2
7651269 Comendant Jan 2010 B2
7651583 Kent et al. Jan 2010 B2
7651955 Ravish et al. Jan 2010 B2
7651959 Fukazawa et al. Jan 2010 B2
7651961 Clark Jan 2010 B2
D609652 Nagasaka Feb 2010 S
D609655 Sugimoto Feb 2010 S
7661299 Kusunoki Feb 2010 B2
7678197 Maki Mar 2010 B2
7678715 Mungekar et al. Mar 2010 B2
7682454 Sneh Mar 2010 B2
7682657 Sherman Mar 2010 B2
D613829 Griffin et al. Apr 2010 S
D614153 Fondurulia et al. Apr 2010 S
D614267 Breda Apr 2010 S
D614268 Breda Apr 2010 S
D614593 Lee Apr 2010 S
7690881 Yamagishi Apr 2010 B2
7691205 Ikedo Apr 2010 B2
7692171 Kaszuba et al. Apr 2010 B2
7695808 Tuma Apr 2010 B2
7713874 Milligan May 2010 B2
7716993 Ozawa et al. May 2010 B2
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7727864 Elers Jun 2010 B2
7732343 Niroomand et al. Jun 2010 B2
7736437 Cadwell et al. Jun 2010 B2
7736528 Okita et al. Jun 2010 B2
7740705 Li Jun 2010 B2
7745346 Hausmann et al. Jun 2010 B2
7748760 Kushida Jul 2010 B2
7749563 Zheng et al. Jul 2010 B2
7753584 Gambino et al. Jul 2010 B2
7754621 Putjkonen Jul 2010 B2
7763869 Matsushita et al. Jul 2010 B2
7767262 Clark Aug 2010 B2
7771796 Kohno et al. Aug 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7781352 Fukazawa et al. Aug 2010 B2
7789559 Waser et al. Sep 2010 B2
7789965 Matsushita et al. Sep 2010 B2
7790633 Tarafdar et al. Sep 2010 B1
7798096 Mahajani et al. Sep 2010 B2
7803722 Liang Sep 2010 B2
7806587 Kobayashi Oct 2010 B2
7807566 Tsuji et al. Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7816278 Reed et al. Oct 2010 B2
7824492 Tois et al. Nov 2010 B2
7825040 Fukazawa et al. Nov 2010 B1
7829460 Streck et al. Nov 2010 B2
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7842518 Miyajima Nov 2010 B2
7842622 Lee et al. Nov 2010 B1
D629874 Hermans Dec 2010 S
7850449 Yang et al. Dec 2010 B2
7851019 Tuominen et al. Dec 2010 B2
7851232 van Schravendijk et al. Dec 2010 B2
7858519 Liu et al. Dec 2010 B2
7858533 Liu et al. Dec 2010 B2
7865070 Nakamura Jan 2011 B2
7871198 Rempe et al. Jan 2011 B2
7874726 Jacobs et al. Jan 2011 B2
7884918 Hattori Feb 2011 B2
7888233 Gauri Feb 2011 B1
D634329 Wastrom Mar 2011 S
D634719 Yasuda et al. Mar 2011 S
7897215 Fair et al. Mar 2011 B1
7902582 Forbes et al. Mar 2011 B2
7906174 Wu et al. Mar 2011 B1
7910288 Abatchev et al. Mar 2011 B2
7915139 Lang Mar 2011 B1
7915667 Knoefler et al. Mar 2011 B2
7919416 Lee et al. Apr 2011 B2
7925378 Gilchrist et al. Apr 2011 B2
7935940 Smargiassi May 2011 B1
7939447 Bauer et al. May 2011 B2
7942969 Riker et al. May 2011 B2
7946762 Yednak May 2011 B2
7951262 Koshiishi et al. May 2011 B2
7955516 Chandrachood Jun 2011 B2
7955650 Tsuji Jun 2011 B2
7957708 Karschnia et al. Jun 2011 B2
7963736 Takizawa et al. Jun 2011 B2
7967913 Hua et al. Jun 2011 B2
7972980 Lee et al. Jul 2011 B2
7977256 Liu et al. Jul 2011 B2
7981751 Zhu et al. Jul 2011 B2
D643055 Takahashi Aug 2011 S
7989736 Park et al. Aug 2011 B2
7992318 Kawaji Aug 2011 B2
7994721 Espiau et al. Aug 2011 B2
7997795 Schwagerman et al. Aug 2011 B2
7998875 DeYoung Aug 2011 B2
8003174 Fukazawa Aug 2011 B2
8003919 Goto et al. Aug 2011 B2
8004198 Bakre et al. Aug 2011 B2
8020315 Nishimura Sep 2011 B2
8030129 Jeong Oct 2011 B2
8033771 Gage et al. Oct 2011 B1
8038835 Hayashi et al. Oct 2011 B2
8041197 Kasai et al. Oct 2011 B2
8041450 Takizawa et al. Oct 2011 B2
8043972 Liu et al. Oct 2011 B1
8046193 Yetter et al. Oct 2011 B2
8048783 Chung et al. Nov 2011 B2
8055378 Numakura Nov 2011 B2
8060252 Gage et al. Nov 2011 B2
8083853 Choi et al. Nov 2011 B2
D651291 Liebson et al. Dec 2011 S
8071451 Uzoh Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda et al. Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8076250 Rajagopalan Dec 2011 B1
8076251 Akae et al. Dec 2011 B2
8078310 Nishimoto et al. Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
8084104 Shinriki et al. Dec 2011 B2
8084372 You et al. Dec 2011 B2
D652896 Gether Jan 2012 S
8092604 Tomiyasu et al. Jan 2012 B2
8100583 Aggarwal Jan 2012 B2
D653734 Sisk Feb 2012 S
D654884 Honma Feb 2012 S
D655055 Toll Feb 2012 S
8110099 Hersey et al. Feb 2012 B2
8114734 Yang et al. Feb 2012 B2
8119466 Avouris Feb 2012 B2
8129290 Balseanu et al. Mar 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8137465 Shrinivasan et al. Mar 2012 B1
8138104 Balseanu et al. Mar 2012 B2
8138676 Mills Mar 2012 B2
8142862 Lee et al. Mar 2012 B2
8143174 Xia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8158512 Ji et al. Apr 2012 B2
8172947 Shibata et al. May 2012 B2
8173554 Lee et al. May 2012 B2
8178436 King et al. May 2012 B2
8187679 Dickey et al. May 2012 B2
8187951 Wang May 2012 B1
8272516 Salvador May 2012 B2
8192901 Kageyama Jun 2012 B2
8196234 Glunk Jun 2012 B2
8197915 Oka et al. Jun 2012 B2
8216380 White et al. Jul 2012 B2
8231799 Bera et al. Jul 2012 B2
D665055 Yanagisawa et al. Aug 2012 S
8241991 Hsieh et al. Aug 2012 B2
8242028 van Schravendijk Aug 2012 B1
8242031 Mallick et al. Aug 2012 B2
8246900 Kasai et al. Aug 2012 B2
8252114 Vukovic Aug 2012 B2
8252659 Huyghabaert et al. Aug 2012 B2
8252691 Beynet et al. Aug 2012 B2
8267633 Obikane Sep 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8282847 Romano Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8293642 Kim Oct 2012 B2
8298951 Nakano Oct 2012 B1
8307472 Saxon et al. Nov 2012 B1
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8328939 Choi et al. Dec 2012 B2
8329599 Fukazawa et al. Dec 2012 B2
8334219 Lee et al. Dec 2012 B2
8349083 Takasuka et al. Jan 2013 B2
D676943 Kluss Feb 2013 S
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8378464 Kato et al. Feb 2013 B2
8393091 Kawamoto Mar 2013 B2
8394466 Hong et al. Mar 2013 B2
8398773 Jdira et al. Mar 2013 B2
8404499 Moffatt Mar 2013 B2
8415258 Akae Apr 2013 B2
8415259 Lee et al. Apr 2013 B2
8440259 Chiang et al. May 2013 B2
8444120 Gregg et al. May 2013 B2
8445075 Xu et al. May 2013 B2
8450191 Wang May 2013 B2
8465811 Ueda Jun 2013 B2
8466411 Arai Jun 2013 B2
8470187 Ha Jun 2013 B2
8484846 Dhindsa Jul 2013 B2
8492170 Xie et al. Jul 2013 B2
8496377 Harr et al. Jul 2013 B2
8496756 Cruse et al. Jul 2013 B2
8497213 Yasui et al. Jul 2013 B2
8501599 Ueno et al. Aug 2013 B2
8506162 Schick et al. Aug 2013 B2
8506713 Takagi Aug 2013 B2
8529701 Morita Sep 2013 B2
8535767 Kimura Sep 2013 B1
D691974 Osada et al. Oct 2013 S
8551892 Nakano Oct 2013 B2
8563443 Fukazawa Oct 2013 B2
8569184 Oka Oct 2013 B2
8586484 Matsuyama et al. Nov 2013 B2
8591659 Fang et al. Nov 2013 B1
8592005 Ueda Nov 2013 B2
8608885 Goto et al. Nov 2013 B2
D695240 Iida et al. Dec 2013 S
8614047 Ayothi et al. Dec 2013 B2
8616765 Darabnia et al. Dec 2013 B2
8617411 Singh Dec 2013 B2
8633115 Chang et al. Jan 2014 B2
D698904 Milligan et al. Feb 2014 S
8642488 Liu et al. Feb 2014 B2
8647722 Kobayashi et al. Feb 2014 B2
8664627 Ishikawa et al. Mar 2014 B1
8667654 Gros-Jean Mar 2014 B2
8668957 Dussarrat et al. Mar 2014 B2
8669185 Onizawa Mar 2014 B2
8679958 Takamure et al. Mar 2014 B2
D702188 Jacobs Apr 2014 S
8683943 Onodera et al. Apr 2014 B2
8710580 Sakuma et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
D705762 Yu May 2014 S
8664127 Bhatia et al. May 2014 B2
8720965 Hino et al. May 2014 B2
8721791 Choi et al. May 2014 B2
8722510 Watanabe et al. May 2014 B2
8722546 Fukazawa et al. May 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8742668 Nakano et al. Jun 2014 B2
8759223 Sapre et al. Jun 2014 B2
8764085 Urabe Jul 2014 B2
8779502 Sakuma et al. Jul 2014 B2
8784950 Fukazawa et al. Jul 2014 B2
8784951 Fukazawa et al. Jul 2014 B2
8785215 Kobayashi et al. Jul 2014 B2
8785311 Miyoshi Jul 2014 B2
8790743 Omari Jul 2014 B1
8790749 Omori et al. Jul 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8820809 Ando et al. Sep 2014 B2
8821640 Cleary et al. Sep 2014 B2
8841182 Chen et al. Sep 2014 B1
8845806 Aida et al. Sep 2014 B2
8846502 Haukka et al. Sep 2014 B2
D715410 Lohmann Oct 2014 S
8864202 Schrameyer Oct 2014 B1
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8882923 Saido et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8901016 Jeongseok et al. Dec 2014 B2
8911553 Baluja et al. Dec 2014 B2
8911826 Adachi et al. Dec 2014 B2
8912101 Tsuji et al. Dec 2014 B2
D720838 Yamagishi et al. Jan 2015 S
8927906 Tadokoro et al. Jan 2015 B2
8933375 Dunn et al. Jan 2015 B2
8940646 Chandrasekharan Jan 2015 B1
D723153 Borkholder Feb 2015 S
8945305 Marsh Feb 2015 B2
8945306 Tsuda Feb 2015 B2
8945339 Kakimoto Feb 2015 B2
8946830 Jung et al. Feb 2015 B2
8956971 Huakka Feb 2015 B2
8956983 Swaminathan Feb 2015 B2
D723330 York Mar 2015 S
D724553 Choi Mar 2015 S
D724701 Yamagishi et al. Mar 2015 S
D725168 Yamagishi Mar 2015 S
8967608 Mitsumori et al. Mar 2015 B2
8974868 Ishikawa et al. Mar 2015 B2
8986456 Fondurulia et al. Mar 2015 B2
8991214 Hoshino et al. Mar 2015 B2
8991887 Shin et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
8993457 Ramkumar et al. Mar 2015 B1
D726365 Weigensberg Apr 2015 S
D726884 Yamagishi et al. Apr 2015 S
8999102 Miyoshi et al. Apr 2015 B2
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9017933 Liu et al. Apr 2015 B2
9018093 Tsuji et al. Apr 2015 B2
9018111 Milligan et al. Apr 2015 B2
9018567 de Ridder et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9023737 Beynet et al. May 2015 B2
9023738 Kato et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9029272 Nakano May 2015 B1
D732145 Yamagishi Jun 2015 S
D732644 Yamagishi et al. Jun 2015 S
D733261 Yamagishi et al. Jun 2015 S
D733262 Yamagishi et al. Jul 2015 S
D733843 Yamagishi Jul 2015 S
D734377 Hirakida Jul 2015 S
D735836 Yamagishi Aug 2015 S
9096931 Yednak et al. Aug 2015 B2
9099505 Kusakabe et al. Aug 2015 B2
9117657 Nakano et al. Aug 2015 B2
9117866 Marquardt et al. Aug 2015 B2
D739222 Chadbourne Sep 2015 S
9123510 Nakano et al. Sep 2015 B2
9123577 Fujimoto et al. Sep 2015 B2
9129897 Pore et al. Sep 2015 B2
9136108 Matsushita et al. Sep 2015 B2
9136180 Machkaoutsan Sep 2015 B2
9142393 Okabe et al. Sep 2015 B2
9142437 Fosnight et al. Sep 2015 B2
9153441 Takamure et al. Oct 2015 B2
9166012 Sim et al. Oct 2015 B2
9169975 Sarin et al. Oct 2015 B2
9171714 Mori Oct 2015 B2
9171716 Fukuda Oct 2015 B2
D742202 Cyphers et al. Nov 2015 S
D743357 Vyne Nov 2015 S
D743513 Yamagishi Nov 2015 S
9177784 Raisanen et al. Nov 2015 B2
9184047 Liu et al. Nov 2015 B2
9190263 Ishikawa et al. Nov 2015 B2
9190264 Yuasa et al. Nov 2015 B2
9196483 Lee et al. Nov 2015 B1
9202727 Dunn et al. Dec 2015 B2
9214333 Sims et al. Dec 2015 B1
9228259 Haukka et al. Jan 2016 B2
9240412 Xie et al. Jan 2016 B2
9245742 Haukka Jan 2016 B2
9252024 Lam et al. Feb 2016 B2
9257274 Kang et al. Feb 2016 B2
9267850 Aggarwal Feb 2016 B2
9281277 Baek et al. Mar 2016 B2
9284642 Nakano Mar 2016 B2
9297705 Aggarwal Mar 2016 B2
9299557 Tolle et al. Mar 2016 B2
9299595 Dunn et al. Mar 2016 B2
D753269 Yamagishi et al. Apr 2016 S
D753629 Plattard Apr 2016 S
9305836 Gates et al. Apr 2016 B1
9312155 Mori Apr 2016 B2
9315897 Byun Apr 2016 B2
9324811 Weeks Apr 2016 B2
9324846 Camillo Apr 2016 B1
9341296 Yednak May 2016 B2
9343297 Fukazawa et al. May 2016 B1
9343308 Isii May 2016 B2
9343343 Mori May 2016 B2
9343350 Arai May 2016 B2
9349620 Kamata et al. May 2016 B2
9353441 Chung May 2016 B2
9365924 Nonaka Jun 2016 B2
9368352 Takamure et al. Jun 2016 B2
9370863 Tsuji et al. Jun 2016 B2
9384987 Jung et al. Jul 2016 B2
9390909 Pasquale et al. Jul 2016 B2
9394608 Shero et al. Jul 2016 B2
9396934 Tolle Jul 2016 B2
9396956 Fukazawa Jul 2016 B1
9404587 Shugrue Aug 2016 B2
9412564 Milligan Aug 2016 B2
9412582 Sasaki et al. Aug 2016 B2
9443725 Liu et al. Sep 2016 B2
9447498 Shiba et al. Sep 2016 B2
9449793 Shaji et al. Sep 2016 B2
9455138 Fukazawa Sep 2016 B1
9464352 Nakano et al. Oct 2016 B2
9478414 Kobayashi et al. Oct 2016 B2
9478415 Kimura Oct 2016 B2
D770993 Yoshida et al. Nov 2016 S
9484191 Winkler Nov 2016 B2
9514927 Tolle et al. Dec 2016 B2
9514932 Mallick et al. Dec 2016 B2
9543180 Kamiya Jan 2017 B2
9556516 Takamure Jan 2017 B2
9558931 Tang Jan 2017 B2
9564314 Takamure et al. Feb 2017 B2
9574268 Dunn et al. Feb 2017 B1
9589770 Winkler Mar 2017 B2
9605342 Alokozai et al. Mar 2017 B2
9605343 Winkler Mar 2017 B2
9607837 Namba Mar 2017 B1
D783351 Fujino et al. Apr 2017 S
9613801 Carcasi et al. Apr 2017 B2
9627221 Zaitsu et al. Apr 2017 B1
D785766 Sato May 2017 S
D787458 Kim et al. May 2017 S
9640416 Arai May 2017 B2
9640448 Ikegawa et al. May 2017 B2
9647114 Margetis May 2017 B2
9657845 Shugrue May 2017 B2
9659799 Lawson May 2017 B2
9663857 Nakano et al. May 2017 B2
D789888 Jang et al. Jun 2017 S
9685320 Kang et al. Jun 2017 B2
9691771 Lansalot-Matras Jun 2017 B2
9698031 Kobayashi et al. Jul 2017 B2
9708707 Ditizio et al. Jul 2017 B2
9708708 Isobe et al. Jul 2017 B2
9711345 Shiba et al. Jul 2017 B2
D793352 Hill Aug 2017 S
D793572 Kozuka et al. Aug 2017 S
9735024 Zaitsu Aug 2017 B2
9741559 Shimura et al. Aug 2017 B2
9748145 Kannan et al. Aug 2017 B1
D796458 Jang et al. Sep 2017 S
9754779 Ishikawa Sep 2017 B1
9754818 Shin et al. Sep 2017 B2
9759489 Kaneko Sep 2017 B2
9790595 Jung et al. Oct 2017 B2
9793115 Tolle Oct 2017 B2
9793135 Zaitsu et al. Oct 2017 B1
9793148 Yamagishi et al. Oct 2017 B2
D802546 Jang et al. Nov 2017 S
9808246 Shelton et al. Nov 2017 B2
9812319 Fukazawa et al. Nov 2017 B1
9812320 Pore et al. Nov 2017 B1
9859151 Niskanen Jan 2018 B1
9887082 Pore et al. Feb 2018 B1
9890456 Tolle et al. Feb 2018 B2
9891521 Kang et al. Feb 2018 B2
9892908 Pettinger et al. Feb 2018 B2
9892913 Margetis et al. Feb 2018 B2
9899291 Kato Feb 2018 B2
9899405 Kim Feb 2018 B2
9905420 Margetis et al. Feb 2018 B2
9909492 Tang Feb 2018 B2
9909214 Suemori Mar 2018 B2
9911676 Tang Mar 2018 B2
9916980 Knaepen Mar 2018 B1
9929011 Hawryluk et al. Mar 2018 B2
9960072 Coomer May 2018 B2
9984869 Blanquart May 2018 B1
10032628 Xie et al. Jun 2018 B2
10023960 Alokozai Jul 2018 B2
10032792 Kim et al. Jul 2018 B2
10043661 Kato et al. Aug 2018 B2
10083836 Milligan Sep 2018 B2
D830981 Jeong et al. Oct 2018 S
10087522 Raisanen et al. Oct 2018 B2
10087525 Schmotzer et al. Oct 2018 B2
10090316 Ootsuka Oct 2018 B2
10103040 Oosterlaken et al. Oct 2018 B1
20010001953 Griffiths et al. May 2001 A1
20010003191 Kovacs et al. Jun 2001 A1
20010006070 Shang Jul 2001 A1
20010007645 Honma Jul 2001 A1
20010014514 Geusic Aug 2001 A1
20010017103 Takeshita et al. Aug 2001 A1
20010018267 Shinriki et al. Aug 2001 A1
20010019777 Tanaka et al. Sep 2001 A1
20010019900 Hasegawa Sep 2001 A1
20010020715 Yamasaki Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010031535 Agnello et al. Oct 2001 A1
20010038783 Nakashima et al. Nov 2001 A1
20010040511 Bushner et al. Nov 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20010049080 Asano Dec 2001 A1
20010049202 Maeda et al. Dec 2001 A1
20020001974 Chan Jan 2002 A1
20020001976 Danek Jan 2002 A1
20020005400 Gat et al. Jan 2002 A1
20020009119 Matthew et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020011211 Halpin Jan 2002 A1
20020013792 Imielinski et al. Jan 2002 A1
20020014204 Pyo Feb 2002 A1
20020014483 Suzuki et al. Feb 2002 A1
20020016829 Defosse Feb 2002 A1
20020023677 Zheng Feb 2002 A1
20020031644 Malofsky et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020043337 Goodman et al. Apr 2002 A1
20020081826 Rotondaro et al. Apr 2002 A1
20020064592 Datta et al. May 2002 A1
20020064598 Wang et al. May 2002 A1
20020069222 McNeely Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020078893 Van Os et al. Jun 2002 A1
20020079714 Soucy et al. Jun 2002 A1
20020088542 Nishikawa et al. Jul 2002 A1
20020096211 Zheng Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020109115 Cederstav et al. Aug 2002 A1
20020110695 Yang et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020112114 Blair et al. Aug 2002 A1
20020114886 Chou et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020124883 Zheng Sep 2002 A1
20020127350 Ishikawa et al. Sep 2002 A1
20020134511 Ushioda et al. Sep 2002 A1
20020136214 Do et al. Sep 2002 A1
20020136909 Yang Sep 2002 A1
20020139775 Chang Oct 2002 A1
20020146512 Rossman Oct 2002 A1
20020151327 Levitt Oct 2002 A1
20020152244 Dean et al. Oct 2002 A1
20020155219 Wang et al. Oct 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020174106 Martin Nov 2002 A1
20020179011 Jonnalagadda et al. Dec 2002 A1
20020184111 Swanson Dec 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20020187656 Tan et al. Dec 2002 A1
20020197849 Mandal Dec 2002 A1
20030002562 Yerlikaya et al. Jan 2003 A1
20030003607 Kagoshima Jan 2003 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030003696 Gelatos et al. Jan 2003 A1
20030010451 Tzu Jan 2003 A1
20030010452 Park et al. Jan 2003 A1
20030012632 Saeki Jan 2003 A1
20030015294 Wang Jan 2003 A1
20030015596 Evans Jan 2003 A1
20030017268 Hu Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030022523 Irino et al. Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030024901 Ishikawa Feb 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030029303 Hasegawa et al. Feb 2003 A1
20030029381 Nishibayashi Feb 2003 A1
20030029475 Hua et al. Feb 2003 A1
20030035002 Moles Feb 2003 A1
20030036272 Shamouilian et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030040841 Nasr et al. Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030049372 Cook et al. Mar 2003 A1
20030049375 Nguyen et al. Mar 2003 A1
20030049937 Suzuki Mar 2003 A1
20030054670 Wang et al. Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030059980 Chen et al. Mar 2003 A1
20030065413 Liteplo et al. Apr 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030071015 Chinn et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030082296 Elers et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030109107 Hsieh et al. Jun 2003 A1
20030109951 Hsiung et al. Jun 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030116087 Nguyen Jun 2003 A1
20030168750 Basceri et al. Jun 2003 A1
20030121608 Chen Jul 2003 A1
20030133854 Tabata et al. Jul 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030141820 White et al. Jul 2003 A1
20030143328 Chen Jul 2003 A1
20030157436 Manger et al. Aug 2003 A1
20030159656 Tan Aug 2003 A1
20030168001 Sneh Sep 2003 A1
20030168699 Honda Sep 2003 A1
20030170583 Nakashima Sep 2003 A1
20030173490 Lappen Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030183156 Dando Oct 2003 A1
20030183856 Wieczorek et al. Oct 2003 A1
20030188685 Wang Oct 2003 A1
20030192875 Bieker et al. Oct 2003 A1
20030198587 Kaloyeros Oct 2003 A1
20030201541 Kim Oct 2003 A1
20030209323 Yokogaki Nov 2003 A1
20030209326 Lee et al. Nov 2003 A1
20030211735 Rossman Nov 2003 A1
20030217915 Ouellet Nov 2003 A1
20030219972 Green Nov 2003 A1
20030226840 Dalton Dec 2003 A1
20030228772 Cowans Dec 2003 A1
20030231698 Yamaguchi Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20030232491 Yamaguchi Dec 2003 A1
20040002224 Chono et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009679 Yeo et al. Jan 2004 A1
20040010772 McKenna et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013818 Moon et al. Jan 2004 A1
20040016637 Yang Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040026372 Takenaka et al. Feb 2004 A1
20040029052 Park et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040037675 Zinger et al. Feb 2004 A1
20040048439 Soman Mar 2004 A1
20040048492 Ishikawa et al. Mar 2004 A1
20040050325 Samoilov Mar 2004 A1
20040062081 Drewes Apr 2004 A1
20040063289 Ohta Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040079960 Shakuda Apr 2004 A1
20040080697 Song Apr 2004 A1
20040082171 Shin et al. Apr 2004 A1
20040087141 Ramanathan et al. May 2004 A1
20040094402 Gopalraja May 2004 A1
20040099213 Adomaitis et al. May 2004 A1
20040101622 Park et al. May 2004 A1
20040103914 Cheng et al. Jun 2004 A1
20040106249 Huotari Jun 2004 A1
20040124131 Aitchison Jul 2004 A1
20040124549 Curran Jul 2004 A1
20040126990 Ohta Jul 2004 A1
20040129211 Blonigan et al. Jul 2004 A1
20040129671 Ji et al. Jul 2004 A1
20040134429 Yamanaka Jul 2004 A1
20040144311 Chen Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040146644 Xia et al. Jul 2004 A1
20040151844 Zhang et al. Aug 2004 A1
20040151845 Nguyen et al. Aug 2004 A1
20040152287 Sherrill et al. Aug 2004 A1
20040159343 Shimbara et al. Aug 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040187777 Okamoto et al. Sep 2004 A1
20040187790 Bader Sep 2004 A1
20040187928 Ambrosina Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040203251 Kawaguchi et al. Oct 2004 A1
20040206305 Choi et al. Oct 2004 A1
20040209477 Buxbaum et al. Oct 2004 A1
20040211357 Gadgil Oct 2004 A1
20040212947 Nguyen Oct 2004 A1
20040213921 Leu Oct 2004 A1
20040214399 Ahn et al. Oct 2004 A1
20040214445 Shimizu et al. Oct 2004 A1
20040217217 Han et al. Nov 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040231600 Lee Nov 2004 A1
20040238523 Kuibira et al. Dec 2004 A1
20040241998 Hanson Dec 2004 A1
20040247779 Selvamanickam et al. Dec 2004 A1
20040250600 Bevers et al. Dec 2004 A1
20040253867 Matsumoto Dec 2004 A1
20040261712 Hayashi et al. Dec 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050000428 Shero et al. Jan 2005 A1
20050003662 Jurisch et al. Jan 2005 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050019494 Moghadam et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050034674 Ono Feb 2005 A1
20050037154 Koh et al. Feb 2005 A1
20050037610 Cha Feb 2005 A1
20050042778 Peukert Feb 2005 A1
20050048797 Fukazawa Mar 2005 A1
20050051093 Makino et al. Mar 2005 A1
20050054228 March Mar 2005 A1
20050059262 Yin et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050064719 Liu Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050069651 Miyoshi Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050070729 Kiyomori et al. Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050074983 Shinriki et al. Apr 2005 A1
20050092247 Schmidt May 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050092733 Ito et al. May 2005 A1
20050095770 Kumagai et al. May 2005 A1
20050098107 Du Bois et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050101154 Huang May 2005 A1
20050101843 Quinn et al. May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050118804 Byun et al. Jun 2005 A1
20050118837 Todd Jun 2005 A1
20050120805 Lane Jun 2005 A1
20050120962 Ushioda et al. Jun 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050130427 Seok-Jun Jun 2005 A1
20050132957 El-Raghy Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050141591 Sakano Jun 2005 A1
20050142361 Nakanishi Jun 2005 A1
20050145338 Park et al. Jul 2005 A1
20050153571 Senzaki Jul 2005 A1
20050172895 Kijima et al. Aug 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050175789 Helms Aug 2005 A1
20050181535 Yun et al. Aug 2005 A1
20050181555 Haukka et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050191828 Al-Bayati et al. Sep 2005 A1
20050199013 Vandroux et al. Sep 2005 A1
20050208718 Lim et al. Sep 2005 A1
20050211167 Gunji Sep 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050208778 Li Oct 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050221618 AmRhein et al. Oct 2005 A1
20050223982 Park et al. Oct 2005 A1
20050223994 Blomiley et al. Oct 2005 A1
20050227502 Schmitt et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229849 Silvetti et al. Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050233477 Yamazaki et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050241763 Huang et al. Nov 2005 A1
20050245058 Lee et al. Nov 2005 A1
20050249876 Kawahara et al. Nov 2005 A1
20050250340 Chen et al. Nov 2005 A1
20050251990 Choi Nov 2005 A1
20050252449 Nguyen et al. Nov 2005 A1
20050255257 Choi et al. Nov 2005 A1
20050258280 Goto et al. Nov 2005 A1
20050260347 Narwankar et al. Nov 2005 A1
20050260850 Loke Nov 2005 A1
20050263072 Balasubramanian et al. Dec 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050263932 Heugel Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050274323 Seidel et al. Dec 2005 A1
20050277271 Beintner Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050285097 Shang et al. Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000411 Seo Jan 2006 A1
20060013674 Elliott et al. Jan 2006 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060014397 Seamons et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060019502 Park et al. Jan 2006 A1
20060021572 Wolden Feb 2006 A1
20060021703 Umotoy et al. Feb 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060026314 Franchuk et al. Feb 2006 A1
20060040054 Pearlstein et al. Feb 2006 A1
20060040508 Ji Feb 2006 A1
20060046518 Hill et al. Mar 2006 A1
20060051520 Behle et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060057828 Omura Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068104 Ishizaka Mar 2006 A1
20060068121 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060087638 Hirayanagi Apr 2006 A1
20060096540 Choi May 2006 A1
20060099782 Ritenour May 2006 A1
20060105566 Waldfried et al. May 2006 A1
20060107898 Blomberg May 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060113806 Tsuji et al. Jun 2006 A1
20060128142 Whelan et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060130767 Herchen Jun 2006 A1
20060137609 Puchacz et al. Jun 2006 A1
20060147626 Blomberg Jul 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060154424 Yang et al. Jul 2006 A1
20060156981 Fondurulia Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060166428 Kamioka Jul 2006 A1
20060172531 Lin et al. Aug 2006 A1
20060175669 Kim et al. Aug 2006 A1
20060177855 Utermohlen Aug 2006 A1
20060182885 Lei et al. Aug 2006 A1
20060188360 Bonora et al. Aug 2006 A1
20060191555 Yoshida et al. Aug 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060196420 Ushakov et al. Sep 2006 A1
20060199357 Wan et al. Sep 2006 A1
20060205223 Smayling Sep 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060211243 Ishizaka et al. Sep 2006 A1
20060211259 Maes Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060216942 Kim et al. Sep 2006 A1
20060219169 Chen et al. Oct 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228496 Choi Oct 2006 A1
20060228863 Zhang et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060236934 Choi et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060240662 Conley et al. Oct 2006 A1
20060249253 Dando Nov 2006 A1
20060251827 Nowak Nov 2006 A1
20060252228 Jeng Nov 2006 A1
20060252351 Kundracik Nov 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060258173 Xiao et al. Nov 2006 A1
20060260545 Ramaswamy et al. Nov 2006 A1
20060263522 Byun Nov 2006 A1
20060264060 Ramaswamy et al. Nov 2006 A1
20060264066 Bartholomew Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20060269690 Watanabe et al. Nov 2006 A1
20060269692 Balseanu Nov 2006 A1
20060275933 Du Bois et al. Dec 2006 A1
20060278524 Stowell Dec 2006 A1
20060283629 Kikuchi et al. Dec 2006 A1
20060286774 Singh et al. Dec 2006 A1
20060286775 Singh et al. Dec 2006 A1
20060286818 Wang et al. Dec 2006 A1
20060286819 Seutter Dec 2006 A1
20060291982 Tanaka Dec 2006 A1
20070006806 Imai Jan 2007 A1
20070010072 Bailey et al. Jan 2007 A1
20070012402 Sneh Jan 2007 A1
20070020830 Speranza Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070026148 Arai et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070032082 Ramaswamy et al. Feb 2007 A1
20070034477 Inui Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054499 Jang Mar 2007 A1
20070056843 Ye et al. Mar 2007 A1
20070056850 Ye et al. Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070062439 Wada et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070066079 Kolster et al. Mar 2007 A1
20070066084 Wajda et al. Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070082132 Shinriki Apr 2007 A1
20070082500 Norman et al. Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070087579 Kitayama et al. Apr 2007 A1
20070089670 Ikedo Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070098527 Hall et al. May 2007 A1
20070107845 Ishizawa et al. May 2007 A1
20070111470 Smythe May 2007 A1
20070111545 Lee et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070116888 Faguet May 2007 A1
20070119370 Ma et al. May 2007 A1
20070123037 Lee et al. May 2007 A1
20070123189 Saito May 2007 A1
20070125762 Cui et al. Jun 2007 A1
20070128538 Fairbairn et al. Jun 2007 A1
20070128876 Fukiage Jun 2007 A1
20070128888 Goto et al. Jun 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070137794 Qiu et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070148350 Rahtu Jun 2007 A1
20070148990 Deboer et al. Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070157466 Kida et al. Jul 2007 A1
20070158026 Amikura Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070163625 Lee Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070166966 Todd et al. Jul 2007 A1
20070166999 Vaarstra Jul 2007 A1
20070173071 Afzali-Ardakani et al. Jul 2007 A1
20070175393 Nishimura et al. Aug 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070178235 Yamada et al. Aug 2007 A1
20070186952 Honda et al. Aug 2007 A1
20070187363 Oka et al. Aug 2007 A1
20070202678 Plombon et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070209590 Li Sep 2007 A1
20070210890 Hsu et al. Sep 2007 A1
20070215048 Suzuki et al. Sep 2007 A1
20070218200 Suzuki et al. Sep 2007 A1
20070218705 Matsuki et al. Sep 2007 A1
20070224777 Hamelin Sep 2007 A1
20070224833 Morisada et al. Sep 2007 A1
20070232031 Singh et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070232501 Tonomura Oct 2007 A1
20070234955 Suzuki et al. Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070237698 Clark Oct 2007 A1
20070237699 Clark Oct 2007 A1
20070241688 DeVancentis et al. Oct 2007 A1
20070248767 Okura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252532 DeVancentis et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070251456 Herchen et al. Nov 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070258506 Schwagerman et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20070266945 Shuto et al. Nov 2007 A1
20070269983 Sneh Nov 2007 A1
20070275166 Thridandam et al. Nov 2007 A1
20070277735 Mokhesi et al. Dec 2007 A1
20070281082 Mokhesi et al. Dec 2007 A1
20070281105 Mokhesi et al. Dec 2007 A1
20070281496 Ingle et al. Dec 2007 A1
20070298362 Rocha-Alvarez et al. Dec 2007 A1
20080003824 Padhi et al. Jan 2008 A1
20080003838 Haukka et al. Jan 2008 A1
20080006208 Ueno et al. Jan 2008 A1
20080018004 Steidl Jan 2008 A1
20080020591 Balseanu et al. Jan 2008 A1
20080020593 Wang et al. Jan 2008 A1
20080023436 Gros-Jean et al. Jan 2008 A1
20080026574 Brcka Jan 2008 A1
20080026597 Munro et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080031708 Bonora et al. Feb 2008 A1
20080036354 Letz et al. Feb 2008 A1
20080038485 Fuzakawa et al. Feb 2008 A1
20080042165 Sugizaki Feb 2008 A1
20080043803 Bandoh Feb 2008 A1
20080050536 Aing et al. Feb 2008 A1
20080050538 Hirata Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080054813 Espiau et al. Mar 2008 A1
20080056860 Natume Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080061667 Gaertner et al. Mar 2008 A1
20080066778 Matsushita et al. Mar 2008 A1
20080069955 Hong et al. Mar 2008 A1
20080075562 Maria et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080076266 Fukazawa et al. Mar 2008 A1
20080081104 Hasebe et al. Apr 2008 A1
20080081113 Clark Apr 2008 A1
20080081121 Morita et al. Apr 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080092815 Chen et al. Apr 2008 A1
20080102203 Wu May 2008 A1
20080113094 Casper May 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080118334 Bonora May 2008 A1
20080121177 Bang et al. May 2008 A1
20080121626 Thomas et al. May 2008 A1
20080124197 van der Meulen et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080124946 Xiao et al. May 2008 A1
20080132046 Walther Jun 2008 A1
20080133154 Krauss et al. Jun 2008 A1
20080142483 Hua Jun 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080152463 Chidambaram et al. Jun 2008 A1
20080153311 Padhi et al. Jun 2008 A1
20080157157 Tonomura Jul 2008 A1
20080157365 Ott et al. Jul 2008 A1
20080173237 Collins Jul 2008 A1
20080173238 Nakashima et al. Jul 2008 A1
20080173240 Furukawahara Jul 2008 A1
20080173326 Gu et al. Jul 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080178805 Paterson et al. Jul 2008 A1
20080179104 Zhang Jul 2008 A1
20080179715 Coppa Jul 2008 A1
20080182075 Chopra Jul 2008 A1
20080182390 Lemmi et al. Jul 2008 A1
20080191193 Li et al. Aug 2008 A1
20080199977 Weigel et al. Aug 2008 A1
20080202416 Provencher Aug 2008 A1
20080202689 Kim Aug 2008 A1
20080203487 Hohage et al. Aug 2008 A1
20080205483 Rempe et al. Aug 2008 A1
20080211423 Shinmen et al. Sep 2008 A1
20080211526 Shinma Sep 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080216742 Takebayashi Sep 2008 A1
20080220619 Matsushita et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080228306 Yetter et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080241384 Jeong Oct 2008 A1
20080241387 Keto Oct 2008 A1
20080242116 Clark Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080257494 Hayashi et al. Oct 2008 A1
20080260963 Yoon et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080267598 Nakamura Oct 2008 A1
20080268635 Yu et al. Oct 2008 A1
20080277715 Ohmi et al. Nov 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080283962 Dyer Nov 2008 A1
20080289574 Jacobs et al. Nov 2008 A1
20080291964 Shrimpling Nov 2008 A1
20080295872 Riker et al. Dec 2008 A1
20080298945 Cox Dec 2008 A1
20080299326 Fukazawa Dec 2008 A1
20080299758 Harada et al. Dec 2008 A1
20080302303 Choi et al. Dec 2008 A1
20080305014 Honda Dec 2008 A1
20080305246 Choi et al. Dec 2008 A1
20080305443 Nakamura Dec 2008 A1
20080315292 Ji et al. Dec 2008 A1
20080317972 Hendriks Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090000551 Choi et al. Jan 2009 A1
20090011145 Yun Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090017631 Bencher Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090023229 Matsushita Jan 2009 A1
20090029503 Arai Jan 2009 A1
20090029528 Sanchez et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090033907 Watson Feb 2009 A1
20090035947 Horii Feb 2009 A1
20090041952 Yoon et al. Feb 2009 A1
20090041984 Mayers et al. Feb 2009 A1
20090042344 Ye et al. Feb 2009 A1
20090042408 Maeda Feb 2009 A1
20090045829 Awazu Feb 2009 A1
20090050621 Awazu Feb 2009 A1
20090052498 Halpin et al. Feb 2009 A1
20090053023 Wakabayashi Feb 2009 A1
20090053906 Miya et al. Feb 2009 A1
20090056629 Katz et al. Mar 2009 A1
20090057269 Katz et al. Mar 2009 A1
20090061083 Chiang et al. Mar 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090061647 Mallick et al. Mar 2009 A1
20090075491 Liu et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090090382 Morisada Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090104351 Kakegawa Apr 2009 A1
20090104789 Mallick et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090108308 Yang et al. Apr 2009 A1
20090112458 Nakai Apr 2009 A1
20090120580 Kagoshima et al. May 2009 A1
20090122293 Shibazaki May 2009 A1
20090122458 Lischer et al. May 2009 A1
20090124131 Breunsbach et al. May 2009 A1
20090130331 Asai May 2009 A1
20090130859 Itatani et al. May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090136683 Fukasawa et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090142905 Yamazaki Jun 2009 A1
20090142935 Fukazawa et al. Jun 2009 A1
20090146322 Weling et al. Jun 2009 A1
20090156015 Park et al. Jun 2009 A1
20090159000 Aggarwal et al. Jun 2009 A1
20090159424 Liu et al. Jun 2009 A1
20090162996 Ramaswarmy et al. Jun 2009 A1
20090163038 Miyoshi Jun 2009 A1
20090165715 Oh Jul 2009 A1
20090179365 Lerner et al. Jul 2009 A1
20090186571 Haro Jul 2009 A1
20090197015 Kudela et al. Aug 2009 A1
20090200494 Hatem Aug 2009 A1
20090204403 Hollander et al. Aug 2009 A1
20090206056 Xu Aug 2009 A1
20090209081 Matero Aug 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090227094 Bateman Sep 2009 A1
20090230211 Kobayashi et al. Sep 2009 A1
20090236014 Wilson Sep 2009 A1
20090236276 Kurth et al. Sep 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090246399 Goundar Oct 2009 A1
20090246971 Reid et al. Oct 2009 A1
20090250955 Aoki Oct 2009 A1
20090255901 Okita Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090269506 Okura et al. Oct 2009 A1
20090269941 Raisanen Oct 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090283217 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286402 Xia et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20090302434 Pallem et al. Dec 2009 A1
20090304558 Patton Dec 2009 A1
20090308315 de Ridder Dec 2009 A1
20090308425 Yednak Dec 2009 A1
20090311857 Todd et al. Dec 2009 A1
20090315093 Li et al. Dec 2009 A1
20090320754 Oya Dec 2009 A1
20090325391 De Vusser et al. Dec 2009 A1
20090325469 Koo et al. Dec 2009 A1
20100001409 Humbert et al. Jan 2010 A1
20100003406 Lam et al. Jan 2010 A1
20100006031 Choi et al. Jan 2010 A1
20100006923 Fujitsuka Jan 2010 A1
20100014479 Kim Jan 2010 A1
20100015813 McGinnis et al. Jan 2010 A1
20100018460 Singh et al. Jan 2010 A1
20100024727 Kim et al. Feb 2010 A1
20100024872 Kishimoto Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100032587 Hosch et al. Feb 2010 A1
20100032842 Herdt et al. Feb 2010 A1
20100040441 Obikane Feb 2010 A1
20100041179 Lee Feb 2010 A1
20100041243 Cheng et al. Feb 2010 A1
20100050943 Kato et al. Mar 2010 A1
20100051597 Morita et al. Mar 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100055442 Kellock Mar 2010 A1
20100058984 Marubayashi Mar 2010 A1
20100065758 Liu et al. Mar 2010 A1
20100068009 Kimura Mar 2010 A1
20100068891 Hatanaka et al. Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100081094 Hasebe et al. Apr 2010 A1
20100089320 Kim Apr 2010 A1
20100089870 Hiroshima et al. Apr 2010 A1
20100090149 Thompson et al. Apr 2010 A1
20100092696 Shinriki Apr 2010 A1
20100093187 Lee et al. Apr 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100105936 Tada et al. Apr 2010 A1
20100112496 Nakajima et al. May 2010 A1
20100116207 Givens May 2010 A1
20100116209 Kato May 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100124618 Kobayashi et al. May 2010 A1
20100124621 Kobayashi et al. May 2010 A1
20100126415 Ishino et al. May 2010 A1
20100126539 Lee et al. May 2010 A1
20100126605 Stones May 2010 A1
20100129990 Nishizawa et al. May 2010 A1
20100130015 Nakajima et al. May 2010 A1
20100130017 Luo et al. May 2010 A1
20100130105 Lee May 2010 A1
20100134023 Mills Jun 2010 A1
20100136216 Tsuei et al. Jun 2010 A1
20100140221 Kikuchi et al. Jun 2010 A1
20100143609 Fukazawa et al. Jun 2010 A1
20100144162 Lee et al. Jun 2010 A1
20100144968 Lee et al. Jun 2010 A1
20100145547 Darabnia et al. Jun 2010 A1
20100151206 Wu et al. Jun 2010 A1
20100159638 Jeong Jun 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100162956 Murakami et al. Jul 2010 A1
20100163524 Arai Jul 2010 A1
20100163937 Clendenning Jul 2010 A1
20100168404 Girolami et al. Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100170868 Lin et al. Jul 2010 A1
20100173432 White et al. Jul 2010 A1
20100178137 Chintalapati et al. Jul 2010 A1
20100178423 Shimizu et al. Jul 2010 A1
20100180819 Hatanaka et al. Jul 2010 A1
20100183825 Becker et al. Jul 2010 A1
20100184302 Lee et al. Jul 2010 A1
20100186669 Shin et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100195392 Freeman Aug 2010 A1
20100202860 Reed Aug 2010 A1
20100221452 Kang Sep 2010 A1
20100229795 Tanabe Sep 2010 A1
20100230051 Iizuka Sep 2010 A1
20100230863 Moench et al. Sep 2010 A1
20100233885 Kushibiki et al. Sep 2010 A1
20100233886 Yang et al. Sep 2010 A1
20100236691 Yamazaki Sep 2010 A1
20100243166 Hayashi et al. Sep 2010 A1
20100244688 Braun et al. Sep 2010 A1
20100248465 Yi et al. Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100255218 Oka et al. Oct 2010 A1
20100255625 De Vries Oct 2010 A1
20100255658 Aggarwal Oct 2010 A1
20100259152 Yasuda et al. Oct 2010 A1
20100266765 White et al. Oct 2010 A1
20100267248 Ma et al. Oct 2010 A1
20100270675 Harada Oct 2010 A1
20100246630 Kaszynski et al. Nov 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100282163 Aggarwal et al. Nov 2010 A1
20100282170 Nishizawa Nov 2010 A1
20100282645 Wang Nov 2010 A1
20100285237 Ditizio et al. Nov 2010 A1
20100285319 Kwak et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100297391 Kley Nov 2010 A1
20100301752 Bakre et al. Dec 2010 A1
20100304047 Yang et al. Dec 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100317198 Antonelli Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20100326358 Choi Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110006402 Zhou Jan 2011 A1
20110006406 Urbanowicz et al. Jan 2011 A1
20110014359 Hashim Jan 2011 A1
20110014795 Lee Jan 2011 A1
20110027725 Tsutsumi et al. Feb 2011 A1
20110027999 Sparks et al. Feb 2011 A1
20110034039 Liang et al. Feb 2011 A1
20110045610 van Schravendijk Feb 2011 A1
20110046314 Klipp et al. Feb 2011 A1
20110048642 Mihara et al. Mar 2011 A1
20110049100 Han et al. Mar 2011 A1
20110052833 Hanawa et al. Mar 2011 A1
20110053383 Shero et al. Mar 2011 A1
20110056513 Hombach et al. Mar 2011 A1
20110056626 Brown et al. Mar 2011 A1
20110057248 Ma et al. Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110081519 Dillingh Apr 2011 A1
20110083496 Lin et al. Apr 2011 A1
20110086516 Lee et al. Apr 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110107512 Gilbert May 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110108741 Ingram May 2011 A1
20110108929 Meng May 2011 A1
20110117490 Bae et al. May 2011 A1
20110117737 Agarwala et al. May 2011 A1
20110117749 Sheu May 2011 A1
20110124196 Lee May 2011 A1
20110139272 Matsumoto et al. Jun 2011 A1
20110139748 Donnelly et al. Jun 2011 A1
20110140172 Chu Jun 2011 A1
20110143032 Vrtis et al. Jun 2011 A1
20110143461 Fish et al. Jun 2011 A1
20110159202 Matsushita Jun 2011 A1
20110159673 Hanawa et al. Jun 2011 A1
20110159680 Yoo Jun 2011 A1
20110168330 Sakaue et al. Jul 2011 A1
20110171775 Yamamoto et al. Jul 2011 A1
20110175011 Ehrne et al. Jul 2011 A1
20110180233 Bera et al. Jul 2011 A1
20110183079 Jackson et al. Jul 2011 A1
20110183269 Zhu Jul 2011 A1
20110183527 Cho Jul 2011 A1
20110192820 Yeom et al. Aug 2011 A1
20110198417 Detmar et al. Aug 2011 A1
20110198736 Shero et al. Aug 2011 A1
20110210468 Shannon et al. Sep 2011 A1
20110220874 Hanrath Sep 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110237040 Ng et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis Oct 2011 A1
20110256675 Avouris Oct 2011 A1
20110256726 Lavoie et al. Oct 2011 A1
20110256727 Beynet et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110263107 Chung et al. Oct 2011 A1
20110265549 Cruse et al. Nov 2011 A1
20110265715 Keller Nov 2011 A1
20110265725 Tsuji Nov 2011 A1
20110265951 Xu et al. Nov 2011 A1
20110275018 Matteo et al. Nov 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110277690 Rozenzon et al. Nov 2011 A1
20110281417 Gordon et al. Nov 2011 A1
20110283933 Makarov et al. Nov 2011 A1
20110291243 Seamons Dec 2011 A1
20110294075 Chen et al. Dec 2011 A1
20110294288 Lee et al. Dec 2011 A1
20110298062 Ganguli et al. Dec 2011 A1
20110300720 Fu Dec 2011 A1
20110308453 Su et al. Dec 2011 A1
20110308460 Hong et al. Dec 2011 A1
20110312191 Ohkura et al. Dec 2011 A1
20120003500 Yoshida et al. Jan 2012 A1
20120006489 Okita Jan 2012 A1
20120009802 Lavoie Jan 2012 A1
20120024227 Takasuka et al. Feb 2012 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120028454 Swaminathan et al. Feb 2012 A1
20120031333 Kurita et al. Feb 2012 A1
20120032311 Gates Feb 2012 A1
20120033695 Hayashi et al. Feb 2012 A1
20120036732 Varadarajan Feb 2012 A1
20120040528 Kim et al. Feb 2012 A1
20120043556 Dube et al. Feb 2012 A1
20120046421 Darling et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120058630 Quinn Mar 2012 A1
20120064690 Hirota et al. Mar 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120074533 Aoyama Mar 2012 A1
20120077349 Li et al. Mar 2012 A1
20120080756 Suzuki Apr 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120100464 Kageyama Apr 2012 A1
20120103264 Choi et al. May 2012 A1
20120103939 Wu et al. May 2012 A1
20120107607 Takaki et al. May 2012 A1
20120108039 Zajaji May 2012 A1
20120114877 Lee May 2012 A1
20120115250 Ariga et al. May 2012 A1
20120115257 Matsuyam et al. May 2012 A1
20120119337 Sasaki et al. May 2012 A1
20120121823 Chhabra May 2012 A1
20120122275 Koo et al. May 2012 A1
20120122302 Weisman et al. May 2012 A1
20120128897 Xiao et al. May 2012 A1
20120135145 Je et al. May 2012 A1
20120149213 Nittala Jun 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120156890 Yim et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120161405 Mohn Jun 2012 A1
20120164327 Sato Jun 2012 A1
20120164837 Tan et al. Jun 2012 A1
20120164842 Watanabe Jun 2012 A1
20120170170 Gros-Jean Jul 2012 A1
20120171391 Won Jul 2012 A1
20120171874 Thridandam et al. Jul 2012 A1
20120175751 Gatineau et al. Jul 2012 A1
20120183689 Suzuki et al. Jul 2012 A1
20120187083 Hashizume Jul 2012 A1
20120187305 Elam et al. Jul 2012 A1
20120190178 Wang et al. Jul 2012 A1
20120190185 Rogers Jul 2012 A1
20120196048 Ueda Aug 2012 A1
20120196450 Balseanu et al. Aug 2012 A1
20120207456 Kim et al. Aug 2012 A1
20120212121 Lin Aug 2012 A1
20120214318 Fukazawa et al. Aug 2012 A1
20120216743 Itoh et al. Aug 2012 A1
20120219824 Prolier Aug 2012 A1
20120220139 Lee et al. Aug 2012 A1
20120225561 Watanabe Sep 2012 A1
20120231771 Marcus Sep 2012 A1
20120238074 Santhanam et al. Sep 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120241411 Darling et al. Sep 2012 A1
20120252229 Timans et al. Oct 2012 A1
20120263876 Haukka et al. Oct 2012 A1
20120264051 Angelov et al. Oct 2012 A1
20120270339 Xie et al. Oct 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120289057 DeDontney Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120305026 Nomura et al. Dec 2012 A1
20120305196 Mori et al. Dec 2012 A1
20120305987 Hirler et al. Dec 2012 A1
20120310440 Darabnia et al. Dec 2012 A1
20120315113 Hiroki Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20120322252 Son et al. Dec 2012 A1
20120325148 Yamagishi et al. Dec 2012 A1
20120328780 Yamagishi et al. Dec 2012 A1
20130005122 Schwarzenbach et al. Jan 2013 A1
20130011983 Tsai Jan 2013 A1
20130014697 Kanayama Jan 2013 A1
20130014896 Shoji et al. Jan 2013 A1
20130019944 Hekmatshoar-Tabai et al. Jan 2013 A1
20130019945 Hekmatshoar-Tabai et al. Jan 2013 A1
20130020246 Hoots et al. Jan 2013 A1
20130023129 Reed Jan 2013 A1
20130025786 Davidkovich et al. Jan 2013 A1
20130026451 Bangsaruntip et al. Jan 2013 A1
20130037858 Hong et al. Feb 2013 A1
20130037886 Tsai et al. Feb 2013 A1
20130048606 Mao et al. Feb 2013 A1
20130052585 Ayothi et al. Feb 2013 A1
20130061755 Frederick Mar 2013 A1
20130064973 Chen et al. Mar 2013 A1
20130065189 Yoshii et al. Mar 2013 A1
20130068727 Okita Mar 2013 A1
20130068970 Matsushita Mar 2013 A1
20130078392 Xiao et al. Mar 2013 A1
20130081702 Mohammed et al. Apr 2013 A1
20130082274 Yang Apr 2013 A1
20130084156 Shimamoto Apr 2013 A1
20130084714 Oka et al. Apr 2013 A1
20130089716 Krishnamurthy et al. Apr 2013 A1
20130095664 Matero et al. Apr 2013 A1
20130095973 Kroneberger et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130115763 Takamure et al. May 2013 A1
20130115768 Pore et al. May 2013 A1
20130122712 Kim et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130134148 Tachikawa May 2013 A1
20130143401 Yu et al. Jun 2013 A1
20130157409 Vaidya Jun 2013 A1
20130160709 White Jun 2013 A1
20130161629 Han et al. Jun 2013 A1
20130168354 Kanarik Jul 2013 A1
20130171818 Kim et al. Jul 2013 A1
20130175596 Cheng et al. Jul 2013 A1
20130180448 Sakaue et al. Jul 2013 A1
20130183814 Huang et al. Jul 2013 A1
20130189854 Hausmann Jul 2013 A1
20130203266 Hintze Aug 2013 A1
20130209940 Sakamoto et al. Aug 2013 A1
20130210241 Lavoie et al. Aug 2013 A1
20130214232 Tendulkar et al. Aug 2013 A1
20130217239 Mallick et al. Aug 2013 A1
20130217240 Mallick et al. Aug 2013 A1
20130217241 Underwood et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224964 Fukazawa Aug 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256265 Darling et al. Oct 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130256962 Ravish Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130269612 Cheng et al. Oct 2013 A1
20130270676 Lindert et al. Oct 2013 A1
20130276978 Bluck et al. Oct 2013 A1
20130285155 Glass Oct 2013 A1
20130287526 Bluck et al. Oct 2013 A1
20130288480 Sanchez et al. Oct 2013 A1
20130288485 Liang et al. Oct 2013 A1
20130292047 Tian et al. Nov 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130295779 Chandra et al. Nov 2013 A1
20130302999 Won et al. Nov 2013 A1
20130313656 Tong Nov 2013 A1
20130319290 Xiao et al. Dec 2013 A1
20130320429 Thomas Dec 2013 A1
20130323435 Xiao et al. Dec 2013 A1
20130330165 Wimplinger Dec 2013 A1
20130330911 Huang et al. Dec 2013 A1
20130330933 Fukazawa et al. Dec 2013 A1
20130333619 Omari Dec 2013 A1
20130337583 Kobayashi et al. Dec 2013 A1
20130337653 Kovalgin et al. Dec 2013 A1
20130340619 Tammera Dec 2013 A1
20130344248 Clark Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140001520 Glass Jan 2014 A1
20140014642 Elliot et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140015186 Wessel et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140023794 Mahajani et al. Jan 2014 A1
20140027884 Tang et al. Jan 2014 A1
20140033978 Adachi et al. Feb 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140047705 Singh Feb 2014 A1
20140048765 Ma et al. Feb 2014 A1
20140056679 Yamabe et al. Feb 2014 A1
20140056770 Bedard et al. Feb 2014 A1
20140057454 Subramonium Feb 2014 A1
20140058179 Stevens et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140061770 Lee Mar 2014 A1
20140062304 Nakano et al. Mar 2014 A1
20140065841 Matero Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140076861 Cornelius et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140094027 Azumo et al. Apr 2014 A1
20140096716 Chung et al. Apr 2014 A1
20140097468 Okita Apr 2014 A1
20140099798 Tsuji Apr 2014 A1
20140103145 White et al. Apr 2014 A1
20140106574 Kang et al. Apr 2014 A1
20140110798 Cai Apr 2014 A1
20140113457 Sims Apr 2014 A1
20140116335 Tsuji et al. May 2014 A1
20140120487 Kaneko May 2014 A1
20140120723 Fu et al. May 2014 A1
20140120738 Jung May 2014 A1
20140127907 Yang May 2014 A1
20140138779 Xie et al. May 2014 A1
20140141625 Fuzazawa et al. May 2014 A1
20140144500 Cao et al. May 2014 A1
20140158786 Santo Jun 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140167187 Kuo et al. Jun 2014 A1
20140174354 Arai Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140182053 Huang Jul 2014 A1
20140191389 Lee et al. Jul 2014 A1
20140193983 Lavoie Jul 2014 A1
20140202386 Taga Jul 2014 A1
20140202388 Um et al. Jul 2014 A1
20140209976 Yang et al. Jul 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140227072 Lee et al. Aug 2014 A1
20140227861 Wu et al. Aug 2014 A1
20140227881 Lubomirsky et al. Aug 2014 A1
20140234550 Winter et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140252134 Chen Sep 2014 A1
20140252479 Utomo et al. Sep 2014 A1
20140260684 Christmann Sep 2014 A1
20140264902 Ting et al. Sep 2014 A1
20140272194 Xiao et al. Sep 2014 A1
20140273428 Shero Sep 2014 A1
20140273477 Niskanen Sep 2014 A1
20140273510 Chen et al. Sep 2014 A1
20140273528 Niskanen Sep 2014 A1
20140273530 Nguyen Sep 2014 A1
20140273531 Niskanen Sep 2014 A1
20140283747 Kasai et al. Sep 2014 A1
20140346142 Chapuis et al. Nov 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20140349033 Nonaka et al. Nov 2014 A1
20140363980 Kawamata et al. Dec 2014 A1
20140363983 Nakano et al. Dec 2014 A1
20140363985 Jang et al. Dec 2014 A1
20140367043 Bishara et al. Dec 2014 A1
20140367642 Guo Dec 2014 A1
20140377960 Koiwa Dec 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150004317 Dussarrat et al. Jan 2015 A1
20150007770 Chandrasekharan et al. Jan 2015 A1
20150010381 Cai Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150014823 Mallikarjunan et al. Jan 2015 A1
20150017794 Takamure Jan 2015 A1
20150021599 Ridgeway Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150041431 Zafiropoulo et al. Feb 2015 A1
20150048485 Tolle Feb 2015 A1
20150056815 Fernandez Feb 2015 A1
20150072509 Chi et al. Mar 2015 A1
20150078874 Sansoni Mar 2015 A1
20150079311 Nakano Mar 2015 A1
20150086316 Greenberg Mar 2015 A1
20150087154 Guha et al. Mar 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150099065 Canizares et al. Apr 2015 A1
20150099072 Takamure et al. Apr 2015 A1
20150099342 Tsai Apr 2015 A1
20150102466 Colinge Apr 2015 A1
20150111374 Bao Apr 2015 A1
20150111395 Hashimoto et al. Apr 2015 A1
20150122180 Chang et al. May 2015 A1
20150132212 Winkler et al. May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147483 Fukazawa May 2015 A1
20150147488 Choi et al. May 2015 A1
20150147877 Jung May 2015 A1
20150162168 Oehrlien Jun 2015 A1
20150162185 Pore Jun 2015 A1
20150162214 Thompson Jun 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150170914 Haukka et al. Jun 2015 A1
20150170947 Bluck Jun 2015 A1
20150170954 Agarwal Jun 2015 A1
20150171177 Cheng et al. Jun 2015 A1
20150174768 Rodnick Jun 2015 A1
20150179501 Jhaveri et al. Jun 2015 A1
20150179564 Lee et al. Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187559 Sano Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
20150217330 Haukka Aug 2015 A1
20150217456 Tsuji et al. Aug 2015 A1
20150218695 Odedra Aug 2015 A1
20150225850 Arora et al. Aug 2015 A1
20150228572 Yang et al. Aug 2015 A1
20150240359 Jdira et al. Aug 2015 A1
20150243542 Yoshihara et al. Aug 2015 A1
20150243545 Tang Aug 2015 A1
20150243658 Joshi et al. Aug 2015 A1
20150255385 Lee et al. Sep 2015 A1
20150259790 Newman Sep 2015 A1
20150263033 Aoyama Sep 2015 A1
20150267295 Hill et al. Sep 2015 A1
20150267297 Shiba Sep 2015 A1
20150267298 Saitou et al. Sep 2015 A1
20150267299 Hawkins Sep 2015 A1
20150267301 Hill et al. Sep 2015 A1
20150270146 Yoshihara et al. Sep 2015 A1
20150279681 Knoops Oct 2015 A1
20150279708 Kobayashi et al. Oct 2015 A1
20150284848 Nakano et al. Oct 2015 A1
20150287626 Arai Oct 2015 A1
20150287710 Yun et al. Oct 2015 A1
20150292088 Canizares Oct 2015 A1
20150299848 Haukka Oct 2015 A1
20150308586 Shugrue et al. Oct 2015 A1
20150303056 Varadarajan et al. Nov 2015 A1
20150315704 Nakano et al. Nov 2015 A1
20150340247 Balakrishnan et al. Nov 2015 A1
20150340500 Brunco Nov 2015 A1
20150343741 Shibata et al. Dec 2015 A1
20150348755 Han et al. Dec 2015 A1
20150361553 Murakawa Dec 2015 A1
20150364371 Yen Dec 2015 A1
20150367253 Kanyal et al. Dec 2015 A1
20150376211 Girard Dec 2015 A1
20150376785 Knaapen et al. Dec 2015 A1
20150380296 Antonelli et al. Dec 2015 A1
20160013022 Ayoub Jan 2016 A1
20160013024 Milligan et al. Jan 2016 A1
20160020092 Kang et al. Jan 2016 A1
20160024656 White et al. Jan 2016 A1
20160035566 LaVoie Feb 2016 A1
20160051964 Tolle et al. Feb 2016 A1
20160056074 Na Feb 2016 A1
20160079054 Chen et al. Mar 2016 A1
20160097123 Shugrue et al. Apr 2016 A1
20160099150 Tsai Apr 2016 A1
20160102214 Dietz et al. Apr 2016 A1
20160111272 Girard Apr 2016 A1
20160111438 Tsutsumi et al. Apr 2016 A1
20160115590 Haukka et al. Apr 2016 A1
20160133307 Lee et al. May 2016 A1
20160133628 Xie May 2016 A1
20160141172 Kang May 2016 A1
20160145738 Liu et al. May 2016 A1
20160148811 Nakatani et al. May 2016 A1
20160148821 Singh May 2016 A1
20160155629 Hawryluk et al. Jun 2016 A1
20160163556 Briggs Jun 2016 A1
20160163561 Hudson et al. Jun 2016 A1
20160168699 Fukazawa et al. Jun 2016 A1
20160181128 Mori Jun 2016 A1
20160181368 Weeks Jun 2016 A1
20160190137 Tsai et al. Jun 2016 A1
20160211135 Noda et al. Jul 2016 A1
20160211147 Fukazawa Jul 2016 A1
20160217857 Paudel Jul 2016 A1
20160225607 Yamamoto et al. Aug 2016 A1
20160245704 Osaka et al. Aug 2016 A1
20160256187 Shelton et al. Sep 2016 A1
20160268102 White Sep 2016 A1
20160268107 White Sep 2016 A1
20160276148 Qian et al. Sep 2016 A1
20160284542 Noda et al. Sep 2016 A1
20160289828 Shero et al. Oct 2016 A1
20160293398 Danek et al. Oct 2016 A1
20160307766 Jongbloed et al. Oct 2016 A1
20160312360 Rasheed et al. Oct 2016 A1
20160314964 Tang et al. Oct 2016 A1
20160334709 Huli et al. Nov 2016 A1
20160358772 Xie Dec 2016 A1
20160362813 Bao et al. Dec 2016 A1
20160365280 Brink et al. Dec 2016 A1
20160372365 Tang et al. Dec 2016 A1
20160372744 Essaki et al. Dec 2016 A1
20160376700 Haukka Dec 2016 A1
20160376704 Raisanen Dec 2016 A1
20160379851 Swaminathan et al. Dec 2016 A1
20160381732 Moench et al. Dec 2016 A1
20170011889 Winkler Jan 2017 A1
20170011950 Schmotzer Jan 2017 A1
20170018477 Kato Jan 2017 A1
20170025280 Milligan Jan 2017 A1
20170029945 Kamakura Feb 2017 A1
20170033004 Siew et al. Feb 2017 A1
20170037513 Haukka Feb 2017 A1
20170040164 Wang et al. Feb 2017 A1
20170040206 Schmotzer et al. Feb 2017 A1
20170047446 Margetis et al. Feb 2017 A1
20170051408 Kosuke et al. Feb 2017 A1
20170062204 Suzuki et al. Mar 2017 A1
20170062209 Shiba Mar 2017 A1
20170062258 Bluck Mar 2017 A1
20170091320 Psota et al. Mar 2017 A1
20170092469 Kurita et al. Mar 2017 A1
20170092531 Coomer Mar 2017 A1
20170092847 Kim et al. Mar 2017 A1
20170100742 Pore et al. Apr 2017 A1
20170103907 Chu et al. Apr 2017 A1
20170107621 Suemori Apr 2017 A1
20170110313 Tang et al. Apr 2017 A1
20170114464 Iriuda Apr 2017 A1
20170117141 Zhu et al. Apr 2017 A1
20170117202 Tang et al. Apr 2017 A1
20170117203 Tang et al. Apr 2017 A1
20170117222 Kim et al. Apr 2017 A1
20170130332 Stumpf May 2017 A1
20170136578 Yoshimura May 2017 A1
20170154757 Winkler et al. Jun 2017 A1
20170173696 Sheinman Jun 2017 A1
20170186754 Blomberg et al. Jun 2017 A1
20170191164 Alokozai et al. Jul 2017 A1
20170196562 Shelton Jul 2017 A1
20170216762 Shugrue et al. Aug 2017 A1
20170232457 Toshiki et al. Aug 2017 A1
20170243734 Ishikawa et al. Aug 2017 A1
20170250068 Ishikawa et al. Aug 2017 A1
20170250075 Caymax et al. Aug 2017 A1
20170256429 Lawson et al. Sep 2017 A1
20170260649 Coomer Sep 2017 A1
20170263437 Li et al. Sep 2017 A1
20170267527 Kim et al. Sep 2017 A1
20170267531 Huakka Sep 2017 A1
20170271256 Inatsuka Sep 2017 A1
20170278707 Margetis et al. Sep 2017 A1
20170287681 Nitadori et al. Oct 2017 A1
20170294318 Yoshida et al. Oct 2017 A1
20170306478 Raisanen et al. Oct 2017 A1
20170306479 Raisanen et al. Oct 2017 A1
20170306480 Zhu et al. Oct 2017 A1
20170316933 Xie et al. Nov 2017 A1
20170316940 Ishikawa et al. Nov 2017 A1
20170317194 Tang et al. Nov 2017 A1
20170338192 Lee et al. Nov 2017 A1
20170342559 Fukazawa et al. Nov 2017 A1
20170343896 Darling et al. Nov 2017 A1
20170372884 Margetis et al. Dec 2017 A1
20180010247 Niskanen Jan 2018 A1
20180025890 Choi Jan 2018 A1
20180025939 Kovalgin et al. Jan 2018 A1
20180033616 Masaru Feb 2018 A1
20180033625 Yoo Feb 2018 A1
20180033645 Saido et al. Feb 2018 A1
20180033674 Jeong Feb 2018 A1
20180033679 Pore Feb 2018 A1
20180040746 Johnson et al. Feb 2018 A1
20180047749 Kim Feb 2018 A1
20180057937 Lee et al. Mar 2018 A1
20180061851 Ootsuka Mar 2018 A1
20180069019 Kim et al. Mar 2018 A1
20180076021 Fukushima et al. Mar 2018 A1
20180087152 Yoshida Mar 2018 A1
20180087154 Pore et al. Mar 2018 A1
20180087156 Kohei et al. Mar 2018 A1
20180102276 Zhu et al. Apr 2018 A1
20180105930 Kang et al. Apr 2018 A1
20180108587 Jiang Apr 2018 A1
20180114680 Kim et al. Apr 2018 A1
20180119283 Fukazawa May 2018 A1
20180122642 Raisanen May 2018 A1
20180122709 Xie May 2018 A1
20180122959 Calka et al. May 2018 A1
20180127876 Tolle May 2018 A1
20180130652 Pettinger et al. May 2018 A1
20180130701 Chun May 2018 A1
20180135173 Kim et al. May 2018 A1
20180135179 Toshiyuki et al. May 2018 A1
20180142353 Tetsuya et al. May 2018 A1
20180142357 Yoshikazu May 2018 A1
20180151346 Blanquart May 2018 A1
20180151358 Margetis et al. May 2018 A1
20180158688 Chen Jun 2018 A1
20180166258 Kim et al. Jun 2018 A1
20180166315 Coomer Jun 2018 A1
20180171475 Maes et al. Jun 2018 A1
20180171477 Kim et al. Jun 2018 A1
20180174826 Raaijmakers et al. Jun 2018 A1
20180182613 Blanquart et al. Jun 2018 A1
20180182618 Blanquart et al. Jun 2018 A1
20180189923 Goundar Jul 2018 A1
20180195174 Kim et al. Jul 2018 A1
20180223429 Fukazawa et al. Aug 2018 A1
20180233372 Vayrynen et al. Aug 2018 A1
Foreign Referenced Citations (169)
Number Date Country
2588350 Nov 2003 CN
1563483 Jan 2005 CN
1664987 Sep 2005 CN
1714168 Dec 2005 CN
101330015 Dec 2008 CN
101515563 Aug 2009 CN
101522943 Sep 2009 CN
101681873 Mar 2010 CN
101423937 Sep 2011 CN
102383106 Mar 2012 CN
102008052750 Jun 2009 DE
0887632 Dec 1998 EP
1889817 Feb 2008 EP
2036600 Mar 2009 EP
2426233 Jul 2012 EP
1408266 Aug 1965 FR
2233614 Jan 1975 FR
752-277 Jul 1956 GB
58-19462 Apr 1983 JP
59-211779 Nov 1984 JP
61038863 Feb 1986 JP
H02-185038 Jul 1990 JP
03-044472 Feb 1991 JP
H04115531 Apr 1992 JP
H05-023079 Mar 1993 JP
H05-118928 May 1993 JP
05171446 Jul 1993 JP
06-053210 Feb 1994 JP
H06-053210 Feb 1994 JP
H07297271 Jan 1995 JP
H07-109576 Apr 1995 JP
07-130731 May 1995 JP
07-034936 Aug 1995 JP
H07-034936 Aug 1995 JP
7-272694 Oct 1995 JP
H07283149 Oct 1995 JP
H07-209093 Nov 1995 JP
08-181135 Jul 1996 JP
H08181135 Jul 1996 JP
H08335558 Dec 1996 JP
9-89676 Apr 1997 JP
10-064696 Mar 1998 JP
H10-153494 Jun 1998 JP
H10-227703 Aug 1998 JP
10-0261620 Sep 1998 JP
2845163 Jan 1999 JP
2001-15698 Feb 1999 JP
11097163 Apr 1999 JP
H11-118615 Apr 1999 JP
H11-183264 Jul 1999 JP
H11-183265 Jul 1999 JP
H11-287715 Oct 1999 JP
2001342570 Dec 2001 JP
2003035574 Feb 2003 JP
2003153706 May 2003 JP
2004014952 Jan 2004 JP
2004023043 Jan 2004 JP
2004091848 Mar 2004 JP
2004113270 Apr 2004 JP
2004128019 Apr 2004 JP
2004134553 Apr 2004 JP
2004294638 Oct 2004 JP
2004310019 Nov 2004 JP
2004538374 Dec 2004 JP
2005033221 Feb 2005 JP
2005507030 Mar 2005 JP
2005172489 Jun 2005 JP
2006059931 Mar 2006 JP
2006090762 Apr 2006 JP
2006153706 Jun 2006 JP
2006186271 Jul 2006 JP
2007027777 Feb 2007 JP
3140111 Mar 2008 JP
2008060304 Mar 2008 JP
2008527748 Jul 2008 JP
2008202107 Sep 2008 JP
2009016815 Jan 2009 JP
2009088421 Apr 2009 JP
2009099938 May 2009 JP
2009194248 Aug 2009 JP
2009251216 Oct 2009 JP
2010067940 Mar 2010 JP
2010097834 Apr 2010 JP
2010205967 Sep 2010 JP
2010251444 Oct 2010 JP
2011049592 Mar 2011 JP
2011162830 Aug 2011 JP
2012089837 May 2012 JP
2012146939 Aug 2012 JP
2013235912 Nov 2013 JP
2014522104 Aug 2014 JP
2016174158 Sep 2016 JP
10-2000-0031098 Jun 2000 KR
10-2000-0045257 Jul 2000 KR
10-0295043 Apr 2001 KR
10-2002-0064028 Aug 2002 KR
2002-0086763 Nov 2002 KR
10-0377095 Mar 2003 KR
2003-0092305 Dec 2003 KR
10-2005-0054122 Jun 2005 KR
10-0547248 Jan 2006 KR
10-0593960 Jun 2006 KR
10-0688484 Feb 2007 KR
10-2007-0084683 Aug 2007 KR
10-2009-0055443 Jun 2009 KR
10-20100020834 Feb 2010 KR
10-20100032812 Mar 2010 KR
10-1114219 Feb 2012 KR
10-1114219 Mar 2012 KR
10-20180054366 May 2018 KR
538327 Jun 2003 TW
I226380 Jan 2005 TW
M292692 Jun 2006 TW
200701301 Jan 2007 TW
200731357 Aug 2007 TW
201247690 Dec 2012 TW
1996017107 Jun 1996 WO
1997003223 Jan 1997 WO
1998032893 Jul 1998 WO
1999023690 May 1999 WO
DM048579 Jul 1999 WO
2004008491 Jul 2002 WO
2004008827 Jan 2004 WO
2004010467 Jan 2004 WO
2005112082 Nov 2005 WO
2006054854 May 2006 WO
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
2006080782 Aug 2006 WO
2006101857 Sep 2006 WO
2006114781 Nov 2006 WO
2007027165 Mar 2007 WO
2007117718 Oct 2007 WO
2007140376 Dec 2007 WO
2008045972 Apr 2008 WO
2008091900 Jul 2008 WO
2008121463 Oct 2008 WO
2008147731 Dec 2008 WO
2009028619 Mar 2009 WO
2009099776 Aug 2009 WO
2009154889 Dec 2009 WO
2009154896 Dec 2009 WO
2010039363 Apr 2010 WO
2010077533 Jul 2010 WO
2010100702 Sep 2010 WO
2010129428 Nov 2010 WO
2010129430 Nov 2010 WO
2010129431 Nov 2010 WO
2010118051 Jan 2011 WO
2011019950 Feb 2011 WO
2011149640 Dec 2011 WO
2012077590 Jun 2012 WO
2013078065 May 2013 WO
2013078066 May 2013 WO
2014107290 Jul 2014 WO
2015107009 Jul 2015 WO
2018109553 Jun 2016 WO
2018109554 Jun 2016 WO
2017108713 Jun 2017 WO
2017108714 Jun 2017 WO
2017212546 Dec 2017 WO
2018008088 Jan 2018 WO
2018020316 Feb 2018 WO
2018020318 Feb 2018 WO
2018020320 Feb 2018 WO
2018020327 Feb 2018 WO
2008045972 Apr 2018 WO
2018109551 Jun 2018 WO
2018109552 Jun 2018 WO
Non-Patent Literature Citations (1071)
Entry
PCT; International Preliminary Report on Patentability dated Nov. 24, 2009 and International Search Report dated Jul. 31, 2008 in Application No. PCT/US2008/063919.
PCT; International Preliminary Report on Patentability dated Feb. 24, 2010 in Application No. PCT/US2008/074063.
PCT; International Preliminary Report on Patentability dated Nov. 26, 2009 in Application No. PCT/US2009/043454.
PCT; International Preliminary Report on Patentability dated Jun. 14, 2011 in Application No. PCT/US2009/066377.
PCT; International Preliminary Report on Patentability dated Nov. 9, 2011 in Application No. PCT/US2010/033244.
PCT; International Preliminary Report on Patentability dated Nov. 9, 2011 in Application No. PCT/US2010/033248.
PCT; International Preliminary Report on Patentability dated Nov. 9, 2011 in Application No. PCT/US2010/033252.
USPTO; Notice of Allowance dated Jul. 26, 2005 in U.S. Appl. No. 10/033,058.
USPTO; Non-Final Office Action dated Aug. 25, 2005 in U.S. Appl. No. 10/191,635.
USPTO; Final Office Action dated Apr. 25, 2006 in U.S. Appl. No. 10/191,635.
USPTO; Non-Final Office Action dated Nov. 20, 2006 in U.S. Appl. No. 10/191,635.
USPTO; Notice of Allowance dated May 21, 2007 in U.S. Appl. No. 10/191,635.
USPTO; Notice of Allowance dated Feb. 20, 2008 in U.S. Appl. No. 10/191,635.
USPTO; Non-Final Office Action dated May 13, 2003 in U.S. Appl. No. 10/222,229.
USPTO; Non-Final Office Action dated Oct. 22, 2003 in U.S. Appl. No. 10/222,229.
USPTO; Final Office Action dated Mar. 22, 2004 in U.S. Appl. No. 10/222,229.
USPTO; Advisory Action dated Oct. 7, 2004 in U.S. Appl. No. 10/222,229.
USPTO; Non-Final Office Action dated Dec. 22, 2004 in U.S. Appl. No. 10/222,229.
USPTO; Final Office Action dated Jun. 20, 2005 in U.S. Appl. No. 10/222,229.
USPTO; Advisory Action dated Nov. 16, 2005 in U.S. Appl. No. 10/222,229.
USPTO; Notice of Allowance dated Mar. 8, 2006 in U.S. Appl. No. 10/222,229.
USPTO; Non-Final Office Action dated Jan. 26, 2005 in U.S. Appl. No. 10/838,510.
USPTO; Notice of Allowance dated Jul. 12, 2005 in U.S. Appl. No. 10/838,510.
USPTO; Non-Final Office Action dated Mar. 28, 2010 in U.S. Appl. No. 12/121,085.
USPTO; Notice of Allowance dated Jul. 26, 2010 in U.S. Appl. No. 12/121,085.
USPTO; Notice of Allowance dated Oct. 4, 2010 in U.S. Appl. No. 12/121,085.
USPTO; Final Office Action dated Dec. 28, 2010 in U.S. Appl. No. 12/140,809.
USPTO; Notice of Allowance dated Mar. 17, 2011 in U.S. Appl. No. 12/140,809.
USPTO; Requirement for Restriction dated Sep. 10, 2010 in U.S. Appl. No. 12/148,956.
USPTO; Non-Final Office Action dated Mar. 15, 2011 in U.S. Appl. No. 12/193,924.
USPTO; Final Office Action dated Sep. 30, 2011 in U.S. Appl. No. 12/193,924.
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/193,924.
USPTO; Final Office Action dated Apr. 17, 2013 in U.S. Appl. No. 12/193,924.
USPTO; Advisory Action dated Jul. 9, 2013 in U.S. Appl. No. 12/193,924.
USPTO ; Non-Final Office Action dated Jul. 28, 2011 in U.S. Appl. No. 12/330,096.
USPTO ; Final Office Action dated Jan. 13, 2012 in U.S. Appl. No. 12/330,096.
USPTO; Notice of Allowance dated Mar. 6, 2012 in U.S. Appl. No. 12/330,096.
USPTO; Non-Final Office Action dated Mar. 20, 2012 in U.S. Appl. No. 12/330,096.
USPTO; Notice of Allowance dated Jun. 7, 2012 in U.S. Appl. No. 12/330,096.
USPTO; Notice of Allowance dated Apr. 2, 2012 in U.S. Appl. No. 12/416,809.
USPTO; Advisory Action dated Feb. 3, 2012 in U.S. Appl. No. 12/416,809.
USPTO; Non-Final Office Action dated Aug. 3, 2011 in U.S. Appl. No. 12/436,300.
USPTO; Final Office Action dated Jan. 23, 2012 in U.S. Appl. No. 12/436,300.
USPTO; Advisory Action dated Mar. 6, 2012 in U.S. Appl. No. 12/436,300.
USPTO; Non-Final Office Action dated May 22, 2012 in U.S. Appl. No. 12/436,300.
USPTO; Notice of Allowance dated Nov. 28, 2012 in U.S. Appl. No. 12/436,300.
USPTO; Restriction Requirement dated Dec. 20, 2011 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated Apr. 11, 2012 in U.S. Appl. No. 12/436,306.
USPTO; Final Office Action dated Sep. 26, 2012 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated May 31, 2013 in U.S. Appl. No. 12/436,306.
USPTO; Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 12/436,306.
USPTO; Advisory Action dated Oct. 1, 2014 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated Feb. 4, 2014 in U.S. Appl. No. 12/436,306.
USPTO; Final Office Action dated Jun. 23, 2014 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated Feb. 3, 2015 in U.S. Appl. No. 12/436,306.
USPTO; Final Office Action dated May 13, 2015 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated Oct. 14, 2015 in U.S. Appl. No. 12/436,306.
USPTO; Final Office Action dated Dec. 31, 2015 in U.S. Appl. No. 12/436,306.
USPTO; Notice of Allowance dated Feb. 3, 2016 in U.S. Appl. No. 12/436,306.
USPTO; Non-Final Office Action dated Aug. 3, 2011 in U.S. Appl. No. 12/436,315.
USPTO; Notice of Allowance dated Nov. 17, 2011 in U.S. Appl. No. 12/436,315.
USPTO; Advisory Action dated Jul. 13, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Advisory Action dated Jul. 23, 2013 in U.S. Appl. No. 12/618,355.
USPTO; Advisory Action dated Mar. 4, 2016 in U.S. Appl. No. 12/618,355.
USPTO; Advisory Action dated May 16, 2017 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated Aug. 10, 2018 in U.S. Appl. No. 12/618,355.
USPTO; Advisory Action dated Aug. 9, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Notice of Allowance dated Oct. 9, 2013 in U.S. Appl. No. 12/618,419.
USPTO; Requirement for Restriction dated Sep. 12, 2011 in U.S. Appl. No. 12/718,731.
USPTO; Advisory Action dated Jul. 1, 2013 in U.S. Appl. No. 12/847,848.
USPTO; Requirement for Restriction dated Jul. 22, 2013 in U.S. Appl. No. 12/910,607.
USPTO; Advisory Action dated Jul. 9, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Advisory Action dated Jul. 8, 2013 in U.S. Appl. No. 12/953,870.
USPTO; Non-Final Office Action dated Aug. 28, 2013 in U.S. Appl. No. 12/953,870.
USPTO; Final Office Action dated Apr. 17, 2014 in U.S. Appl. No. 12/953,870.
USPTO; Advisory Action dated Jun. 12, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Notice of Allowance dated Sep. 17, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Requirement for Restriction dated Jun. 5, 2014 in U.S. Appl. No. 13/154,271.
USPTO; Requirement for Restriction dated Apr. 6, 2016 in U.S. Appl. No. 13/166,367.
USPTO; Advisory Action dated Apr. 21, 2017 in U.S. Appl. No. 13/166,367.
USPTO; Requirement for Restriction dated Jun. 18, 2014 in U.S. Appl. No. 13/169,951.
USPTO; Advisory Action dated May 13, 2016 in U.S. Appl. No. 13/169,951.
USPTO; Advisory Action dated Feb. 15, 2017 in U.S. Appl. No. 13/169,951.
USPTO; Advisory Action dated Feb. 8, 2018 in U.S. Appl. No. 13/169,951.
USPTO; Advisory Action dated Dec. 17, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Requirement for Restriction dated Sep. 25, 2012 in U.S. Appl. No. 13/184,351.
USPTO; Advisory Action dated Nov. 7, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Advisory Action dated May 18, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Advisory Action dated Oct. 4, 2017 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Jul. 26, 2018 in U.S. Appl. No. 13/184,351.
USPTO; Restriction Requirement dated Aug. 21, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Advisory Action dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408.
USPTO; Restriction Requirement dated Oct. 2, 2013 in U.S. Appl. No. 13/312,591.
USPTO; Advisory Action dated Aug. 26, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated Jun. 11, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Requirement for Restriction dated Nov. 26, 2013 in U.S. Appl. No. 13/333,420.
USPTO Advisory Action dated Mar. 27, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Advisory Action dated Oct. 29, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Advisory Action dated Apr. 22, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Advisory Action dated Mar. 31, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Advisory Action dated Apr. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated May 28, 2013 in U.S. Appl. No. 13/563,274.
USPTO; Notice of Allowance dated Sep. 27, 2013 in U.S. Appl. No. 13/563,274.
USPTO; Advisory Action dated May 5, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Notice of Allowance dated Sep. 13, 2013 in U.S. Appl. No. 13/566,069.
USPTO; Advisory Action dated Sep. 2, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Mar. 7, 2017 in U.S. Appl. No. 13/597,108.
USPTO; Restriction Requirement dated Jul. 9, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Notice of Allowance dated Feb. 25, 2015 in U.S. Appl. No. 13/612,538.
USPTO; Requirement for Restriction dated Feb. 4, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Requirement for Restriction dated Apr. 11, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Advisory Action dated Nov. 14, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Advisory Action dated Apr. 15, 2016 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Oct. 20, 2016 in U.S. Appl. No. 13/646,471.
USPTO; Restriction Requirement dated Mar. 4, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Advisory Action dated Apr. 19, 2018 in U.S. Appl. No. 13/651,144.
USPTO; Requirement for Restriction dated Dec. 24, 2014 in U.S. Appl. No. 13/665,366.
USPTO; Final Office Action dated Mar. 1, 2016 in U.S. Appl. No. 13/665,366.
USPTO; Advisory Action dated May 13, 2016 in U.S. Appl. No. 13/665,366.
USPTO; Non-Final Office Action dated Jun. 17, 2016 in U.S. Appl. No. 13/665,366.
USPTO; Final Office Action dated May 3, 2017 in U.S. Appl. No. 13/665,366.
USPTO; Notice of Allowance dated Aug. 24, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Advisory Action dated Apr. 6, 2016 in U.S. Appl. No. 13/727,324.
USPTO; Non-Final Office Action dated Sep. 16, 2013 in U.S. Appl. No. 13/760,160.
USPTO; Final Office Action dated Dec. 27, 2013 in U.S. Appl. No. 13/760,160.
USPTO; Non-Final Office Action dated Jun. 4, 2014 in U.S. Appl. No. 13/760,160.
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/760,160.
USPTO; Final Office Action dated Jan. 28, 2015 in U.S. Appl. No. 13/760,160.
USPTO; Final Office Action dated May 12, 2015 in U.S. Appl. No. 13/760,160.
USPTO; Notice of Allowance dated Oct. 21, 2015 in U.S. Appl. No. 13/760,160.
USPTO; Notice of Allowance dated Jan. 20, 2016 in U.S. Appl. No. 13/760,160.
USPTO; Advisory Action dated Jul. 13, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Notice of Allowance dated Oct. 19, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Advisory Action dated Jul. 14, 2016 in U.S. Appl. No. 13/791,339.
USPTO; Advisory Action dated Jun. 29, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Advisory Action dated Dec. 11, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Requirement for Restriction dated Sep. 4, 2014 in U.S. Appl. No. 13/915,732.
USPTO; Non-Final Office Action dated Jan. 14, 2014 in U.S. Appl. No. 13/941,226.
USPTO; Non-Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/941,226.
USPTO; Non-Final Office Action dated Feb. 3, 2015 in U.S. Appl. No. 13/941,226.
USPTO; Final Office Action dated Feb. 12, 2016 in U.S. Appl. No. 13/941,226.
USPTO; Advisory Action dated Jul. 29, 2016 in U.S. Appl. No. 13/941,226.
USPTO; Non-Final Office Action dated Aug. 8, 2017 in U.S. Appl. No. 13/941,226.
USPTO; Notice of Allowance dated Feb. 27, 2015 in U.S. Appl. No. 13/948,055.
USPTO; Notice of Allowance dated Mar. 31, 2015 in U.S. Appl. No. 13/948,055.
USPTO; Notice of Allowance dated Mar. 21, 2016 in U.S. Appl. No. 13/966,782.
USPTO; Non-Final Office Action Restriction dated Jan. 2, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Advisory Action dated Aug. 24, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Dec. 23, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Requirement for Restriction dated Aug. 11, 2015 in U.S. Appl. No. 14/090,750.
USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750.
USPTO; Final Office Action dated Feb. 11, 2016 in U.S. Appl. No. 14/090,750.
USPTO; Advisory Action dated May 5, 2016 in U.S. Appl. No. 14/090,750.
USPTO; Advisory Action dated Dec. 21, 2016 in U.S. Appl. No. 14/090,750.
USPTO; Advisory Action dated Jan. 30, 2018 in U.S. Appl. No. 14/090,750.
USPTO; Advisory Action dated Feb. 20, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Notice of Allowance dated Aug. 31, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Requirement for Restriction dated Sep. 24, 2015 in U.S. Appl. No. 14/188,760.
USPTO; Advisory Action dated Jan. 12, 2017 in U.S. Appl. No. 14/188,760.
USPTO; Advisory Action dated Jan. 3, 2018 in U.S. Appl. No. 14/188,760.
USPTO; Advisory Action dated Apr. 29, 2016 in U.S. Appl. No. 14/218,374.
USPTO; Notice of Allowance dated Aug. 5, 2016 in U.S. Appl. No. 14/218,374.
USPTO; Advisory Action dated Jun. 30, 2016 in U.S. Appl. No. 14/219,839.
USPTO; Final Office action dated May 19, 2016 in U.S. Appl. No. 14/219,879.
USPTO; Advisory Action dated Aug. 22, 2016 in U.S. Appl. No. 14/219,879.
USPTO; Final Office action dated Jul. 6, 2017 in U.S. Appl. No. 14/219,879.
USPTO; Advisory Action dated Aug. 2, 2016 in U.S. Appl. No. 14/246,969.
USPTO; Notice of Allowance dated Feb. 27, 2017 in U.S. Appl. No. 14/246,969.
USPTO; Requirement for Restriction dated Jun. 15, 2015 in U.S. Appl. No. 14/268,348.
USPTO; Notice of Allowance dated Aug. 30, 2016 in U.S. Appl. No. 14/268,348.
USPTO; Requirement for Restriction dated May 21, 2015 in U.S. Appl. No. 14/281,477.
USPTO; Advisory Action dated Mar. 28, 2016 in U.S. Appl. No. 14/281,477.
USPTO; Non-Final Office Action dated Jul. 27, 2018 in U.S. Appl. No. 14/444,744.
USPTO; Notice of Allowance dated Nov. 28, 2016 in U.S. Appl. No. 14/449,838.
USPTO; Advisory Action dated Sep. 21, 2016 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Action dated Jun. 14, 2018 in U.S. Appl. No. 14/457,058.
USPTO; Requirement for Restriction dated Sep. 3, 2015 in U.S. Appl. No. 14/498,036.
USPTO; Advisory Action dated Jun. 16, 2016 in U.S. Appl. No. 14/498,036.
USPTO; Notice of Allowance dated Aug. 17, 2016 in U.S. Appl. No. 14/498,036.
USPTO; Requirement for Restriction dated Mar. 20, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Advisory Action dated Aug. 17, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Notice of Allowance dated Jan. 27, 2017 in U.S. Appl. No. 14/508,296.
USPTO; Advisory Action dated Dec. 21, 2016 in U.S. Appl. No. 14/568,647.
USPTO; Advisory Action dated Apr. 12, 2018 in U.S. Appl. No. 14/568,647.
USPTO; Notice of Allowance dated May 18, 2016 in U.S. Appl. No. 14/571,126.
USPTO; Restriction Requirement dated Mar. 7, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Final Office Action dated Jun. 14, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Advisory Action dated Aug. 25, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Non-Final Office Action dated Sep. 27, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Notice of Allowance dated Aug. 2, 2016 in U.S. Appl. No. 14/622,603.
USPTO; Notice of Allowance dated Feb. 16, 2016 in U.S. Appl. No. 14/634,342.
USPTO; Final Office Action dated Aug. 10, 2018 in U.S. Appl. No. 14/645,234.
USPTO; Requirement for Restriction dated Oct. 26, 2015 in U.S. Appl. No. 14/659,152.
USPTO; Final Office Action dated Mar. 17, 2016 in U.S. Appl. No. 14/659,437.
USPTO; Non-Final Office Action dated Aug. 10, 2018 in U.S. Appl. No. 14/793,323.
USPTO; Notice of Allowance dated Jun. 27, 2018 in U.S. Appl. No. 14/808,979.
USPTO; Notice of Allowance dated Jul. 11, 2018 in U.S. Appl. No. 14/817,953.
USPTO; Requirement for Restriction dated Mar. 17, 2016 in U.S. Appl. No. 14/827,177.
USPTO; Notice of Allowance dated Jan. 27, 2017 in U.S. Appl. No. 14/827,177.
USPTO; Requirement for Restriction dated Aug. 8, 2016 in U.S. Appl. No. 14/829,565.
USPTO; Advisory Action dated Apr. 20, 2017 in U.S. Appl. No. 14/829,565.
USPTO; Advisory Action dated Feb. 14, 2017 in U.S. Appl. No. 14/835,637.
USPTO; Notice of Allowance dated Apr. 25, 2017 in U.S. Appl. No. 14/835,637.
USPTO; Final Office Action dated Feb. 9, 2017 in U.S. Appl. No. 14/884,695.
USPTO; Advisory Action dated Apr. 20, 2017 in U.S. Appl. No. 14/884,695.
USPTO; Non-Final Office Action dated May 18, 2017 in U.S. Appl. No. 14/884,695.
USPTO; Requirement for Restriction dated Dec. 1, 2016 in U.S. Appl. No. 14/886,571.
USPTO; Final Office Action dated Sep. 21, 2017 in U.S. Appl. No. 14/886,571.
USPTO; Notice of Allowance dated Dec. 6, 2017 in U.S. Appl. No. 14/886,571.
USPTO; Requirement for Restriction dated Sep. 20, 2016 in U.S. Appl. No. 14/919,536.
USPTO; Non-Final Office Action dated May 3, 2016 in U.S. Appl. No. 14/937,053.
USPTO; Notice of Allowance dated Jul. 26, 2016 in U.S. Appl. No. 14/937,053.
USPTO; Requirement for Restriction dated Sep. 15, 2016 in U.S. Appl. No. 14/938,180.
USPTO; Notice of Allowance dated Nov. 21, 2016 in U.S. Appl. No. 14/981,434.
USPTO; Notice of Allowance dated Jun. 7, 2017 in U.S. Appl. No. 14/981,468.
USPTO; Non-Final Office Action dated Jun. 20, 2018 in U.S. Appl. No. 14/997,683.
USPTO; Non-Final Office Action dated Apr. 22, 2016 in U.S. Appl. No. 15/055,122.
USPTO; Notice of Allowance dated Sep. 15, 2016 in U.S. Appl. No. 15/055,122.
USPTO; Requirement for Restriction dated Jun. 28, 2018 in U.S. Appl. No. 15/074,813.
USPTO; Notice of Allowance dated Jun. 29, 2018 in U.S. Appl. No. 15/135,224.
USPTO; Final Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/135,258.
USPTO; Final Office Action dated Jul. 26, 2018 in U.S. Appl. No. 15/144,506.
USPTO; Requirement for Restriction dated Jun. 22, 2018 in U.S. Appl. No. 15/182,504.
USPTO; Advisory Action dated Aug. 23, 2017 in U.S. Appl. No. 15/203,632.
USPTO; Requirement for Restriction dated Jan. 26, 2017 in U.S. Appl. No. 15/205,890.
USPTO; Requirement for Restriction dated Apr. 3, 2017 in U.S. Appl. No. 15/222,715.
USPTO; Notice of Allowance dated Jul. 14, 2017 in U.S. Appl. No. 15/222,715.
USPTO; Notice of Allowance dated Sep. 27, 2017 in U.S. Appl. No. 15/222,715.
USPTO; Notice of Allowance dated Feb. 3, 2017 in U.S. Appl. No. 15/222,738.
USPTO; Notice of Allowance dated Aug. 23, 2017 in U.S. Appl. No. 15/222,738.
USPTO; Requirement for Restriction dated Dec. 5, 2017 in U.S. Appl. No. 15/254,605.
USPTO; Notice of Allowance dated Jul. 12, 2018 in U.S. Appl. No. 15/254,605.
USPTO; Notice of Allowance dated Apr. 2, 2018 in U.S. Appl. No. 15/254,724.
USPTO; Non-Final Office Action dated Aug. 3, 2018 in U.S. Appl. No. 15/273,488.
USTPO; Non-Final Office Action dated Jul. 2, 2018 in U.S. Appl. No. 15/286,503.
USPTO; Requirement for Restriction dated Sep. 12, 2017 in U.S. Appl. No. 15/377,439.
USPTO; Advisory Action dated Aug. 8, 2018 in U.S. Appl. No. 15/377,439.
USPTO; Notice of Allowance dated Oct. 11, 2017 in U.S. Appl. No. 15/380,895.
USPTO; Requirement for Restriction dated Sep. 21, 2017 in U.S. Appl. No. 15/380,921.
USPTO; Final Office Action dated Jun. 28, 2018 in U.S. Appl. No. 15/380,921.
USPTO; Final Office Action dated May 15, 2018 in U.S. Appl. No. 15/388,410.
USPTO; Notice of Allowance dated Dec. 22, 2017 in U.S. Appl. No. 15/397,237.
USPTO; Non-Final Office Action dated Aug. 7, 2018 in U.S. Appl. No. 15/428,808.
USPTO; Notice of Allowance dated Apr. 20, 2018 in U.S. Appl. No. 15/466,149.
USPTO; Non-Final Office Action dated Apr. 6, 2018 in U.S. Appl. No. 15/472,750.
USPTO; Notice of Allowance dated Mar. 21, 2018 in U.S. Appl. No. 15/476,035.
USPTO; Notice of Allowance dated Aug. 14, 2018 in U.S. Appl. No. 15/476,035.
USPTO; Notice of Allowance dated Dec. 19, 2017 in U.S. Appl. No. 15/489,660.
USPTO; Notice of Allowance dated May 23, 2018 in U.S. Appl. No. 15/499,647.
USPTO; Non-Final Office Action dated Jun. 21, 2018 in U.S. Appl. No. 15/499,647.
USPTO; Requirement of Restriction dated Mar. 30, 2018 in U.S. Appl. No. 15/589,849.
USPTO; Office Action dated Aug. 30, 2018 in U.S. Appl. No. 15/589,849.
USPTO; Office Action dated May 3, 2018 in U.S. Appl. No. 15/589,861.
USPTO; Requirement for Restriction dated Aug. 1, 2018 in U.S. Appl. No. 15/627,189.
USPTO; Non-Final Office Action dated Jun. 5, 2018 in U.S. Appl. No. 15/650,686.
USPTO; Requirement for Restriction dated Apr. 6, 2018 in U.S. Appl. No. 15/659,631.
USPTO; Non-Final Office Action dated Aug. 9, 2018 in U.S. Appl. No. 15/660,805.
USPTO; Non-Final Office Action dated Jul. 27, 2018 in U.S. Appl. No. 15/673,110.
USPTO; Final Office Action dated Aug. 24, 2018 in U.S. Appl. No. 15/683,701.
USPTO; Non-Final Office Action dated Aug. 9, 2018 in U.S. Appl. No. 15/691,241.
USPTO; Requirement for Restriction dated Jul. 11, 2018 in U.S. Appl. No. 15/707,786.
USPTO; Non-Final Office Action dated May 29, 2018 in U.S. Appl. No. 15/719,208.
USPTO; Non-Final Office Action dated May 17, 2018 in U.S. Appl. No. 15/729,485.
USPTO; Non-Final Office Action dated Jun. 26, 2018 in U.S. Appl. No. 15/796,593.
USPTO; Notice of Allowance dated Jun. 13, 2018 in U.S. Appl. No. 15/798,120.
USPTO; Non-Final Office Action dated Aug. 9, 2018 in U.S. Appl. No. 15/798,201.
USPTO; Non-Final Office Action dated Jul. 2, 2018 in U.S. Appl. No. 15/815,483.
USPTO; Requirement for Restriction dated Mar. 21, 2018 in U.S. Appl. No. 15/863,340.
USPTO; Non-Final Office Action dated Jul. 23, 2018 in U.S. Appl. No. 15/863,340.
USPTO; Notice of Allowance dated May 14, 2012 in U.S. Appl. No. 29/411,637.
USPTO; Notice of Allowance dated Oct. 2, 2013 in U.S. Appl. No. 29/412,887.
USPTO; Notice of Allowance dated Dec. 19, 2013 in U.S. Appl. No. 29/448,094.
USPTO; Requirement for Restriction dated Dec. 1, 2014 in U.S. Appl. No. 29/481,312.
USPTO; Requirement for Restriction dated Dec. 4, 2014 in U.S. Appl. No. 29/481,315.
USPTO; Notice of Allowance dated Jun. 26, 2018 in U.S. Appl. No. 29/604,288.
Chinese Patent Office; Office Action dated Aug. 1, 2013 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Jan. 21, 2014 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Jul. 24, 2014 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Dec. 10, 2013 in Application No. 201080020267.7.
Chinese Patent Office; Office Action dated Jan. 21, 2013 in Application No. 201080020268.1.
Chinese Patent Office; Office Action dated Sep. 26, 2013 in Application No. 201080020268.1.
Chinese Patent Office; Office Action dated Apr. 3, 2014 in Application No. 201080020268.1.
Chinese Patent Office; Office Action dated Sep. 23, 2014 in Application No. 201080020268.1.
Chinese Patent Office; Office Action dated Apr. 7, 2015 in Application No. 201080020268.1.
Chinese Patent Office; Office Action dated Dec. 4, 2015 in Application No. 201210201995.9.
Chinese Patent Office; Office Action dated Jul. 14, 2016 in Application No. 201210201995.9.
Chinese Patent Office; Office Action dated Jan. 20, 2017 in Application No. 201210201995.9.
Chinese Patent Office; Office Action dated Dec. 24, 2015 in Application No. 201280057466.4.
Chinese Patent Office; Office Action dated Dec. 4, 2015 in Application No. 201280057542.1.
Chinese Patent Office; Office Action dated May 16, 2016 in Application No. 201280057542.1.
Chinese Patent Office; Office Action dated Sep. 9, 2016 in Application No. 201280057542.1.
Chinese Patent Office; Office Action dated Dec. 5, 2016 in Application No. 201310412808.6.
Chinese Patent Office; Office Action dated Feb. 5, 2018 in Application No. 201410331047.6.
European Patent Office; Supplementary European Search Report and Opinion dated Nov. 9, 2012 in Application No. 08798519.8.
European Patent Office; Office Action dated Jul. 18, 2016 in Application No. 08798519.8.
European Patent Office; Extended European Search Report dated Dec. 9, 2016 in Application No. 9767208.3.
European Patent Office; Supplementary European Search Report and Opinion dated Jan. 5, 2017 in Application No. 09836647.9.
European Patent Office; Office Action dated Feb. 28, 2018 in Application No. 09836647.9.
Japanese Patent Office; Office Action dated Dec. 20, 2011 in Application No. 2010-522075.
Japanese Patent Office; Office Action dated Apr. 11, 2012 in Application No. 2010-522075.
Japanese Patent Office; Office Action dated May 31, 2012 in Application No. 2011-514650.
Japanese Patent Office; Office Action dated Sep. 11, 2012 in Application No. 2011-514650.
Japanese Patent Office; Office Action dated Dec. 25, 2013 in Application No. 2012-504786.
Japanese Patent Office; Office Action dated Mar. 11, 2013 in Application No. 2012-509857.
Korean Patent Office; Final Office Action dated Jun. 29, 2016 in Application No. 10-2010-0028336.
Korean Patent Office; Office Action dated Mar. 3, 2016 in Application No. 10-2010-0067768.
Korean Patent Office; Office Action dated Aug. 1, 2016 in Application No. 10-2010-0067768.
Korean Patent Office; Office Action dated May 2, 2016 in Application No. 10-2010-0082446.
Korean Patent Office; Office Action dated Sep. 19, 2016 in Application No. 10-2010-0082446.
Korean Patent Office; Office Action dated Nov. 24, 2017 in Application No. 10-20110036449.
Korean Patent Office; Office Action dated May 23, 2017 in Application No. 10-20110036449.
Korean Patent Office; Office Action dated Dec. 11, 2015 in Application No. 10-20117023416.
Korean Patent Office; Office Action dated Mar. 13, 2016 in Application No. 10-20117023416.
Korean Patent Office; Office Action dated Sep. 4, 2017 in Application No. 10-2011-0087600.
Korean Patent Office; Office Action dated Oct. 23, 2017 in Application No. 10-2011-0142924.
Korean Patent Office; Office Action dated Oct. 30, 2017 in Application No. 10-2012-0041878.
Korean Patent Office; Office Action dated Mar. 21, 2018 in Application No. 10-20120042518.
Korean Patent Office; Office Action dated Mar. 21, 2018 in Application No. 10-2012-0064526.
Korean Patent Office; Office Action dated Mar. 30, 2018 in Application No. 10-2012-0076564.
Korean Patent Office; Office Action dated Apr. 30, 2018 in Application No. 10-2012-0103114.
Korean Patent Office; Office Action dated Oct. 24, 2016 in Application No. 10-20127004062.
Korean Patent Office; Office Action dated Jul. 24, 2017 in Application No. 10-20127004062.
Korean Patent Office; Office Action dated Sep. 28, 2017 in Application No. 10-20147017112.
Korean Patent Office; Office Action dated Nov. 9, 2016 in Application No. 10-20167023913.
Korean Patent Office; Office Action dated Sep. 15, 2017 in Application No. 30-2017-0001320.
Korean Patent Office; Office Action dated Jul. 11, 2018 in Application No. 30-2018-006016.
Taiwanese Patent Office; Office Action dated Aug. 30, 2013 in Application No. 97132391.
Taiwanese Patent Office; Office Action dated Dec. 20, 2013 in Application No. 98117513.
Taiwanese Patent Office; Office Action dated Aug. 27, 2014 in Application No. 99114329.
Taiwanese Patent Office; Office Action dated Dec. 26, 2014 in Application No. 99114330.
Taiwanese Patent Office; Office Action dated Aug. 14, 2014 in Application No. 99114331.
Taiwanese Patent Office; Office Action received in Application No. 100113130.
Taiwanese Patent Office; Office Action dated Aug. 1, 2016 in Application No. 101124745.
Taiwanese Patent Office; Office Action received in Application No. 102113028.
Taiwanese Patent Office; Office Action received in Application No. 102115605.
Taiwanese Patent Office; Office Action dated Feb. 24, 2017 in Application No. 102115605.
Taiwanese Patent Office; Office Action received in Application No. 102125191.
Taiwanese Patent Office; Office Action dated Dec. 6, 2016 in Application No. 102126071.
Taiwanese Patent Office; Office Action dated May 17, 2018 in Application No. 102126071.
Taiwanese Patent Office; Office Action dated Feb. 10, 2017 in Application No. 102127065.
Taiwanese Patent Office; Office Action dated Mar. 11, 2016 in Application No. 102129262.
Taiwanese Patent Office; Office Action dated Dec. 29, 2016 in Application No. 102129397.
Taiwanese Patent Office; Office Action dated Nov. 4, 2016 in Application No. 102131839.
Taiwanese Patent Office; Office Action dated Nov. 11, 2016 in Application No. 102132952.
Taiwanese Patent Office; Office Action dated Dec. 2, 2016 in Application No. 102136496.
Taiwanese Patent Office; Office Action dated Jan. 10, 2018 in Application No. 102136496.
Taiwanese Patent Office; Office Action dated Jul. 17, 2017 in Application No. 103101400.
Taiwanese Patent Office; Office Action dated Feb. 23, 2017 in Application No. 103102563.
Taiwanese Patent Office; Office Action dated Mar. 3, 2017 in Application No. 103105251.
Taiwanese Patent Office; Office Action received in Application No. 103106021.
Taiwanese Patent Office; Office Action dated Oct. 31, 2017 in Application No. 103106022.
Taiwanese Patent Office; Office Action dated Jul. 5, 2017 in Application No. 103117477.
Taiwanese Patent Office; Office Action dated Nov. 22, 2017 in Application No. 103117478.
Taiwanese Patent Office; Office Action dated May 19, 2017 in Application No. 103120478.
Taiwanese Patent Office; Office Action dated Nov. 8, 2017 in Application No. 103124509.
Taiwanese Patent Office; Office Action dated Nov. 20, 2017 in Application No. 103127588.
Taiwanese Patent Office; Office Action dated Sep. 19, 2017 in Application No. 103127734.
Taiwanese Patent Office; Office Action dated Nov. 22, 2017 in Application No. 103134537.
Taiwanese Patent Office; Office Action dated Aug. 24, 2017 in Application No. 103136251.
Taiwanese Patent Office; Office Action dated Feb. 26, 2018 in Application No. 103138510.
Taiwanese Patent Office; Office Action dated May 21, 2018 in Application No. 103139014.
Taiwanese Patent Office; Office Action dated Jun. 22, 2018 in Application No. 104105533.
Taiwanese Patent Office; Office Action dated Jun. 13, 2018 in Application No. 104111910.
Taiwanese Patent Office; Office Action received in Application No. 106117181.
Guan et al., “Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications,” Nanotechnology 25 (2014) 122001.
Hudis, “Surface Crosslinking of Polyethylene Using a Hydrogen Glow Discharge,” J. Appl. Polym. Sci., 16 (1972) 2397.
Mix et al., “Characterization of plasma-polymerized allyl alcohol polymers and copolymers with styrene,” Adhes. Sci. Technol., 21 (2007), S. 487-507.
USPTO; Notice of Allowance dated Jun. 28, 2017 in U.S. Appl. No. 13/166,367.
USPTO; Non-Final Office Action dated Sep. 20, 2018 in U.S. Appl. No. 13/651,144.
USPTO; Notice of Allowance dated Aug. 13, 2018 in U.S. Appl. No. 13/941,226.
USPTO; Notice of Allowance dated Oct. 3, 2018 in U.S. Appl. No. 13/941,226.
USPTO; Notice of Allowance dated Aug. 29, 2018 in U.S. Appl. No. 14/090,750.
USPTO; Notice of Allowance dated Sep. 24, 2018 in U.S. Appl. No. 14/218,690.
USPTO; Final Office Action dated Sep. 5, 2018 in U.S. Appl. No. 14/752,712.
USPTO; Advisory Action dated Aug. 10, 2018 in U.S. Appl. No. 14/829,565.
USPTO; Non-Final Office Action dated Sep. 6, 2018 in U.S. Appl. No. 14/829,565.
USPTO; Notice of Allowance dated Oct. 20, 2017 in U.S. Appl. No. 14/884,695.
USPTO; Notice of Allowance dated Oct. 4, 2018 in U.S. Appl. No. 14/919,536.
USPTO; Non-Final Office Action dated Aug. 27, 2018 in U.S. Appl. No. 15/067,028.
USPTO; Notice of Allowance dated Oct. 14, 2018 in U.S. Appl. No. 15/135,333.
USPTO; Notice of Allowance dated May 22, 2017 in U.S. Appl. No. 15/222,738.
USPTO; Notice of Allowance dated Sep. 10, 2018 in U.S. Appl. No. 15/222,749.
USPTO; Non-Final Office Action dated Oct. 1, 2018 in U.S. Appl. No. 15/222,780.
USPTO; Non-Final Office Action dated Sep. 13, 2018 in U.S. Appl. No. 15/262,990.
USPTO; Non-Final Office Action dated Oct. 3, 2017 in U.S. Appl. No. 15/388,410.
USPTO; Non-Final Office Action dated Sep. 20, 2018 in U.S. Appl. No. 15/410,503.
USPTO; Final Office Action dated Aug. 29, 2018 in U.S. Appl. No. 15/434,051.
USPTO; Non-Final Office Action dated Sep. 10, 2018 in U.S. Appl. No. 15/489,453.
USPTO; Notice of Allowance dated Jul. 18, 2018 in U.S. Appl. No. 15/640,239.
USPTO; Notice of Allowance dated Aug. 30, 2018 in U.S. Appl. No. 15/640,239.
USPTO; Non-Final Office Action dated Sep. 21, 2017 in U.S. Appl. No. 15/659,631.
USPTO; Non-Final Office Action dated Aug. 27, 2018 in U.S. Appl. No. 15/662,107.
USPTO; Requirement for Restriction dated Sep. 11, 2018 in U.S. Appl. No. 15/672,063.
USPTO; Requirement for Restriction dated Aug. 14, 2018 in U.S. Appl. No. 15/705,955.
USPTO; Non-Final Office Action dated Oct. 4, 2018 in U.S. Appl. No. 15/726,222.
USPTO; Restriction Requirement dated Aug. 31, 2018 in U.S. Appl. No. 15/795,056.
USPTO; Non-Final Office Action dated Jun. 26, 2018 in U.S. Appl. No. 15/796,693.
USPTO; Non-Final Office Action dated Sep. 10, 2018 in U.S. Appl. No. 15/836,547.
European Patent Office; Office Action dated Aug. 10, 2018 in Application No. 09767208.3.
Korean Patent Office; Office Action dated Apr. 2, 2018 in Application No. 10-2011-0036449.
Korean Patent Office; Office Action dated Sep. 18, 2018 in Application No. 10-2012-0064526.
Korean Patent Office; Office Action dated Sep. 27, 2018 in Application No. 10-2012-0076564.
Korean Patent Office; Office Action dated Sep. 28, 2017 in Application No. 10-2017-7023740.
Taiwanese Patent Office; Office Action dated Sep. 26, 2018 in Application No. 103132230.
Taiwanese Patent Office; Office Action dated May 21, 2018 Application No. 103139014.
Taiwanese Patent Office; Office Action dated Jul. 9, 2018 in Application No. 104107876.
Taiwanese Patent Office; Office Action dated Aug. 7, 2018 Application No. 104107888.
Taiwanese Patent Office; Office Action dated Jul. 9, 2018 in Application No. 104110326.
Taiwanese Patent Office; Office Action dated Jul. 11, 2018 in Application No. 104124377.
Taiwanese Patent Office; Office Action dated Jun. 25, 2018 in Application No. 106138800.
Taiwanese Patent Office; Office Action dated Aug. 31, 2018 in Application No. 10720809210.
WIPO; International Search Report and Written Opinion dated Jul. 9, 2018 in Application No. PCT/IB2018/000419.
WIPO; International Search Report and Written Opinion dated Sep. 14, 2018 in Application No. PCT/IB2017/001640.
Crystal Is “Application Note: Using UV Reflective Materials to Maximize Disinfection”; AN011; Jun. 16, 2016.
Kukli et al., “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen”. Journal of Applied Physics, vol. 92, No. 10, Nov. 15, 2002, pp. 5698-5703.
Liang et al. “Conversion of Metal Carbides to Carbide Derived Carbon by Reactive Ion Etching in Halogen Gas” Micro (MEMS) and Nanotechnologies for Space Applications, Thomas George et al. vol. 6223, 2006 p. 62230J-I to 62230J-11 lines 3-14 in the “Abstract” section and lines 7-9 in the “Introduction” section of p. 1, lines 3-4 in the “Introduction” section and lines 3-4 in the “Experimental Procedure” section of p. 2.
Sellers, Making Your Own Timber Dogs, Paul Sellers blog, Published on Nov. 18, 2014, [online], [site visited Jun. 10, 2017]. Available from Internet, <URL: https://paulsellers.com/2014/11/making-your-own-timber-dogs/.
“Polyurethane HF”; webpage; no date. Cited in Notice of References Cited by Examiner dated May 18, 2017 in U.S. Appl. No. 14/884,695.
Xu et al., “14NM Metal Gate Film Stack Development and Challenges,” Smic et al. (2016).
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023.
USPTO; Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017.
USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759.
USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Notice of Allowance dated Jan. 24, 2012 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Jun. 30, 2016 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated Feb. 10, 2017 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Nov. 29, 2017 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731.
USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731.
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Notice of Allowance dated May 23, 2016 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739.
USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848.
USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323.
USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607.
USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906.
USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870.
USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735.
USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,698.
USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271.
USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Final Office Action dated Nov. 23, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Notice of Allowance dated Feb. 10, 2016 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated Jun. 27, 2016 in U.S. Appl. No. 13/166,367.
USPTO; Final Office Action dated Dec. 30, 2016 in U.S. Appl. No. 13/166,367.
USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated Mar. 3, 2016 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Jun. 9, 2016 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated Dec. 9, 2016 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Apr. 26, 2017 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated Nov. 2, 2017 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Apr. 6, 2018 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Feb. 12, 2016 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Dec. 15, 2016 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Jun. 15, 2017 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Apr. 7, 2016 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Acton dated Sep. 23, 2016 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Jan. 30, 2017 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Aug. 9, 2017 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762.
USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960.
USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960.
USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Dec. 18, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Non-Final Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Non-Final Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirment dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897.
USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419.
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564.
USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067.
USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO;; Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Final Office Action dated Jun. 2, 2016 in U.S. Appl. No. 13/597,108.
USPTO; Non-Final Office Action dated Sep. 15, 2016 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Notice of Allowance dated Feb. 2, 2016 in U.S. Appl. No. 13/646,403.
USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646/,471.
USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Jun. 2, 2016 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Final Office Action dated Dec. 14, 2017 in U.S. Appl. No. 13/651,144.
USPTO; Final Office Acton dated Sep. 30, 2016 in U.S. Appl. No. 14/808,979.
USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated May 10, 2016 in U.S. Appl. No. 13/651,144.
USPTO; Final Office Action dated Sep. 20, 2016 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated May 17, 2017 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Dec. 14, 2017 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437.
USPTO; Notice of Allowance dated May 31, 2016 in U.S. Appl. No. 14/659,437.
USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502.
USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324.
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/727,324.
USPTO; Non-Final Office Action dated 05/25/206 in U.S. Appl. No. 13/727,324.
USPTO; Final Office Action dated Dec. 1, 2016 in U.S. Appl. No. 13/727,324.
USPTO; Notice of Allowance dated Mar. 1, 2017 in U.S. Appl. No. 13/727,324.
USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878.
USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Notice of Allowance dated Mar. 13, 2015 in U.S. Appl. No. 13/749,878.
USPTO; Office Action dated Apr. 23, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388.
USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Final Office Action dated Apr. 20, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Aug. 11, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Notice of Allowance dated Nov. 25, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339.
USPTO; Final Office Action dated Apr. 12, 2016 in U.S. Appl. No. 13/791,339.
USPTO; Notice of Allowance dated Aug. 24, 2016 in U.S. Appl. No. 13/791,339.
USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Non-Final Office Action dated Sep. 1, 2016 in U.S. Appl. No. 14/827,177.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400.
USPTO; Final Office Action dated Jan. 14, 2016 in U.S. Appl. No. 13/901,400.
USPTO; Notice of Allowance dated Apr. 12, 2016 in U.S. Appl. No. 13/901,400.
USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732.
USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jun. 15, 2016 in U.S. Appl. No. 13/941,216.
USPTO; Notice of Allowance dated Sep. 13, 2016 in U.S. Appl. No. 13/941,216.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
USPTO; Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 13/966,782.
USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777.
USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Notice of Allowance dated Jan. 14, 2016 in U.S. Appl. No. 14/018,345.
USPTO; Notice of Allowance dated Mar. 17, 2016 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Action dated Dec. 3, 2015 in U.S. Appl. No. 14/050,150.
USPTO; Final Office Action dated Jun. 15, 2016 in U.S. Appl. No. 14/050,150.
USPTO; Final Office Action dated Jul. 8, 2016 in U.S. Appl. No. 14/050,150.
USPTO; Notice of Allowance dated Oct. 20, 2016 in U.S. Appl. No. 14/050,150.
USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114.
USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Notice of Allowance dated Feb. 22, 2016 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244.
USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Apr. 27, 2016 in U.S. Appl. No. 14/079,302.
USPTO; Final Office Action dated Aug. 22, 2016 in U.S. Appl. No. 14/079,302.
USPTO; Notice of Allowance dated Dec. 14, 2016 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Jun. 14, 2016 in U.S. Appl. No. 14/090,750.
USPTO; Final Office Action dated Sep. 28, 2016 in U.S. Appl. No. 14/090,750.
USPTO; Non Final Office Action dated Jun. 23, 2017 in U.S. Appl. No. 14/090,750.
USPTO; Final Office Action dated Nov. 17, 2017 in U.S. Appl. No. 14/090,750.
USPTO; Non-Final Office Action dated Mar. 12, 2018 in U.S. Appl. No. 14/090,750.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220.
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Jan. 11, 2016 in U.S. Appl. No. 14/188,760.
USPTO; Final Office Action dated Aug. 25, 2016 in U.S. Appl. No. 14/188,760.
USPTO; Non-Final Office Action dated Mar. 23, 2017 in U.S. Appl. No. 14/188,760.
USPTO; Final Office Action dated Oct. 5, 2017 in U.S. Appl. No. 14/188,760.
USPTO; Non-Final Office Action dated Apr. 18, 2018 in U.S. Appl. No. 14/188,760.
USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374.
USPTO; Final Office Action dated Feb. 23, 2016 in U.S. Appl. No. 14/218,374.
USPTO; Restriction Requirement dated May 20, 2016 in U.S. Appl. No. 14/218,690.
USPTO; Non-Final Office Action dated Jul. 15, 2016 in U.S. Appl. No. 14/218,690.
USPTO; Final Office Action dated Nov. 14, 2016 in U.S. Appl. No. 14/218,690.
USPTO; Non-Final Office Action dated Apr. 6, 2017 in U.S. Appl. No. 14/218,690.
USPTO; Final Office Action dated Jul. 20, 2017 in U.S. Appl. No. 14/218,690.
USPTO; Non-Final Office Action dated Jan. 11, 2018 in U.S. Appl. No. 14/218,690.
USPTO; Final Office Action dated May 24, 2018 in U.S. Appl. No. 14/218,690.
USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839.
USPTO; Final Office Action dated Mar. 25, 2016 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Dec. 22, 2016 in U.S. Appl. No. 14/219,839.
USPTO; Final Office Action dated Jul. 6, 2017 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Mar. 27, 2018 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879.
USPTO; Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 14/219,879.
USPTO; Advisory Action dated Oct. 5, 2017 in U.S. Appl. No. 14/219,879.
USPTO; Non-Final Office Action dated Apr. 6, 2018 in U.S. Appl. No. 14/219,879.
USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689.
USPTO; Notice of Allowance dated Feb. 11, 2016 in U.S. Appl. No. 14/244,689.
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/246,969.
USPTO; Final Office Action dated May 4, 2016 in U.S. Appl. No. 14/246,969.
USPTO; Non Final Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/246,969.
USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701.
USPTO; Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/260,701.
USPTO; Notice of Allowance dated Feb. 23, 2016 in U.S. Appl. No. 14/327,134.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348.
USPTO; Non-Final Office Action dated Jan. 6, 2016 in U.S. Appl. No. 14/268,348.
USPTO; Final Office Action dated Apr. 29, 2016 in U.S. Appl. No. 14/268,348.
USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477.
USPTO; Non-Final Office Action dated Jan. 13, 2017 in U.S. Appl. No. 14/444,744.
USPTO; Final Office Action dated Jul. 10, 2017 in U.S. Appl. No. 14/444,744.
USPTO; Non-Final Office Action dated Nov. 29, 2017 in U.S. Appl. No. 14/444,744.
USPTO; Final Office Action dated Mar. 28, 2018 in U.S. Appl. No. 14/444,744.
USPTO; Non-Final Office Action dated May 18, 2016 in U.S. Appl. No. 14/449,838.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Acton dated Jun. 17, 2016 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Oct. 6, 2016 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Acton dated May 4, 2017 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Oct. 19, 2017 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Sep. 16, 2016 in U.S. Appl. No. 14/465,252.
USPTO; Final Office Action dated Nov. 1, 2016 in U.S. Appl. No. 14/465,252.
USPTO; Non-Final Office Action dated Mar. 6, 2017 in U.S. Appl. No. 14/465,252.
USPTO; Final Office Action dated Jun. 9, 2017 in U.S. Appl. No. 14/465,252.
USPTO; Notice of Allowance dated Oct. 3, 2017 in U.S. Appl. No. 14/465,252.
USPTO; Non-Final Office Action dated May 31, 2018 in U.S. Appl. No. 15/491,726.
USPTO; Non-Final Office Action dated Nov. 24, 2015 in U.S. Appl. No. 14/498,036.
USPTO; Final Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/498,036.
USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Non-Final Office Action dated Dec. 17, 2015 in U.S. Appl. No. 14/508,296.
USPTO; Final Office Action dated May 26, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Non-Final Office Action dated Sep. 8, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Final Office Action dated Dec. 7, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Restriction for Requirement dated Dec. 30, 2016 in U.S. Appl. No. 14/508,489.
USPTO; Non-Final Office Action dated Apr. 6, 2017 in U.S. Appl. No. 14/508,489.
USPTO; Final Office Action dated Oct. 4, 2017 in U.S. Appl. No. 14/508,489.
USPTO; Non-Final Office Action dated May 5, 2018 in U.S. Appl. No. 14/508,489.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Notice of Allowance dated Oct. 15, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Non-Final Office Action dated May 4, 2016 in U.S. Appl. No. 14/568,647.
USPTO; Final Office Action dated Sep. 29, 2016 in U.S. Appl. No. 14/568,647.
USPTO; Non-Final Office Action dated Feb. 2, 2017 in U.S. Appl. No. 14/568,647.
USPTO; Final Office Action dated May 19, 2017 in U.S. Appl. No. 14/568,647.
USPTO; Non-Final Office Action dated Sep. 14, 2017 in U.S. Appl. No. 14/568,647.
USPTO; Final Office Action dated Jan. 23, 2018 in U.S. Appl. No. 14/568,647.
USPTO; Non-Final Office Action dated May 25, 2018 in U.S. Appl. No. 14/568,647.
USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126.
USPTO; Final Office Action dated Feb. 22, 2016 in U.S. Appl. No. 14/571,126.
USPTO; Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/571,126.
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/598,532.
USPTO; Notice of Allowance dated May 16, 2016 in U.S. Appl. No. 14/598,532.
USPTO; Non-Final Office Action dated Jan. 15, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Final Office Action dated Jan. 12, 2017 in U.S. Appl. No. 14/606,364.
USPTO; Non-Final Office Action dated May 10, 2017 in U.S. Appl. No. 14/606,364.
USPTO; Non-Final Office Action dated Mar. 3, 2016 in U.S. Appl. No. 14/622,603.
USPTO; Non-Final Office Action dated Oct. 19, 2017 in U.S. Appl. No. 14/645,234.
USPTO; Non-Final Office Action dated May 16, 2018 in U.S. Appl. No. 14/645,234.
USPTO; Non-Final Office Action dated Jun. 7, 2017 in U.S. Appl. No. 14/656,588.
USPTO; Final Office Action dated Dec. 26, 2017 in U.S. Appl. No. 14/656,588.
USPTO; Non-Final Office Action dated Apr. 6, 2018 in U.S. Appl. No. 14/656,588.
USPTO; Non-Final Office Action dated Mar. 21, 2016 in U.S. Appl. No. 14/659,152.
USPTO; Final Office Action dated Jul. 29, 2016 in U.S. Appl. No. 14/659,152.
USPTO; Notice of Allowance dated Nov. 22, 2016 in U.S. Appl. No. 14/659,152.
USPTO; Non-Final Office Action dated Sep. 7, 2017 in U.S. Appl. No. 14/660,755.
USPTO; Restriction Requirement dated Sep. 11, 2017 in U.S. Appl. No. 14/660,755.
USPTO; Notice of Allowance dated Oct. 2, 2017 in U.S. Appl. No. 14/660,755.
USPTO; Notice of Allowance dated Mar. 25, 2016 in U.S. Appl. No. 14/693,138.
USPTO; Requirement for Restriction dated Jul. 5, 2017 in U.S. Appl. No. 14/752,712.
USPTO; Non-Final Office Action dated Aug. 3, 2017 in U.S. Appl. No. 14/752,712.
USPTO; Final Office Action dated Nov. 29, 2017 in U.S. Appl. No. 14/752,712.
USPTO; Advisory Action dated Feb. 15, 2018 in U.S. Appl. No. 14/752,712.
USPTO; Non-Final Office Action dated Mar. 21, 2018 in U.S. Appl. No. 14/752,712.
USPTO; Non-Final Office Action dated Nov. 29, 2017 in U.S. Appl. No. 14/793,323.
USPTO; Final Office Action dated Mar. 29, 2018 in U.S. Appl. No. 14/793,323.
USPTO; Non-Final Office Action dated Jun. 16, 2017 in U.S. Appl. No. 14/798,136.
USPTO; Notice of Allowance dated Oct. 5, 2017 in U.S. Appl. No. 14/798,136.
USPTO; Non-Final Office Action dated Mar. 30, 2016 in U.S. Appl. No. 14/808,979.
USPTO; Non-Final Office Action dated Dec. 20, 2016 in U.S. Appl. No. 14/808,979.
USPTO; Final Office Action dated Jun. 8, 2017 in U.S. Appl. No. 14/808,979.
USPTO; Non-Final Office Action dated Sep. 21, 2017 in U.S. Appl. No. 14/808,979.
USPTO; Final Office Action dated Mar. 14, 2018 in U.S. Appl. No. 14/808,979.
USPTO; Non-Final Office Action dated Feb. 23, 2018 in U.S. Appl. No. 14/817,953.
USPTO; Non-Final Office Action dated Sep. 9, 2016 in U.S. Appl. No. 14/829,565.
USPTO; Final Office Action dated Feb. 9, 2017 in U.S. Appl. No. 14/829,565.
USPTO; Non-Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 14/829,565.
USPTO; Final Office Action dated Mar. 5, 2018 in U.S. Appl. No. 14/829,565.
USPTO; Non-Final Office Action dated Apr. 29, 2016 in U.S. Appl. No. 14/835,637.
USPTO; Final Office Action dated Nov. 25, 2016 in U.S. Appl. No. 14/835,637.
USPTO; Non-Final Office Action dated Jul. 29, 2016 in U.S. Appl. No. 14/884,695.
USPTO; Non-Final Office Action dated May 18, 2017 in U.S. Appl. No. 14/886,571.
USPTO; Non-Final Office Action dated Dec. 1, 2016 in U.S. Appl. No. 14/919,536.
USPTO; Final Office Action dated Mar. 28, 2017 in U.S. Appl. No. 14/919,536.
USPTO; Non-Final Office Action dated Aug. 29, 2017 in U.S. Appl. No. 14/919,536.
USPTO; Final Office Action dated May 11, 2018 in U.S. Appl. No. 14/919,536.
USPTO; Non-Final Office Action dated Dec. 15, 2016 in U.S. Appl. No. 14/938,180.
USPTO; Notice of Allowance dated Nov. 9, 2017 in U.S. Appl. No. 14/938,180.
USPTO; Non-Final Office Action dated Apr. 14, 2017 in U.S. Appl. No. 14/956,115.
USPTO; Final Office Action dated Jul. 21, 2017 in U.S. Appl. No. 14/956,115.
USPTO; Notice of Allowance dated Dec. 14, 2017 in U.S. Appl. No. 14/956,115.
USPTO; Notice of Allowance dated Feb. 3, 2017 in U.S. Appl. No. 14/977,291.
USPTO; Non-Final Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/981,434.
USPTO; Non-Final Office Action dated Jan. 12, 2017 in U.S. Appl. No. 14/981,468.
USPTO; Non-Final Office Action dated Mar. 22, 2016 in U.S. Appl. No. 14/987,420.
USPTO; Non-Final Office Action dated Dec. 14, 2016 in U.S. Appl. No. 14/997,683.
USPTO; Final Office Action dated Apr. 14, 2017 in U.S. Appl. No. 14/997,683.
USPTO; Non-Final Office Action dated Sep. 1, 2017 in U.S. Appl. No. 14/997,683.
USPTO; Final Office Action dated Feb. 6, 2018 in U.S. Appl. No. 14/997,683.
USPTO; Advisory Action dated May 2, 2018 in U.S. Appl. No. 14/997,683.
USPTO; Non-Final Office Action dated Sep. 23, 2016 in U.S. Appl. No. 15/048,422.
USPTO; Notice of Allowance dated May 4, 2017 in U.S. Appl. No. 15/048,422.
USPTO; Requirement for Restriction dated Apr. 19, 2017 in U.S. Appl. No. 15/050,159.
USPTO; Non-Final Office Action dated Aug. 4, 2017 in U.S. Appl. No. 15/050,159.
USPTO; Notice of Allowance dated Feb. 7, 2018 in U.S. Appl. No. 15/050,159.
USPTO; Non-Final Office Action dated Feb. 20, 2018 in U.S. Appl. No. 15/060,412.
USPTO; Requirement for Restriction dated Jun. 4, 2018 in U.S. Appl. No. 15/067,028.
USPTO; Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/135,224.
USPTO; Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/135,258.
USPTO; Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/135,333.
USPTO; Non Final Office Action dated Nov. 21, 2016 in U.S. Appl. No. 15/144,481.
USPTO; Final Office Action dated May 26, 2017 in U.S. Appl. No. 15/144,481.
USPTO; Non-Final Office Action dated Sep. 21, 2017 in U.S. Appl. No. 15/144,481.
USPTO; Notice of Allowance dated Apr. 11, 2018 in U.S. Appl. No. 15/144,481.
USPTO; Non-Final Office Action dated Apr. 13, 2017 in U.S. Appl. No. 15/144,506.
USPTO; Final Office Action dated Oct. 10, 2017 in U.S. Appl. No. 15/144,506.
USPTO; Non-Final Office Action dated Nov. 28, 2016 in U.S. Appl. No. 15/203,632.
USPTO; Final Office Action dated Jun. 7, 2017 in U.S. Appl. No. 15/203,632.
USPTO; Notice of Allowance dated Sep. 20, 2017 in U.S. Appl. No. 15/203,632.
USPTO; Non-Final Office Action dated Nov. 29, 2016 in U.S. Appl. No. 15/203,642.
USPTO; Final Office Action dated Apr. 13, 2017 in U.S. Appl. No. 15/203,642.
USPTO; Advisory Action dated Jun. 22, 2017 in U.S. Appl. No. 15/203,642.
USPTO; Notice of Allowance dated Aug. 7, 2017 in U.S. Appl. No. 15/203,642.
USPTO; Non-Final Office Action dated Jun. 1, 2017 in U.S. Appl. No. 15/205,827.
USPTO; Final Office Action dated Oct. 16, 2017 in U.S. Appl. No. 15/205,827.
USPTO; Non-Final Office Action dated May 14, 2018 in U.S. Appl. No. 15/205,827.
USPTO; Non-Final Office Action dated Mar. 31, 2017 in U.S. Appl. No. 15/205,890.
USPTO; Notice of Allowance dated Oct. 16, 2017 in U.S. Appl. No. 15/205,890.
USPTO; Non-Final Office Action dated Jan. 20, 2017 in U.S. Appl. No. 15/210,256.
USPTO; Notice of Allowance dated May 18, 2017 in U.S. Appl. No. 15/210,256.
USPTO; Notice of Allowance dated Jul. 24, 2017 in U.S. Appl. No. 15/210,256.
USPTO; Non Final Office Action dated Apr. 21, 2017 in U.S. Appl. No. 15/222,715.
USPTO; Non-Final Office Action dated Feb. 3, 2017 in U.S. Appl. No. 15/222,738.
USPTO; Non-Final Office Action dated Jan. 17, 2017 in U.S. Appl. No. 15/222,749.
USPTO; Final Office Action dated May 5, 2017 in U.S. Appl. No. 15/222,749.
USPTO; Non-Final Office Action dated Sep. 7, 2017 in U.S. Appl. No. 15/222,749.
USPTO: Final Office Action dated Jun. 4, 2018 in U.S. Appl. No. 15/222,749.
USPTO; Non-Final Office Action dated Jan. 3, 2017 in U.S. Appl. No. 15/222,780.
USPTO; Final Office Action dated May 5, 2017 in U.S. Appl. No. 15/222,780.
USPTO; Non-Final Office Action dated Sep. 7, 2017 in U.S. Appl. No. 15/222,780.
USPTO; Final Office Action dated May 17, 2018 in U.S. Appl. No. 15/222,780.
USPTO; Non-Final Office Action dated Aug. 28, 2017 in U.S. Appl. No. 15/254,724.
USPTO; Notice of Allowance dated Jan. 17, 2018 in U.S. Appl. No. 15/254,724.
USPTO; Non-Final Office Action dated May 22, 2018 in U.S. Appl. No. 15/262,990.
USPTO; Non-Final Office Action dated Oct. 23, 2017 in U.S. Appl. No. 15/377,439.
USPTO; Final Office Action dated Apr. 16, 2018 in U.S. Appl. No. 15/377,439.
USPTO; Notice of Allowance dated Aug. 8, 2017 in U.S. Appl. No. 15/380,395.
USPTO; Non-Final Office Action dated Jan. 4, 2018 in U.S. Appl. No. 15/380,921.
USPTO; Non-Final Office Action dated Aug. 11, 2017 in U.S. Appl. No. 15/397,237.
USPTO; Non-Final Office Action dated Apr. 12, 2017 in U.S. Appl. No. 15/397,319.
USPTO; Final Office Action dated Jul. 12, 2017 in U.S. Appl. No. 15/397,319.
USPTO; Notice of Allowance dated Dec. 15, 2017 in U.S. Appl. No. 15/397,319.
USPTO; Non-Final Office Action dated Apr. 6, 2018 in U.S. Appl. No. 15/434,051.
USPTO; Notice of Allowance dated Oct. 6, 2017 in U.S. Appl. No. 15/450,199.
USPTO; Non-Final Office Action dated Dec. 15, 2017 in U.S. Appl. No. 15/466,149.
USPTO; Non-Final Office Action dated Dec. 6, 2017 in U.S. Appl. No. 15/476,035.
USPTO; Non-Final Office Action dated Oct. 4, 2017 in U.S. Appl. No. 15/489,453.
USPTO; Final Office Action dated Apr. 19, 2018 in U.S. Appl. No. 15/489,453.
USPTO; Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 15/499,647.
USPTO; Non-Final Office Action dated May 3, 2018 in U.S. Appl. No. 15/589,861.
USPTO; Non-Final Office Action dated Apr. 4, 2018 in U.S. Appl. No. 15/592,730.
USPTO; Non-Final Office Action dated Apr. 25, 2018 in U.S. Appl. No. 15/673,278.
USPTO; Non-Final Office Action dated Jan. 18, 2018 in U.S. Appl. No. 15/683,701.
USPTO; Requirement for Restriction dated May 11, 2018 in U.S. Appl. No. 15/711,989.
USPTO; Non-Final Office Action dated Jun. 14, 2018 in U.S. Appl. No. 15/711,989.
USPTO; Non-Final Office Action dated Apr. 19, 2018 in U.S. Appl. No. 15/726,959.
USPTO; Non-Final Office Action dated Dec. 26, 2017 in U.S. Appl. No. 15/798,120.
USPTO; Requirement for Restriction dated Apr. 6, 2018 in U.S. Appl. No. 15/798,201.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301.
USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308.
USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312.
USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153.
USPTO; Notice of Allowance dated Dec. 14, 2015 in U.S. Appl. No. 29/514,264.
USPTO; Notice of Allowance dated Jun. 16, 2017 in U.S. Appl. No. 29/570,711.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 20, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
PCT; International Search Report and Written Opinion dated Nov. 16, 2017 in Application No. PCT/IB2017/001015.
PCT; International Search Report and Written Opinion dated Nov. 13, 2017 in Application No. PCT/IB2017/001050.
PCT; International Search Report and Written Opinion dated Nov. 30, 2017 in Application No. PCT/IB2017/001070.
PCT; International Search Report and Written Opinion dated Jan. 25, 2018 in Application No. PCT/IB2017/001262.
PCT: International Search Report and Written Opinion dated Jun. 1, 2018 in Application No. PCT/IB2017/001644.
PCT: International Search Report and Written Opinion dated Jun. 1, 2018 in Application No. PCT/IB2017/001656.
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated May 24, 2013 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Jan. 2, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Feb. 8, 2014 in Application No. 201110155056.
Chinese Patent Office; Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Chinese Patent Office; Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Korean Patent Office; Office Action dated Dec. 10, 2015 in Application No. 10-2010-0028336.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063.
Taiwan Patent Office; Office Action dated May 13, 2016 in Taiwan Application No. 101142582.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Becker et al., “Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides,” Chem. Mater., 16, 3497-3501 (2004).
Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009).
Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002).
Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968).
Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Letters, Feb. 2009, pp. 133-135; vol. 30, No. 2; IEEE Electron Device Society.
Chatterjee et al., “Sub-100nm Gate Length Metal Gate NMOS Transistors Fabricated by a Replacement by a Replacement Gate Process,” IEEE Semiconductor Process and Device Center, 821-824 (1997).
Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, vol. 1-3, 146-148 (2009).
Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatment,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000).
Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) P114-P116 (2013).
Coates, “Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries.” Blackwell Publishing Ltd, 91-132, (2005).
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, (2003): S88-S95.
Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005).
Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, Jun. 2010.
Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films: Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006).
Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007).
Elam et al., “New Insights into Sequential Infiltration Synthesis”, ECS Transactions, vol. 69, pp. 147-157 (2015).
Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007).
George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010).
Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005).
Gupta et al., “Conversion of Metal Carbides to Carbide Derived Carbon by Reactive Ion Etching in Halogen Gas,” Proceedings of SPIE—The International Society for Optical Engineering and Nanotechnologies for Space Applications, ISSN: 0277-786X (2006).
Harrison et al., “Poly-gate Replacement Through Contact Hole (PRETCH): A New Method for High-K/ Metal Gate and Multi-Oxide Implementation on Chip,” IEEE (2004).
Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI-Nanotech, vol. 4, 122-123 (2007).
Henke et al.., “X-Ray Interactions: Photo absorption, Scattering, Transmission, and Reflection at E=50-30,000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables, 54, 181-342 (1993).
H.J. Yun et al., “Comparison of Atomic Scale Etching of Poly-Si in Inductively Coupled Ar and He Plasmas”, Korean Journal of Chemical Engineering, vol. 24, 670-673 (2007).
Hubert et al., “A Stacked SONOS Technology, up to 4 Levels and 6nm Crystalline Nanowires, With Gate-All-Around or Independent Gates (-Flash), Suitable for Full 3D Integration,” Minatec, IEDM09-637-640 (2009).
Jones et al., “Growth of Aluminum Films by Low Pressure Chemical Vapour Deposition Using Tritertiarybutylaluminium,” Journal of Crystal Growth 135, pp. 285-289, Elsevier Science B.V. (1994).
Jones et al., “Recent Developments in Metalorganic Precursors for Metalorganic Chemical Vapour Deposition,” Journal of Crystal Growth 146, pp. 503-510, Elsevier Science B.V. (1995).
Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. of SPIE, 6924, 69240C, 1-10 (2008).
Katamreddy et al., “ALD and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006).
Kim et al., “Passivation Effect on Low-k S/OC Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, ″40, 1, 94-98 (2002).
Kim et al., “Characteristics of Low Temperature High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineering, Sungkyunkwan University, 53(1), 321-329 (2013).
King, Plasma Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011).
Klug et al., “Atomic Layer Deposition of Amorphous Niobium Carbide-Based Thin Film Superconductors,” The Journal of Physical Chemistry C, vol. 115, pp. 25063-25071, (2011).
Kobayshi, et al., “Temperature Dependence of SiO2 Film Growth with Plasma-Enhanced Atomic Layer Deposition,” regarding Thin Solid Films, published by Elsevier in the International Journal on the Science and Technology of Condensed Matter, in vol. 520, No. 11, 3994-3998 (2012).
Koo et al., “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1, 131-136 (2006).
Koutsokeras et al. “Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure,” Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
Knoops et al., “Atomic Layer Deposition of Silicon Nitride from Bis(tert-butyloamino) silane and N2 Plasma,” Applied Materials & Interfaces, American Chemical Society, A-E (2015).
Krenek et al. “IR Laser CVD of Nanodisperse Ge—Si—Sn Alloys Obtained by Dielectric Breakdown of GeH4/SiH4/SnH4 Mixtures”, NanoCon, Nov. 5-7, 2014, Brno, Czech Republic, EU.
Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisiloxane Films,” Thin Solid Films, 506-507, 176-179 (2006).
Lanford et al., “The Hydrogen Content of Plasmadeposited Silicon Nitride,” J. Appl. Phys., 49, 2473 (1978).
Lee et al., Layer Selection by Multi-Level Permutation in 3-D Stacked NAND Flash Memory, IEEE Electron Device Letters, vol. 37, No. 7, 866-869 (2016).
Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381.
Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005).
Liu et al., “Research, Design, and Experiment of End Effector for Wafer Transfer Robot,” Industrial Robot: An International Journal, 79-91 (2012).
Longrie et al., “Plasma-Enhanced ALD of Platinum with O2, N2 and NH3 Plasmas”, ECS Journal of Solid State Science and Technology, vol. 1, pp. Q123-Q129 (2012).
Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing and Monitoring Plasma-Assisted Atomic Layer Deposition Processes,” Journal of Vacuum Science and Technology, 77-87 (2010).
Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51.
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Properties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011).
Mason et al., “Hydrolysis of Tri-tert-butylaluminum: The First Structural Characterization of Alkylalumoxanes [(R2Al)2O]n and (RAIO)n,” J. American Chemical Society, vol. 115, No. 12, pp. 4971-4984 (1993).
Massachusetts Institute of Technology Lincoln Laboratory, “Solid State Research,” Quarterly Technical Report (1995).
Maydannik et al., “Spatial atomic layer deposition: Performance of low temperature H2O and 03oxidant chemistry for flexible electronics encapsulation”, Journal of Vacuum Science and Technology: Part A AVS/ AIP, vol. 33 (1901).
Meng et al., “Atomic Layer of Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks,” Materials, 9, 1007 (2016).
Moeen, “Design, Modelling and Characterization of Si/SiGe Structures for IR Bolometer Applications,” KTH Royal Institute of Technology. Information and Communication Technology, Department of Integrated Devices and Circuits, Stockholm Sweden (2015).
Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J. Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982).
Mosleh et al., “Enhancement of Material Quality of (Si)GeSn Films Grown by SnCl4 Precursor,” ECS Transactions, 69 (5), 279-285 (2015).
Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. of SPIE, 6924, 1-8 (2008).
Nigamananda et al., “Low-Temperature (<200oC) Plasma Enhanced Atomic Deposition of Dense Titanium Nitride Thin Films.”.
Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006).
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351.
S. Okamoto et al., “Luminescent Properties of Pr3+ − sensitized LaPO4: Gd3+ Ultraviolet-B Phosphor Under Vacuum-Ultraviolet Light Excitation,” J. App. Phys. 106, 013522 (2009).
Park,, “Substituted Aluminum Metal Gate on High-K Dielectric for Low Work-Function and Fermi-Level Pinning Free,” 4 pages, IEEE 0-7803-8684-1/04 (2004).
Portet et al., “Impact of Synthesis Conditions on Surface Chemistry and Structure of Carbide-Derived Carbons,” Thermochimica Acta, 497, 137-142 (2010).
Potts et al., “Low Temperature Plasma-Enhanced Atomic Layer Deposition of metal Oxide Thin Films,” Journal of the Electrochemical Society, 157, 66-74 (2010).
Potts et al., “Room-Temperature ALD of Metal Oxide Thin Films by Energy-Enhanced ALD”, Chemical Vapor Deposition, vol. 19, pp. 125-133 (2013).
Presser, et al., “Effect of Pore Size on Carbon Dioxide Sorption by Carbide Derived Carbon,” Energy & Environmental Science 4.8, 3059-3066 (2011).
Provine et al., “Correlation of Film Density and Wet Etch Rate in Hydrofluoric Acid of Plasma Enhanced Atomic Layer Deposited Silicon Nitride,” AIP Advances, 6 (2016).
Radamson et al. “Growth of Sn-alloyed Group IV Materials for Photonic and Electronic Applications”, Chapter 5 pages 129-144, Manufacturing Nano Structures.
Sakuma et al., “Highly Scalable Horizontal Channel 3-D NAND Memory Excellent in Compatibility with Conventional Fabrication Technology,” IEEE Electron Device Letters, vol. 34, No. 9, 1142-1144 (2013).
Salim, “In-situ Fourier Transform Infrared Spectroscopy of Chemistry and Growth in Chemical Vapor Deposition,” Massachusetts Institute of Technology, 187 pages (1995).
Salim et al., “In Situ Concentration Monitoring in a Vertical OMVPE Reactor by Fiber-Optics-Based Fourier Transform Infrared Spectroscopy,” Journal of Crystal Growth 169, pp. 443-449, Elsevier Science B.V. (1996).
Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004).
Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012.
Selvaraj et al., “Selective Atomic Layer Deposition of Zirconia on Copper Patterned Silicon Substrates Using Ethanol as Oxygen Source as Well as Copper Reductant,” J. Vac. Sci. Technol. A32(1), (2014).
Selvaraj et al., “Surface Selective Atomic Layer Deposition of Hafnium Oxide for Copper Diffusion Barrier Application Using Tetrakis (diethylamino) Hafnium and Ethanol,” 225th ECS Meeting, Meeting Abstract, (May 12, 2014).
S.D. Athavale and D.J. Economou, “Realization of Atomic Layer Etching of Silicon”, Journal of Vacuum Science and Technology B, vol. 14, year 1996, pp. 3702-3705.
Shamma et al., “PDL Oxide Enabled Doubling,” Proc. of SPIE, 6924, 69240D, 1-10 (2008).
Tseng et al., “Etch Properties of Resists Modified by Sequential Infiltration Synthesis,” American Vacuum Society (2011).
Tseng et al., “Enhanced Block Copolymer Lithography Using Sequntial Infiltration Synthesis,” Journal of Physical Chemistry, vol. 5, 17725-17729 (2011).
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986).
Voltaix, “Meterial Safety Data Sheet for: Trisilylamine”, pp. 1-8, (2014).
Wang et al., “Tritertiarybutylaluminum as an Organometallic Source for Epitaxial Growth of AlGaSb,” Appl. Phys. Lett. 67 (10), Sep. 4, pp. 1384-1386, American Institute of Physics (1995).
Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014).
Yoshida, et al., Threshold Voltage Tuning for 10NM and Beyond CMOS Integration, Solid State Technology, 57(7): 23-25 (2014).
Yu et al., “Modulation of the Ni FUSI Workfunction by Yb Doping: from Midgap to N-Type Band-Edge,” 4 pages, IEEE 0-7803-9269-8/05 (2005).
Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, vol. 124-126, 347-350 (2007).
Yun et al., “Single-Crystalline Si Stacked Array (STAR) NAND Flash Memory,” IEEE Transactions on Electron Devices, vol. 58, No. 4, 1006-1014 (2011).
Yun et al., “Effect of Plasma on Characteristics of Zirconium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid State Letters, 8(11) F47-F50 (2005).
Yushin et al., “Carbon-Derived Carbon,” Department of Materials Science and Engineering, Taylor & Francis Group, LLC (2006).
Chemistry Stack Exchange, “Why is CF4 Non-Polar and CHF Polar,” https://chemistry.stackexchange.com/questions/31604/why-is-cf4-non-polar-and-chf3-polar, (2015).
Related Publications (1)
Number Date Country
20180286663 A1 Oct 2018 US