The present invention relates to new or refurbished electronic assemblies or assembly components that may have a metal plating or finish, and more particularly to such assemblies or components having a tin plating or finish.
Electronic assemblies or assembly components are often plated or finished with a metal. Printed wiring boards and electrical leads are just some examples of many components that typically have a metal finish. Perhaps the most abundant metal composition for a plating or a finish has been lead/tin (PbSn). However, laws and directives recently passed in several countries encourage or require the elimination of lead by those procuring, designing, building, or repairing electronic assemblies. The restriction of lead use has generated a transition by many piece part and board suppliers from PbSn surface finishes to lead-free finishes such as pure tin.
Tin finishes may be susceptible to spontaneous growth of single crystal structures known as tin whiskers. Tin whiskers are cylindrical, needle-like crystals that may grow either straight or kinked, and usually have a longitudinally striated surface. Growth rates for tin whiskers vary, although rates from 0.03 to 9 mm/yr have been reported. Interrelated factors including substrate materials, grain structure, plating chemistry, and plating thickness may influence tin whisker growth rate. Although the whisker length depends on growth rate and sustained periods of growth, in experimental tests most measure between 0.5 and 5.0 mm, although whiskers having a length of more than to 10 mm have been reported. The growth mechanisms for tin whiskers are largely unknown, although it is widely believed that whisker formation and growth are correlated with stresses such as localized compressive forces and environmental stresses on the tin plating or finish. Additional factors that may influence tin whisker growth include the materials constituting the substrate underlying the tin, and specifically a significant difference in the coefficients of thermal expansion between tin and the underlying substrate material since such a difference may stress the tin.
Tin whiskers may cause electrical failures ranging from performance degradation to short circuits. In some cases, the elongate structures have interfered with sensitive optical surfaces or the movement of micro-electromechanical systems (MEMS). Thus, tin whiskers are a potential reliability hazard. It is therefore desirable to provide materials and manufacturing procedures that mitigate the tendencies of pure tin and tin-containing solders, platings, and finishes to form tin whiskers. It is also desirable to provide such materials and methods that minimize the use of lead-containing compositions such as Pb/Sn solder.
The present invention provides an electrical component, including a conductive substrate, a tin layer formed on the substrate, and a barrier coating formed on the tin layer to impede tin whisker growth. The barrier coating includes a polymer matrix, and abrasive particles that are dispersed about the matrix.
The present invention also provides a method for impeding tin whisker growth from a tin plating or finish formed over an electrical component. The method includes the step of covering the tin plating or finish with a barrier coating comprising a polymer matrix having abrasive particles dispersed therein. The barrier coating may be formed by covering the tin plating or finish with abrasive particles, each of the abrasive particles being coated with a polymer material, and then bonding the polymer material coating the abrasive particles.
Other independent features and advantages of the preferred coatings and coating methods will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
Electrical assemblies and components of the present invention have a tin plating or finish, and a barrier coating around the tin plating or finish. Growth of tin whiskers through the barrier coating is inhibited by including a growth disrupting material within the coating matrix material. The growth disrupting material includes abrasive powder, and is significantly harder and has a substantially different modulus properties from the coating matrix material to cause growing tin whiskers to buckle and consequently either fail to exit the barrier coating or fail to grow a substantial distance from the barrier coating outer surface.
Turning now to
The hard abrasive powder particles 16 are dispersed in a manner whereby the tin whiskers 18 have a high probability of contacting at least one particle 16 instead of growing through the barrier coating 14. For example, an exemplary coating 14 includes numerous layers of the hard abrasive powder particles 16, and preferably at least ten layers of the abrasive powder particles 16. Even a barrier coating 14 having a thickness as small as 50 microns may include at least five abrasive powder particle layers, and preferably has at least ten abrasive powder particle layers. Exemplary abrasive powder particles 16 have average diameters ranging from 0.25 to 10 microns. Depending on the overall coating thickness, larger or smaller abrasive particles 16 may be selected in order to provide a high probability for a tin whisker to collide with a abrasive particle 16 before pushing through the barrier coating 14. For example, thicker coatings may include abrasive powder particles having an average diameter of up to 50 microns. As depicted in
According to the illustrated embodiment, the abrasive particles 16 have random and disorganized shapes. Other barrier coatings may include abrasive powder particles having selected shapes and organizations within the coating 14 to improve the likelihood for tin whiskers to collide with the particles 16.
The abrasive powder particles 16 are sufficiently hard to cause a tin whisker to buckle instead of penetrating or displacing the particle. More particularly, the particles 16 are significantly harder than the barrier coating matrix 15. Buckling occurs as a tin whisker 18 collides with a particle 16, and the coating matrix 15 provides insufficient lateral support to allow the whisker 18 to displace or grow into the abrasive particle 16. Instead, the whisker 18 bends and grows in a different direction. Whether or not the angle of contact between the whisker 18 and the particle 16 is oblique, the particle 16 has a diameter that is up to forty times that of the whisker width and consequently presents an immovable barricade. Even if the whisker 18 grazes an abrasive particle 16 and just slightly bends rather than buckling, there is still a high probability that the whisker 18 will collide with another abrasive particle instead of growing through the barrier coating 14. In addition to selecting hard abrasives as particle materials, a further significant differential between the matrix and particle hardnesses may be created by selecting a relatively soft barrier coating matrix material. For example, urethanes, silicone, and acrylics are exemplary relatively soft polymer materials that may be used as the coating matrix.
Turning now to
After providing the coating material, a tin plating or finish on an electrical substrate is covered with the coating material as step 32. Just a few exemplary methods for covering the tin with the coating material include extrusion, physical or chemical vapor deposition, dipping, and spraying. The covering method is selected based on the matrix and particle materials, and the electrical components being covered.
The several methods and coating materials therefore provide electrical assemblies and components having a tin plating or finish, and a barrier coating around the tin plating or finish. The electrically nonconductive abrasive particles dispersed in the barrier coating are growth disrupting materials that inhibit protrusion of any tin whiskers through the barrier coating. While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The application is a divisional application of U.S. Non-Provisional application Ser. No. 11/606,563, filed Nov. 30, 2006, which claims the benefit of U.S. Provisional Application No. 60/811,609, filed Jun. 7, 2006. Both applications are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3923476 | Roy et al. | Dec 1975 | A |
4888247 | Zweben et al. | Dec 1989 | A |
4916869 | Oliver | Apr 1990 | A |
4959278 | Shimauchi et al. | Sep 1990 | A |
5384204 | Yumoto et al. | Jan 1995 | A |
5472370 | Malshe et al. | Dec 1995 | A |
5557844 | Bhatt et al. | Sep 1996 | A |
5818071 | Loboda et al. | Oct 1998 | A |
5982623 | Matsuo et al. | Nov 1999 | A |
6015597 | David | Jan 2000 | A |
6248455 | Adams et al. | Jun 2001 | B1 |
6261951 | Buchwalter et al. | Jul 2001 | B1 |
6361823 | Bokisa et al. | Mar 2002 | B1 |
6455419 | Konecni et al. | Sep 2002 | B1 |
6472314 | Catabay et al. | Oct 2002 | B1 |
6593660 | Buchwalter et al. | Jul 2003 | B2 |
6734560 | Catabay et al. | May 2004 | B2 |
7013965 | Zhong et al. | Mar 2006 | B2 |
7019399 | Venkatraman et al. | Mar 2006 | B2 |
20030201188 | Schetty, III et al. | Oct 2003 | A1 |
20050249969 | Xu et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1614771 | Jan 2006 | EP |
2003129278 | May 2003 | JP |
2005108956 | Apr 2005 | JP |
2004111312 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100003398 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
60811609 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11606563 | Nov 2006 | US |
Child | 12557690 | US |