Related subject matter is found in a copending U.S. patent application, application Ser. No. 10/969,771, filed Oct. 20, 2004, entitled “Method of cleaning a surface of a semiconductor substrate”, and having at least one inventor in common with the present application.
The present disclosure relates generally to a semiconductor manufacturing process, and more particularly to methods for cleaning devices during a manufacturing process.
CMOS manufacturing processes through formation of raised source drain regions via selective epitaxial growth (SEG) typically proceed by deposition, patterning and etch of a gate structure, followed by deposition and blanket etch toward formation of a single set or several sets of spacers adjacent to the gate structure sidewalls. These spacers are generally referred to as offset spacers as they serve to offset the distance from the gate sidewalls to the source/drain extension regions during ion implantation of the source/drain extension regions.
Formation of offset spacers is generally by anisotropic etching, which creates surface contamination, near-surface contamination, and damage to the source/drain regions. Current offset spacer formation processes necessitate additional, post offset spacer formation cleaning processes to remove the surface contaminants and surface damage prior to additional processing and prior to selective epitaxial growth. Typical post-offset spacer cleaning utilizes a plasma clean in an oxidizing ambient atmosphere, or a hydrofluoric acid (HF) cleaning process. An HF cleaning cannot be employed when the offset spacers are an oxide, as this would result in removal of the offset spacer. Because the typical post-offset spacer clean occurs in an oxidizing ambient atmosphere, further cleaning must be conducted prior to selective epitaxial growth, adding to the manufacturing cycle time, and the cumulative damage effects during device fabrication.
Therefore a method that overcomes these problems would be useful.
The present disclosure may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings indicates similar or identical items.
The present disclosure provides a method for manufacturing a semiconductor device utilizing a cleaning process following offset spacer formation which results in a surface suitable for selective epitaxial growth (SEG) and does not require an additional post-offset spacer clean. In addition to the time- and cost-savings provided by the elimination of an additional post-offset spacer cleaning, the method disclosed results in lower selective epitaxy temperature, which has been correlated with higher device drive current, thus increasing operating speeds and ranges.
The cleaning processes detailed in the present disclosure serve to clean the surface of a semiconductor device by removing contamination such as carbonaceous residue, sub-surface oxygen, and other impurities. These contaminants hinder the SEG process. The cleaning processes disclosed herein allow for a lower temperature H2 bake because, following the cleaning processes, the semiconductor devices' surface contamination is lower, thus a higher temperature H2 bake is no longer required. Higher H2 bake temperatures should be avoided, as dopant diffusion and/or dopant deactivation may occur within doped components of the device, e.g., source/drain extensions or polysilicon gates.
At the stage of manufacture illustrated in
Following blanket deposition of spacer material and etch, offset spacers are formed immediately adjacent to conductive gate portion 15 sidewalls. In an embodiment, a single layer spacer material such as a nitride is utilized to form a single material layer offset spacer 14. Alternately, more than one deposition and etch may be employed to create a dual material layer offset spacer 17, as illustrated in
Following formation of single or multiple layer offset spacers 14 or 17, the source/drain portions of the substrate 10 of portion 100 are exposed to a cleaning process comprising hydrofluoric acid, ammonium hydroxide, hydrogen peroxide, and deionized water mixture. An epitaxial layer such as epitaxial layer 28 (
After the HF etch, an overflow rinse utilizing deionized water is performed for a period ranging from approximately 120 to 600 seconds with a typical rinse being about 400 seconds. The cleaning process of portion 100 results in etching away of the surface contamination/debris located on substrate 10 resulting from offset spacer formation and/or dopant implantation. The upper semiconductor surface, i.e. silicon surface, of substrate 10 is also slightly etched, for example, from one to several mono layers of silicon, during the HF etch 6, as illustrated by
In an embodiment, the SC-1 utilizes an aqueous solution of ammonium hydroxide: hydrogen peroxide: deionized water at a ratio of approximately 1:1–4:6–40, at a temperature of approximately 60 degrees Celsius for approximately 72 minutes, to etch approximately 100 Angstroms of silicon. Synonyms for ammonium hydroxide (NH4OH) include ammonia solution (typically contains between 12% and 44% ammonia before dilution), dilute ammonia, or concentrated ammonia. A first quick dry rinse is conducted for approximately 3 minutes. In an embodiment, the SC-2 utilizes a solution of hydrochloric acid: hydrogen peroxide: deionized water at an initial ratio of approximately 1:1:50 at a temperature of approximately 60 degrees for about 5 minutes. A second quick dry rinse is then conducted. Synonyms for hydrochloric acid (HCl) are hydrogen chloride, anhydrous hydrogen chloride, aqueous hydrogen chloride, chlorohydric acid, spirit of salts, and muriatic acid.
In a particular embodiment, the SC-1 utilizes a solution of ammonium hydroxide: hydrogen peroxide: deionized water at a ratio of approximately 1:4:20 at a temperature ranging of approximately 60 degrees Celsius for approximately 72 minutes. The SC-1 is the step in the clean sequence that etches the silicon. This occurs because the H2O2 (the oxidizer) becomes depleted in the solution with increasing time and increasing temperature. The methods of the present disclosure allow the initial concentration of hydrogen peroxide to be depleted to facilitate etching of the upper-most semiconductor portion. Depletion of the H2O2 is greatly enhanced when the solution temperature rises above 80 degrees Celsius, which can lead to an etch that is difficult to control if not carefully monitored. The temperature range of the SC-1 is expected to be approximately 55 to 85 degrees Celsius, with the etch occurring in a shorter period of time at higher temperatures than at lower temperatures. It is expected that the SC-1 etching will be better controlled at temperatures in the range of 55–80 degrees Celsius and better still at temperatures in the range of 55–75 degrees Celsius. Generally, it is expected that the substrate will be exposed to the SC-1 etch process for longer that 60 minutes. When the oxidizer stops protecting the silicon surface, the ammonium hydroxide (NH4OH) starts to etch the silicon. Thus, a small amount of silicon can be etched in a controlled manner. The SC-1 can be performed in a re-usable bath where the solution is re-circulated and heated to maintain the desired temperature.
The mechanism of silicon and SiO2 etching by a NH4OH/H2O2 solution occurs when the solution is allowed to be depleted of H2O2. An alkaline solution, such as NH4OH4 in our example, will attack silicon by water molecules, according to the reaction:
Si+2H2O+2OH−→Si(OH)2(O−)2+2H2↑
A passivation layer formed by the H2O2 prevents this attack by the NH4OH. H2O2 decomposes in the course to form O2 and H2O.
H2O2→H2O+½O2
When the concentration of H2O2 is below 3×10−3M, then silicon will begin to etch, because of the absence of the inhibition layer.
As indicated in the above equations, heat is given off as the H2O2 is depleted. If a bath is used that is not recharged with fresh solution all H2O2 will be depleted, thereby no longer releasing heat. Therefore, the temperature can be monitored on the low end to indicate when the solution should be refreshed, while the temperature on the high end is monitored to prevent unusually rapid decomposition of the H2O2, which can lead to a process that is difficult to control.
The first quick dry rinse is conducted for approximately 3 minutes. The subsequent SC-2 utilizes a solution of hydrochloric acid: hydrogen peroxide: deionized water at a ratio of approximately 1:1:50 at a temperature of approximately 60 degrees for about 5 minutes. A quick dry rinse with deionized water, followed by an IPA dry process, is performed following the SC-2.
The IPA dry process is an industry standard whereby the semiconductor wafers are lifted from the water rinse tank into a heated IPA vapor at 82 degrees Celsius. The IPA vapor is generated in a separate chamber with 100% N2 bubbled through 100% IPA (heated to 82 degrees Celsius). The IPA condenses on the wafer, and the solution drips off the bottom of the wafer. The IPA vapor concentration is slowly diluted to 100% N2 before the wafers are removed from the rinsing/drying tank.
As seen in
The gate structure 25 includes a conductive portion 25 and an insulative portion 22. Conductive portion 25 is preferably poly-crystalline or amorphous silicon having a width ranging from 250 to 10,000 Angstroms, and a height ranging from 500 to 2000 Angstroms. Insulative portion 22, the gate oxide, consists of a thermal silicon oxide ranging in thickness from 5 to 30 Angstroms. Semiconductor substrate 20 can be a mono-crystalline silicon substrate, or can also be other materials, e.g., silicon-on-insulator, silicon on sapphire, gallium arsenide, or the like.
The offset spacer 27 illustrated in
Portion 200 will undergo various steps in a cleaning process which will result in removal of portions of the surface of semiconductor substrate 20, as well as portions of the surface of conductive gate structure 25. In
In a particular embodiment, the SC-1 process 9 comprises a pre-rinse with deionized water of approximately 30 seconds duration. The pre-rinse is followed by a SC-1 solution 9 at a ratio of approximately 1:1–4:6–40, which includes the subranges of 0.25:1:5, 0.5:1:5, 1:1:5, 1:1:6, 1:4:20, and 1:1:40, ammonium hydroxide: hydrogen peroxide: deionized water at a temperature of approximately 60 degrees Celsius for approximately 5 minutes. A quick dry rinse (QDR) is then performed for approximately 3 minutes.
Following the SC-1 cleaning process, an SC-2 cleaning process is performed. In an embodiment, the SC-2 cleaning process includes utilizing an aqueous solution of hydrochloric acid: hydrogen peroxide: deionized water at a ratio of approximately 1:1:50 at a temperature of approximately 60 degrees Celsius for approximately 5 minutes. A QDR is then performed, and portion 200 is ready for the third cleaning, as illustrated in
After the SC-1 and SC-2, a third cleaning process comprising an approximate 30 second pre-rinse, an oxide etch, an overflow rinse and an IP dry is performed, as shown in
A passivation layer 450 has been formed overlying portion 400. The conductive gate structure 425 may include a gate stack comprising a dielectric layer (not shown) and/or an epitaxial layer 426. In
The above-described cleaning process has been found to facilitate formation of an epitaxial layer on a semiconductor surface, specifically silicon. Because various etch processes can etch N- and P-type regions at different rates, it can be useful to amorphize an upper-most surface of the source/drain regions prior to the above-described clean to reduce any preferential etch differences between substrate regions of differing dopant types.
For example, the above-described clean process can etch the N-type silicon preferentially, as compared to the P-type silicon, resulting in a quality difference of the SEG between the N and P regions after SEG processing. Etch rate differences between N- and P-type regions can allow for contaminates to remain in the lesser-etched region. For example, an etch process that does not etch P-type regions at the same rate as N-type regions can result in P-regions maintaining embedded carbon that is incorporated from previous process steps. Without appropriate etching of silicon in the P-type regions during the clean, the carbon will remain, and the SEG will grow inconsistently. A high bake temperature of 900° C. can be used to overcome this growth issue on P areas, however, as stated previously, high bake temperatures can be detrimental to the device in that it causes diffusion and deactivation of the dopants. Amorphizing the source/drain regions can reduce etch differences associated with the above-described cleaning process as well as other processes that are used to etch doped substrate regions, thereby improving the quality of both the N and P regions.
It has been hypothesized by the inventors that the etch bias between the N and P areas arises from the electronegativity difference (also called Electro-Motive Force EMF), between the N and P areas. This electrochemical behavior of silicon in aqueous ammonia solutions has been studied mostly with an emphasis on anodic dissolution. Selective etching of N-type and P-type silicon has been demonstrated, and the electrode potential measured with two electrolyte cells: the first containing the silicon substrate, and the second cell containing a reference electrode of Ag/AgCl. Many factors can influence which substrate is etched (dissolution reaction), and which is not etched (passivation reaction). N-type silicon will provide a supply of electrons to the reaction at the surface, and P-type silicon will provide a supply of holes. In one approach, the EMF is the band offset between the Fermi levels in the N-type and P-type silicon, which is equivalent to approximately leV. The N-type silicon will act as the anode, while the P-type silicon will act as the cathode in this RedOx reaction. When the substrates are immersed in a chemical solution to allow charge transfer in the solution, complex chemical reactions occur.
As a result, a chemical process is occurring along a thin boundary layer in the solution directly in contact with the silicon surface. Along this boundary, the aqueous ammonia oxidizes the silicon to form SiO2. The presence of dopants changes the resistivity of the silicon, thus, higher active dopant concentrations increase the current density, which is proportional to the oxidation and dissolution rate of the silicon.
The higher the doping concentration, the greater the dissolution rate. For P+ silicon, if the doping concentration is not high enough, there will not be a great enough supply of holes to etch the SiO2, and the passivation layer will not be removed. This will inhibit the etching of P+ silicon.
It has been observed that the selective etching may be P-type over N-type, or N-type over P-type depending on the solution temperature, flow rate of the aqueous ammonia, concentration of the aqueous ammonia, agitation, or illumination of light.
Assuming that the EMF potential is originating from the difference in Efermi between N and P silicon, then a method that reduces or nullifies the potential difference between Efermi to Eintrisic could be used to reduce the etch selectivity between N- and P-type regions. In other words, a method that inactivates the silicon can be used. One method of inactivating silicon is to bombard the silicon surface with heavy ions, such as Si, Ge or Xe. This destroys the silicon crystallinity, and inactivates the dopants, thus eliminating the supply of electrons in the N area (dissolution substrate), and eliminating the holes in the P area (passivation substrate). By amorphizing the silicon in this manner to a pre-defined depth, unbiased etching to the depth of the amorphized silicon can be achieved.
In one embodiment, N- and P-type extensions formed in the source/drain regions are implanted with the Xe, at a dose of 2E14 and energy of 10 keV, to create an amorphous depth of 100 A. Reference to
The resulting SEG morphology was smooth in the P area, even with an 800° C. H2 bake. Previously, this low bake temperature resulted in a rough surface when a wet clean only was applied. Lower bake temperatures are expected down to approximately to 750° C. Though not specifically illustrated, it will be appreciated that the gate structures may be masked during the implementation process.
The method and apparatus herein provides for a flexible implementation. Although described using certain specific examples, it will be apparent to those skilled in the art that the examples are illustrative, and that many variations exist. For example, the disclosure is discussed herein primarily with regard to a cleaning process following offset spacer formation which results in a surface suitable for selective epitaxial growth (SEG) and does not require an additional post-offset spacer clean for a CMOS device, however, the disclosure can be employed with other device technologies. Additionally, various types of deposition and etch devices are currently available which could be suitable for use in employing the method as taught herein. Note also, that although an embodiment of the present disclosure has been shown and described in detail herein, along with certain variants thereof, many other varied embodiments that incorporate the teachings of the disclosure may be easily constructed by those skilled in the art. Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. Accordingly, the present disclosure is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4933295 | Feist | Jun 1990 | A |
5298454 | D'Asaro et al. | Mar 1994 | A |
5319232 | Pfiester | Jun 1994 | A |
5387309 | Bobel et al. | Feb 1995 | A |
5556462 | Celii et al. | Sep 1996 | A |
5670018 | Eckstein et al. | Sep 1997 | A |
5696012 | Son | Dec 1997 | A |
5710450 | Chau et al. | Jan 1998 | A |
5773328 | Blanchard | Jun 1998 | A |
5854136 | Huang et al. | Dec 1998 | A |
5902125 | Wu | May 1999 | A |
5956590 | Hsieh et al. | Sep 1999 | A |
6024794 | Tamamura et al. | Feb 2000 | A |
6074939 | Watanabe | Jun 2000 | A |
6133093 | Prinz et al. | Oct 2000 | A |
6159422 | Graves et al. | Dec 2000 | A |
6165826 | Chau et al. | Dec 2000 | A |
6165857 | Yeh et al. | Dec 2000 | A |
6228730 | Chen et al. | May 2001 | B1 |
6251764 | Pradeep et al. | Jun 2001 | B1 |
6277700 | Yu et al. | Aug 2001 | B1 |
6313017 | Varhue | Nov 2001 | B1 |
6346447 | Rodder | Feb 2002 | B1 |
6346468 | Pradeep et al. | Feb 2002 | B1 |
6380043 | Yu | Apr 2002 | B1 |
6403434 | Yu | Jun 2002 | B1 |
6436841 | Tsai et al. | Aug 2002 | B1 |
6440851 | Agnello et al. | Aug 2002 | B1 |
6444578 | Cabral et al. | Sep 2002 | B1 |
6451693 | Woo et al. | Sep 2002 | B1 |
6479358 | Yu | Nov 2002 | B1 |
6679946 | Jackson et al. | Jan 2004 | B1 |
6726767 | Marrs et al. | Apr 2004 | B1 |
6777759 | Chau et al. | Aug 2004 | B1 |
6890391 | Aoki et al. | May 2005 | B2 |
6924518 | Iinuma et al. | Aug 2005 | B2 |
6946371 | Langdo et al. | Sep 2005 | B2 |
6979622 | Thean et al. | Dec 2005 | B1 |
7014788 | Fujimura et al. | Mar 2006 | B1 |
20010012693 | Talwar et al. | Aug 2001 | A1 |
20020135017 | Vogt et al. | Sep 2002 | A1 |
20020137297 | Kunikiyo | Sep 2002 | A1 |
20020142616 | Giewont et al. | Oct 2002 | A1 |
20020171107 | Cheng et al. | Nov 2002 | A1 |
20030042515 | Xiang et al. | Mar 2003 | A1 |
20030098479 | Murthy et al. | May 2003 | A1 |
20040041216 | Mori et al. | Mar 2004 | A1 |
20040119102 | Chan et al. | Jun 2004 | A1 |
20050121719 | Mori | Jun 2005 | A1 |
20050252443 | Tsai et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
06326049 | Nov 1994 | JP |