This invention relates to methods for processing a semiconductor wafer, a semiconductor wafer and a semiconductor device.
The manufacturing of semiconductor devices typically involves the shaping of multiple independent circuits on a semiconductor wafer, in a manner that the circuits can be separated in a later stage of the manufacturing, e.g. by singulating (“dicing”) the semiconductor wafer in individual pieces (dice) of semiconducting material, each with a given electronic circuit or electronic device. The singulated dices can be subject to further processing, if so desired, such as testing and packaging the singulated circuits into an integrated circuit package.
The shaping of the multiple separate circuits normally involves the formation of a variety of patterned and unpatterned insulating, semi-conductive and conductive device regions and layers on a substrate formed by the unprocessed wafer. As part of the patterning, a photoresist layer is typically deposited on the top-surface of the wafer and patterned by a photolithographic or other process, thus creating regions in which the top-surface of the wafer is exposed and regions where the top-surface is not exposed. Such a patterning involves transferring a predefined pattern, e.g. in case of photolithography projecting an image of the desired pattern on the wafer surface. However, in case the wafer surface is deformed, e.g. not flat, the transferred pattern is distorted. Such surface deformations may have various causes.
For example, the deposition and patterning of different layers on the substrate may cause the surface to be uneven. U.S. Pat. No. 6,280,645 and U.S. Pat. No. 6,303,511 describe a wafer flattening process and system where the roughness of the surface is reduced by subjecting the surface to a plasma treatment. U.S. Pat. No. 6,254,718 describes a combined chemical-mechanical polishing (CMP) and plasma etching wafer flattening system where the roughness of the surface is reduced by subjecting the surface to CMP and plasma etching.
Also, stress in one or more layers of the wafer (besides leading to wafer fragility and a general difficult to subject the wafer to processing, such as back grinding and dicing) may lead to bow of the wafer and a corresponding distortion of the projected image. U.S. Pat. No. 6,770,504 discloses methods and structure for improving wafer bow control where a multi-layer stack of SiGe and B-doped Si is used to control and minimize the amount of bow. However, manufacturing such a stack is complex. In addition, the mechanical requirements imposed on the materials used required to reduce bow, may not be compatible with the electrical requirements imposed on the materials required for a proper performance of the semiconductor circuit.
The present invention provides methods for processing a semiconductor wafer, a semiconductor wafer and a semiconductor device as described in the accompanying claims.
Specific embodiments of the invention are set forth in the dependent claims. These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. In the drawings, like reference numbers are used to identify like or functionally similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
a)-(c) schematically show top-views an example of an embodiment of a semiconductor wafer in a various stages of an example of a method according to the invention.
a)-(h) schematically show cross-sectional side-views a part of an example of an embodiment of a semiconductor wafer in a various stages of an example of a method according to the invention.
Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Referring to
The peripheral area 102 is an inactive area because the peripheral area does not have circuit elements or connections of the electronic circuit or device in die area 101. However, the peripheral area 102 may contain some components independent from the electronic circuit or device in die area, such as wafer-level reliability and functionality test pads or test circuitry to facilitate wafer-level testing. It should be noted that the die area may contain other inactive areas, such as those that separate different components, e.g. core an peripherals from each other.
As shown in
An example of a method or processing a semiconductor wafer will be described hereinbelow with reference to
As shown in
The curvature may for example be caused by tensile or compressive stress in a layer of the wafer. Such a layer may have been provided on top of the initial wafer material or be part of the initial wafer material, as shown in
For example, a compound substrate wafer may be provided which was obtained by growing on a silicon base layer or substrate an epitaxial layer of gallium nitride (GaN). Referring to
As shown
The formation of the intermediate layer(s) 12 may be followed by disposal of a semi-insulating layer 13 (
In the shown example, the semi-insulating layer 13 exhibits compressive stress due to the mismatch in the lattice between the initial substrate 11, as occurs for example when a GaN hetero-epitaxial layer is grown on a Si(111) substrate. In such case, the lattice constant of GaN is smaller than that of Si(111) and in case of the growth of an GaN layer on the (111) surface of a Si bulk layer, with or without a seed layer between, the lattice constant of the GaN layer will differ from that of the (111) surface and the GaN will be exhibiting tensile stress. Although the exact value depends on the specific process parameters, typical percentages are between 10% and 20%, the mismatch between the GaN lattice and the Si(111) surface results in a curvature of the wafer and the exposed top-surface 14 thereof after growth of the stressed layer. Typical values that may be used are a Si substrate of several hundreds of micrometers thick, such as between 500 μm and 750 μm, for example 625 μm, a GaN nitride layer of 0.5 μm up to 10 μm resulting in a bow of 100-200 μm for a 6 inch wafer.
The curvature may be reduced in the semiconductor wafer by providing in inactive areas of the semiconductor wafer, such as the peripheral areas 102, multiple trench lines 17 extending at least partially in a stressed layer of the semiconductor wafer and in parallel with the surface of the stressed layer. The inactive areas of the die may be any areas which do not have electronic components or connections of the electronic circuit or device provided therein after manufacturing, such as for example the peripheral areas or insulating areas between active device areas. The inactive areas may be provided with other elements though, such as elements used for the processing of a substrate, such as alignment marks, structures for measuring dimensions of features (“CD bars”), electrical test structures, and the like or protective elements which serve to protect the circuit or device from post-fabrication environmental conditions, such as an edge ring seal around a die. In this respect, the active device areas are the areas of the die that are provided with the electronic components, such as transistors, capacitors, resistors, or the like, and/or connections of the electronic circuit or device.
The trenchlines may be provided in any manner suitable for the specific implementation. In the shown example, the trenchlines are provided in a compressively stressed layer (e.g. a GaN heteroepitaxial layer grown on a Si(111) substrate). As illustrated in
The trenchlines may have any shape and depth suitable for the specific implementation and the pattern may be any pattern suitable for the specific implementation. For example, the trenchlines may extend from the top-surface of the stressed layer into the stressed layer to a depth d1 which is less than the thickness d2 of the stressed layer 13. Although other values may be used, it has been found that a depth d1 less than or equal to half the thickness d2 already provides good results. In an example, in an Si(111)-GaN compound wafer with an initial curvature of 120 μm, trenches of 1 μm depth where provided in the GaN layer which had a thickness of about 5 μm, resulting in a reduced curvature of about 80 μm. The bow be accurately measured by mechanical or optical means, as known in the art of semiconductor manufacturing.
As illustrated in
The trenchlines may be provided in any pattern suitable for the specific implementation. The wafer may be provided with multiple semiconductor devices or circuits 20 in respective active areas 101—as indicated in
The trenchlines may as shown be continuous lines, however if suitable the trenchlines may be dashed or dotted.
The trenchlines may be provided in any density suitable for the specific implementation. For example, the multiple trench lines may be separated at least 1 mm from each other. As shown in
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein and that the appended claims are not limited to the shown examples.
For example, the semiconductor substrate described herein can be any semiconductor material or combinations of materials, such as gallium arsenide, silicon germanium, silicon-on-insulator (SOI), silicon, monocrystalline silicon, the like, and combinations of the above.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB10/03017 | 9/30/2010 | WO | 00 | 3/6/2013 |