Methods of forming silicon germanium tin films and structures and devices including the films

Information

  • Patent Grant
  • 9905420
  • Patent Number
    9,905,420
  • Date Filed
    Tuesday, December 1, 2015
    8 years ago
  • Date Issued
    Tuesday, February 27, 2018
    6 years ago
Abstract
Methods of forming silicon germanium tin (SixGe1-xSny) films are disclosed. Exemplary methods include growing films including silicon, germanium and tin in an epitaxial chemical vapor deposition reactor. Exemplary methods are suitable for high volume manufacturing. Also disclosed are structures and devices including silicon germanium tin films.
Description
FIELD OF INVENTION

The present disclosure generally relates to techniques for forming layers including silicon germanium tin and to structures and devices including such layers. More particularly, various embodiments of the disclosure relate to methods of forming silicon germanium tin layers using germane and/or silane, to methods of forming structures and devices including such layers, to systems for forming the layers and structures, and to structures and devices including the layers.


BACKGROUND OF THE DISCLOSURE

Various electronic devices, such as semiconductor devices, and photonic devices, such as lasers and solar devices, include or may desirably include silicon germanium tin (SixGe1-xSny) layers. For example, SixGe1-xSny layers can be used to form direct band gap devices, quantum well structures, and/or may be used to provide strain in, for example, an adjacent germanium layer to increase carrier mobility in the germanium layer. SixGe1-xSny layers can also be used to form tunable band gap devices as well as optical devices having tunable optical properties. To obtain the desired device properties, the SixGe1-xSny layers generally have a crystalline structure, which generally follows the crystalline structure of an underlying layer, such as a buffer layer.


SixGe1-xSny layers can be deposited or grown using a variety of techniques. For example, vacuum processes, including molecular beam epitaxy and ultra-high vacuum chemical vapor deposition, have been used to form SixGe1-xSny films. Unfortunately, such techniques are slow, expensive, and thus generally not well suited for high-volume manufacturing.


The germanium precursor for such processes typically includes digermane (Ge2H6) or trigermane (Ge3H8). When the film includes silicon, the silicon precursor typically includes a disilane (Si2H6), trisilane (Si3H8), or other higher order silane compounds, or hetero-nuclear Si—Ge compounds with the general formula of (H3Ge)xSiH4-x (x=1-4), (H3Si)xGeH4-x (x=1-4).


Although such processes generally work to deposit or grow crystalline SixGe1-xSny layers, use of digermane, trigermane, or higher order germane precursors and/or disilane or trisilane, is problematic in several respects. For example, formation of films or layers including SixGe1-xSny using digermane or higher order germane precursors, such as trigermane, is not selective when certain carrier gasses (e.g., hydrogen) and/or dopants (e.g., p-type dopants) are used with the precursor. Also, digermane is relatively unstable (explosive) in concentrated form; as a result, an amount of the precursor contained in a vessel may be limited, typically to less than 154 grams, which, in turn, causes throughput of processes using such a precursor to be relatively low. In addition, digermane and higher order germanes are relatively expensive. Similarly, higher order silanes are relatively expensive and can result in relatively slow growth rates. Accordingly, improved processes for forming SixGe1-xSny are desired. Further, improved methods suitable for high-volume manufacturing of structures and devices including a layer of SixGe1-xSny are desired.


SUMMARY OF THE DISCLOSURE

Various embodiments of the present disclosure relate to methods of forming SixGe1-xSny films, to structures and devices including SixGe1-xSny films, and to systems for forming the SixGe1-xSny films. The methods described herein can be used to form SixGe1-xSny films suitable for a variety of applications, including, for example, stressor films in semiconductor devices and tunable bandgap layers in photonic devices. While the ways in which various embodiments of the disclosure address the drawbacks of the prior art methods, films, structures, devices, and systems are discussed in more detail below, in general, the disclosure provides methods of forming SixGe1-xSny using silane and/or germane as precursors. Exemplary methods can be used to form films, structures, and/or devices including SixGe1-xSny in a cost efficient manner and/or can be used to form such films, structures and/or devices in a time efficient manner. Various methods described herein are particularly well suited for use in high volume manufacturing of structures and devices including SixGe1-xSny films.


As used herein, SixGe1-xSny films (also referred to herein as layers) are layers that can include the elements silicon, germanium, and tin. In accordance with various embodiments of the disclosure, the SixGe1-xSny films are crystalline and are epitaxially formed overlying a crystalline substrate or layer. The films can be in the form of an alloy. Exemplary SixGe1-xSny films include from 0 or greater than 0 at % to about 15 at % or about 2 at % to about 15 at % tin, from 0 or greater than 0 at % to about 30 at % or about 1 at % to about 30 at % silicon, or about 55 at % to about 65 at % or about 75 at % to about 95 at % germanium. The layers can include additional elements, such as carbon (e.g., GeSnSiC alloys) and/or other elements, such as phosphorous, boron, or other elements commonly used as dopants, and/or trace amount of other elements.


In accordance with some exemplary embodiments of the disclosure, methods of forming a SixGe SnY layer on a substrate include the steps providing a reactor having a reaction space, providing a substrate within the reaction space, providing silane coupled to the reaction space, providing a germanium precursor (e.g., germane) coupled to the reaction space, providing a tin precursor source coupled to the reaction space, and epitaxially forming a layer of SixGe1-xSny on a surface of the substrate. One or more of the precursors can be mixed at or near an inlet of the reaction chamber—e.g., at an inlet or injection manifold of the reactor. In accordance with further aspects, a cross-flow reactor is used to form the SixGe1-xSny layer(s). In accordance with yet further aspects, a ratio of flowrate of silane to the tin precursor (not including carrier gasses) ranges from about 2 to about 5, or about 2 to about 10, or about 2 to about 15. Exemplary methods can further include providing additional precursors, such as carbon precursors and/or dopant precursors, to the reaction space; such additional precursor(s) can be mixed with one or more of the other precursors at or near the inlet of the reaction chamber and/or further upstream of the reactor.


Other exemplary methods of forming a SixGe1-xSny layer on a substrate include the steps providing a reactor (e.g., a cross-flow reactor) having a reaction space, providing a substrate within the reaction space, providing a silicon source (e.g., silane) coupled to the reaction space, providing germane coupled to the reaction space, providing a tin precursor source coupled to the reaction space, and epitaxially forming a layer of SixGe1-xSny on a surface of the substrate. A ratio of flowrate of silane to the tin precursor ranges from about 2 to about 15 or other silane:tin precursor ratios as set forth herein. Exemplary methods can further include providing additional precursors, such as carbon precursors and/or dopant precursors, to the reaction space; such additional precursor(s) can be mixed with one or more of the other precursors at or near the inlet or further upstream of the reaction chamber.


A reaction space temperature for methods described herein can range from about 200° C. to about 500° C., about 275° C. to about 475° C., or about 300° C. to about 420° C. Exemplary reaction chamber pressures during this step range from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. The relatively low temperatures and/or relatively high pressures allow for low throughput times associated with manufacturing structures and devices comprising one or more SixGe1-xSny layers formed as described herein.


In accordance with exemplary aspects of various embodiments of the disclosure, a ratio of flowrates or partial pressures of the precursors can be selected to promote high-quality film formation under high volume manufacturing conditions.


In accordance with additional embodiments of the disclosure, a structure includes one or more SixGe1-xSny films—e.g., formed using a method disclosed herein. Structures can also include additional layers, such as layers typically used to form devices. For example, the structures can include a germanium layer, which can form a buffer layer, and/or a fin layer as part of a FinFET device.


In accordance with yet additional exemplary embodiments of the disclosure, a device includes or is formed using a structure including one or more SixGe1-xSny films.


And, in accordance with yet additional exemplary embodiments of the disclosure, a system for forming one or more SixGe1-xSny films includes a gas-phase reactor including a reaction space, a germanium precursor (e.g., germane) source coupled to the reaction chamber, a tin precursor source coupled to the reaction space, and a silicon precursor (e.g., silane) source coupled to the reaction space. The system can be configured to mix (e.g., have an operational control mechanism configured to cause mixing of) one or more of the precursors (e.g., all precursors) at or near an inlet of a reaction chamber (e.g., at an injection manifold).


Both the foregoing summary and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

A more complete understanding of exemplary embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.



FIG. 1 illustrates a system for forming one or more SixGe1-xSny films in accordance with exemplary embodiments of the disclosure.



FIG. 2 illustrates a method of forming a SixGe1-xSny film in accordance with further exemplary embodiments of the disclosure.



FIG. 3 illustrates an XRD plot showing SixGe1-xSny layers of various compositions grown with fixed SiH4, GeH4, and SnCl4 flows formed in accordance with exemplary embodiments of the disclosure.



FIG. 4 illustrates an RBS plot showing an exemplary SixGe1-xSny layer on Ge buffer with 5% Sn and 8% Si formed in accordance with exemplary embodiments of the disclosure.



FIG. 5 illustrates Raman spectra of various SixGe1-xSny films formed in accordance with exemplary embodiments of the disclosure.



FIGS. 6-13 illustrate exemplary structures according to yet additional exemplary embodiments of the present disclosure.





It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of illustrated embodiments of the present disclosure.


DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE DISCLOSURE

The description of exemplary embodiments of methods, systems, structures, and devices provided below is merely exemplary and is intended for purposes of illustration only; the following description is not intended to limit the scope of the disclosure or the claims. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features.


The present disclosure relates, generally, to methods of forming layers, such as crystalline alloy layers including silicon, germanium, and tin, overlying a substrate. The silicon germanium tin (SixGe1-xSny) layers can include additional elements, such as carbon, which forms part of a crystalline lattice with the silicon germanium tin layer and/or dopants (e.g., p-type dopants, such as boron (B) and/or n-type dopants, such as phosphorous (P) and Arsenic (As)).


Exemplary SixGe1-xSny layers include from 0 or greater than 0 at % to about 15 at % tin, about 2 at % to about 15 at % tin, or about 3 at % to about 12 at % tin. SixGe1-xSny can include greater than 0 at % tin, greater than 2 at % tin, or greater than 3 at % tin. The SixGe1-xSny layers can additionally or alternatively include from 0 or greater than 0 at % to about 30 at % silicon, or about 1 at % to about 30 at % silicon, or about 3 at % to about 25 at % silicon. Exemplary SixGe1-xSny layers can additionally or alternatively include about 55 at % to about 65 at % germanium, or about 60 at % to about 70 at % germanium, or about 80 at % to about 90 at % germanium. When the layers include carbon, the SixGe1-xSnyC layers can include from 0 or greater than 0 at % to about 1 at % carbon, or about 2 at % to about 3 at % carbon, or about 4 at % to about 5 at % carbon.


The SixGe1-xSny layers can be used to form structures and devices suitable for a variety of applications, including strain layers to increase mobility of carriers in other layers in semiconductor devices, as part of quantum well structures and devices, and/or as layers in photonic devices. Exemplary structures and devices are discussed below.


As used herein, a “substrate” refers to any material having a surface onto which material can be deposited. A substrate can include a bulk material such as silicon (e.g., single crystal silicon, single crystal germanium, or other semiconductor wafer) or can include one or more layers overlying the bulk material. Further, the substrate can include various topologies, such as trenches, vias, lines, and the like formed within or on at least a portion of a layer of the substrate. Exemplary substrates include a silicon wafer, a layer comprising germanium overlying silicon, and a layer comprising germanium tin overlying silicon.


Turning now to the figures, FIG. 1 illustrates a system 100 suitable for forming SixGe1-xSny layers on a substrate using the methods described herein. In the illustrated example, system 100 includes a reactor 102, a silane source 104, a germanium (e.g., germane) precursor 106 source, a tin precursor source 108, purge and/or carrier gas source 110, an optional mixer 112, an optional intake plenum 114, and an exhaust (e.g., vacuum) source 116. Sources 104-110 may be coupled to mixer 112 or reactor 102 using lines 118-132 and valves 134-140. Although not illustrated, a system, such as system 100, may include additional sources and corresponding delivery lines for other precursors, such as carbon precursors and/or dopants (e.g., n-type dopants such as phosphorous or arsenic or p-type dopants such as boron). Additionally or alternatively, one or more dopants may be included in one or more of the precursor sources 102-108. Further, although separately illustrated, two or more dopants may be mixed in a common source.


The sources can be relatively pure—e.g., about 99.999% or greater pure or can be mixed with a carrier. In the case of silane, silane source 104 can include about 1 to 10 at % silane in a carrier or about 100 at % silane. Similarly, the germanium precursor source 106 (e.g., germane) can include about 1.5% to about 5 at % or about 10 at % germane in a carrier. Further, exemplary systems can comprise, consist essentially of, or consist of the precursors noted herein.


Reactor 102 can be a standalone reactor or part of a cluster tool. Further, reactor 102 can be dedicated to a particular process, such as a deposition process, or reactor 102 may be used for other processes—e.g., for layer passivation, cleaning, and/or etch processing. For example, reactor 102 can include a reactor typically used for epitaxial chemical vapor deposition (CVD) processing, such as an Epsilon® 2000 Plus, Epsilon® 3200, or Intrepid XP, available from ASM, and may include direct plasma, and/or remote plasma apparatus (not illustrated) and/or various heating systems, such as radiant, inductive, and/or resistive heating systems (also not illustrated). Using a plasma may enhance the reactivity of one or more precursors. The illustrated reactor is a single-substrate, horizontal-flow (cross-flow) reactor, which enables laminar flow of reactants over a substrate 142, with low residence times, which, in turn, facilitates relatively rapid sequential substrate processing. An exemplary CVD reactor suitable for system 100 is described in U.S. Pat. No. 7,476,627, issued to Pomarede et al. on Jan. 13, 2009, the contents of which are hereby incorporated herein by reference, to the extent such contents do not conflict with the present disclosure. The cross-flow reactor was found to produce high-quality SixGe1-xSny layers on a surface of a substrate under conditions that are suitable for high-volume, relatively low-cost manufacturing.


An operating pressure of a reaction chamber 144 of reactor 102 may vary in accordance with various factors. Reactor 102 may be configured to operate at near atmospheric pressure or at lower pressures, which allows relatively fast formation of the SixGe1-xSny layers—e.g., compared to ultra-high vacuum or molecular beam epitaxy techniques. By way of examples, an operating pressure of reactor 102 during layer formation steps ranges from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. A reaction space temperature can range from about 200° C. to about 500° C., about 275° C. to about 475° C., or about 300° C. to about 420° C.


Silane source 104 includes silane (SiH4) and can optionally include a carrier. Silane source 104 can optionally include one or more dopant compounds, such as compounds typically used to fabricate photonic and/or semiconductor devices. Exemplary p-type dopant compounds include B2H6 and exemplary n-type dopant compounds include PH3 and AsH3. Use of silane is advantageous over the use of higher order silane compounds, such as disilane, trisilane, tetrasilane (Si4H10), neopentasilane (Si5H12), and higher order silanes, because silane is relatively less expensive and is more readily available. The inventors found that using pressures, a cross-flow reactor, and/or the ratio of reactants disclosed herein allows for formation of high-quality SixGe1-xSny layers using silane—rather than higher order silanes.


Germanium precursor source 106 can include germane (GeH4) and may optionally include one or more carrier gasses and/or dopant compounds, such as compounds typically used to fabricate photonic and/or semiconductor devices—e.g., B2H6 and/or PH3, AsH3.


Use of germane is advantageous over other precursors, such as digermane, trigermane, and other higher-order germanes, used to form SixGe1-xSny layers, because germane is relatively selective when mixed with various carrier gasses (e.g., hydrogen, nitrogen, or the like) and is also relatively selective, even when dopants (e.g., p-type dopants) are used with the precursor. Also, germane is relatively safe, compared to higher order digermanes, and thus can be used and/or transported in higher quantities, compared to higher order germanes. Also, germane can be used as a precursor for other layers, such as germanium, and is more readily available and is less expensive, compared to higher-order germane compounds.


Tin precursor source 108 includes any compound suitable for providing tin to a SixGe1-xSny layer. Exemplary tin precursors include tin chloride (SnCl4), deuterated stannane (SnD4), and methyl and/or halide substituted stannanes, such as compounds having a formula Sn(CH3)4-nXn, in which X is H, D (deuterium), Cl, or Br and n is 0, 1, 2, or 3; ZSn(CH3)3-nXn, in which Z is H or D, X is Cl or Br, and n is 0, 1, or 2; Z2Sn(CH3)2-nXn in which Z is H or D, X is Cl or Br, and n is 0 or 1; or SnBr4. Some exemplary tin precursors suitable for use with the present disclosure are discussed in more detail in application Ser. No. 13/783,762, filed Mar. 4, 2013, entitled TIN PRECURSORS FOR VAPOR DEPOSITION AND DEPOSITION PROCESSES, the contents of which are hereby incorporated herein by reference, to the extent such contents do not conflict with the present disclosure.


Purge and/or carrier gas source 110 may include any suitable purge or carrier gas. Exemplary gasses suitable as carrier and purge gasses include nitrogen, argon, helium, and hydrogen.


System 100 can also include a gas distribution system. An exemplary gas distribution system, which allows for fast switching between gasses (e.g., from sources 104-110) is set forth in U.S. Pat. No. 8,152,922 to Schmidt et al., issued Apr. 10, 2012, entitled “Gas Mixer and Manifold Assembly for ALD Reactor,” the contents of which are hereby incorporated herein by reference, to the extent the contents do not conflict with the present disclosure. The gas distribution system may be used to, for example, mix one or more precursor gasses and a carrier gas (which may be the same or different from a purge gas from gas source 108) prior to the gasses reaching plenum 114 or reactor 102.


Turning now to FIG. 2, an exemplary method 200 of forming a SixGe1-xSny layer is illustrated. Method 200 includes the steps of providing a gas-phase reactor (step 202), providing a substrate within the gas-phase reactor (step 204), providing precursors to a reaction space of the reactor (step 206), and forming a SixGe1-xSny layer overlying the substrate (step 208). Method 200 can optionally include one or more of forming an insulating layer overlying the substrate (step 210), and/or forming a via within the insulating layer (step 212).


During step 202, a gas-phase reactor, such as a CVD reactor suitable for epitaxial growth, is provided. The reactor can be a single-substrate, laminar cross-flow reactor. Suitable reactors are available from ASM, under the name Epsilon® 2000 Plus, Epsilon® 3200, and Intrepid XP.


During step 204, a substrate is provided within a reaction chamber of a reactor. The substrate may be received from a loading load lock of a reactor system and transported to the reaction space, such as a reaction chamber, using a suitable transfer mechanism. During this step, the reaction space can be brought to a suitable pressure and temperature for SixGe1-xSny layer formation, such as the pressures and temperatures noted herein.


At step 206, the silane, germanium precursor, and the tin precursor are provided to the reaction space of the reactor. The precursors can comprise, consist essentially of, or consist of these precursors. The silane, germanium precursor, and tin precursor can be mixed (e.g., at mixer 112) prior to entering the chamber. The silane, germanium precursor, and tin precursor can individually or in various combinations be mixed with one or more carrier gasses prior to entering the reaction space. One or more of the precursors, in any combination, can be mixed with a carrier upstream of the reaction chamber, such as at a mixer, upstream of a mixer, and/or within the respective source. During this step, a partial pressure of silane can range from about 5 Torr to about 20 Torr; a partial pressure of the germanium precursor (e.g., germane) can range from about 300 Torr to about 450 Torr; or a partial pressure of the tin precursor (e.g., tin chloride) can range from about 1 Torr to about 3 Torr.


During step 208, a crystalline layer (e.g., an epitaxial layer) of SixGe1-xSny is formed overlying a substrate. As noted above, an operating pressure of a reaction space during layer formation steps can range from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. And, a reaction space temperature can range from about 200° C. to about 500° C., about 275° C. to about 475° C., or about 300° C. to about 420° C.


During step 210, any suitable insulating layer, such as silicon oxide or silicon nitride, is deposited onto the substrate. Then, during step 212, one or more vias are formed within the insulating layer. Reactive ion etching or other suitable technique can be used to form the one or more vias.


In the cases where steps 210 and 212 are performed, the SixGe1-xSny layer formed during step 206 can be selectively formed within the vias. As noted above, use of a germane precursor is advantageous because it is relatively selective when using a variety of carrier gasses, such as hydrogen, and/or when the layer includes one or more dopants, such as p-type dopants.



FIG. 3 illustrates an X-Ray diffraction (XRD) plot of SixGe1-xSny layers of various compositions grown with fixed silane, germane, and tin chloride flow rates over a layer of germanium overlying a silicon substrate. A reaction space temperature during the deposition of the films varied between 300° C. and 375° C. The plot illustrates that a composition of the SixGe1-xSny layers can be adjusted to be lattice matched to germanium or can be increasingly strained.



FIG. 4 illustrates aligned and random yield of Rutherford backscattering spectra of a SixGe1-xSny layer formed overlying a germanium layer on a silicon substrate. The SixGe1-xSny includes about 5% tin and about 8% silicon and was grown at a temperature of about 320° C. The low yield of the aligned spectra relative to the random spectra indicates that the SixGe1-xSny layer is a substitutional alloy.



FIG. 5 illustrates Raman spectra of SixGe1-xSny layers of various compositions, illustrating ternary binding in the films and that the films are substitutional alloys.



FIGS. 6-12 illustrate exemplary structures 600-1200 that can be formed—e.g., using the exemplary systems and/or methods described herein.


Structure 600 includes a substrate 602, a buffer layer 604, and a SixGe1-xSny layer 606 (e.g., epitaxially formed overlying layer 604). Substrate 602 can include, for example, a silicon substrate. Substrate 602 can include additional layers of materials used to form electronic or photonic devices. Buffer layer 604 can include or be, for example, a layer of germanium that is epitaxially formed overlying substrate 602. SixGe1-xSny layer 606 can be formed using, for example, method 200. Structure 600 can be used to form a variety of electronic or photonic devices.


A thickness of buffer layer 604 can range from, for example, about 0.5 to about 0.7, or about 0.8 to about 0.9, or be about one micron thick. A thickness of SixGe1-xSny layer 606 can range from about 1 to about 9, or about 10 nm to about 100 nm in thickness.


Structure 700 is similar to structure 600, except structure 700 includes an additional layer 708. Structure 700 includes a substrate 702, a buffer layer 704, a SixGe1-xSny layer 706, and a germanium layer 708. Substrate 702, buffer layer 704, and SixGe1-xSny layer 706 can be the same as the corresponding substrate and layers described in connection with FIG. 6 and can have the same thicknesses. A thickness of germanium layer 708 can range from about 1 to about 3, or about 4 to about 9 or be about 10 nm thick. Germanium layer 708 can be epitaxially formed overlying SixGe1-xSny layer 706 using, e.g., an epitaxial process with germane as a precursor.


Structure 800 includes a substrate 802, a buffer layer 804, a SixGe1-xSny layer 806, and a germanium tin (GeSn) layer 808 epitaxially formed overlying SixGe1-xSny layer 806. Substrate 802 and layers 804-806 can be the same or similar to corresponding layers described above in connection with FIGS. 6 and 7 and have the same thicknesses. GeSn layer 808 can have a thickness of about 1 to about 3, or about 4 to about 9, or be about 10 nm. GeSn layer 808 can be formed by, for example, using germane and a tin precursor such as tin chloride. GeSn layer 808 can include, for example, about 1 at % to about 8 at % or about 9 at % to about 15 at % tin.


Structure 900 includes a substrate 902, a germanium layer 904, a GeSn layer 906, and a SixGe1-xSny layer 908. The composition of the layers can be the same as the corresponding layers described above in connection with FIG. 8 (with germanium layer 904 corresponding to buffer layer 804). In the illustrated example, buffer layer 904 can have the same thickness as buffer layers 604-804; a thickness of GeSn layer can range from about 100 nm to about 400 nm, or about 500 nm to about 900 nm, or be about 1000 nm. SixGe1-xSny layer 908 can have the same thickness as SixGe1-xSny layers 606, 706, and 806. Structure 900 is similar to structure 800, except GeSn layer 906 and SixGe1-xSny layer 908 are formed in reverse order—compared to the structure illustrated in FIG. 8.


Structure 1000, which is suitable for quantum well structures and devices, includes a substrate 1002, a buffer layer 1004, first SixGe1-xSny layer 1006, GeSn layer 1008, and second SixGe1-xSny layer 1006. The various layers can be formed as described above. Buffer layer 1004, first and second SixGe1-xSny layers 1006 and 1010, and GeSn layer 1008 can have the same thickness noted above. By way of example, buffer layer 1004 can be about 1 micron thick, first SixGe1-xSny layer 1006 and second SixGe1-xSny layer 1010 can each be about 50 nm thick, and GeSn layer 1008 can be about 10 nm thick. Layers 1008-1010 can be repeated a desired number of times to form a quantum well structure.



FIG. 11 illustrates another structure 1100 that is suitable for use as a quantum well structure or device. Structure 1100 includes a substrate 1102, a buffer layer 1104, a first SixGe1-xSny layer 1106, a first Ge layer 1108, a GeSn layer 1110, a second Ge layer 1112, and a second SixGe1-xSny layer 1114. Buffer layer 1104, first and second SixGe1-xSny layers 1106 and 1114, first and second Ge layers 1108 and 1112, and GeSn layer 1110 can have the same thickness noted above. By way of example, buffer layer 1104 can be about 1 micron thick, first SixGe1-xSny layer 1106 can be about 50 nm thick, first Ge layer 1108 and second Ge layer 1112 can be about 50 nm thick, GeSn layer 1110 can be about 10 nm thick, and second SixGe1-xSny layer 1114 can be about 10 nm thick. Layers 1106-1114 can be repeated a desired number of times to form a quantum well structure.



FIG. 12 illustrates yet another structure 1200 in accordance with various embodiments of the disclosure. Structure 1200 includes substrate 1202, first SixGe1-xSny layer 1204, GeSn layer 1206, and second SixGe1-xSny layer 1208. Structure 1200 is similar to structure 1000, except structure 1200 does not include buffer layer 1004. The layers of structure 1200 can be formed using the same techniques used to form structure 1000 and the layers can have the same or similar thicknesses.



FIG. 13 illustrates yet another structure 1300 in accordance with additional exemplary embodiments of the disclosure. Structure 1300 includes a substrate 1302, an insulating layer 1304, a via 1306 formed within insulating layer 1304, a germanium layer 1308 (e.g., epitaxially formed overlying substrate 1302), and a SixGe1-xSny layer 1310 (e.g., epitaxially formed overlying layer 1308). Layers 1308 and/or 1310 can be selectively formed within via 1306—e.g., using method 200. Substrate 1302, germanium layer 1308, and SixGe1-xSny layer 1310 can be the same or similar to respective layers described above and can have the same or similar thicknesses. Insulating layer 1304 can include silicon oxide, silicon nitride, and/or silicon oxynitride. A thickness of insulating layer 1304 can range from about 1 to about 10 nm, or about 10 to about 100 nm.


It is to be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense. In the case of exemplary methods, specific routines or steps described herein can represent one or more of any number of processing strategies. Thus, the various acts illustrated can be performed in the sequence illustrated, performed in other sequences, performed simultaneously, or omitted in some cases.


The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, layers, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims
  • 1. A method of forming a SixGe1-xSny layer on a substrate, the method comprising the steps of: providing a reactor having a reaction space;providing a substrate within the reaction space;providing silane coupled to the reaction space;providing a germanium precursor coupled to the reaction space;providing a tin precursor source coupled to the reaction space; andepitaxially forming a layer of SixGe1-xSny on a surface of the substrate,wherein a pressure in the reaction space is between about 500 Torr and about 760 Torr and a temperature in the reaction space is between about 200° C. and about 500° C.,wherein a ratio of a flowrate of the silane to a flowrate of the tin precursor is between about 2 to about 15, andwherein the SixGe1-xSny layer comprises about 2 at % to about 15 at % tin, and about 55 at % to about 65 at % germanium.
  • 2. The method of forming a SixGe1-xSny layer according to claim 1, wherein the germanium precursor comprises germane.
  • 3. The method of forming a SixGe1-xSny layer according to claim 1, wherein, during the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate, an operating pressure of the reaction space is between about 600 Torr and about 760 Torr.
  • 4. The method of forming a SixGe1-xSny layer according to claim 1, wherein the layer of SixGe1-xSny comprises about 3 at % to about 12 at % tin.
  • 5. The method of forming a SixGe1-xSny layer according to claim 1, wherein the layer of SixGe1-xSny comprises greater than 0 to about 30 at % silicon.
  • 6. The method of forming a SixGe1-xSny layer according to claim 1, wherein the layer of SixGe1-xSny comprises about 1 at % to about 2 at % carbon.
  • 7. The method of forming a SixGe1-xSny layer according to claim 1, wherein, during the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate, a ratio of the silane to the germanium precursor provided to the reaction space is about 2 to about 15.
  • 8. The method of forming a SixGe1-xSny layer according to claim 1, wherein, during the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate, a ratio of the silane to the germanium precursor provided to the reaction space is about 3 to about 12.
  • 9. The method of forming a SixGe1-xSny layer according to claim 1, wherein, during the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate, an operating temperature within the reaction space is about 275° C. to about 475° C.
  • 10. The method of forming a SixGe1-xSny layer according to claim 1, wherein the step of providing a tin precursor comprises providing a tin source selected from one or more of the group of SnCl4, SnD4, and a methyl and/or halide substituted stannate.
  • 11. The method of forming a SixGe1-xSny layer according to claim 1, wherein the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate comprises growing a crystalline layer comprising about 4 at % to about 5 at % carbon.
  • 12. The method of forming a SixGe1-xSny layer according to claim 1, wherein the step of epitaxially forming a layer of SixGe1-xSny on a surface of the substrate comprises growing a crystalline layer comprising 1 at % to about 30 at % silicon.
  • 13. A method of forming a structure comprising a SixGe1-xSny layer, the method comprising the steps of: providing a cross-flow reactor comprising a reaction space;providing a substrate within the reaction space; andforming a crystalline layer comprising SixGe1-xSny on a surface of the substrate using silane and germane,wherein, during the step of forming, a pressure in the reaction space is between about 500 Torr and about 760 Torr and a temperature is between about 200° C. and about 500° C.,wherein, during the step of forming, a ratio of the silane to the germane provided to the reaction space is about 2 to about 15,wherein a ratio of a flowrate of the silane to a flowrate of a tin precursor is between about 2 to about 15, andwherein the SixGe1-xSny layer comprises about 2 at % to about 15 at % tin, and about 60 at % to about 70 at % germanium.
  • 14. The method of forming a structure comprising a SixGe1-xSny layer of claim 13, wherein the substrate comprises a layer comprising germanium overlying silicon.
  • 15. The method of forming a structure comprising a SixGe1-xSny layer of claim 13, wherein the layer comprising SixGe1-xSny comprises about 3 from greater than 0 at % tin to about 12 at % tin.
  • 16. The method of forming a structure comprising a SixGe1-xSny layer of claim 13, wherein the layer comprising SixGe1-xSny comprises from greater than 0 at % silicon to about 30 at % silicon.
  • 17. The method of forming a structure comprising a SixGe1-xSny layer of claim 13, wherein the layer comprising SixGe1-xSny comprises about 2 at % germanium to about 3 at % carbon.
  • 18. The method of forming a structure comprising a SixGe1-xSny layer of claim 13, further comprising the steps of: forming an insulating layer overlying the substrate;forming a via within the insulating layer, andselectively forming the layer comprising SixGe1-xSny within the via.
  • 19. A structure comprising a crystalline layer of SixGe1-xSny formed according to the method of claim 13.
  • 20. The structure of claim 19, wherein the structure comprises a layer comprising germanium overlying the crystalline layer of SixGe1-xSny.
US Referenced Citations (1268)
Number Name Date Kind
D56051 Cohn Aug 1920 S
2161626 Loughner et al. Jun 1939 A
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3089507 Drake et al. May 1963 A
3094396 Flugge et al. Jun 1963 A
3232437 Hultgren Feb 1966 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4134425 Gussefeld et al. Jan 1979 A
4145699 Hu et al. Mar 1979 A
4164959 Wurzburger Aug 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4322592 Martin Mar 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4401507 Engle Aug 1983 A
4414492 Hanlet Nov 1983 A
4436674 McMenamin Mar 1984 A
4479831 Sandow Oct 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4570328 Price et al. Feb 1986 A
4579623 Suzuki et al. Apr 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4654226 Jackson et al. Mar 1987 A
4681134 Paris Jul 1987 A
4718637 Contin Jan 1988 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4756794 Yoder Jul 1988 A
4780169 Stark et al. Oct 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4837185 Yau et al. Jun 1989 A
4854263 Chang et al. Aug 1989 A
4857137 Tashiro et al. Aug 1989 A
4857382 Sheng et al. Aug 1989 A
4882199 Sadoway et al. Nov 1989 A
4976996 Monkowski et al. Dec 1990 A
4978567 Miller Dec 1990 A
4984904 Nakano et al. Jan 1991 A
4985114 Okudaira Jan 1991 A
4986215 Yamada Jan 1991 A
4987856 Hey Jan 1991 A
4991614 Hammel Feb 1991 A
5013691 Lory et al. May 1991 A
5027746 Frijlink Jul 1991 A
5028366 Harakal et al. Jul 1991 A
5060322 Delepine Oct 1991 A
5062386 Christensen Nov 1991 A
5065698 Koike Nov 1991 A
5074017 Toya et al. Dec 1991 A
5098638 Sawada Mar 1992 A
5104514 Quartarone Apr 1992 A
5116018 Friemoth et al. May 1992 A
D327534 Manville Jun 1992 S
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5178682 Tsukamoto et al. Jan 1993 A
5183511 Yamazaki et al. Feb 1993 A
5192717 Kawakami Mar 1993 A
5194401 Adams et al. Mar 1993 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5246500 Samata et al. Sep 1993 A
5271967 Kramer et al. Dec 1993 A
5288684 Yamazaki et al. Feb 1994 A
5306946 Yamamoto Apr 1994 A
5315092 Takahashi et al. May 1994 A
5326427 Jerbic Jul 1994 A
5336327 Lee Aug 1994 A
5354580 Goela et al. Oct 1994 A
5356478 Chen et al. Oct 1994 A
5360269 Ogawa et al. Nov 1994 A
5380367 Bertone Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5404082 Hernandez et al. Apr 1995 A
5413813 Cruse et al. May 1995 A
5415753 Hurwitt et al. May 1995 A
5421893 Perlov Jun 1995 A
5422139 Fischer Jun 1995 A
5430011 Tanaka et al. Jul 1995 A
5494494 Mizuno et al. Feb 1996 A
5496408 Motoda et al. Mar 1996 A
5504042 Cho et al. Apr 1996 A
5518549 Hellwig May 1996 A
5527417 Iida et al. Jun 1996 A
5531835 Fodor et al. Jul 1996 A
5574247 Nishitani et al. Nov 1996 A
5577331 Suzuki Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5595606 Fujikawa et al. Jan 1997 A
5601641 Stephens Feb 1997 A
5604410 Vollkommer et al. Feb 1997 A
5616947 Tamura Apr 1997 A
5621982 Yamashita Apr 1997 A
5632919 MacCracken et al. May 1997 A
D380527 Velez Jul 1997 S
5679215 Barnes et al. Oct 1997 A
5681779 Pasch et al. Oct 1997 A
5683517 Shan Nov 1997 A
5695567 Kordina Dec 1997 A
5718574 Shimazu Feb 1998 A
5724748 Brooks Mar 1998 A
5728223 Murakarni et al. Mar 1998 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5777838 Tamagawa et al. Jul 1998 A
5781693 Balance et al. Jul 1998 A
5782979 Kaneno Jul 1998 A
5796074 Edelstein et al. Aug 1998 A
5801104 Schuegraf et al. Sep 1998 A
5819434 Herchen et al. Oct 1998 A
5827757 Robinson, Jr. et al. Oct 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5852879 Schumaier Dec 1998 A
5853484 Jeong Dec 1998 A
5855680 Soininen et al. Jan 1999 A
5855681 Maydan et al. Jan 1999 A
5873942 Park Feb 1999 A
5877095 Tamura et al. Mar 1999 A
5908672 Ryu Jun 1999 A
5916365 Sherman Jun 1999 A
5920798 Higuchi et al. Jul 1999 A
5968275 Lee et al. Oct 1999 A
5975492 Brenes Nov 1999 A
5979506 Aarseth Nov 1999 A
5997588 Goodwin Dec 1999 A
5997768 Scully Dec 1999 A
D419652 Hall et al. Jan 2000 S
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6017779 Miyasaka Jan 2000 A
6024799 Chen Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6042652 Hyun Mar 2000 A
6044860 Nue Apr 2000 A
6050506 Guo et al. Apr 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099302 Hong et al. Aug 2000 A
6122036 Yamasaki et al. Sep 2000 A
6124600 Moroishi et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6134807 Komino Oct 2000 A
6137240 Bogdan et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6162323 Koshimizu et al. Dec 2000 A
6180979 Hofman et al. Jan 2001 B1
6187691 Fukuda Feb 2001 B1
6190634 Lieber Feb 2001 B1
6194037 Terasaki et al. Feb 2001 B1
6201999 Jevtic Mar 2001 B1
6207932 Yoo Mar 2001 B1
6212789 Kato Apr 2001 B1
6218288 Li et al. Apr 2001 B1
6250250 Maishev et al. Jun 2001 B1
6271148 Kao Aug 2001 B1
6274878 Li et al. Aug 2001 B1
6281098 Wang Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
D449873 Bronson Oct 2001 S
6296909 Spitsberg Oct 2001 B1
6299133 Waragai et al. Oct 2001 B2
6302964 Umotoy et al. Oct 2001 B1
6303523 Cheung Oct 2001 B2
6305898 Yamagishi et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6315512 Tabrizi et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6325858 Wengert Dec 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6329297 Balish Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6347636 Xia Feb 2002 B1
6352945 Matsuki Mar 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6370796 Zucker Apr 2002 B1
6372583 Tyagi Apr 2002 B1
6374831 Chandran Apr 2002 B1
6375312 Ikeda et al. Apr 2002 B1
D457609 Piano May 2002 S
6383566 Zagdoun May 2002 B1
6383955 Matsuki May 2002 B1
6387207 Janakiraman May 2002 B1
6391803 Kim et al. May 2002 B1
6398184 Sowada et al. Jun 2002 B1
6410459 Blalock et al. Jun 2002 B2
6413321 Kim et al. Jul 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
D461233 Whalen Aug 2002 S
D461882 Piano Aug 2002 S
6435798 Satoh Aug 2002 B1
6436819 Zhang Aug 2002 B1
6437444 Andideh Aug 2002 B2
6445574 Saw et al. Sep 2002 B1
6446573 Hirayama et al. Sep 2002 B2
6450757 Saeki Sep 2002 B1
6454860 Metzner et al. Sep 2002 B2
6455445 Matsuki Sep 2002 B2
6461435 Littau et al. Oct 2002 B1
6468924 Lee Oct 2002 B2
6472266 Yu et al. Oct 2002 B1
6475276 Elers et al. Nov 2002 B1
6475930 Junker et al. Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6482663 Buckland Nov 2002 B1
6483989 Okada et al. Nov 2002 B1
6494065 Babbitt Dec 2002 B2
6499533 Yamada Dec 2002 B2
6503562 Saito et al. Jan 2003 B1
6503826 Oda Jan 2003 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6521547 Chang et al. Feb 2003 B1
6528430 Kwan Mar 2003 B2
6528767 Bagley et al. Mar 2003 B2
6531193 Fonash et al. Mar 2003 B2
6531412 Conti et al. Mar 2003 B2
6534395 Werkhoven et al. Mar 2003 B2
6558755 Berry et al. May 2003 B2
6569239 Arai et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6576062 Matsuse Jun 2003 B2
6576064 Griffiths et al. Jun 2003 B2
6576300 Berry et al. Jun 2003 B1
6579833 McNallan et al. Jun 2003 B1
6583048 Vincent et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6632478 Gaillard et al. Oct 2003 B2
6633364 Hayashi Oct 2003 B2
6635117 Kinnard et al. Oct 2003 B1
6638839 Deng et al. Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6649921 Cekic et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
D486891 Cronce Feb 2004 S
6688784 Templeton Feb 2004 B1
6689220 Nguyen Feb 2004 B1
6692575 Omstead et al. Feb 2004 B1
6692576 Halpin et al. Feb 2004 B2
6699003 Saeki Mar 2004 B2
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6713824 Mikata Mar 2004 B1
6716571 Gabriel Apr 2004 B2
6723642 Lim et al. Apr 2004 B1
6730614 Lim et al. May 2004 B1
6734090 Agarwala et al. May 2004 B2
6740853 Kitayama et al. May 2004 B1
6743475 Skarp et al. Jun 2004 B2
6743738 Todd et al. Jun 2004 B2
6753507 Fure et al. Jun 2004 B2
6756318 Nguyen et al. Jun 2004 B2
6759098 Han Jul 2004 B2
6760981 Leap Jul 2004 B2
6784108 Donohoe et al. Aug 2004 B1
6815350 Kim et al. Nov 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6846515 Vrtis Jan 2005 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6864041 Brown Mar 2005 B2
6872258 Park et al. Mar 2005 B2
6872259 Strang Mar 2005 B2
6874247 Hsu Apr 2005 B1
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6876017 Goodner Apr 2005 B2
6884066 Nguyen et al. Apr 2005 B2
6884319 Kim Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6895158 Alyward et al. May 2005 B2
6899507 Yamagishi et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6911092 Sneh Jun 2005 B2
6913796 Albano et al. Jul 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6939817 Sandhu et al. Sep 2005 B2
6951587 Narushima Oct 2005 B1
6953609 Carollo Oct 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
6974781 Timmermans et al. Dec 2005 B2
6976822 Woodruff Dec 2005 B2
6984595 Yamazaki Jan 2006 B1
6990430 Hosek Jan 2006 B2
7021881 Yamagishi Apr 2006 B2
7045430 Aim et al. May 2006 B2
7049247 Gates et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7055875 Bonora Jun 2006 B2
7071051 Jeon et al. Jul 2006 B1
7084079 Conti et al. Aug 2006 B2
7088003 Gates et al. Aug 2006 B2
7092287 Beulens et al. Aug 2006 B2
7098149 Lukas Aug 2006 B2
7109098 Ramaswamy et al. Sep 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7122222 Xiao et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7143897 Guzman et al. Dec 2006 B1
7147766 Uzoh et al. Dec 2006 B2
7153542 Nguyen et al. Dec 2006 B2
7163721 Zhang et al. Jan 2007 B2
7163900 Weber Jan 2007 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7201943 Park et al. Apr 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205246 MacNeil et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7207763 Lee Apr 2007 B2
7208389 Tipton et al. Apr 2007 B1
7211524 Ryu et al. May 2007 B2
7234476 Arai Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7235482 Wu Jun 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
7265061 Cho et al. Sep 2007 B1
D553104 Oohashi et al. Oct 2007 S
7290813 Bonora Nov 2007 B2
7294581 Haverkort et al. Nov 2007 B2
7297641 Todd et al. Nov 2007 B2
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7307178 Kiyomori et al. Dec 2007 B2
7312148 Ramaswamy et al. Dec 2007 B2
7312162 Ramaswamy et al. Dec 2007 B2
7312494 Ahn et al. Dec 2007 B2
7323401 Ramaswamy et al. Jan 2008 B2
7326657 Xia et al. Feb 2008 B2
7327948 Shrinivasan Feb 2008 B1
7329947 Adachi et al. Feb 2008 B2
7335611 Ramaswamy et al. Feb 2008 B2
7354847 Chan et al. Apr 2008 B2
7357138 Ji et al. Apr 2008 B2
7381644 Soubramonium et al. Jun 2008 B1
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7393765 Hanawa et al. Jul 2008 B2
7396491 Marking et al. Jul 2008 B2
7399388 Moghadam et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7411352 Madocks Aug 2008 B2
7414281 Fastow Aug 2008 B1
7422653 Blahnik et al. Sep 2008 B2
7422775 Ramaswamy et al. Sep 2008 B2
7429532 Ramaswamy et al. Sep 2008 B2
7431966 Derderian et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7476291 Wang et al. Jan 2009 B2
7479198 Guffrey Jan 2009 B2
D585968 Elkins et al. Feb 2009 S
7489389 Shibazaki et al. Feb 2009 B2
7494882 Vitale Feb 2009 B2
7498242 Kumar et al. Mar 2009 B2
7501292 Matsushita et al. Mar 2009 B2
7503980 Kida et al. Mar 2009 B2
7514375 Shanker et al. Apr 2009 B1
7541297 Mallick et al. Apr 2009 B2
D593969 Li Jun 2009 S
7547363 Tomiyasu et al. Jun 2009 B2
7550396 Frohberg et al. Jun 2009 B2
7566891 Rocha-Alvarez et al. Jul 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7579785 DeVincentis et al. Aug 2009 B2
7582555 Lang Sep 2009 B1
7589003 Kouvetakis et al. Sep 2009 B2
7589029 Derderian et al. Sep 2009 B2
D602575 Breda Oct 2009 S
7598513 Kouvetakis et al. Oct 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7611751 Elers Nov 2009 B2
7611980 Wells et al. Nov 2009 B2
7618226 Takizawa Nov 2009 B2
7629277 Ghatnagar Dec 2009 B2
7632549 Goundar Dec 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
7651961 Clark Jan 2010 B2
D609655 Sugimoto Feb 2010 S
7678197 Maki Mar 2010 B2
7678715 Mungekar et al. Mar 2010 B2
7682657 Sherman Mar 2010 B2
D613829 Griffin et al. Apr 2010 S
D614153 Fondurulia et al. Apr 2010 S
D614267 Breda Apr 2010 S
D614268 Breda Apr 2010 S
7690881 Yamagishi Apr 2010 B2
7691205 Ikedo Apr 2010 B2
7713874 Milligan May 2010 B2
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7727864 Elers Jun 2010 B2
7732343 Niroomand et al. Jun 2010 B2
7740705 Li Jun 2010 B2
7745346 Hausmann et al. Jun 2010 B2
7748760 Kushida Jul 2010 B2
7754621 Putjkonen Jul 2010 B2
7763869 Matsushita et al. Jul 2010 B2
7767262 Clark Aug 2010 B2
7771796 Kohno et al. Aug 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7789965 Matsushita et al. Sep 2010 B2
7790633 Tarafdar et al. Sep 2010 B1
7803722 Liang Sep 2010 B2
7807578 Bencher et al. Oct 2010 B2
7816278 Reed et al. Oct 2010 B2
7824492 Tois et al. Nov 2010 B2
7825040 Fukazawa et al. Nov 2010 B1
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7842518 Miyajima Nov 2010 B2
7842622 Lee et al. Nov 2010 B1
D629874 Hermans Dec 2010 S
7851019 Tuominen et al. Dec 2010 B2
7851232 van Schravendijk et al. Dec 2010 B2
7865070 Nakamura Jan 2011 B2
7884918 Hattori Feb 2011 B2
7888233 Gauri Feb 2011 B1
D634719 Yasuda et al. Mar 2011 S
7897215 Fair et al. Mar 2011 B1
7902582 Forbes et al. Mar 2011 B2
7910288 Abatchev et al. Mar 2011 B2
7915139 Lang Mar 2011 B1
7919416 Lee et al. Apr 2011 B2
7925378 Gilchrist et al. Apr 2011 B2
7935940 Smargiassi May 2011 B1
7939447 Bauer et al. May 2011 B2
7955516 Chandrachood Jun 2011 B2
7963736 Takizawa et al. Jun 2011 B2
7972980 Lee et al. Jul 2011 B2
7981751 Zhu et al. Jul 2011 B2
D643055 Takahashi Aug 2011 S
7992318 Kawaji Aug 2011 B2
7994721 Espiau et al. Aug 2011 B2
7998875 DeYoung Aug 2011 B2
8003174 Fukazawa Aug 2011 B2
8004198 Bakre et al. Aug 2011 B2
8020315 Nishimura Sep 2011 B2
8030129 Jeong Oct 2011 B2
8038835 Hayashi et al. Oct 2011 B2
8041197 Kasai et al. Oct 2011 B2
8041450 Takizawa et al. Oct 2011 B2
8043972 Numakura Oct 2011 B1
8055378 Numakura Nov 2011 B2
8060252 Gage et al. Nov 2011 B2
8071451 Uzoh Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda et al. Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
D652896 Gether Jan 2012 S
8092604 Tomiyasu et al. Jan 2012 B2
D653734 Sisk Feb 2012 S
D655055 Toll Feb 2012 S
8119466 Avouris Feb 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8137465 Shrinivasan et al. Mar 2012 B1
8138676 Mills Mar 2012 B2
8142862 Lee et al. Mar 2012 B2
8143174 Xia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8173554 Lee et al. May 2012 B2
8187951 Wang May 2012 B1
8272516 Salvador May 2012 B2
8192901 Kageyama Jun 2012 B2
8196234 Glunk Jun 2012 B2
8197915 Oka et al. Jun 2012 B2
8216380 White et al. Jul 2012 B2
8231799 Bera et al. Jul 2012 B2
D665055 Yanagisawa et al. Aug 2012 S
8241991 Hsieh et al. Aug 2012 B2
8242031 Mallick et al. Aug 2012 B2
8252114 Vukovic Aug 2012 B2
8252659 Huyghabaert et al. Aug 2012 B2
8252691 Beynet et al. Aug 2012 B2
8278176 Bauer Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8298951 Nakano Oct 2012 B1
8307472 Saxon et al. Nov 2012 B1
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8329599 Fukazawa et al. Dec 2012 B2
8334219 Lee et al. Dec 2012 B2
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8393091 Kawamoto Mar 2013 B2
8394466 Hong et al. Mar 2013 B2
8415259 Lee et al. Apr 2013 B2
8440259 Chiang et al. May 2013 B2
8444120 Gregg et al. May 2013 B2
8445075 Xu et al. May 2013 B2
8465811 Ueda Jun 2013 B2
8466411 Arai Jun 2013 B2
8470187 Ha Jun 2013 B2
8484846 Dhindsa Jul 2013 B2
8492170 Xie et al. Jul 2013 B2
8496756 Cruse et al. Jul 2013 B2
8506713 Takagi Aug 2013 B2
8535767 Kimura Sep 2013 B1
D691974 Osada et al. Oct 2013 S
8551892 Nakano Oct 2013 B2
8563443 Fukazawa Oct 2013 B2
8569184 Oka Oct 2013 B2
8591659 Fang et al. Nov 2013 B1
8592005 Ueda Nov 2013 B2
8608885 Goto et al. Nov 2013 B2
8617411 Singh Dec 2013 B2
8633115 Chang et al. Jan 2014 B2
8647722 Kobayashi et al. Feb 2014 B2
8664627 Ishikawa et al. Mar 2014 B1
8667654 Gros-Jean Mar 2014 B2
8668957 Dussarrat et al. Mar 2014 B2
8669185 Onizawa Mar 2014 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
8720965 Hino et al. May 2014 B2
8722546 Fukazawa et al. May 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8742668 Nakano et al. Jun 2014 B2
8764085 Urabe Jul 2014 B2
8784950 Fukazawa et al. Jul 2014 B2
8784951 Fukazawa et al. Jul 2014 B2
8785215 Kobayashi et al. Jul 2014 B2
8790749 Omori et al. Jul 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8820809 Ando et al. Sep 2014 B2
8821640 Cleary et al. Sep 2014 B2
8841182 Chen et al. Sep 2014 B1
8845806 Aida et al. Sep 2014 B2
D715410 Lohmann Oct 2014 S
8864202 Schrameyer Oct 2014 B1
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8901016 Ha et al. Dec 2014 B2
8911826 Adachi et al. Dec 2014 B2
8912101 Tsuji et al. Dec 2014 B2
D720838 Yamagishi et al. Jan 2015 S
8933375 Dunn et al. Jan 2015 B2
8940646 Chandrasekharan Jan 2015 B1
8946830 Jung et al. Feb 2015 B2
8956983 Swaminathan Feb 2015 B2
D724701 Yamagishi et al. Mar 2015 S
8967608 Mitsumori et al. Mar 2015 B2
8986456 Fondurulia et al. Mar 2015 B2
8991887 Shin et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
D726884 Yamagishi et al. Apr 2015 S
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9018093 Tsuji et al. Apr 2015 B2
9018111 Milligan et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9023737 Beynet et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9029272 Nakano May 2015 B1
D732644 Yamagishi et al. Jun 2015 S
D733261 Yamagishi et al. Jun 2015 S
D733843 Yamagishi et al. Jul 2015 S
9096931 Yednak et al. Aug 2015 B2
9117657 Nakano et al. Aug 2015 B2
9117866 Marquardt et al. Aug 2015 B2
9123510 Nakano et al. Sep 2015 B2
9136108 Matsushita et al. Sep 2015 B2
9142393 Okabe et al. Sep 2015 B2
9169975 Sarin et al. Oct 2015 B2
9171714 Mori Oct 2015 B2
9171716 Fukuda Oct 2015 B2
9177784 Raisanen et al. Nov 2015 B2
9190263 Ishikawa et al. Nov 2015 B2
9196483 Lee Nov 2015 B1
9202727 Dunn et al. Dec 2015 B2
9299595 Dunn et al. Mar 2016 B2
9324811 Weeks Apr 2016 B2
9341296 Yednak May 2016 B2
20010017103 Takeshita et al. Aug 2001 A1
20010018267 Shinriki et al. Aug 2001 A1
20010019777 Tanaka et al. Sep 2001 A1
20010019900 Hasegawa Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20010049202 Maeda et al. Dec 2001 A1
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020014204 Pyo Feb 2002 A1
20020064592 Datta et al. May 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020079714 Soucy et al. Jun 2002 A1
20020088542 Nishikawa et al. Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020114886 Chou et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20020197849 Mandal Dec 2002 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030010452 Park et al. Jan 2003 A1
20030012632 Saeki Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030049375 Nguyen et al. Mar 2003 A1
20030054670 Wang et al. Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030059980 Chen et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030082307 Chung et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030141820 White et al. Jul 2003 A1
20030157436 Manger et al. Aug 2003 A1
20030168001 Sneh Sep 2003 A1
20030170583 Nakashima Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030183156 Dando Oct 2003 A1
20030192875 Bieker et al. Oct 2003 A1
20030198587 Kaloyeros Oct 2003 A1
20030209323 Yokogaki Nov 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040009679 Yeo et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013818 Moon et al. Jan 2004 A1
20040016637 Yang Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040029052 Park et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040063289 Ohta Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040079960 Shakuda Apr 2004 A1
20040080697 Song Apr 2004 A1
20040082171 Shin et al. Apr 2004 A1
20040101622 Park et al. May 2004 A1
20040103914 Cheng et al. Jun 2004 A1
20040106249 Huotari Jun 2004 A1
20040124549 Curran Jul 2004 A1
20040134429 Yamanaka Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040146644 Xia et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040209477 Buxbaum et al. Oct 2004 A1
20040212947 Nguyen Oct 2004 A1
20040214445 Shimizu et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040247779 Selvamanickam et al. Dec 2004 A1
20040261712 Hayashi et al. Dec 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050003662 Jurisch et al. Jan 2005 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050034674 Ono Feb 2005 A1
20050037154 Koh et al. Feb 2005 A1
20050051093 Makino et al. Mar 2005 A1
20050054228 March Mar 2005 A1
20050059262 Yin et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050064719 Liu Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050069651 Miyoshi Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050070729 Kiyomori et al. Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050074983 Shinriki et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050095770 Kumagai et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050101154 Huang May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050120962 Ushioda et al. Jun 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050142361 Nakanishi Jun 2005 A1
20050145338 Park et al. Jul 2005 A1
20050153571 Senzaki Jul 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050181535 Yun et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050191828 Al-Bayati et al. Sep 2005 A1
20050199013 Vandroux et al. Sep 2005 A1
20050208718 Lim et al. Sep 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050221618 AmRhein et al. Oct 2005 A1
20050223994 Blomiley et al. Oct 2005 A1
20050227502 Schmitt et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050241763 Huang et al. Nov 2005 A1
20050255257 Choi et al. Nov 2005 A1
20050258280 Goto et al. Nov 2005 A1
20050260347 Narwankar et al. Nov 2005 A1
20050260850 Loke Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050263932 Heugel Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050274323 Seidel et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060014397 Seamons et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060019502 Park et al. Jan 2006 A1
20060021703 Umotoy et al. Feb 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051520 Behle et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068121 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060105566 Waldfried et al. May 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060113806 Tsuji et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060130767 Herchen Jun 2006 A1
20060137609 Puchacz et al. Jun 2006 A1
20060147626 Blomberg Jul 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060172531 Lin et al. Aug 2006 A1
20060191555 Yoshida et al. Aug 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060199357 Wan et al. Sep 2006 A1
20060205223 Smayling Sep 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060236934 Choi et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060240662 Conley et al. Oct 2006 A1
20060251827 Nowak Nov 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060258173 Xiao et al. Nov 2006 A1
20060260545 Ramaswamy et al. Nov 2006 A1
20060263522 Byun Nov 2006 A1
20060264060 Ramaswamy et al. Nov 2006 A1
20060264066 Bartholomew Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20060269692 Balseanu Nov 2006 A1
20060278524 Stowell Dec 2006 A1
20070006806 Imai Jan 2007 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070032082 Ramaswamy et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054499 Jang Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070066079 Kolster et al. Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070082132 Shinriki Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070098527 Hall et al. May 2007 A1
20070107845 Ishizawa et al. May 2007 A1
20070111545 Lee et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070123037 Lee et al. May 2007 A1
20070125762 Cui et al. Jun 2007 A1
20070128538 Fairbairn et al. Jun 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070148990 Deboer et al. Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070158026 Amikura Jul 2007 A1
20070163440 Kim Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070166966 Todd et al. Jul 2007 A1
20070166999 Vaarstra Jul 2007 A1
20070173071 Afzali-Ardakani et al. Jul 2007 A1
20070175393 Nishimura et al. Aug 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070186952 Honda et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070209590 Li Sep 2007 A1
20070210890 Hsu et al. Sep 2007 A1
20070215048 Suzuki et al. Sep 2007 A1
20070218200 Suzuki et al. Sep 2007 A1
20070218705 Matsuki et al. Sep 2007 A1
20070224777 Hamelin Sep 2007 A1
20070224833 Morisada et al. Sep 2007 A1
20070232031 Singh et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070232501 Tonomura Oct 2007 A1
20070234955 Suzuki et al. Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070241688 DeVancentis et al. Oct 2007 A1
20070248767 Okura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252532 DeVancentis et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20070275166 Thridandam et al. Nov 2007 A1
20070277735 Mokhesi et al. Dec 2007 A1
20070281496 Ingle et al. Dec 2007 A1
20070298362 Rocha-Alvarez et al. Dec 2007 A1
20080003824 Padhi et al. Jan 2008 A1
20080003838 Haukka et al. Jan 2008 A1
20080006208 Ueno et al. Jan 2008 A1
20080023436 Gros-Jean et al. Jan 2008 A1
20080026574 Brcka Jan 2008 A1
20080026597 Munro et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080036354 Letz et al. Feb 2008 A1
20080038485 Lukas Feb 2008 A1
20080054332 Kim Mar 2008 A1
20080054813 Espiau et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080061667 Gaertner et al. Mar 2008 A1
20080066778 Matsushita et al. Mar 2008 A1
20080069955 Hong et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080076266 Fukazawa et al. Mar 2008 A1
20080081104 Hasebe et al. Apr 2008 A1
20080081113 Clark Apr 2008 A1
20080081121 Morita et al. Apr 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080092815 Chen et al. Apr 2008 A1
20080113094 Casper May 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124197 van der Meulen et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080124946 Xiao et al. May 2008 A1
20080133154 Krauss et al. Jun 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080152463 Chidambaram et al. Jun 2008 A1
20080153311 Padhi et al. Jun 2008 A1
20080173240 Furukawahara Jul 2008 A1
20080173326 Gu et al. Jul 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080178805 Paterson et al. Jul 2008 A1
20080179715 Coppa Jul 2008 A1
20080182075 Chopra Jul 2008 A1
20080182390 Lemmi et al. Jul 2008 A1
20080191193 Li et al. Aug 2008 A1
20080199977 Weigel et al. Aug 2008 A1
20080203487 Hohage et al. Aug 2008 A1
20080211423 Shinmen et al. Sep 2008 A1
20080211526 Shinma Sep 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080220619 Matsushita et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080241384 Jeong Oct 2008 A1
20080242116 Clark Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080257494 Hayashi et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080267598 Nakamura Oct 2008 A1
20080277715 Ohmi et al. Nov 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080295872 Riker et al. Dec 2008 A1
20080299326 Fukazawa Dec 2008 A1
20080302303 Choi et al. Dec 2008 A1
20080305246 Choi et al. Dec 2008 A1
20080305443 Nakamura Dec 2008 A1
20080315292 Ji et al. Dec 2008 A1
20080317972 Hendriks Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090000551 Choi et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090023229 Matsushita Jan 2009 A1
20090029528 Sanchez et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090033907 Watson Feb 2009 A1
20090035947 Horii Feb 2009 A1
20090041952 Yoon et al. Feb 2009 A1
20090041984 Mayers et al. Feb 2009 A1
20090042344 Ye et al. Feb 2009 A1
20090045829 Awazu Feb 2009 A1
20090050621 Awazu Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090061647 Mallick et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090090382 Morisada Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090104789 Mallick et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090120580 Kagoshima et al. May 2009 A1
20090122293 Shibazaki May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090136683 Fukasawa et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090142935 Fukazawa et al. Jun 2009 A1
20090146322 Weling et al. Jun 2009 A1
20090156015 Park et al. Jun 2009 A1
20090209081 Matero Aug 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090246399 Goundar Oct 2009 A1
20090246971 Reid et al. Oct 2009 A1
20090250955 Aoki Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090269506 Okura et al. Oct 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090283217 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286402 Xia et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20090304558 Patton Dec 2009 A1
20090311857 Todd et al. Dec 2009 A1
20100001409 Humbert et al. Jan 2010 A1
20100006031 Choi et al. Jan 2010 A1
20100014479 Kim Jan 2010 A1
20100015813 McGinnis et al. Jan 2010 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100041179 Lee Feb 2010 A1
20100041243 Cheng et al. Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100055442 Kellock Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100089320 Kim Apr 2010 A1
20100090149 Thompson et al. Apr 2010 A1
20100093187 Lee et al. Apr 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100116209 Kato May 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100124618 Kobayashi et al. May 2010 A1
20100124621 Kobayashi et al. May 2010 A1
20100126605 Stones May 2010 A1
20100130017 Luo et al. May 2010 A1
20100134023 Mills Jun 2010 A1
20100136216 Tsuei et al. Jun 2010 A1
20100140221 Kikuchi et al. Jun 2010 A1
20100144162 Lee et al. Jun 2010 A1
20100151206 Wu et al. Jun 2010 A1
20100159638 Jeong Jun 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100178137 Chintalapati et al. Jul 2010 A1
20100178423 Shimizu et al. Jul 2010 A1
20100184302 Lee et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100195392 Freeman Aug 2010 A1
20100221452 Kang Sep 2010 A1
20100230051 Iizuka Sep 2010 A1
20100233886 Yang et al. Sep 2010 A1
20100243166 Hayashi et al. Sep 2010 A1
20100244688 Braun et al. Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100255625 De Vries Oct 2010 A1
20100259152 Yasuda et al. Oct 2010 A1
20100270675 Harada Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100285319 Kwak et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100301752 Bakre et al. Dec 2010 A1
20100304047 Yang et al. Dec 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100317198 Antonelli Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110006402 Zhou Jan 2011 A1
20110006406 Urbanowicz et al. Jan 2011 A1
20110014795 Lee Jan 2011 A1
20110027999 Sparks et al. Feb 2011 A1
20110034039 Liang et al. Feb 2011 A1
20110048642 Mihara et al. Mar 2011 A1
20110052833 Hanawa Mar 2011 A1
20110056513 Hombach et al. Mar 2011 A1
20110056626 Brown et al. Mar 2011 A1
20110061810 Ganguly Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110081519 Dillingh Apr 2011 A1
20110086516 Lee et al. Apr 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110107512 Gilbert May 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110108741 Ingram May 2011 A1
20110108929 Meng May 2011 A1
20110117490 Bae May 2011 A1
20110117737 Agarwala May 2011 A1
20110124196 Lee May 2011 A1
20110139748 Donnelly et al. Jun 2011 A1
20110143032 Vrtis et al. Jun 2011 A1
20110143461 Fish et al. Jun 2011 A1
20110159202 Matsushita Jun 2011 A1
20110159673 Hanawa et al. Jun 2011 A1
20110175011 Ehrne Jul 2011 A1
20110183079 Jackson et al. Jul 2011 A1
20110183269 Zhu Jul 2011 A1
20110192820 Yeom et al. Aug 2011 A1
20110198736 Shero et al. Aug 2011 A1
20110210468 Shannon et al. Sep 2011 A1
20110220874 Hanrath Sep 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis Oct 2011 A1
20110256675 Avouris Oct 2011 A1
20110256726 Lavoie et al. Oct 2011 A1
20110256727 Beynet et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110265549 Cruse et al. Nov 2011 A1
20110265951 Xu et al. Nov 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110281417 Gordon et al. Nov 2011 A1
20110283933 Makarov et al. Nov 2011 A1
20110294075 Chen et al. Dec 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120003500 Yoshida et al. Jan 2012 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120032311 Gates Feb 2012 A1
20120043556 Dube et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120100464 Kageyama Apr 2012 A1
20120103264 Choi et al. May 2012 A1
20120103939 Wu et al. May 2012 A1
20120107607 Takaki et al. May 2012 A1
20120114877 Lee May 2012 A1
20120121823 Chhabra May 2012 A1
20120122302 Weisman et al. May 2012 A1
20120128897 Xiao et al. May 2012 A1
20120135145 Je et al. May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120164327 Sato Jun 2012 A1
20120164837 Tan et al. Jun 2012 A1
20120164842 Watanabe Jun 2012 A1
20120171391 Won Jul 2012 A1
20120171874 Thridandam et al. Jul 2012 A1
20120207456 Kim et al. Aug 2012 A1
20120212121 Lin Aug 2012 A1
20120214318 Fukazawa et al. Aug 2012 A1
20120220139 Lee et al. Aug 2012 A1
20120225561 Watanabe Sep 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120263876 Haukka et al. Oct 2012 A1
20120270339 Xie et al. Oct 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120305196 Mori et al. Dec 2012 A1
20120315113 Hiroki Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20120322252 Son et al. Dec 2012 A1
20120325148 Yamagishi et al. Dec 2012 A1
20120328780 Yamagishi et al. Dec 2012 A1
20130005122 Schwarzenbach et al. Jan 2013 A1
20130011983 Tsai Jan 2013 A1
20130014697 Kanayama Jan 2013 A1
20130014896 Shoji et al. Jan 2013 A1
20130019944 Hekmatshoar-Tabai et al. Jan 2013 A1
20130019945 Hekmatshoar-Tabari et al. Jan 2013 A1
20130023129 Reed Jan 2013 A1
20130048606 Mao et al. Feb 2013 A1
20130064973 Chen et al. Mar 2013 A1
20130068970 Matsushita Mar 2013 A1
20130078392 Xiao et al. Mar 2013 A1
20130081702 Mohammed et al. Apr 2013 A1
20130084156 Shimamoto Apr 2013 A1
20130084714 Oka et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130115763 Takamure et al. May 2013 A1
20130122712 Kim et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130134148 Tachikawa May 2013 A1
20130168354 Kanarik Jul 2013 A1
20130180448 Sakaue et al. Jul 2013 A1
20130183814 Huang Jul 2013 A1
20130210241 Lavoie et al. Aug 2013 A1
20130217239 Mallick et al. Aug 2013 A1
20130217240 Mallick et al. Aug 2013 A1
20130217241 Underwood et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224964 Fukazawa Aug 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130269612 Cheng et al. Oct 2013 A1
20130288480 Sanchez et al. Oct 2013 A1
20130292047 Tian et al. Nov 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130319290 Xiao et al. Dec 2013 A1
20130320429 Thomas Dec 2013 A1
20130323435 Xiao et al. Dec 2013 A1
20130330165 Wimplinger Dec 2013 A1
20130330911 Huang Dec 2013 A1
20130330933 Fukazawa et al. Dec 2013 A1
20130337583 Kobayashi et al. Dec 2013 A1
20130340619 Tammera Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014642 Elliot et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140027884 Tang et al. Jan 2014 A1
20140033978 Adachi et al. Feb 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140048765 Ma et al. Feb 2014 A1
20140056679 Yamabe et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140062304 Nakano et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140094027 Azumo et al. Apr 2014 A1
20140096716 Chung et al. Apr 2014 A1
20140099798 Tsuji Apr 2014 A1
20140103145 White et al. Apr 2014 A1
20140116335 Tsuji et al. May 2014 A1
20140120487 Kaneko May 2014 A1
20140127907 Yang May 2014 A1
20140141625 Fuzazawa et al. May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140174354 Arai Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140182053 Huang Jul 2014 A1
20140209976 Yang Jul 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140227072 Lee et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140283747 Kasai et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20140349033 Nonaka et al. Nov 2014 A1
20140363980 Kawamata et al. Dec 2014 A1
20140363985 Jang et al. Dec 2014 A1
20140367043 Bishara et al. Dec 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150004317 Dussarrat et al. Jan 2015 A1
20150007770 Chandrasekharan et al. Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150078874 Sansoni Mar 2015 A1
20150086316 Greenberg Mar 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150099072 Takamure et al. Apr 2015 A1
20150132212 Winkler et al. May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147483 Fukazawa May 2015 A1
20150147877 Jung May 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150170954 Agarwal Jun 2015 A1
20150174768 Rodnick Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
20150217456 Tsuji et al. Aug 2015 A1
20150240359 Jdira et al. Aug 2015 A1
20150267295 Hill et al. Sep 2015 A1
20150267297 Shiba Sep 2015 A1
20150267299 Hawkins Sep 2015 A1
20150267301 Hill et al. Sep 2015 A1
20150284848 Nakano et al. Oct 2015 A1
20150287626 Arai Oct 2015 A1
20150308586 Shugrue et al. Oct 2015 A1
20150315704 Nakano et al. Nov 2015 A1
20170047446 Margetis Feb 2017 A1
Non-Patent Literature Citations (1)
Entry
Mosleh et al., Enhancement of Material Quality of (Si)GeSn Films Grown by SnCL4 Precursor, Oct. 2015, ECS Transactions, 69 (5), p. 279-285.
Related Publications (1)
Number Date Country
20170154770 A1 Jun 2017 US