Methods of forming through-silicon vias in substrates for advanced packaging

Information

  • Patent Grant
  • 11404318
  • Patent Number
    11,404,318
  • Date Filed
    Friday, November 20, 2020
    3 years ago
  • Date Issued
    Tuesday, August 2, 2022
    2 years ago
Abstract
The present disclosure relates to through-via structures with dielectric shielding of interconnections for advanced wafer level semiconductor packaging. The methods described herein enable the formation of high thickness dielectric shielding layers within low aspect ratio through-via structures, thus facilitating thin and small-form-factor package structures having high I/O density with improved bandwidth and power.
Description
BACKGROUND
Field

Embodiments described herein generally relate to shielded through-via structures for advanced wafer level semiconductor packaging and methods of forming the same.


Description of the Related Art

Ongoing trends in the development of semiconductor device technology have led to semiconductor components being integrated into circuits having reduced dimensions and increased densities. In accordance with the demand for continued scaling of semiconductor devices while also improving performance capability and functionality, these integrated circuits are fabricated into complex 3D semiconductor packages that facilitate a significant reduction in overall device footprint and enable shorter and faster connections between components. Such packages may integrate, for example, semiconductor chips and a plurality of other electronic components for mounting onto a circuit board of an electronic device.


Accordingly, the foregoing trends and demand drive a need for improved dielectric shielding of interconnections (i.e., interconnects or interconnect structures), which enable assembly of semiconductor components and integrated circuits into such complex 3D packages. As is known, a vertical interconnect access (or “via”) is one example of an interconnect. However, as circuit densities are increased and via dimensions are decreased, dielectric shielding layers formed around vias are also reduced in thickness, largely due to limitations associated with depositing dielectric material within the vias by chemical vapor deposition (CVD) or atomic layer deposition (ALD). The reduced thickness of the dielectric shielding layers may result in increased leakage current, which would in turn reduce the performance capabilities of packaged devices.


Therefore, there is a need in the art for improved methods of forming shielded through-via structures for advanced wafer level semiconductor packaging.


SUMMARY

The present disclosure generally relates to shielded through-via structures for advanced wafer level semiconductor packaging and methods of forming the same.


In certain embodiments, a method of forming a through-silicon via structure is provided. The method includes forming a trench in a first side of a silicon substrate such that the trench surrounds a portion of the silicon substrate, filling the trench with a dielectric material, removing the portion of the silicon substrate surrounded by the trench to expose an inner surface of the dielectric material, plating a conductive material on the inner surface of the dielectric material, and grinding or polishing the silicon substrate on the first side and a second side opposite the first side. The grinding or polishing exposes the conductive material and the dielectric material on the first side and the second side.


In certain embodiments, a method of forming a through-silicon via structure is provided. The method includes forming a trench in a first side of a silicon substrate such that the trench surrounds a portion of the silicon substrate, laminating a dielectric film on the first side of the silicon substrate to cause a dielectric material of the dielectric film to fill the trench, grinding or polishing the first side of the silicon substrate to remove the dielectric film outside of the trench, removing the portion of the silicon substrate surrounded by the trench to form a hole exposing an inner surface of the dielectric material, plating a conductive material on the first side of the silicon substrate such that the conductive material extends through the hole, and grinding or polishing the silicon substrate on the first side and a second side opposite the first side. The grinding or polishing removes the conductive material disposed outside the hole and exposes the conductive material and the dielectric material on the first side and the second side.


In certain embodiments, a method of forming a through-silicon via structure is provided. The method includes forming a trench in a first side of a silicon substrate such that the trench surrounds a portion of the silicon substrate, laminating a dielectric film on the first side of the silicon substrate to cause a dielectric material of the dielectric film to fill the trench, laser drilling a pit into the dielectric film and over the trench such that an outer dimension of the pit is at least about the same or greater than an outer dimension of the portion of the silicon substrate or the trench, removing the portion of the silicon substrate surrounded by the trench to form a hole through the dielectric material in the trench exposing an inner surface of the dielectric material, plating a conductive material on the first side of the silicon substrate and the dielectric film such that the conductive material extends through the hole, and grinding or polishing the silicon substrate on the first side and a second side opposite the first side. The grinding or polishing removes the conductive material disposed outside of the hole and the dielectric film disposed outside of the trench, and further exposes the conductive material and the dielectric material on the first side and the second side.


In certain embodiments, a method of forming a through-silicon via structure is provided. The method includes forming a trench in a first side of a silicon substrate such that the trench surrounds a portion of the silicon substrate, laminating a dielectric film on the first side of the silicon substrate to cause a dielectric material of the dielectric film to fill the trench, laser drilling a pit into the dielectric film and over the portion of the silicon substrate such that the portion is exposed through the dielectric material, removing the portion of the silicon substrate surrounded by the trench to form a hole through the dielectric material in the trench exposing an inner surface of the dielectric material, plating a conductive material on the first side of the silicon substrate and the dielectric film such that the conductive material extends through the hole, and grinding or polishing the silicon substrate on the first side and a second side opposite the first side. The grinding or polishing removes the conductive material disposed outside of the hole and the dielectric film disposed outside of the trench, and further exposes the conductive material and the dielectric material on the first side and the second side.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 illustrates a flow diagram of a process for forming a through-silicon via in a substrate, according to embodiments described herein.



FIGS. 2A-2E schematically illustrate cross-sectional views of a substrate at different stages of the process depicted in FIG. 1.



FIG. 3 illustrates a flow diagram of a process for forming a through-silicon via in a substrate, according to embodiments described herein.



FIGS. 4A-4E schematically illustrate cross-sectional views of a substrate at different stages of the process depicted in FIG. 3.



FIG. 5 illustrates a flow diagram of a process for forming a through-silicon via in a substrate, according to embodiments described herein.



FIGS. 6A-6E schematically illustrate cross-sectional views of a substrate at different stages of the process depicted in FIG. 5.



FIG. 7 illustrates a flow diagram of a process for forming a through-silicon via in a substrate, according to embodiments described herein.



FIGS. 8A-8D schematically illustrate cross-sectional views of a substrate at different stages of the process depicted in FIG. 7.



FIG. 9 illustrates a flow diagram of a process for forming a through-silicon via in a substrate, according to embodiments described herein.



FIGS. 10A-10H schematically illustrate cross-sectional views of a substrate at different stages of the process depicted in FIG. 5.





DETAILED DESCRIPTION

Embodiments of the present disclosure relate to shielded through-via structures for advanced wafer level semiconductor packaging and methods of forming the same. The ongoing demands for smaller overall sizes and greater densities of advanced package structures drive a need for improved dielectric shielding of interconnections disposed therein. However, as circuit densities are being increased and through-via dimensions are decreased, the deposition of dielectric materials within through-vias and around interconnections becomes increasingly difficult, largely due to limitations associated with deposition of dielectric materials within narrow through-via structures. As a result, thin and suboptimal dielectric shielding layers are formed, which may result in increased leakage current and reduced system performance. The methods described herein provide for improved methods of forming dielectric shielded through-via structures, enabling high thickness dielectric shielding layers while maintaining low aspect ratios of through-via structures.



FIG. 1 illustrates a flow diagram of a representative method 100 for structuring and thereafter laminating a substrate for formation of a through-silicon via. FIGS. 2A-2E schematically illustrate cross-sectional views of a substrate 200 at different stages of the structuring and lamination process 100 represented in FIG. 1. Therefore, FIG. 1 and FIGS. 2A-2E are herein described together for clarity. Note that although described in relation to the formation of a single through-silicon via, the methods disclosed herein may be utilized to form a plurality or array of through-silicon via simultaneously.


Generally, method 100 begins at operation 110, corresponding to FIG. 2A, wherein a spin-on/spray-on or dry resist film 210, such as a photoresist, is applied to a surface 202 on a topside 205 of substrate 200 and is subsequently patterned and developed. Substrate 200 is formed of any suitable substrate material including but not limited to a III-V compound semiconductor material, silicon (e.g., having a resistivity between about 1 and about 10 Ohm-cm or conductivity of about 100 W/mK), crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, silicon germanium, doped or undoped silicon, undoped high resistivity silicon (e.g., float zone silicon having lower dissolved oxygen content and a resistivity between about 5000 and about 10000 ohm-cm), doped or undoped polysilicon, silicon nitride, silicon carbide (e.g., having a conductivity of about 500 W/mK), quartz, glass (e.g., borosilicate glass), sapphire, alumina, and/or ceramic materials. In one embodiment, substrate 200 is a monocrystalline p-type or n-type silicon substrate. In one embodiment, substrate 200 is a polycrystalline p-type or n-type silicon substrate. In another embodiment, substrate 200 is a p-type or n-type silicon solar substrate.


Substrate 200 may further have any suitable shape and/or dimensions. For example, substrate 200 may have a polygonal or circular shape. In certain embodiments, substrate 200 includes a substantially square silicon substrate having lateral dimensions between about 120 mm and about 180 mm, such as about 150 mm or between about 156 mm and about 166 mm, with or without chamfered edges. In certain other embodiments, substrate 200 includes a circular silicon-containing wafer having a diameter between about 20 mm and about 700 mm, such as between about 100 mm and about 500 mm, for example about 200 mm or about 300 mm.


Unless otherwise noted, embodiments and examples described herein are conducted on substrates having a thickness between about 50 μm and about 1500 μm, such as between about 90 μm and about 780 μm. For example, substrate 200 has a thickness between about 100 μm and about 300 μm, such as a thickness between about 110 μm and about 200 μm. In another example, substrate 200 has a thickness between about 60 μm and about 160 μm, such as a thickness between about 80 μm and about 120 μm.


In certain embodiments, at operation 110, resist film 210 is patterned via selective exposure to UV radiation and is thereafter developed. In certain embodiments, the development process is a wet process, such as a wet process that includes exposing resist film 210 to a solvent. For example, the development process may be a wet etch process utilizing an aqueous etch process. In other examples, the film development process may be a wet etch process utilizing a buffered etch process selective for a desired material. However, any suitable wet solvents or combination of wet etchants may be used for the resist film development process.


In further embodiments, an adhesion promoter layer (not shown) may be applied to surface 202 of substrate 200 prior to application of resist film 210, to improve adhesion of resist film 210 to substrate 200. For example, the adhesion promoter layer may be formed of bis(trimethylsilyl)amine, hexamethyldisilazane (HMDS), propylene glycol monomethyl ether acetate (PGMEA), or the like.


As depicted in FIG. 2A, resist film 210 is patterned and developed according to a desired morphology of a subsequently formed dielectric shielding layer for a through-silicon via (TSV). Generally, the subsequently formed interconnection within the TSV has a cylindrical or round tubular shape, and thus, the surrounding dielectric shielding layer has a round tubular shape. Accordingly, in certain embodiments, resist film 210 is patterned and developed to form an annular trench 212 in resist film 210, enabling the subsequent formation of a round tubular dielectric shielding layer. A top view of an annular trench 212 is depicted in FIG. 2D for reference. In certain other embodiments, however, a non-cylindrical or non-annular interconnection and/or non-annular dielectric shielding layer is desired, and thus, a non-annular trench 212 is formed. For example, trench 212 formed in resist film 210 at operation 110 may be ovate, ellipsoid, or polygonal in shape. A top view of a polygonal trench 212 is depicted in FIG. 2E for reference.


At operation 120, substrate 200, now having patterned and developed resist film 210 formed thereon, is exposed to a silicon etch process to transfer the pattern of resist film 210 to substrate 200, and resist film 210 is thereafter removed. In certain embodiments, the silicon etch process is a wet etch process, including a buffered etch process that is selective for the removal of silicon. In certain embodiments, the etch process is a wet etch process utilizing an isotropic aqueous etch process. Any suitable wet etchant or combination of wet etchants may be used for the wet etch process. For example, in certain embodiments, substrate 200 is immersed in an aqueous HF etching solution or an aqueous KOH etching solution for etching. During the etch process, the etching solution may be heated to a temperature between about 30° C. and about 100° C., such as between about 40° C. and about 90° C., in order to accelerate the etching process. For example, the etching solution is heated to a temperature of about 70° C. during the etch process. In still other embodiments, the etch process at operation 120 is a dry etch process. An example of a dry etch process that may be performed at operation 120 is a plasma-based dry etch process.


As a result of the etch process, portions of substrate 200 exposed through trench 212 (e.g., surface 202) are etched away, forming a feature 214 (e.g., a trench) which substantially corresponds in lateral morphology to trench 212 and thus, the subsequently formed dielectric shielding layer. For example, in certain embodiments, feature 214 may be substantially annular in shape with dimensions (e.g., widths) similar to trench 212. As depicted in FIG. 2B, feature 214 is formed around a portion 204 of substrate 200, which is later etched away to form a through-via. Generally, the depth of feature 214 may be modulated by controlling the time of exposure of substrate 200 to the etchants (e.g., the etching solution) used during the etch process. For example, a final depth of feature 214 may be increased with increased exposure to the etchants. Alternatively, feature 214 may have a decreased (e.g., shallower) final depth with decreased exposure to the etchants.


Upon removal of resist film 210, a dielectric film 220 is placed over surface 202 of patterned substrate 200 and laminated to flow into and fill newly-formed feature 214 at operation 130, and as shown in FIG. 2C. During lamination, substrate 200 and dielectric film 220 are exposed to elevated temperatures, causing dielectric film 220 to soften and flow into feature 214. In certain embodiments, the lamination process is a vacuum lamination process that may be performed in a laminator or other suitable device. In certain embodiments, the lamination process is performed by use of a hot pressing process.


In one embodiment, the lamination process is performed at a temperature of between about 80° C. and about 200° C. and for a period between about 5 seconds and about 90 seconds, such as between about 30 seconds and about 60 seconds. In some embodiments, the lamination process includes the application of a pressure of between about 1 psig and about 50 psig while substrate 200 and dielectric film 220 are exposed to a temperature between about 80° C. and about 140° C. for a period between about 5 seconds and about 90 seconds. For example, the lamination process is performed at a pressure of between about 5 psig and about 40 psig and a temperature of between about 100° C. and about 120° C. for a period between about 10 seconds and about 1 minute. For example, the lamination process is performed at a temperature of about 110° C. for a period of about 20 seconds.


Generally, dielectric film 220 is formed of an epoxy resin. For example, dielectric film 220 may be formed of a ceramic-filler-containing epoxy resin, such as an epoxy resin filled with (e.g., containing) substantially spherical silica (SiO2) particles. As used herein, the term “spherical” refers to any round, ellipsoid, or spheroid shape. For example, in some embodiments, the ceramic fillers may have an elliptic shape, an oblong oval shape, or other similar round shape. However, other morphologies are also contemplated. Other examples of ceramic fillers that may be utilized to form dielectric film 220 include aluminum nitride (AlN), aluminum oxide (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), Sr2Ce2Ti5O16 ceramics, zirconium silicate (ZrSiO4), wollastonite (CaSiO3), beryllium oxide (BeO), cerium dioxide (CeO2), boron nitride (BN), calcium copper titanium oxide (CaCu3Ti4O12), magnesium oxide (MgO), titanium dioxide (TiO2), zinc oxide (ZnO) and the like.


In some examples, the ceramic fillers utilized to form dielectric film 220 have particles ranging in size between about 40 nm and about 1.5 μm, such as between about 80 nm and about 1 μm. For example, the ceramic fillers utilized to form dielectric film 220 have particles ranging in size between about 200 nm and about 800 nm, such as between about 300 nm and about 600 nm. In some embodiments, the ceramic fillers include particles having a size less than about 25% of a width or diameter of feature 214 formed in substrate 200, such as less than about 15% of a desired feature's width or diameter.


After lamination of dielectric film 220, a shielded through-silicon via may be formed in substrate 200 utilizing the methods described below with reference to FIGS. 3 and 4A-4E, FIGS. 5 and 6A-6E, or, alternatively, FIGS. 7 and 8A-8D.



FIG. 3 illustrates a flow diagram of a first representative method 300 for forming a through-silicon via in structured and laminated substrate 200 described above. FIGS. 4A-4E schematically illustrate cross-sectional views of substrate 200 at different stages of through-silicon via formation process 300 represented in FIG. 3. Therefore, FIG. 3 and FIGS. 4A-4E are herein described together for clarity.


At operation 310 and FIG. 4A, topside 205 of substrate 200, having dielectric film 220 laminated thereon, is exposed to a grinding or polishing process to remove a portion of dielectric film 220 disposed outside of feature 214. In certain embodiments, substrate 200 is exposed to a chemical mechanical polishing (CMP) process using a polishing slurry with abrasive particles. Generally, the grinding or polishing process at operation 310 removes only dielectric film 220 disposed outside of feature 214 and stops at surface 202 of substrate 200, resulting in a dielectric shielding layer 222 within feature 214 having a top surface 216 that is planar with surface 202. However, in certain embodiments, the grinding or polishing process at operation 310 may also remove a portion of substrate 200 to reduce a thickness thereof as desired (e.g., thin the substrate 200).


After grinding or polishing, a resist film 410 is applied to surface 202 of substrate 200 and is subsequently patterned and developed at operation 320. Resist film 410 may be substantially similar to resist film 210, and may be patterned via selective exposure to UV radiation and thereafter developed via a wet process. In further embodiments, an adhesion promoter layer (not shown) may be applied to surface 202 of substrate 200 prior to application of resist film 410, such as an adhesion promoter layer formed of bis(trimethylsilyl)amine, hexamethyldisilazane (HMDS), propylene glycol monomethyl ether acetate (PGMEA), or the like.


As depicted in FIG. 4B, resist film 410 is patterned and developed to form a trench 412 that exposes surface 202 over portion 204, which is surrounded by dielectric shielding layer 222. Accordingly, the lateral dimensions (e.g., width) of patterned trench 412 correspond to the lateral dimensions of portion 204, ranging between about 10 μm and about 50 μm, such as between about 20 μm and about 40 μm.


At operation 330 and FIG. 4C, substrate 200 is exposed to a second silicon etch process to form a hole 418 within dielectric shielding layer 222, and resist film 410 is thereafter removed. In certain embodiments, the silicon etch process at operation 330 is substantially similar to the etch process at operation 120. For example, the etch process may be a wet etch process, including a buffered etch process that is selective for the removal of silicon, or an isotropic aqueous etch process. As a result of the silicon etch process, portion 204 of substrate 200 is etched away, forming hole 418 within (e.g., surrounded by) dielectric shielding layer 222 for subsequent plating of conductive material (e.g., an interconnection). As described above, hole 418 may have any desired morphology, such as a cylindrical or polygonal morphology. In certain examples, however, hole 418 is ovate or ellipsoid in morphology.


At operation 340 and FIG. 4D, a conductive layer 430 is formed over exposed surfaces of dielectric shielding layer 222 and over surface 202 of substrate 200. As shown in FIG. 4D, conductive layer 430 extends over surface 202, surface 216, and surfaces of dielectric shielding layer 222 surrounding hole 418, which will subsequently function as an interconnect through substrate 200. Conductive layer 430 is deposited over substrate 200 by any suitable methods including electroless deposition or a combination of physical vapor deposition (PVD) and electrochemical deposition (ECD). In certain embodiments, conductive layer 430 is deposited to fill or “plug” hole 418, thus creating a solid or filled conductive body within hole 418. In certain other embodiments, however, conductive layer 430 is deposited to only line surfaces of dielectric shielding layer 222 around hole 418. In such embodiments, a thickness of conductive layer 430 is between about 5 μm and about 20 μm, such as between about 10 μm and about 15 μm.


Conductive layer 430 is generally formed of one or more layers of any suitable conductive material, including but not limited to copper, aluminum, gold, nickel, silver, palladium, tin, or the like. In further embodiments, an adhesion layer (not shown) and/or a seed layer (not shown) are formed over the surfaces of substrate 200 and dielectric shielding layer 222 prior to deposition of conductive layer 430. For example, in certain embodiments, a molybdenum, titanium, tantalum, or titanium-tungsten adhesion layer and/or a copper seed layer are deposited over substrate 200 and dielectric shielding layer 222 prior to deposition of conductive layer 430 to improve adhesion thereof and block diffusion of conductive materials.


After deposition of conductive layer 430, a second grinding or polishing process (e.g., CMP) is performed on substrate 200 at operation 350 and FIG. 4E to remove at least a portion of conductive layer 430 disposed outside of hole 418, as well as a portion of substrate 200 on a backside 207 thereof. Similar to the grinding or polishing process at operation 310, the grinding or polishing on topside 205 may stop at surface 202 of substrate 200. The grinding or polishing on backside 207, however, is carried out until dielectric shielding layer 222 and conductive layer 430 formed therein are exposed on backside 207, resulting in a through-silicon via 440 having conductive layer 430 (e.g., interconnection) shielded by dielectric shielding layer 222.



FIG. 5 illustrates a flow diagram of an alternative method 500 for forming a through-silicon via in substrate 200 upon performing method 100 described above. FIGS. 6A-6E schematically illustrate cross-sectional views of substrate 200 at different stages of through-silicon via formation process 500 represented in FIG. 5. Therefore, FIG. 5 and FIGS. 6A-6E are herein described together for clarity.


At operation 510 and FIG. 6A, only an area of laminated dielectric film 220 above feature 214 is removed from substrate 200 by laser ablation, thus separating dielectric shielding layer 222 disposed within feature 214 from the rest of dielectric film 220 and forming top surface 216 of dielectric shielding layer 222. The laser ablation of dielectric film 220 further creates a pit 602 above feature 214 having outer lateral dimensions at least about the same or greater than portion 204 or feature 214. The laser system utilized to ablate or drill dielectric film 220 at operation 510 may include any suitable type of laser source, such as an infrared (IR) laser, a picosecond UV, a femtosecond UV laser, or a femtosecond green laser, and may produce a continuous and/or pulsed laser beam.


After laser ablation, a resist film 610 is placed over topside 205 of substrate 200 and is subsequently patterned and developed at operation 520. Resist film 610 may be substantially similar to resist films 210 and 410, and may be patterned via selective exposure to UV radiation and thereafter developed via a wet process. In further embodiments, an adhesion promoter layer (not shown) may be utilized to promote adhesion of resist film 610 onto dielectric film 220 and/or substrate 200.


As depicted in FIG. 6B, resist film 610 is applied over dielectric film 220 and within pit 602 prior to patterning and development. Patterning and/or development of resist film 610 forms a trench 612 that exposes surface 202 of portion 204 of substrate 200, which is surrounded by dielectric shielding layer 222. Accordingly, the lateral dimensions (e.g., width) of patterned trench 612 correspond to the lateral dimensions of portion 204, ranging between about 10 μm and about 50 μm, such as between about 20 μm and about 40 μm.


At operation 530 and FIG. 6C, substrate 200 is exposed to a silicon etch process to form hole 418 within dielectric shielding layer 222, and resist film 610 is thereafter removed. In certain embodiments, the silicon etch process at operation 530 is substantially similar to the etch processes at operations 120 and 330. For example, the etch process may be a wet etch process, including a buffered etch process that is selective for the removal of silicon, or an isotropic aqueous etch process. As a result of the silicon etch process, portion 204 of substrate 200 is etched away, forming hole 418 within dielectric shielding layer 222. As described above, hole 418 may have any desired morphology, such as a cylindrical or polygonal morphology. In certain examples, however, hole 418 is ovate or ellipsoid in morphology.


At operation 540 and FIG. 6D, conductive layer 430 is plated over exposed surfaces of dielectric shielding layer 222, dielectric film 220, and surface 202 of substrate 200. As shown in FIG. 6D, a portion of conductive layer 430 extends into hole 418, which will subsequently function as an interconnect through substrate 200. As described above, conductive layer 430 may be deposited over substrate 200 by any suitable methods including electroless deposition or a combination of physical vapor deposition (PVD) and electrochemical deposition (ECD). In certain embodiments, conductive layer 430 is deposited to fill or “plug” hole 418, thus creating a solid or filled conductive body within hole 418. In certain other embodiments, however, conductive layer 430 is deposited to only line surfaces of dielectric shielding layer 222 surrounding hole 418.


After deposition of conductive layer 430, a grinding or polishing process (e.g., CMP) is performed on substrate 200 at operation 550 and FIG. 6E. The grinding or polishing process removes remaining dielectric film 220 and conductive layer 430 disposed outside of hole 418, as well as a portion of substrate 200 on backside 207 to expose dielectric shielding layer 222 and conductive layer 430 on backside 207. As a result, through-silicon via 440, having conductive layer 430 shielded by dielectric shielding layer 222, is formed.



FIG. 7 illustrates a flow diagram of another alternative method 700 for forming a through-silicon via in substrate 200 upon performing method 100 described above. FIGS. 8A-8D schematically illustrate cross-sectional views of the substrate 200 at different stages of the through-silicon via formation process 700 represented in FIG. 7. Therefore, FIG. 7 and FIGS. 8A-8D are herein described together for clarity.


At operation 710 and FIG. 8A, an area of laminated dielectric film 220 disposed above and corresponding to portion 204 of substrate 200 is removed by laser ablation, thus forming pit 802. Generally, pit 802 is ablated to have outer lateral dimensions at least about the same or greater than portion 204 to enable subsequent removal of portion 204 by etching to form hole 418. The laser system utilized to ablate dielectric film 220 at operation 710 may include any suitable type of laser source, such as an infrared (IR) laser, a picosecond UV, a femtosecond UV laser, or a femtosecond green laser, and may produce a continuous and/or pulsed laser beam.


After laser ablation, substrate 200 is exposed to a silicon etch process at operation 720 to etch away portion 204 and form hole 418 through the dielectric material disposed within feature 214. In certain embodiments, the silicon etch process at operation 720 is substantially similar to the etch processes at operations 120, 330, and/or 530. For example, the etch process may be a wet etch process, including a buffered etch process that is selective for the removal of silicon, or an isotropic aqueous etch process. As described above, hole 418 may have any desired morphology, such as a cylindrical or polygonal morphology. In certain examples, however, hole 418 is ovate or ellipsoid in morphology. As depicted in FIG. 8B, the etch process at operation 720 is performed without the use of a resist film. Rather, dielectric layer 220 itself functions as a resist during the process, preventing undesired etching of substrate 200 at locations other than portion 204.


At operation 730 and FIG. 8C, conductive layer 430 is plated over exposed surfaces of dielectric film 220, including a portion of which extends into hole 418 for subsequent use as an interconnection. Conductive layer 430 may be deposited over substrate 200 by any suitable methods including electroless deposition or a combination of physical vapor deposition (PVD) and electrochemical deposition (ECD). In certain embodiments, conductive layer 430 is deposited to fill or “plug” hole 418, thus creating a solid or filled conductive body within hole 418. In certain other embodiments, however, conductive layer 430 is deposited to only line surfaces of the dielectric material surrounding hole 418.


After deposition of conductive layer 430, a grinding or polishing process (e.g., CMP) is performed on substrate 200 at operation 740 and FIG. 8D. The grinding or polishing process removes dielectric film 220 and conductive layer 430 disposed outside of hole 418, as well as a portion of substrate 200 on backside 207 to expose conductive layer 430 on backside 207. As a result, through-silicon via 440, having conductive layer 430 shielded by dielectric shielding layer 222, is formed through substrate 200.



FIG. 9 illustrates a flow diagram of another representative method 900 for forming a through-silicon via in substrate 200 independent from the methods 100, 300, 500, and 700 described above. FIGS. 10A-10H schematically illustrate cross-sectional views of a substrate 1000 at different stages of the through-silicon via formation process 900 represented in FIG. 9. Therefore, FIG. 9 and FIGS. 10A-10H are herein described together for clarity.


Generally, method 900 begins at operation 910, corresponding to FIG. 10A, wherein a resist film 1010 is applied to surface 202 on topside 205 of substrate 200 and is subsequently patterned and developed. Resist film 1010 may be substantially similar to resist films 210, 410, and 610, and may be patterned via selective exposure to UV radiation and thereafter developed via a wet process. In further embodiments, an adhesion promoter layer (not shown) may be utilized to promote adhesion of resist film 1010 onto substrate 200.


As depicted in FIG. 10A, resist film 1010 is patterned and developed according to a desired morphology of a subsequently formed interconnection for a through-silicon via. Generally, the subsequently formed interconnection has a cylindrical or round tubular shape, and thus, resist film 1010 is patterned and developed to form a cylindrical trench 1012, enabling the subsequent formation of a round tubular or cylindrical interconnection. However, in certain embodiments, a non-cylindrical or non-annular interconnection is desired, and accordingly, a non-round or non-cylindrical trench 1012 is formed.


At operation 920, substrate 200, now having patterned and developed resist film 1010 formed thereon, is exposed to a silicon etch process to transfer the pattern of resist film 1010 to substrate 200, and resist film 1010 is thereafter removed. In certain embodiments, the silicon etch process at operation 920 is substantially similar to the etch processes at operations 120, 330, 530, and/or 720. For example, the etch process may be a wet etch process, including a buffered etch process that is selective for the removal of silicon, or an isotropic aqueous etch process.


As a result of the etch process, portions of substrate 200 exposed through trench 1012 are etched away, forming a hole 1018 which substantially corresponds in lateral morphology to trench 1012 and thus, the subsequently formed interconnection. For example, in certain embodiments, hole 1018 may be substantially cylindrical in shape with a diameter similar to trench 1012. Generally, the depth of hole 1018 may be modulated by controlling the time of exposure of substrate 200 to the etchants (e.g., the etching solution) used during the etch process. For example, a final depth of hole 1018 may be increased with increased exposure to the etchants. Alternatively, hole 1018 may have a decreased (e.g., shallower) final depth with decreased exposure to the etchants.


At operation 930 and FIG. 10C, conductive layer 1030 is plated over topside 205 of substrate 200, including surface 202 and surfaces extending into hole 1018 for subsequent use as an interconnection. Conductive layer 1030 is substantially similar to conductive layer 430 and may be deposited over substrate 200 by any suitable methods including electroless deposition or a combination of physical vapor deposition (PVD) and electrochemical deposition (ECD). In certain embodiments, conductive layer 1030 is deposited to fill or “plug” hole 1018, thus creating a solid or filled conductive body within hole 1018. In certain other embodiments, however, conductive layer 1030 is deposited to only line surfaces of substrate 200 surrounding hole 1018.


After deposition of conductive layer 1030, a grinding or polishing process (e.g., CMP) is performed on substrate 200 at operation 940 and FIG. 10D. The grinding or polishing process removes conductive layer 1030 disposed outside of hole 1018, thus forming a top surface 1026 of conductive layer 1030 that is planar with surface 202 of substrate 200.


At operation 950 and FIG. 10E, a second resist film 1050 is applied to surface 202 of substrate 200 and is subsequently patterned and developed. Resist film 1050 may be substantially similar to resist film 1010, and may be patterned via selective exposure to UV radiation and thereafter developed via a wet process. In further embodiments, an adhesion promoter layer (not shown) may be applied to surface 202 of substrate 200 prior to application of resist film 1050, such as an adhesion promoter layer formed of bis(trimethylsilyl)amine, hexamethyldisilazane (HMDS), propylene glycol monomethyl ether acetate (PGMEA), and the like.


As depicted in FIG. 10E, resist film 1050 is patterned and developed to form a trench 1052 that corresponds to a desired morphology of a subsequently formed dielectric shielding layer for conductive layer 1030. Accordingly, formation of trench 1052 exposes surface 202 of substrate 200 around hole 1018. Generally, the subsequently formed dielectric shielding layer has a round tubular shape, and so trench 1052 is patterned to be annular. However, in certain embodiments, a non-cylindrical or non-annular interconnection and/or non-annular dielectric shielding layer is desired, and thus, a non-annular trench 1052 is formed. For example, trench 1052 formed in resist film 1050 may be ovate, ellipsoid, or polygonal in shape.


After patterning and developing resist film 1050, substrate 200 is exposed to a second silicon etch process at operation 960 to transfer the pattern of resist film 1050 to substrate 200, and resist film 1050 is thereafter removed. Similar to the etch processes described above, the etch process at operation 960 may be a wet etch process, including a buffered etch process that is selective for the removal of silicon, or an isotropic aqueous etch process. As shown in FIG. 10F, portions of substrate 200 exposed through trench 1052 are etched away at operation 960, forming a feature 1014 which substantially corresponds in lateral morphology to trench 1052 and thus, the subsequently formed dielectric shielding layer. For example, in certain embodiments, feature 1014 may be substantially annular in shape and circumferentially surround conductive layer 1030.


At operation 970 and FIG. 10G, a dielectric film 1020 is placed over surface 202 of patterned substrate 200 and laminated to flow into and fill newly-formed feature 1014. During lamination, substrate 200 and dielectric film 1020 are exposed to elevated temperatures, causing dielectric film 1020 to soften and flow into feature 1014. In certain embodiments, the lamination process is a vacuum lamination process that may be performed in an autoclave or other suitable device. In certain embodiments, the lamination process is performed by use of a hot pressing process.


Finally, at operation 980 and FIG. 10H, a second grinding or polishing process (e.g., CMP) is performed on substrate 200 to remove dielectric film 1020 disposed outside of feature 1014, as well as a portion of substrate 200 on a backside 207 thereof. Similar to the grinding or polishing processes described above, the grinding or polishing on topside 205 may stop at surface 202 of substrate 200, while the grinding or polishing on backside 207 is carried out until conductive layer 1030 is exposed on backside 207. As a result, a through-silicon via 1040 is formed having conductive layer 1030 (e.g., interconnection) shielded by a dielectric shielding layer 1022.


The methods and through-via structures described above provide many advantages over methods and architectures implementing conventional dielectric material deposition techniques for shielding of package interconnections. Such benefits include the capability of forming high-thickness dielectric shielding layers while maintaining low aspect ratios of through-via structures. Furthermore, the aforementioned features, in addition to the thin form factor and high via-to-substrate volume ratios of the resulting package structures, advantageously provide packaging architectures for advanced integrated semiconductor devices with improved performance and flexibility, and relatively low manufacturing costs as compared to conventional packaging technologies. The thin and small-form-factor package structures described herein provide the benefits of not only high I/O density and improved bandwidth and power, but also maximized shielding effectiveness against unwanted leakage current or interference.


While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of forming a through-silicon via structure, comprising: forming a trench in a first side of a silicon substrate, the trench surrounding a portion of the silicon substrate;laminating a dielectric film onto the first side of the silicon substrate, the lamination of the dielectric film causing a dielectric material of the dielectric film to fill the trench;laser drilling a pit into the dielectric film and over the trench, wherein an outer dimension of the pit is at least about the same or greater than an outer dimension of the portion of the silicon substrate or the trench;removing the portion of the silicon substrate surrounded by the trench to form a hole through the dielectric material in the trench, the hole exposing an inner surface of the dielectric material;plating a conductive material over the first side of the silicon substrate and the dielectric film, the conductive material extending through the hole; andgrinding or polishing the first side of the silicon substrate and a second side opposite the first side, wherein the grinding or polishing removes the conductive material disposed outside of the hole and the dielectric film disposed outside of the trench, and wherein the grinding or polishing further exposes the remaining conductive material and the dielectric material on the first side and the second side.
  • 2. The method of claim 1, wherein the trench is formed via a silicon etch process utilizing a resist film.
  • 3. The method of claim 2, wherein the portion of the silicon substrate is removed via a second silicon etch process utilizing a resist film applied over the silicon substrate and the dielectric film.
  • 4. The method of claim 1, wherein the trench has an annular shape.
  • 5. The method of claim 1, wherein the dielectric material comprises an epoxy resin having a ceramic filler.
  • 6. The method of claim 1, wherein the conductive material is plated via electroless plating, or physical vapor deposition (PVD) and electrochemical deposition (ECD).
  • 7. A method of forming a through-silicon via structure, comprising: forming a trench in a first side of a silicon substrate, the trench surrounding a portion of the silicon substrate;laminating a dielectric film onto the first side of the silicon substrate, the lamination of the dielectric film causing a dielectric material of the dielectric film to fill the trench;laser drilling a pit into the dielectric film and over the trench, wherein an outer dimension of the pit is greater than an outer dimension of the portion of the silicon substrate or the trench;applying and patterning a resist film over the first side of the silicon substrate, a pattern of the resist film corresponding to the portion of the silicon substrateremoving the portion of the silicon substrate surrounded by the trench to form a hole through the dielectric material in the trench, the hole exposing an inner surface of the dielectric material;removing the resist film;plating a conductive material over the first side of the silicon substrate, the conductive material extending through the hole; andgrinding or polishing the first side of the silicon substrate and a second side opposite the first side, wherein the grinding or polishing removes the conductive material disposed outside of the hole and the dielectric film disposed outside of the trench, and wherein the grinding or polishing further exposes the remaining conductive material and the dielectric material on the first side and the second side.
  • 8. The method of claim 7, wherein the trench is formed via a silicon etch process.
  • 9. The method of claim 8, wherein the silicon etch process comprises a buffered wet etch process or a plasma-based dry etch process.
  • 10. The method of claim 7, wherein the trench has an annular shape.
  • 11. The method of claim 7, wherein the trench has a non-annular shape.
  • 12. The method of claim 7, wherein the dielectric material comprises an epoxy resin having a ceramic filler.
  • 13. The method of claim 7, wherein the portion of the silicon substrate is removed via a second silicon etch process.
  • 14. The method of claim 13, wherein the second silicon etch process comprises a buffered wet etch process or a plasma-based dry etch process.
  • 15. The method of claim 7, wherein the conductive material is plated via electroless plating, or physical vapor deposition (PVD) and electrochemical deposition (ECD).
  • 16. The method of claim 7, wherein the portion of the silicon substrate is removed via a second silicon etch process.
  • 17. A method of forming a through-silicon via structure, comprising: forming a trench in a first side of a silicon substrate, the trench surrounding a portion of the silicon substrate;laminating a dielectric film onto the first side of the silicon substrate, the lamination of the dielectric film causing a dielectric material of the dielectric film to fill the trench;laser drilling a pit into the dielectric film and over the trench, wherein an outer dimension of the pit is at least about the same as an outer dimension of the portion of the silicon substrate;removing the portion of the silicon substrate surrounded by the trench to form a hole through the dielectric material in the trench, the hole exposing an inner surface of the dielectric material;plating a conductive material over the first side of the silicon substrate, the conductive material extending through the hole; andgrinding or polishing the first side of the silicon substrate, wherein the grinding or polishing removes the conductive material disposed outside of the hole and the dielectric film disposed outside of the trench.
  • 18. The method of claim 17, wherein the trench is formed via a silicon etch process utilizing a resist film.
  • 19. The method of claim 17, wherein the trench has an annular shape.
  • 20. The method of claim 17, wherein the dielectric material comprises an epoxy resin having a ceramic filler.
US Referenced Citations (285)
Number Name Date Kind
4073610 Cox Feb 1978 A
5126016 Glenning et al. Jun 1992 A
5268194 Kawakami et al. Dec 1993 A
5353195 Fillion et al. Oct 1994 A
5367143 White, Jr. Nov 1994 A
5374788 Endoh et al. Dec 1994 A
5474834 Tanahashi et al. Dec 1995 A
5670262 Dalman Sep 1997 A
5767480 Anglin et al. Jun 1998 A
5783870 Mostafazadeh et al. Jul 1998 A
5841102 Noddin Nov 1998 A
5878485 Wood et al. Mar 1999 A
6039889 Zhang et al. Mar 2000 A
6087719 Tsunashima Jul 2000 A
6117704 Yamaguchi et al. Sep 2000 A
6211485 Burgess Apr 2001 B1
6384473 Peterson et al. May 2002 B1
6388202 Swirbel et al. May 2002 B1
6388207 Figueroa et al. May 2002 B1
6459046 Ochi et al. Oct 2002 B1
6465084 Curcio et al. Oct 2002 B1
6489670 Peterson et al. Dec 2002 B1
6495895 Peterson et al. Dec 2002 B1
6506632 Cheng et al. Jan 2003 B1
6512182 Takeuchi et al. Jan 2003 B2
6538312 Peterson et al. Mar 2003 B1
6555906 Towle et al. Apr 2003 B2
6576869 Gower et al. Jun 2003 B1
6593240 Page Jul 2003 B1
6631558 Burgess Oct 2003 B2
6661084 Peterson et al. Dec 2003 B1
6713719 De Steur et al. Mar 2004 B1
6724638 Inagaki et al. Apr 2004 B1
6775907 Boyko et al. Aug 2004 B1
6781093 Conlon et al. Aug 2004 B2
6799369 Ochi et al. Oct 2004 B2
6894399 Vu et al. May 2005 B2
7028400 Hiner et al. Apr 2006 B1
7062845 Burgess Jun 2006 B2
7064069 Draney et al. Jun 2006 B2
7078788 Vu et al. Jul 2006 B2
7091589 Mori et al. Aug 2006 B2
7091593 Ishimaru et al. Aug 2006 B2
7105931 Attarwala Sep 2006 B2
7129117 Hsu Oct 2006 B2
7166914 DiStefano et al. Jan 2007 B2
7170152 Huang et al. Jan 2007 B2
7192807 Huemoeller et al. Mar 2007 B1
7211899 Taniguchi et al. May 2007 B2
7271012 Anderson Sep 2007 B2
7274099 Hsu Sep 2007 B2
7276446 Robinson et al. Oct 2007 B2
7279357 Shimoishizaka et al. Oct 2007 B2
7312405 Hsu Dec 2007 B2
7321164 Hsu Jan 2008 B2
7449363 Hsu Nov 2008 B2
7458794 Schwaighofer et al. Dec 2008 B2
7511365 Wu et al. Mar 2009 B2
7690109 Mori et al. Apr 2010 B2
7714431 Huemoeller et al. May 2010 B1
7723838 Takeuchi et al. May 2010 B2
7754530 Wu et al. Jul 2010 B2
7808799 Kawabe et al. Oct 2010 B2
7839649 Hsu Nov 2010 B2
7843064 Kuo et al. Nov 2010 B2
7852634 Sakamoto et al. Dec 2010 B2
7855460 Kuwajima Dec 2010 B2
7868464 Kawabata et al. Jan 2011 B2
7887712 Boyle et al. Feb 2011 B2
7914693 Jeong et al. Mar 2011 B2
7915737 Nakasato et al. Mar 2011 B2
7932595 Huemoeller et al. Apr 2011 B1
7932608 Tseng et al. Apr 2011 B2
7955942 Pagaila et al. Jun 2011 B2
7978478 Inagaki et al. Jul 2011 B2
7982305 Railkar et al. Jul 2011 B1
7988446 Yeh et al. Aug 2011 B2
8069560 Mori et al. Dec 2011 B2
8137497 Sunohara et al. Mar 2012 B2
8283778 Trezza Oct 2012 B2
8314343 Inoue et al. Nov 2012 B2
8367943 Wu et al. Feb 2013 B2
8384203 Toh et al. Feb 2013 B2
8390125 Tseng et al. Mar 2013 B2
8426246 Toh et al. Apr 2013 B2
8476769 Chen et al. Jul 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8536695 Liu et al. Sep 2013 B2
8628383 Starling et al. Jan 2014 B2
8633397 Jeong et al. Jan 2014 B2
8698293 Otremba et al. Apr 2014 B2
8704359 Tuominen et al. Apr 2014 B2
8710402 Lei et al. Apr 2014 B2
8710649 Huemoeller et al. Apr 2014 B1
8728341 Ryuzaki et al. May 2014 B2
8772087 Barth et al. Jul 2014 B2
8786098 Wang Jul 2014 B2
8877554 Tsai et al. Nov 2014 B2
8890628 Nair et al. Nov 2014 B2
8907471 Beyne et al. Dec 2014 B2
8921995 Railkar et al. Dec 2014 B1
8952544 Lin et al. Feb 2015 B2
8980691 Lin Mar 2015 B2
8990754 Bird et al. Mar 2015 B2
8994185 Lin et al. Mar 2015 B2
8999759 Chia Apr 2015 B2
9059186 Shim et al. Jun 2015 B2
9064936 Lin et al. Jun 2015 B2
9070637 Yoda et al. Jun 2015 B2
9099313 Lee et al. Aug 2015 B2
9111914 Lin et al. Aug 2015 B2
9142487 Toh et al. Sep 2015 B2
9159678 Cheng et al. Oct 2015 B2
9161453 Koyanagi Oct 2015 B2
9210809 Mallik et al. Dec 2015 B2
9224674 Malatkar et al. Dec 2015 B2
9275934 Sundaram et al. Mar 2016 B2
9318376 Holm et al. Apr 2016 B1
9355881 Goller et al. May 2016 B2
9363898 Tuominen et al. Jun 2016 B2
9396999 Yap et al. Jul 2016 B2
9406645 Huemoeller et al. Aug 2016 B1
9499397 Bowles et al. Nov 2016 B2
9530752 Nikitin et al. Dec 2016 B2
9554469 Hurwitz et al. Jan 2017 B2
9660037 Zechmann et al. May 2017 B1
9698104 Yap et al. Jul 2017 B2
9704726 Toh et al. Jul 2017 B2
9735134 Chen Aug 2017 B2
9748167 Lin Aug 2017 B1
9754849 Huang et al. Sep 2017 B2
9837352 Chang et al. Dec 2017 B2
9837484 Jung et al. Dec 2017 B2
9859258 Chen et al. Jan 2018 B2
9875970 Yi et al. Jan 2018 B2
9887103 Scanlan et al. Feb 2018 B2
9887167 Lee et al. Feb 2018 B1
9893045 Pagaila et al. Feb 2018 B2
9978720 Theuss et al. May 2018 B2
9997444 Meyer et al. Jun 2018 B2
10014292 Or-Bach et al. Jul 2018 B2
10037975 Hsieh et al. Jul 2018 B2
10053359 Bowles et al. Aug 2018 B2
10090284 Chen et al. Oct 2018 B2
10109588 Jeong et al. Oct 2018 B2
10128177 Kamgaing et al. Nov 2018 B2
10153219 Jeon et al. Dec 2018 B2
10163803 Chen et al. Dec 2018 B1
10170386 Kang et al. Jan 2019 B2
10177083 Kim et al. Jan 2019 B2
10211072 Chen et al. Feb 2019 B2
10229827 Chen et al. Mar 2019 B2
10256180 Liu et al. Apr 2019 B2
10269773 Yu et al. Apr 2019 B1
10297518 Lin et al. May 2019 B2
10297586 Or-Bach et al. May 2019 B2
10304765 Chen et al. May 2019 B2
10347585 Shin et al. Jul 2019 B2
10410971 Rae et al. Sep 2019 B2
10424530 Alur et al. Sep 2019 B1
10515912 Lim et al. Dec 2019 B2
10522483 Shuto Dec 2019 B2
10553515 Chew Feb 2020 B2
10570257 Sun et al. Feb 2020 B2
10658337 Yu et al. May 2020 B2
20010020548 Burgess Sep 2001 A1
20010030059 Sugaya et al. Oct 2001 A1
20020036054 Nakatani et al. Mar 2002 A1
20020048715 Walczynski Apr 2002 A1
20020070443 Mu et al. Jun 2002 A1
20020074615 Honda Jun 2002 A1
20020135058 Asahi et al. Sep 2002 A1
20020158334 Vu et al. Oct 2002 A1
20020170891 Boyle et al. Nov 2002 A1
20030059976 Nathan et al. Mar 2003 A1
20030221864 Bergstedt et al. Dec 2003 A1
20030222330 Sun et al. Dec 2003 A1
20040080040 Dotta et al. Apr 2004 A1
20040118824 Burgess Jun 2004 A1
20040134682 En et al. Jul 2004 A1
20040248412 Liu et al. Dec 2004 A1
20050012217 Mori et al. Jan 2005 A1
20050170292 Tsai et al. Aug 2005 A1
20060014532 Seligmann et al. Jan 2006 A1
20060073234 Williams Apr 2006 A1
20060128069 Hsu Jun 2006 A1
20060145328 Hsu Jul 2006 A1
20060160332 Gu et al. Jul 2006 A1
20060270242 Verhaverbeke et al. Nov 2006 A1
20060283716 Hafezi et al. Dec 2006 A1
20070035033 Ozguz et al. Feb 2007 A1
20070042563 Wang et al. Feb 2007 A1
20070077865 Dysard et al. Apr 2007 A1
20070111401 Kataoka et al. May 2007 A1
20070130761 Kang et al. Jun 2007 A1
20080006945 Lin et al. Jan 2008 A1
20080011852 Gu et al. Jan 2008 A1
20080090095 Nagata et al. Apr 2008 A1
20080113283 Ghoshal et al. May 2008 A1
20080119041 Magera et al. May 2008 A1
20080173792 Yang et al. Jul 2008 A1
20080173999 Chung et al. Jul 2008 A1
20080296273 Lei et al. Dec 2008 A1
20090084596 Inoue et al. Apr 2009 A1
20090243065 Sugino et al. Oct 2009 A1
20090250823 Racz et al. Oct 2009 A1
20090278126 Yang et al. Nov 2009 A1
20100013081 Toh et al. Jan 2010 A1
20100062287 Beresford et al. Mar 2010 A1
20100144101 Chow et al. Jun 2010 A1
20100148305 Yun Jun 2010 A1
20100160170 Horimoto et al. Jun 2010 A1
20100248451 Pirogovsky et al. Sep 2010 A1
20100264538 Swinnen et al. Oct 2010 A1
20100301023 Unrath et al. Dec 2010 A1
20100307798 Izadian Dec 2010 A1
20110062594 Maekawa et al. Mar 2011 A1
20110097432 Yu et al. Apr 2011 A1
20110111300 DelHagen et al. May 2011 A1
20110204505 Pagaila et al. Aug 2011 A1
20110259631 Rumsby Oct 2011 A1
20110291293 Tuominen et al. Dec 2011 A1
20110304024 Renna Dec 2011 A1
20110316147 Shih et al. Dec 2011 A1
20120128891 Takei et al. May 2012 A1
20120146209 Hu et al. Jun 2012 A1
20120164827 Rajagopalan et al. Jun 2012 A1
20120261805 Sundaram et al. Oct 2012 A1
20130074332 Suzuki Mar 2013 A1
20130105329 Matejat et al. May 2013 A1
20130196501 Sulfridge Aug 2013 A1
20130203190 Reed et al. Aug 2013 A1
20130286615 Inagaki et al. Oct 2013 A1
20130341738 Reinmuth Dec 2013 A1
20140054075 Hu Feb 2014 A1
20140092519 Yang Apr 2014 A1
20140094094 Rizzuto et al. Apr 2014 A1
20140103499 Andry et al. Apr 2014 A1
20140252655 Tran et al. Sep 2014 A1
20140353019 Arora et al. Dec 2014 A1
20150228416 Hurwitz et al. Aug 2015 A1
20150296610 Daghighian et al. Oct 2015 A1
20150311093 Li et al. Oct 2015 A1
20150359098 Ock Dec 2015 A1
20150380356 Chauhan et al. Dec 2015 A1
20160013135 He et al. Jan 2016 A1
20160020163 Shimizu et al. Jan 2016 A1
20160049371 Lee et al. Feb 2016 A1
20160088729 Kobuke et al. Mar 2016 A1
20160095203 Min et al. Mar 2016 A1
20160118337 Yoon et al. Apr 2016 A1
20160270242 Kim et al. Sep 2016 A1
20160276325 Nair Sep 2016 A1
20160329299 Lin et al. Nov 2016 A1
20160336296 Jeong et al. Nov 2016 A1
20170047308 Ho et al. Feb 2017 A1
20170064835 Ishihara et al. Mar 2017 A1
20170223842 Chujo et al. Aug 2017 A1
20170229432 Lin et al. Aug 2017 A1
20170338254 Reit et al. Nov 2017 A1
20180019197 Boyapati et al. Jan 2018 A1
20180116057 Kajihara et al. Apr 2018 A1
20180182727 Yu Jun 2018 A1
20180197831 Kim et al. Jul 2018 A1
20180204802 Lin et al. Jul 2018 A1
20180308792 Raghunathan et al. Oct 2018 A1
20180352658 Yang Dec 2018 A1
20180374696 Chen et al. Dec 2018 A1
20180376589 Harazono Dec 2018 A1
20190088603 Marimuthu et al. Mar 2019 A1
20190131224 Choi et al. May 2019 A1
20190131270 Lee et al. May 2019 A1
20190131284 Jeng et al. May 2019 A1
20190189561 Rusli Jun 2019 A1
20190229046 Tsai et al. Jul 2019 A1
20190237430 England Aug 2019 A1
20190285981 Cunningham et al. Sep 2019 A1
20190306988 Grober et al. Oct 2019 A1
20190355680 Chuang et al. Nov 2019 A1
20190369321 Young et al. Dec 2019 A1
20200003936 Fu et al. Jan 2020 A1
20200039002 Sercel et al. Feb 2020 A1
20200130131 Togawa et al. Apr 2020 A1
20200357947 Chen et al. Nov 2020 A1
20200358163 See et al. Nov 2020 A1
Foreign Referenced Citations (56)
Number Date Country
2481616 Jan 2013 CA
1971894 May 2007 CN
100463128 Feb 2009 CN
100502040 Jun 2009 CN
100524717 Aug 2009 CN
100561696 Nov 2009 CN
104637912 May 2015 CN
105436718 Mar 2016 CN
106531647 Mar 2017 CN
106653703 May 2017 CN
108028225 May 2018 CN
111492472 Aug 2020 CN
0264134 Apr 1988 EP
1536673 Jun 2005 EP
1478021 Jul 2008 EP
1845762 May 2011 EP
2942808 Nov 2015 EP
2001244591 Sep 2001 JP
2002246755 Aug 2002 JP
2003188340 Jul 2003 JP
2004311788 Nov 2004 JP
2004335641 Nov 2004 JP
4108285 Jun 2008 JP
2012069926 Apr 2012 JP
5004378 Aug 2012 JP
5111342 Jan 2013 JP
5693977 Apr 2015 JP
5700241 Apr 2015 JP
5981232 Aug 2016 JP
6394136 Sep 2018 JP
6542616 Jul 2019 JP
6626697 Dec 2019 JP
100714196 May 2007 KR
100731112 Jun 2007 KR
10-2008-0037296 Apr 2008 KR
2008052491 Jun 2008 KR
20100097893 Sep 2010 KR
101301507 Sep 2013 KR
20140086375 Jul 2014 KR
101494413 Feb 2015 KR
20160013706 Feb 2016 KR
20180113885 Oct 2018 KR
101922884 Nov 2018 KR
101975302 Aug 2019 KR
102012443 Aug 2019 KR
I594397 Aug 2017 TW
2011130300 Oct 2011 WO
2013008415 Jan 2013 WO
2013126927 Aug 2013 WO
2015126438 Aug 2015 WO
2017111957 Jun 2017 WO
2018013122 Jan 2018 WO
2018125184 Jul 2018 WO
2019023213 Jan 2019 WO
2019066988 Apr 2019 WO
2019177742 Sep 2019 WO
Non-Patent Literature Citations (51)
Entry
Allresist Gmbh—Strausberg et al: “Resist-Wiki: Adhesion promoter HMDS and diphenylsilanedio (AR 300-80)—. . .—ALLRESIST GmbH—Strausberg, Germany”, Apr. 12, 2019 (Apr. 12, 2019), XP055663206, Retrieved from the Internet URL:https://web.archive.org/web/2019041220micals-adhesion-promoter-hmds-and-diphenyl2908/https://www.allresist.com/process-chemicals-adhesion-promoter-hmds-and-diphenylsilanedio/, [retrieved on Jan. 29, 2020].
Amit Kelkar, et al. “Novel Mold-free Fan-out Wafer Level Package using Silicon Wafer”, IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages. (IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages.).
Arfur Rahman. “System-Level Performance Evaluation of Three-Dimensional Integrated Circuits”, vol. 8, No. 6, Dec. 2000. pp. 671-678.
Baier, T. et al., Theoretical Approach to Estimate Laser Process Parameters for Drilling in Crystalline Silicon, Prog. Photovolt: Res. App. 18 (2010) 603-606, 5 pages.
Chien-Wei Chien et al. “Chip Embedded Wafer Level Packaging Technology for Stacked RF-SiP Application”,2007 IEEE, pp. 305-310.
Chien-Wei Chien et al. “3D Chip Stack With Wafer Through Hole Technology”. 6 pages.
Doany, F.E., et al.—“Laser release process to obtain freestanding multilayer metal-poly imide circuits,” IBM Journal of Research and Development, vol. 41, Issue 1/2, Jan./Mar. 1997, pp. 151-157.
Dyer, P.E., et al.—“Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Applied Physics Letters, vol. 48, No. 6, Feb. 10, 1986, pp. 445-447.
Han et al.—“Process Feasibility and Reliability Performance of Fine Pitch Si Bare Chip Embedded in Through Cavity of Substrate Core,” IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015. [Han et al. IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015.].
Han et al.—“Through Cavity Core Device Embedded Substrate for Ultra-Fine-Pitch Si Bare Chips; (Fabrication feasibility and residual stress evaluation)”, ICEP-IAAC, 2015, pp. 174-179. [Han et al., ICEP-IAAC, 2015, pp. 174-179 ].
Han, Younggun, et al.—“Evaluation of Residual Stress and Warpage of Device Embedded Substrates with Piezo-Resistive Sensor Silicon Chips” technical paper, Jul. 31, 2015, pp. 81-94.
International Search Report and the Written Opinion for International Application No. PCT/US2019/064280 dated Mar. 20, 2020, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/026832 dated Jul. 23, 2020.
Italian search report and written opinion for Application No. IT 201900006736 dated Mar. 2, 2020.
Italian Search Report and Written Opinion for Application No. IT 201900006740 dated Mar. 4, 2020.
Junghoon Yeom, et al. “Critical Aspect Ratio Dependence in Deep Reactive Ion Etching of Silicon”, 2003 IEEE. pp. 1631-1634.
K. Sakuma et al. “3D Stacking Technology with Low-Volume Lead-Free Interconnections”, IBM T.J. Watson Research Center. 2007 IEEE, pp. 627-632.
Kenji Takahashi et al. “Current Status of Research and Development for Three-Dimensional Chip Stack Technology”, Jpn. J. Appl. Phys. vol. 40 (2001) pp. 3032-3037, Part 1, No. 4B, Apr. 2001. 6 pages.
Kim et al. “A Study on the Adhesion Properties of Reactive Sputtered Molybdenum Thin Films with Nitrogen Gas on Polyimide Substrate as a Cu Barrier Layer,” 2015, Journal of Nanoscience and Nanotechnology, vol. 15, No. 11, pp. 8743-8748, doi: 10.1166/jnn.2015.11493.
Knickerbocker, J.U., et al.—“Development of next-generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection,” IBM Journal of Research and Development, vol. 49, Issue 4/5, Jul./Sep. 2005, pp. 725-753.
Knickerbocker, John U., et al.—“3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, vol. 41, No. 8, Aug. 2006, pp. 1718-1725.
Knorz, A. et al., High Speed Laser Drilling: Parameter Evaluation and Characterisation, Presented at the 25th European PV Solar Energy Conference and Exhibition, Sep. 6-10, 2010, Valencia, Spain, 7 pages.
L. Wang, et al. “High aspect ratio through-wafer interconnections for 3Dmicrosystems”, 2003 IEEE. pp. 634-637.
Lee et al. “Effect of sputtering parameters on the adhesion force of copper/molybdenum metal on polymer substrate,” 2011, Current Applied Physics, vol. 11, pp. S12-S15, doi: 10.1016/j.cap.2011.06.019.
Liu, C.Y. et al., Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation, Journal of Physics: Conference Series 59 (2007) 338-342, 6 pages.
Narayan, C., et al.—“Thin Film Transfer Process for Low Cost MCM's,” Proceedings of 1993 IEEE/CHMT International Electronic Manufacturing Technology Symposium, Oct. 4-6, 1993, pp. 373-380.
NT Nguyen et al. “Through-Wafer Copper Electroplating for Three-Dimensional Interconnects”, Journal of Micromechanics and Microengineering. 12 (2002) 395-399. 2002 IOP.
PCT International Search Report and Written Opinion dated Aug. 28, 2020, for International Application No. PCT/US2020/032245.
PCT International Search Report and Written Opinion dated Sep. 15, 2020, for International Application No. PCT/US2020/035778.
Ronald Hon et al. “Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection”, 2005 IEEE. pp. 384-389.
S. W. Ricky Lee et al. “3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling”, 2005 IEEE, pp. 798-801.
Shen, Li-Cheng, et al.—“A Clamped Through Silicon Via (TSV) Interconnection for Stacked Chip Bonding Using Metal Cap on Pad and Metal Column Forming in Via,” Proceedings of 2008 Electronic Components and Technology Conference, pp. 544-549.
Shi, Tailong, et al.—“First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-chip Integration,” Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference, May 30-Jun. 2, 2017, pp. 41-46.
Srinivasan, R., et al.—“Ultraviolet Laser Ablation of Organic Polymers,” Chemical Reviews, 1989, vol. 89, No. 6, pp. 1303-1316.
Taiwan Office Action dated Oct. 27, 2020 for Application No. 108148588.
Trusheim, D. et al., Investigation of the Influence of Pulse Duration in Laser Processes for Solar Cells, Physics Procedia Dec. 2011, 278-285, 9 pages.
Wu et al., Microelect. Eng., vol. 87 2010, pp. 505-509.
Yu et al. “High Performance, High Density RDL for Advanced Packaging,” 2018 IEEE 68th Electronic Components and Technology Conference, pp. 587-593, DOI 10.1109/ETCC.2018.0009.
Yu, Daquan—“Embedded Silicon Fan-out (eSiFO) Technology for Wafer-Level System Integration,” Advances in Embedded and Fan-Out Wafer-Level Packaging Technologies, First Edition, edited by Beth Keser and Steffen Kroehnert, published 2019 by John Wiley & Sons, Inc., pp. 169-184.
PCT International Search Report and Written Opinion dated Feb. 17, 2021 for International Application No. PCT/US2020/057787.
PCT International Search Report and Written Opinion dated Feb. 19, 2021, for International Application No. PCT/US2020/057788.
U.S. Office Action dated May 13, 2021, in U.S. Appl. No. 16/870,843.
Shen, Qiao—“Modeling, Design and Demonstration of Through-Package-Vias in Panel-Based Polycrystalline Silicon Interposers for High Performance, High Reliability and Low Cost,” a Dissertation presented to the Academic Faculty, Georgia Institute of Technology, May 2015, 168 pages.
Lannon, John Jr., et al.—“Fabrication and Testing of a TSV-Enabled Si Interposer with Cu- and Polymer-Based Multilevel Metallization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 1, Jan. 2014, pp. 153-157.
Malta, D., et al.—“Fabrication of TSV-Based Silicon Interposers,” 3D Systems Integration Conference (3DIC), 2010 IEEE International, Nov. 16-18, 2010, 6 pages.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053821.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053830.
Tecnisco, Ltd.—“Company Profile” presentation with product introduction, date unknown, 26 pages.
Wang et al. “Study of Direct Cu Electrodeposition on Ultra-Thin Mo for Copper Interconnect”, State key lab of ASIC and system, School of microelectronics, Fudan University, Shanghai, China; 36 pages.
International Search Report and Written Opinion dated Oct. 7, 2021 for Application No. PCT/US2021037375.
PCT International Search Report and Written Opinion dated Oct. 19, 2021, for International Application No. PCT/US2021/038690.
Related Publications (1)
Number Date Country
20220165621 A1 May 2022 US