The present invention is generally related to the art of microelectromechanical device packages, and more particularly, to spatial light modulators having micromirror device packages with integral heaters.
Micromirrors are key components of microelectromechanical system (MEMS)-based spatial light modulators (SLM). A typical MEMS-based SLM usually consists of an array of miniature micromirrors. These micromirrors are selectively deflected, for example, in response to an electrostatic force, which in turn selectively reflect incident light to produce digital images. Such micromirrors, however, are extremely sensitive to contamination, such as moisture and dust. This contamination has varying effects on the micromirrors, from capillary-condensation and post-release stiction to deterioration of the micromirror surfaces. Such effects can cause mechanical failure of the micromirrors in operation. For this and other reasons, micromirror array devices are often packaged after releasing.
Regardless of differences of the packaging methods currently developed for a micromirror array device, two substrates, one for supporting the device and another one for covering the device, and sealing medium(s) for bonding the two substrates are utilized. Most of the sealing mediums require application of heat during bonding. However, the heat, if not properly applied, may degrade the micromirror array device. For example, improperly applied heat may change the desired mechanical properties of the micromirrors. It may also thermally activate particles, such as impurities and particles making up the micromirrors, prompting diffusion of these activated particles within the micromirrors, thus exacerbating degradation of the micromirrors. Or heat may decrease anti-stiction materials within the package.
Therefore, a method and an apparatus are needed for packaging micromirror array devices.
In view of the forgoing, the present invention provides an apparatus for packaging micromirror array devices and a method of packaging micromirror devices using the same. In order to package the micromirror device, a first and second substrate is provided. The micromirror array device is accommodated within a cavity formed by the first and second substrate. During packaging, one or more sealing mediums that are applied between the first and second substrate are soldered by at least a heater that is formed along the periphery of the surface of either the first or the second substrate and embedded underneath said surface of said substrate. The first and the second substrates are then bonded through the soldered sealing mediums.
According to an embodiment of the invention, a substrate of a package for packaging a micromirror array device is provided therein. The substrate comprises: a laminate that comprises a plurality of substrate layers bonded together; and a heater that is disposed along a periphery of one substrate layer of the plurality of substrate layers and disposed between said substrate layer and another substrate layer of the plurality of substrate layers.
According to another embodiment of the invention, a package is provided. The package comprises: a first substrate having a heater along a periphery of a surface of the first substrate and underneath said surface; a second substrate above the first substrate; a semiconductor device or a microelectromechanical system device between the first and second substrate; and a first sealing medium layer between the first substrate and the second substrate.
According to a further embodiment of the invention, a method of packaging a micromirror array device is disclosed. The method comprises: providing a first package substrate that comprises a heater integral with and along a periphery of one surface of the first substrate; attaching a semiconductor device or a microelectromechanical device to the first substrate; depositing a first sealing medium layer on the surface of the first substrate; placing a second substrate on the first sealing medium layer; driving an electric current through the heater so as to generate heat for melting the first sealing medium; and bonding the first and second substrate by the melted sealing medium layer.
According to another embodiment of the invention, a system is provided. The system comprises: a light source for providing an incident light; a spatial light modulator for selectively modulating the incident light so as to form an image on a display target, wherein the spatial light modulator further comprises: a first package substrate having a heater along a periphery of one surface of the first package substrate and embedded underneath said surface for generating heat; a micromirror array device held on the first package substrate; a second package substrate on the first package substrate; a first sealing medium layer deposited between the first and second package substrate; and wherein the first and second package substrate is bonded together through the first sealing medium layer; a condensing optical element for directing the incident light onto the spatial light modulator; a display target; and a projection optic element for directing the modulated light onto the display target.
While the appended claims set forth the features of the present invention with particularity, the invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
a is a diagram schematically illustrating a packaging substrate for packaging a micromirror array device, the packaging substrate having a heater that is formed along the periphery of one surface of the substrate and embedded underneath said surface of said substrate according to an embodiment of the invention;
b is a cross-sectional view of the package substrate of
a is a diagram schematically illustrating a packaging substrate for packaging a micromirror array device, the packaging substrate having a heater formed along the periphery of one surface of the packaging substrate, and wherein the heater has a zigzag edge according to another embodiment of the invention;
b is a cross-sectional view of the packaging substrate of
a is a diagram schematically illustrating a micromirror array device that is packaged using a packaging substrate in
b is a cross-sectional view of the package in
a is a diagram schematically illustrating a micromirror array device that is packaged using a packaging substrate in
b is a cross-sectional view of the micromirror array package of
a is a diagram schematically illustrating a micromirror array device that is packaged using a packaging substrate of
b is a cross-sectional view of the micromirror array device of
a is a simplified display system employing the packaged micromirror array device of
b is a block diagram illustrating an exemplary operation of a display system employing three packaged micromirror array devices of
c is a diagram schematically illustrating a display system employing three packaged micromirror array devices of
a is a diagram schematically illustrating an exemplary micromirror of the micromirror array;
b is a diagram schematically illustrating an exemplary micromirror array consisting of the micromirror of
a is a diagram schematically illustrating another exemplary micromirror of the micromirror array; and
b is a diagram schematically illustrating an exemplary micromirror array consisting of the micromirror of
Turning to the drawings, the present invention is illustrated as being implemented in a suitable packaging process for micromirror array devices. The following description is based on selected embodiments of the invention and should not be interpreted as a limitation of the invention with regard to alternative embodiments that are not explicitly described herein.
Referring to
In a preferred embodiment of the invention, heater 220 has a zigzag edge as shown in
Substrate layers 210 and 215 can be any suitable preferably non-electrically conducting materials, preferably ceramic or glass, and more preferably ceramic. Other materials (e.g. organic or hybrid organic-inorganic materials) could also be used depending upon their melting points. In another embodiment of the invention, substrate layers 210 and 215 each can be a multilayered structure that further comprises a plurality of substrate layers. In this situation, the top layer, on which the heater is disposed, of substrate 210 and the bottom layer, which faces the heater, of substrate 215 are preferably non-electrically conducting. Other layers, including the substrate layers underneath the top layer of substrate 210 and the substrate layers above the bottom layer of substrate 215 can be any desired materials, such as ceramic, glass and metallic materials.
Other than embedding the heater underneath the surface of the packaging substrate, the heater can be formed on the surface of the packaging substrate as shown in
As discussed above, substrate layer 210 has a concave surface that forms a cavity in which micromirror array device can be placed. Alternatively, the substrate layers can be flat plates, as shown in
Other than forming heater 220 on substrate layer 266, the heater can also be formed on substrate 262. In particular, the heater can be formed on substrate 262 and on the surface that faces substrate layer 266. Similar to the substrate layers 210 and 215 in
In the following, exemplary implementations of the embodiments of the present invention will be discussed with reference to packages of micromirror array devices and packaging processes for making the same. It will be understood by those skilled in the art that the following exemplary implementations are for demonstration purposes only and should not be interpreted by any ways as a limitation. In particular, although not limited thereto, the present invention is particularly useful for packaging semiconductor devices or micromirror array devices. The packages with integral heaters and methods of using the packages with integral heaters can also be applied in packaging other microelectromechanical systems, such as MEMS-based optical switches, image sensors or detectors and semiconductor devices requiring low temperature hermetic sealing. Moreover, the following exemplary implementation will be discussed with reference to heaters with zigzag edges and packaging substrate with substantially rectangular shapes for clarity and demonstration purposes only. Other variations of the heaters and the packaging substrates without departure from the spirit of the present invention may also be applicable. For example, the heater may be composed of a set of segments with each segment being a straight line, a coil, a zigzag line or other desired forms. For another example, the packaging substrate layers can be any desired shapes, other than the preferred rectangular shape.
Referring to
During the bonding process, external pressure may be applied to the cover substrate, as shown in
Though cover substrate 235 is preferably visible light transparent glass, it may also be other materials, such as metals or materials that are not transparent to visible light. In these cases, cover substrate 235 preferably comprises an inlay light transparent glass for allowing light to travel through and shine on micromirror array device 105. Alternatively, cover substrate 235 may have an opening forming a window with a light transparent glass mounted on the window for allowing transmission of incident light. Moreover, a light blocking mask with light blocking strips formed around the circumference of the mask may be applied along cover substrate 235 for blocking incident light not shining on the surface of the micromirror array device. By this, optical performance, such as contrast ratio, of the micromirror array device can be improved.
Other than using glass frit as sealing medium, other suitable materials, such as solderable metallic materials, such as Au, BiSnx, AuSnx, InAgx, PbSnx, and copper, may also be used. However, most solderable metallic materials have poor adhesion to oxide materials or layers that often form on surfaces of the substrates. To solve this problem, a metallization film is preferably employed to metalize the surface of the substrate before using solderable metallic sealing mediums, which will be discussed in further detail in the following.
Referring to
During the packaging process, the integral heater embedded underneath the surface of package substrate 200 is electrically powered for generating heat so as to solder sealing medium layer 245 between metallization layers 240 and 250. Meanwhile, external pressure may be applied to the package for enforcing bonding package substrate 200 and cover substrate 235, as shown in
In another embodiment of the invention, cover substrate 235 may also have a heater. As with the heater (e.g. heater 220) in package substrate 200 described with reference of
A cross-sectional view of package 275 shown in
A micromirror array device package using the package substrate as shown in
As an alternative feature of the embodiment, another heater can be formed in cover substrate 320. The same as the heater in package substrate 300, another heater can be formed along but underneath the surface of the cover substrate. This heater can be electrically powered for generating heat during the packaging process so as to solder sealing medium layer 315. When the sealing medium layer 315 is metallic material, the heater of cover substrate 320 can be formed on the surface of the cover substrate for producing heat so as to solder sealing medium 315.
In another embodiment of the invention, the cover substrate, the spacer and the package substrate can be bonded using solderable metallic sealing mediums. In this situation, sealing medium layers 315 and 305 each can be a combination of two metallization layers (e.g. metallization layers 250 and 240 in
As discussed above, cover substrate 320 is glass for allowing incident light traveling through to shine on the micromirror array device. Alternatively, the cover substrate can be a ceramic or metallic material or any other desired materials that are not transparent to visible light. In this case, the cover substrate comprises a window with inlay glass for allowing incident light passing through. Alternatively, a glass plate may be mounted on the window of the substrate that is not incident light transparent. As a further alternative feature of the embodiment, a light blocking mask (e.g. a rectangular frame) that blocks incident light around the periphery of the micromirror array device is attached to the surface of the cover substrate, or directly painted or otherwise deposited around the circumference of the cover substrate. This is particularly useful when the cover substrate is glass.
Other than the flat shape, the cover substrate can be a concave cover cap (not shown) with the lower surface of the cover substrate extended towards the opposite surface (e.g. the top surface) of the cover substrate. In this case, the cover cap and package substrate 300 can form a space for housing the micromirror array device without spacer 310. Accordingly, the number of metallization medium layers and the number of sealing medium layers can be reduced, and bonding process can be simplified. For example, when cover substrate 320 that is a cover cap and package substrate 300 is provided for housing micromirror array device 105, packaging processes described with reference to
Referring to
The micromirror array package of the present invention has a variety of applications (e.g. maskless lithography, atomic spectroscopy, maskless fabrication of micromirror arrays, signal processing, microscopy, image sensors/detectors and CCDs, etc.), one of which is in display systems.
Referring to
Referring to
Referring to
Regardless of whether the optical system utilizes a single micromirror array package as in
Referring to
a and 9b illustrate an exemplary micromirror device having a micromirror plate with zigzag edges. This is not an absolute requirement. Instead, the micromirror plate can be of any desired shape. Another exemplary micromirror device with a different configuration is illustrated in
As discussed above, sealing medium layers, such as layer 230 in
It will be appreciated by those skilled in the art that a new and useful micromirror array package and methods of applying the same for packaging micromirror array devices have been described herein. In view of the many possible embodiments to which the principles of this invention may be applied, however, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of invention. For example, those of skill in the art will recognize that the illustrated embodiments can be modified in arrangement and detail without departing from the spirit of the invention. In particular, other protective materials, such as inert gas, may be filled in the space formed by the package substrate and the cover substrate. For another example, the package substrate, as well as the cover substrate and the spacer, can be other suitable materials, such as silicon dioxide, silicon carbide, silicon nitride, and glass ceramic. For yet another example, other suitable auxiliary methods and components, such as applications of Infrared Radiation during bonding for soldering the sealing medium layers, and pillars or other structures for aligning the substrates are also applicable. Moreover, other desired materials, such as anti-stiction material, preferably in vapor phase for reducing stiction of the micromirrors of the micromirror array device, may also be deposited inside the package. The anti-stiction material can be deposited before bonding the cover substrate and lower substrate. When the cover substrate (e.g. cover substrate 235 in
This application is a divisional of application Ser. No. 11/043,507, filed Jan. 25, 2005 which is a divisional of application Ser. No. 10/443,318, filed May 22, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5010233 | Henschen et al. | Apr 1991 | A |
5175409 | Kent | Dec 1992 | A |
5621162 | Yun et al. | Apr 1997 | A |
5702764 | Kimura et al. | Dec 1997 | A |
5835256 | Huibers | Nov 1998 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5952572 | Yamashita et al. | Sep 1999 | A |
5998242 | Kirkpatrick et al. | Dec 1999 | A |
6164837 | Haake et al. | Dec 2000 | A |
6232150 | Lin et al. | May 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6458627 | Choi | Oct 2002 | B1 |
6528344 | Kang | Mar 2003 | B2 |
6614003 | Hembree et al. | Sep 2003 | B2 |
6624003 | Rice | Sep 2003 | B1 |
6674159 | Peterson et al. | Jan 2004 | B1 |
6791735 | Stappaerts | Sep 2004 | B2 |
6810899 | Franz et al. | Nov 2004 | B2 |
6914711 | Novotny et al. | Jul 2005 | B2 |
7042623 | Huibers et al. | May 2006 | B1 |
7282393 | Tarn | Oct 2007 | B2 |
20030089394 | Chang-Chien et al. | May 2003 | A1 |
20030104651 | Kim et al. | Jun 2003 | A1 |
20040035840 | Koopmans | Feb 2004 | A1 |
20040067604 | Ouellet et al. | Apr 2004 | A1 |
20040232535 | Tarn | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
05-326740 | Oct 1993 | JP |
Entry |
---|
Y.T. Cheng, et al., “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging”, Journal of Microelectromechanical Systems, vol. 9, No. 1, Mar. 2000, pp. 3-8. |
Duck-Jung Lee, et al., “Development of In-Line Sealing Method for Plasma Display Panel”, SID 02 Digest, pp. 412-415, 2002. |
Sang Jik Kwon, et al., “Vacuum In-Line Sealing Technology with Auxiliary Heating Line for PDP Packaging”, SID 02 Digest, pp. 320-323, 2002. |
Liwei Lin, “MEMS Post-Packaging by Localized Heating and Bonding”, 2000 IEEE, pp. 608-616. |
Farhad Sarvar, et al., “Application of Adhesives in MEMS and MOEMS Assembly: A Review”, IEEE Polytronic 2002 Conference, pp. 22-28. |
Seong-A Kim, et al., “Closed Loop Solder-Lines on Heated Substrates”, 2002 Electronic Components and Technology Conference, pp. 1101-1105. |
Giles Humpston and David M. Jacobsen, “Principles of Soldering and Brazing”, ASM International, 7.3.2.3 Solution, pp. 242-245, 2001. |
Chang-Chien, et al., “Wafer-Level Packaging and Frequency Trimming by Localized Mass Deposition”, Abstract. |
Number | Date | Country | |
---|---|---|---|
20120180949 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11043507 | Jan 2005 | US |
Child | 11872825 | US | |
Parent | 10443318 | May 2003 | US |
Child | 11043507 | US |