The present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.
The combination microelectronic mechanical systems (MEMS) and integrated circuits (ICs) allows for the possibility to make any number of micro-sensors, transducers and actuators. Unfortunately, typical methods for making MEMS are incompatible methods used to fabricate ICs. Hence, MEMS and ICs are usually fabricated separately and laboriously combined in subsequent and separate steps.
In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment. One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS. Alternatively, the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS within the suitable storage environment. For example, Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. patent application Ser. No. 09/124,710, and also U.S. patent application Ser. No. 08/744,372, filed Jul. 29, 1998 and entitled METHOD OF AND APPARATUS FOR SEALING A HERMETIC LID TO A SEMICONDUCTOR DIE, the contents of both of which are hereby incorporated reference.
What is needed is a method to make MEMS and other structures on a wafer substrates utilizing processes that are compatible with standard IC wafer processing, whereby MEMS and ICs are capable of being fabricated on the same wafer chip. Further, what is needed is a method to fabricate MEMS, wherein the active portions of the MEMS are readily encapsulated within a variety of suitable storage environments.
The current invention provides a method of making an encapsulated release structure. Preferably, the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure, In an embodiment of the instant invention, the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation). In other embodiments, the device comprises a grating light valve™ type device for generation and/or transmission of optical information. In yet other embodiments the device comprises a radio frequency (RF) generator for wireless transmission of information.
The release structure is formed between layers of a multi-layer structure. The multi-layer structure preferably comprises a first and second etch-stop layers, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer. Preferably, the multi-layer structure is formed on a silicon wafer substrate. The silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.
Preferably, the multi-layer structure is formed with a first etch-stop layer that is deposited on or over a selected region of the silicon wafer substrate. The first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof. On top of or over the first etch-stop layer the first sacrificial layer is formed. The first sacrificial layer preferably comprises a polysilicon material though other materials can also be used. The second etch-stop layer is formed on or over the first sacrificial layer with a pattern corresponding to release features of the release structure.
The second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist is formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch-stop layer having gaps therein and between portions of the second etch-stop layer under the patterned photo-resist. Alternatively, the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer. Regardless, of the method used to form the second etch-stop layer, a second sacrificial layer is formed over the second etch-stop layer sandwiching the second etch-stop layer having the release structure features between the first and the second sacrificial layers. The second sacrificial layer preferably comprises polysilicon. On top of the second sacrificial layer a sealant layer or capping layer is formed. The capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.
The etch-stop layers are formed by any number of methods. An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s). In the instant invention the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved. Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.
In an embodiment of the instant invention, one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide. Preferably the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated. Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer. Alternatively, the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen. Likewise, the silicon nitride layers can be formed by thermal growth or chemical deposition processes. The polysilicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECVD). At any time before the formation of a subsequent layer, the deposition surface can be cleaned or treated.
After the step of patterning the release structure, for example, the deposition surface can be treated or cleaned with a solvent such as N-methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer. Further, at any time before the formation of a subsequent layer, the deposition surface can be mechanically planarized.
After the multi-layer structure is formed with the release structure (e.g. patterned from the second etch-stop) sandwiched between the first and the second sacrificial layers, access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow. Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which is allows the etchant to etch the material in the sacrificial layer therebelow. For simplicity, the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.
In accordance with the instant invention, access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles. The access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used. The exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer.
The preferred etchant comprises a noble gas fluoride, such as xenon difluoride. Preferably, the exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride prior to selectively etching the first and second sacrificial layers. The pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides. The etching step is preferably performed in a chamber, wherein the etchant is a gas. However, suitable liquid etchants are considered to be within the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent.
In the preferred method of the instant invention the multi-layer structure is placed under vacuum with a pressure of approximately 10−5 Torr. A container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve). The crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr. The pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes.
After the etching step, the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer. The sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within the chamber apparatus. The access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), or spin on glass methods. The access trenches can be sealed with any number of materials including metals, polymers and ceramics. Preferably, the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.
In accordance with alternative embodiments of the invention, before depositing the second sacrificial layer on the patterned second etch-stop layer, the second etch-stop layer may have a reflective material deposited thereon. The reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.
In yet other embodiments of the invention, a gettering material, such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches in the capping or sealant layer. The gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time. The release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.
The invention provides a sealed MEMS device on an IC chip, intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing. For example, the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius. Further, the current invention provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of environments. The current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred. Also, as will be clear for the ensuing discussion that the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can be formed using the methods of the instant invention.
a-h illustrate top views and cross-sectional views a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.
a-f show cross sectional views of a release features being formed from a multilayer structure, in accordance with a preferred method of the current invention.
In general, the present invention provides a method to make devices with encapsulated release structures. The current invention is particularly useful for fabricating MEMS oscillators, optical display devices, optical transmission devices, RF devices and related devices. MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit. Referring to
Referring now to
Still referring to
Now referring to
Referring now to
Alternatively to forming support features 215 and 215′ and/or support posts 216, 216′ and 216″, or in addition to forming the support features 215 and 215′ and/or support posts 216, 216′ and 216″, the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in
Now referring to
Now referring to
Alternatively, the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown). The positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206. The release features 204 and 206 are shown in
g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233. In the
Now referring to
Referring now to
On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205. The first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present). However, when the first etch-stop layer 203 comprises silicon oxide or silicon nitride, the first sacrificial layer 205 preferably comprises a polysilicon. Alternatively, the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched over the substrate 201 or etch-stop layer 203 and/or the etch-stop layer 206 and capping layer 211, described in detail below. The first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns.
On top of the first sacrificial layer 205 is formed a second etch-stop layer 207. The second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure. The first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, when the first sacrificial layer 205 comprises polysilicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions are described below for etching polysilicon with XeF2. The second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.
On the second etch-stop layer 207 is formed a second sacrificial layer 209. The second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present). However, when the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride, the second sacrificial 209 layer preferably comprises a polysilicon. Alternatively, second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched over the substrate 201 or etch-stop layers 203 and 207. The second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.
A capping or sealant layer 211 is deposited over second sacrificial layer 209. The capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium). The capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns. It will be apparent to one of ordinary skill in the art that though the layers referred to above are preferably recited as being single layer structures, each can be formed of a sandwich of known layers to achieve the same result. Furthermore, though the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.
Now referring to
After the access trenches 213 and 219 are formed in the capping layer 211, when the second sacrificial layer comprises polysilicon, the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride. A suitable pre-mixed solution of ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I™ manufactured by ACSI, Inc., Milpitas, Calif. 95035. Oxides can form on the surfaces of exposed polysilicon regions, such as 215 and 217. Such oxides can interfere with polysilicon etching and result in an incomplete etch. The pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.
Now referring to
Now referring to
Now referring to
Now referring to
In an embodiment of the invention, portion of the layer 242 of the layer is selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.
Still referring to
After the first polysilicon layer is deposited in the step 303, then in the step 305 a silicon nitride device layer is formed on the first poly silicon sacrificial layer. Preferably, the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms. The silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.
In accordance with alternative embodiment of the current invention, the silicon nitride layer is patterned with structure features after the deposition of a photo-resist layer is deposited, exposed and developed (thereby forming an etch mask) in the step 303, or by selectively etching a pattern into the first polysilicon layer formed in the step 303 to initiate rapid growth of the silicon nitride in the etched areas of the polysilicon layer. Preferably, the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask.
After forming the patterned silicon nitride layer in the step 305, then in the step 307 a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching the patterned layer between the first and the second sacrificial layers. The second sacrificial layer is preferably also a polysilicon layer that is preferably deposited by LPCVD to a thickness in a range of0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. The second sacrificial layer is preferably formed by thermal decomposition of an organosilicon reagent, as previously described. Preferably, the first and the second polysilicon layer have contact points whereby the etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second polysilicon sacrificial layers. Preferably, in the step 311, and prior to the step 305 of forming the second polysilicon layer, the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface. In accordance with the method of the current invention, surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.
After the second polysilicon layer is formed in the step 307, then in the step 309, a capping layer is formed over the second polysilicon layer. The capping layer is preferably a silicon oxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECVD) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns. In the PECVD process, an organosilicon compound, such as a tetraethyl orthosilicate (TEOS), is decomposed in the presence of an oxygen source, such as molecular oxygen, to form the silicon oxide capping layer. In the step 310, and prior to the step 309, the second polysilicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.
After the etching step 403 is complete, then in the step 404 a gettering material may be deposited through one or more of the access trenches into the device cavity formed during the etching step 403. In the step 405, the access trenches are sealed by sputtering aluminum onto the capping layer sufficiently to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or photo-lithography.
In operation, a multi-layer structure 620, similar to those described previously, is placed in the chamber 610. The vacuum control valve is opened and the vacuum source 607 draws a vacuum reducing the pressure of the chamber environment 605′ preferably to or near to 10−5 Torr. Under known conditions, the xenon difluoride crystals at room temperature form a vapor pressure of XeF2 of approximately 4.0 Torr, as determined by the pressure measuring device 611. The pressure controller 613 is adjusted to change the pressure of the chamber environment 605′ to approximately 50×10−3 Torr. The structure 620 is etched for a time sufficient to form the release structure 623 within the cavity 621 of the structure 620. The etching process takes place over a period of approximately 20-30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber apparatus 600.
After the etching step is complete, a suitable sealing environment may then be provided. Accordingly, in one embodiment the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607. The trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.
Alternatively, after reestablishing a low pressure vacuum, the chamber may be backfilled with a noble gas. Accordingly, a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612. The chamber environment 605′ is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620. The trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605′ within the cavity 621 of the device 620.
The above examples have been described in detail to illustrate the preferred embodiments of the instant invention. It will be clear to one of ordinary skilled in the art that there are many variations to the invention that are within the scope of the invention. For example, a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi-layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and un-coupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.
Number | Name | Date | Kind |
---|---|---|---|
4487677 | Murphy | Dec 1984 | A |
4561011 | Kohara et al. | Dec 1985 | A |
4765865 | Gealer et al. | Aug 1988 | A |
4893509 | MacIver et al. | Jan 1990 | A |
4930043 | Wiegand | May 1990 | A |
4945773 | Sickafus | Aug 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
5066614 | Dunaway et al. | Nov 1991 | A |
5068205 | Baxter et al. | Nov 1991 | A |
5074947 | Estes et al. | Dec 1991 | A |
5112436 | Bol | May 1992 | A |
5126812 | Greiff | Jun 1992 | A |
5137836 | Lam | Aug 1992 | A |
5151763 | Marek et al. | Sep 1992 | A |
5189505 | Bartelink | Feb 1993 | A |
5212115 | Cho et al. | May 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5221400 | Staller et al. | Jun 1993 | A |
5233874 | Putty et al. | Aug 1993 | A |
5239806 | Maslakow | Aug 1993 | A |
5296408 | Wilbarg et al. | Mar 1994 | A |
5300813 | Joshi et al. | Apr 1994 | A |
5310624 | Ehrlich | May 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5313835 | Dunn | May 1994 | A |
5320709 | Bowden et al. | Jun 1994 | A |
5330301 | Brancher | Jul 1994 | A |
5354416 | Okudaira et al. | Oct 1994 | A |
5357803 | Lane | Oct 1994 | A |
5427975 | Sparks et al. | Jun 1995 | A |
5455455 | Badehi | Oct 1995 | A |
5493177 | Muller et al. | Feb 1996 | A |
5523619 | McAllister et al. | Jun 1996 | A |
5534107 | Gray et al. | Jul 1996 | A |
5552635 | Kim et al. | Sep 1996 | A |
5554304 | Suzuki | Sep 1996 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5640216 | Hasegawa et al. | Jun 1997 | A |
5694740 | Martin et al. | Dec 1997 | A |
5712523 | Nakashima et al. | Jan 1998 | A |
5726480 | Pister | Mar 1998 | A |
5747857 | Eda et al. | May 1998 | A |
5747874 | Seki et al. | May 1998 | A |
5760522 | Kobayashi et al. | Jun 1998 | A |
5770473 | Hall et al. | Jun 1998 | A |
5777422 | Kitabayashi et al. | Jul 1998 | A |
5786738 | Ikata et al. | Jul 1998 | A |
5801074 | Kim et al. | Sep 1998 | A |
5808797 | Bloom et al. | Sep 1998 | A |
5831369 | Furbacher et al. | Nov 1998 | A |
5832148 | Yariv | Nov 1998 | A |
5835256 | Huibers | Nov 1998 | A |
5841579 | Bloom et al. | Nov 1998 | A |
5841929 | Komatsu et al. | Nov 1998 | A |
5844711 | Long, Jr. | Dec 1998 | A |
5859473 | Ikata et al. | Jan 1999 | A |
5868854 | Kojima et al. | Feb 1999 | A |
5872331 | Ando et al. | Feb 1999 | A |
5895233 | Higashi et al. | Apr 1999 | A |
5912094 | Aksyuk et al. | Jun 1999 | A |
5915168 | Salatino et al. | Jun 1999 | A |
5919548 | Barron et al. | Jul 1999 | A |
5942791 | Shorrocks et al. | Aug 1999 | A |
5950074 | Glenn et al. | Sep 1999 | A |
5955771 | Kurtz et al. | Sep 1999 | A |
5963788 | Barron et al. | Oct 1999 | A |
5991989 | Onishi et al. | Nov 1999 | A |
6012336 | Eaton et al. | Jan 2000 | A |
6018211 | Kanaboshi et al. | Jan 2000 | A |
6022759 | Seki et al. | Feb 2000 | A |
6040748 | Gueissaz | Mar 2000 | A |
6046840 | Huibers | Apr 2000 | A |
6057520 | Goodwin-Johansson | May 2000 | A |
6069392 | Tai et al. | May 2000 | A |
6078608 | Ohtsuka et al. | Jun 2000 | A |
6090717 | Powell et al. | Jul 2000 | A |
6096656 | Matzke et al. | Aug 2000 | A |
6097352 | Zavracky et al. | Aug 2000 | A |
6105226 | Gore et al. | Aug 2000 | A |
6115592 | Ueda et al. | Sep 2000 | A |
6123985 | Robinson et al. | Sep 2000 | A |
6136175 | Stelzl et al. | Oct 2000 | A |
6169624 | Godil et al. | Jan 2001 | B1 |
6172797 | Huibers | Jan 2001 | B1 |
6197610 | Toda | Mar 2001 | B1 |
6229683 | Goodwin-Johansson | May 2001 | B1 |
6232150 | Lin et al. | May 2001 | B1 |
6241143 | Kuroda | Jun 2001 | B1 |
6254792 | Van Buskirk et al. | Jul 2001 | B1 |
6261494 | Zavracky et al. | Jul 2001 | B1 |
6265807 | Koga et al. | Jul 2001 | B1 |
6271145 | Toda | Aug 2001 | B1 |
6274469 | Yu | Aug 2001 | B1 |
6290864 | Patel et al. | Sep 2001 | B1 |
6300148 | Birdsley et al. | Oct 2001 | B1 |
6303986 | Shook | Oct 2001 | B1 |
6310420 | Pahl et al. | Oct 2001 | B1 |
6356689 | Greywall | Mar 2002 | B1 |
6359333 | Wood et al. | Mar 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6388545 | Kawachi et al. | May 2002 | B1 |
6392309 | Wataya et al. | May 2002 | B1 |
6414415 | Shibutani et al. | Jul 2002 | B1 |
6417574 | Misawa et al. | Jul 2002 | B1 |
6421179 | Gutin et al. | Jul 2002 | B1 |
6426583 | Onishi et al. | Jul 2002 | B1 |
6437412 | Higuchi et al. | Aug 2002 | B1 |
6446316 | Furbacher et al. | Sep 2002 | B1 |
6449828 | Pahl et al. | Sep 2002 | B2 |
6455980 | Bernstein | Sep 2002 | B1 |
6456172 | Ishizaki et al. | Sep 2002 | B1 |
6498422 | Hori | Dec 2002 | B1 |
6509623 | Zhao | Jan 2003 | B2 |
6519822 | Stelzl et al. | Feb 2003 | B1 |
6528924 | Stelzl et al. | Mar 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6570469 | Yamada et al. | May 2003 | B2 |
6573121 | Yoneda et al. | Jun 2003 | B2 |
6573635 | Suga et al. | Jun 2003 | B2 |
6666371 | Nakazawa et al. | Dec 2003 | B2 |
20010010444 | Pahl et al. | Aug 2001 | A1 |
20020131228 | Potter | Sep 2002 | A1 |
20020131230 | Potter | Sep 2002 | A1 |
20020195418 | Kowarz et al. | Dec 2002 | A1 |
20020196492 | Trisnadi et al. | Dec 2002 | A1 |
20030193269 | Jang et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
02299311 | Dec 1990 | JP |
WO 0007225 | Feb 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040053434 A1 | Mar 2004 | US |