The present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.
The combination microelectronic mechanical systems (MEMS) and integrated circuits (ICs) allows for the possibility to make any number of micro-sensors, transducers and actuators. Unfortunately, typical methods for making MEMS are incompatible methods used to fabricate ICs. Hence, MEMS and ICs are usually fabricated separately and laboriously combined in subsequent and separate steps.
In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment. One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS. Alternatively, the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS to seal the MEMS within the suitable storage environment. For example, Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. patent application Ser. No. 09/124,710, and U.S. patent application Ser. No. 08/744,372, filed Jul. 29, 1998 and both entitled METHOD OF AND APPARATUS FOR SEALING A HERMETIC LID TO A SEMICONDUCTOR DIE, the contents of both of which are hereby incorporated by reference.
A grating light valve™ light modulator is one type of optical MEMS that is used to modulate one or more wavelengths of light. A grating light valve™ light modulator comprises a plurality of reflective ribbons which move relative to a second set of ribbon and/or a reference surface to modulate a incident light source. Grating light valve™ light modulators have applications in display, print, optical and electrical device technologies. Examples of a grating light valve™ light modulators and their uses are disclosed in the U.S. Pat. No. 5,311,360, issued to Bloom et al., which is hereby incorporated by reference. More advanced designs and techniques for making grating light valve™ light modulators, also referred to as flat light valves, are described in the U.S. Pat. No. 5,841,579 and the U.S. Pat. No. 5,808,797, both issued to Bloom et al., the contents of which are also both hereby incorporated by reference.
Many of the current processing technologies that are available for the fabrication of MEMS do not provide sufficient throughput, selectively or are incompatible with standard CMOS materials. Further in the case of grating light values current processing often leads to stiction of the movable ribbon structures (a condition whereby the ribbons stick to the substrate) and/or results in the degradation of the reflective coating on the ribbons.
What is needed is a method to make MEMS and other micro-structures utilizing processes that are compatible with standard CMOS material and/or IC wafer processing, and preferably whereby MEMS and ICs are capable of being fabricated on the same wafer chip. Further, what is needed is a method to fabricate MEMS, wherein the active portions of the MEMS are readily encapsulated within a variety of suitable storage environments.
The current invention provides a method of making an encapsulated release structure. Preferably, the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure. In an embodiment of the instant invention, the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation). In other embodiments, the device comprises a grating light valve™ light modulator for generation and/or transmission of optical information. In yet other embodiments, the device comprises a radio frequency (RF) generator for wireless transmission of information.
The release structure is formed between layers of a multi-layer structure. The multi-layer structure preferably comprises a first and a second etch-stop layer, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer. Preferably, the multi-layer structure is formed on a silicon wafer substrate. The silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.
Preferably, the multi-layer structure is formed with a first etch-stop layer that is deposited on, or over, a selected region of the silicon wafer substrate. The first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof. On top of, or over, the first etch-stop layer the first sacrificial layer is formed. The first sacrificial layer preferably comprises a poly-silicon material though other materials can also be used. The second etch-stop layer is formed on, or over, the first sacrificial layer with a pattern corresponding to release features of the release structure.
The second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist can be formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch-stop layer having gaps therein and between portions of the second etch-stop layer under the patterned photo-resist. Alternatively, the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer. Regardless, of the method used to form the second etch-stop layer, a second sacrificial layer is formed over the second etch-stop layer sandwiching or embedding the second etch-stop layer having the release structure features between the first and the second sacrificial layers. The second sacrificial layer preferably comprises poly-silicon. On top of the second sacrificial layer a sealant layer or capping layer is formed. The capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.
The etch-stop layers are formed by any number of methods. An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s). In the instant invention the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved. Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.
In an embodiment of the instant invention, one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide. Preferably the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated. Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer. Alternatively, the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen. Likewise, the silicon nitride layers can be formed by thermal growth or chemical deposition processes. The poly-silicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECVD). At any time before the formation of a subsequent layer, the deposition surface can be cleaned or treated. After the step of patterning the release structure, for example, the deposition surface can be treated or cleaned with a solvent such as N-methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer and/or treated with solution of ethylene glycol and ammonium fluoride (NOE) which is believed to remove surface oxides. Further, at any time before the formation of a subsequent layer, the deposition surface can be mechanically planarized.
After the multi-layer structure is formed with the release structure (e.g. patterned from the second etch-stop) sandwiched between the first and the second sacrificial layers, access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow. Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which allows the sacrificial layer etchant to etch the material in the sacrificial layer therebelow. For simplicity, the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.
In accordance with the instant invention, access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles. The access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used. The exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer. Preferably, the etching processes results in an over-etch of 50% of greater for the sacrificial layers.
The preferred etchant comprises a noble gas fluoride, such as xenon difluoride. The exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride (NOE) prior to selectively etching the first and second sacrificial layers. The pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides. Surface can also be cleaned with a solvent such as N-methyl-2-pyrolipone (NMP) to remove residues, as explained above.
The etching step is preferably performed in a chamber, wherein the etchant is a gas. However, suitable liquid etchants are considered to be within the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent. Etching can be performed in a commercially available cluster tool equipped with a load lock for transporting a wafer comprising the multi-layer structure in an out of the process chamber and coupled to a suitable etchant, as described in detail below.
In the preferred method of the instant invention the multi-layer structure is placed under vacuum with a pressure of approximately 10−5 Torr. It is important that the structure is placed under vacuum with a partial pressure of water that is 5×10−4 Torr or less to maintain the selectivity of the etching process. A container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve). The crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr. The pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. More preferably the pressure controller is adjusted such that the pressure within the chamber is raised to be in a range of 60 to 80 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes. During the etching processes, it is further preferred that the multi-layer structure is resting on or is coupled to a heat sink that is maintained at or cooled to a temperature of approximately 20 degrees Celsius or below.
After the etching step, the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer. The sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within a chamber apparatus. The access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), or spin on glass methods. The access trenches can be sealed with any number of materials including metals, polymers and ceramics. Preferably, the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.
In accordance with alternative embodiments of the invention, before depositing the second sacrificial layer on the patterned second etch-stop layer, the second etch-stop layer may have a reflective material deposited thereon. The reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.
In yet other embodiments of the invention, a gettering material, such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches. The gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time. The release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.
The invention provides a sealed MEMS device (which can be formed on an IC chip) intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing and IC processing materials. For example, the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius.
The current invention further provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of storage environments. The current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred. Also, as will be clear from the ensuing discussion that the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can also be formed using the method of the instant invention.
a–h illustrate top views and cross-sectional views of a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.
a–f show cross-sectional views of release features being formed from a multi-layer structure, in accordance with a preferred method of the current invention.
In general, the present invention provides a method to make devices with encapsulated release structures. The current invention is particularly useful for fabricating MEMS oscillators, optical display devices (such as grating light valve™ light modulators and flat light valves), optical transmission devices, RF devices and related devices. MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit. Referring to
Referring now to
Still referring to
Now referring to
Referring now to
Alternatively to forming support features 215 and 215′ and/or support posts 216, 216′ and 216″, or in addition to forming the support features 215 and 215′ and/or support posts 216, 216′ and 216″, the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in
Now referring to
Now referring to
Alternatively, the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown). The positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206. The first sacrificial layer 205 and/or the second etch-stop layer 207 can be cleaned or planarized prior to depositing the subsequent layers.
While the release features 204 and 206 are shown in
g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233. In the
Now referring to
Referring now to
On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205. The first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present). However, when the first etch-stop layer 203 comprises silicon oxide or silicon nitride, the first sacrificial layer 205 preferably comprises a poly-silicon. Alternatively, the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched at an etch rate of 50:1 or greater over the substrate 201 or etch-stop layers 203 and 207 the substrate 201 and capping layer 211, described in detail below. The first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns and is preferably etched under conditions to produce a 50 percent over-etch or greater for the sacrificial layers 205 and 207.
On top of the first sacrificial layer 205 is formed a second etch-stop layer 207. The second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure. The first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, when the first sacrificial layer 205 comprises poly-silicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions are described below for etching poly-silicon with XeF2. The second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.
On the second etch-stop layer 207 is formed a second sacrificial layer 209. The second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present). However, when the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride, the second sacrificial 209 layer preferably comprises a poly-silicon. Alternatively, second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched at an etch rate of 50:1 or greater over the etch-stop layers 203 and 207, the substrate 201 and the capping layer 211, described below. The second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.
A capping or sealant layer 211 is deposited over second sacrificial layer 209. The capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium). The capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns. It will be apparent to one of ordinary skill in the art that though the layers referred to above are preferably recited as being single layer structures, each can be formed of a sandwich of known layers to achieve the same result. Furthermore, though the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.
Now referring to
After the access trenches 213 and 219 are formed in the capping layer 211, the capping layer can be treated or cleaned with a solvent such as N-methyl-2-pyrolidone (NMP) in order to remove residual photo-resist polymer. Also, when the second sacrificial layer comprises poly-silicon, the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride. A suitable pre-mixed solution of ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I™ manufactured by ACSI, Inc., Milpitas, Calif. 95035. Oxides can form on the surfaces of exposed poly-silicon regions, such as 215 and 217. Such oxides can interfere with poly-silicon etching and result in an incomplete etch. The pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.
Now referring to
Now referring to
Now referring to
Now referring to
In an embodiment of the invention, portions of the layer 242 of the layer can be selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.
Still referring to
After the first poly-silicon layer is deposited in the step 303, then in the step 305 a silicon nitride device layer is formed on the first poly silicon sacrificial layer. Preferably, the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms. The silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.
In accordance with alternative embodiment of the current invention, the silicon nitride layer is patterned with structure features after depositing a photo-resist layer, the photo-resist is the exposed and developed (thereby forming an etch mask). Alternatively, a pattern is selectively etched into the first poly-silicon layer formed in the step 303 to initiate rapid growth of the subsequently deposited silicon nitride layer in the etched areas of the poly-silicon layer. Preferably, however, the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask, as described above.
After forming the patterned silicon nitride layer in the step 305, then in the step 307 a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching or embedding the patterned layer between the first and the second sacrificial layers. The second sacrificial layer is preferably also a poly-silicon layer that is preferably deposited by LPCVD to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. The second sacrificial layer is preferably formed by thermal decomposition of an silicon containing reagent, such as previously described. Preferably, the first and the second poly-silicon layers have contact points whereby an etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second poly-silicon sacrificial layers. Preferably, in the step 311, and prior to the step 305 of forming the second poly-silicon layer, the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface and remove residual residue or polymer formed during the masking steps. In accordance with the method of the current invention, surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.
After the second poly-silicon layer is formed in the step 307, then in the step 309, a capping layer is formed over the second poly-silicon layer. The capping layer is preferably a silicon dioxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECVD) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns. In the PECVD process, an organosilicon compound, such as a tetraethyl orthosilicate (TEOS), is decomposed in the presence of an oxygen source, such as molecular oxygen, to form the silicon oxide capping layer. In the step 310, and prior to the step 309, the second poly-silicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.
After the etching step 403 is complete, then in the step 404 a gettering material can be deposited through one or more of the access trenches into the device cavity formed during the etching step 403. In the step 405, the access trenches are preferably sealed by sputtering aluminum onto the capping layer in a sufficient quantity to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or phot-lithography.
In operation, a multi-layer structure 620, similar to those described previously, is placed in the chamber 610. The vacuum control valve 640 is opened and the vacuum source 607 draws a vacuum reducing the pressure the partial pressure of water within the chamber 610 to 5.0×10−4 Torr or less. It is important that the partial pressure of water within the chamber 610 remains at 5.0×10−4 Torr or less during the etching steps in order to maintain a high degree of selectively during the etching step(s). Under known conditions, the xenon difluoride crystals at room temperature form a vapor pressure of XeF2 of approximately 4.0 Torr, as determined by the pressure measuring device 611. The pressure controller 613 is adjusted to change the pressure of the chamber environment 6051 to be in a range or 60 to 80×10−3 Torr. The structure 620 is etched for a time sufficient it form the release within the cavity 621 of the structure 620. The etching process can take place over a period of approximately 20–30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber 610.
During the etching step, the device 621 is preferably cooled or maintained at a temperature of approximately 20 degrees Celsius, through heat sink 627. The heat sink 627 is preferably coupled to a cooling means 629, such as a refrigeration unit for controlling the temperature of the heat sink 627 at or below 20 degrees Celsius. The heat sink 627, is preferably formed from metal or another material suitable for absorbing heat from the device 621, while the device 621 is couple to the heat sink 627.
After the etching step is complete, a suitable sealing environment may then be provided. Accordingly, in one embodiment of the invention the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607. The trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.
Alternatively, after reestablishing a low pressure vacuum, the chamber may be backfilled with a noble gas. Accordingly, a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612. The chamber environment 605′ is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620. The trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605′ within the cavity 621 of the device 620.
The above examples have been described in detail to illustrate the preferred embodiments of the instant invention. It will be clear to one of ordinary skilled in the art that there are many variations to the invention that are within the scope of the invention. For example, a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi-layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and uncoupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.
This patent application is a continuation-in-part of the co-pending U.S. patent application Ser. No. 09/952,626, filed Sep. 13, 2001, and entitled “MICROELECTRONIC MECHANICAL SYSTEM AND METHODS”. The co-pending U.S. patent application Ser. No. 09/952,626, filed Sep. 13, 2001, and entitled “MICROELECTRONIC MECHANICAL SYSTEM AND METHODS” is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1525550 | Jenkins | Feb 1925 | A |
1548262 | Freedman | Aug 1925 | A |
1814701 | Ives | Jul 1931 | A |
2415226 | Szikiai | Feb 1947 | A |
2783406 | Vanderhooft | Feb 1957 | A |
2920529 | Blythe | Jan 1960 | A |
2991690 | Grey et al. | Jul 1961 | A |
3256465 | Weissenstern et al. | Jun 1966 | A |
3388301 | James | Jun 1968 | A |
3443871 | Chitayat | May 1969 | A |
3553364 | Lee | Jan 1971 | A |
3576394 | Lee | Apr 1971 | A |
3600798 | Lee | Aug 1971 | A |
3656837 | Sandbank | Apr 1972 | A |
3657610 | Yamamoto et al. | Apr 1972 | A |
3693239 | Dix | Sep 1972 | A |
3743507 | Ih et al. | Jul 1973 | A |
3752563 | Torok et al. | Aug 1973 | A |
3781465 | Ernstoff et al. | Dec 1973 | A |
3783184 | Ernstoff et al. | Jan 1974 | A |
3792916 | Sarna | Feb 1974 | A |
3802769 | Rotz et al. | Apr 1974 | A |
3811186 | Larnerd et al. | May 1974 | A |
3861784 | Torok | Jan 1975 | A |
3862360 | Dill et al. | Jan 1975 | A |
3871014 | King et al. | Mar 1975 | A |
3886310 | Guldberg et al. | May 1975 | A |
3896338 | Nathanson et al. | Jul 1975 | A |
3915548 | Opittek | Oct 1975 | A |
3935499 | Oess | Jan 1976 | A |
3935500 | Oess et al. | Jan 1976 | A |
3938881 | Biegelsen et al. | Feb 1976 | A |
3941456 | Schilz et al. | Mar 1976 | A |
3942245 | Jackson et al. | Mar 1976 | A |
3943281 | Keller et al. | Mar 1976 | A |
3947105 | Smith | Mar 1976 | A |
3969611 | Fonteneau | Jul 1976 | A |
3980476 | Wysocki | Sep 1976 | A |
3991416 | Byles et al. | Nov 1976 | A |
4001663 | Bray | Jan 1977 | A |
4004849 | Shattuck | Jan 1977 | A |
4006968 | Ernstoff et al. | Feb 1977 | A |
4009939 | Okano | Mar 1977 | A |
4011009 | Lama et al. | Mar 1977 | A |
4012116 | Yevick | Mar 1977 | A |
4012835 | Wallick | Mar 1977 | A |
4017158 | Booth | Apr 1977 | A |
4020381 | Oess et al. | Apr 1977 | A |
4021766 | Aine | May 1977 | A |
4034211 | Horst et al. | Jul 1977 | A |
4034399 | Drukier et al. | Jul 1977 | A |
4035068 | Rawson | Jul 1977 | A |
4067129 | Abramson et al. | Jan 1978 | A |
4084437 | Finnegan | Apr 1978 | A |
4090219 | Ernstoff et al. | May 1978 | A |
4093346 | Nishino et al. | Jun 1978 | A |
4093921 | Buss | Jun 1978 | A |
4093922 | Buss | Jun 1978 | A |
4100579 | Ernstoff | Jul 1978 | A |
4103273 | Keller | Jul 1978 | A |
4126380 | Borm | Nov 1978 | A |
4127322 | Jacobson et al. | Nov 1978 | A |
4135502 | Peck | Jan 1979 | A |
4139257 | Matsumoto | Feb 1979 | A |
4143943 | Rawson | Mar 1979 | A |
4163570 | Greenaway | Aug 1979 | A |
4184700 | Greenaway | Jan 1980 | A |
4185891 | Kaestner | Jan 1980 | A |
4190855 | Inoue | Feb 1980 | A |
4195915 | Lichty et al. | Apr 1980 | A |
4205428 | Ernstoff et al. | Jun 1980 | A |
4211918 | Nyfeler et al. | Jul 1980 | A |
4223050 | Nyfeler et al. | Sep 1980 | A |
4225913 | Bray | Sep 1980 | A |
4249796 | Sincerbox et al. | Feb 1981 | A |
4250217 | Greenaway | Feb 1981 | A |
4250393 | Greenaway | Feb 1981 | A |
4256787 | Shaver et al. | Mar 1981 | A |
4257016 | Kramer, Jr. et al. | Mar 1981 | A |
4290672 | Whitefield | Sep 1981 | A |
4295145 | Latta | Oct 1981 | A |
4311999 | Upton et al. | Jan 1982 | A |
4327411 | Turner | Apr 1982 | A |
4327966 | Bloom | May 1982 | A |
4331972 | Rajchman | May 1982 | A |
4336982 | Rector, Jr. | Jun 1982 | A |
4338660 | Kelley et al. | Jul 1982 | A |
4343535 | Bleha, Jr. | Aug 1982 | A |
4346965 | Sprague et al. | Aug 1982 | A |
4348079 | Johnson | Sep 1982 | A |
4355463 | Burns | Oct 1982 | A |
4361384 | Bosserman | Nov 1982 | A |
4369524 | Rawson et al. | Jan 1983 | A |
4374397 | Mir | Feb 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4391490 | Hartke | Jul 1983 | A |
4396246 | Holman | Aug 1983 | A |
4398798 | Krawczak et al. | Aug 1983 | A |
4400740 | Traino et al. | Aug 1983 | A |
4408884 | Kleinknecht et al. | Oct 1983 | A |
4414583 | Hooker, III | Nov 1983 | A |
4417386 | Exner | Nov 1983 | A |
4418397 | Brantingham et al. | Nov 1983 | A |
4420717 | Wallace et al. | Dec 1983 | A |
4422099 | Wolfe | Dec 1983 | A |
4426768 | Black et al. | Jan 1984 | A |
4430584 | Someshwar et al. | Feb 1984 | A |
4435041 | Torok et al. | Mar 1984 | A |
4440839 | Mottier | Apr 1984 | A |
4443819 | Funada et al. | Apr 1984 | A |
4443845 | Hamilton et al. | Apr 1984 | A |
4447881 | Brantingham et al. | May 1984 | A |
4454591 | Lou | Jun 1984 | A |
4456338 | Gelbart | Jun 1984 | A |
4460907 | Nelson | Jul 1984 | A |
4462046 | Spight | Jul 1984 | A |
4467342 | Tower | Aug 1984 | A |
4468725 | Venturini | Aug 1984 | A |
4483596 | Marshall | Nov 1984 | A |
4484188 | Ott | Nov 1984 | A |
4492435 | Banton et al. | Jan 1985 | A |
4503494 | Hamilton et al. | Mar 1985 | A |
4511220 | Scully | Apr 1985 | A |
4538883 | Sprague et al. | Sep 1985 | A |
4545610 | Lakritz et al. | Oct 1985 | A |
4556378 | Nyfeler et al. | Dec 1985 | A |
4558171 | Gantley et al. | Dec 1985 | A |
4561044 | Ogura et al. | Dec 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4567585 | Gelbart | Jan 1986 | A |
4571041 | Gaudyn | Feb 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4577932 | Gelbart | Mar 1986 | A |
4577933 | Yip et al. | Mar 1986 | A |
4588957 | Balant et al. | May 1986 | A |
4590548 | Maytum | May 1986 | A |
4594501 | Culley et al. | Jun 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4623219 | Trias | Nov 1986 | A |
4636039 | Turner | Jan 1987 | A |
4636866 | Hattori | Jan 1987 | A |
4641193 | Glenn | Feb 1987 | A |
4645881 | LeToumelin et al. | Feb 1987 | A |
4646158 | Ohno et al. | Feb 1987 | A |
4649085 | Landram | Mar 1987 | A |
4649432 | Watanabe | Mar 1987 | A |
4652932 | Miyajima et al. | Mar 1987 | A |
4655539 | Caulfield et al. | Apr 1987 | A |
4660938 | Kazan | Apr 1987 | A |
4661828 | Miller, Jr. et al. | Apr 1987 | A |
4662746 | Hornbeck | May 1987 | A |
4663670 | Ito et al. | May 1987 | A |
4687326 | Corby, Jr. | Aug 1987 | A |
4698602 | Armitage | Oct 1987 | A |
4700276 | Freyman et al. | Oct 1987 | A |
4707064 | Dobrowolski et al. | Nov 1987 | A |
4709995 | Kuribayashi et al. | Dec 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4711526 | Hennings et al. | Dec 1987 | A |
4714326 | Usui et al. | Dec 1987 | A |
4717066 | Goldenberg et al. | Jan 1988 | A |
4719507 | Bos | Jan 1988 | A |
4721629 | Sakai et al. | Jan 1988 | A |
4722593 | Shimazaki | Feb 1988 | A |
4724467 | Yip et al. | Feb 1988 | A |
4728185 | Thomas | Mar 1988 | A |
4743091 | Gelbart | May 1988 | A |
4744633 | Sheiman | May 1988 | A |
4747671 | Takahashi et al. | May 1988 | A |
4751509 | Kubota et al. | Jun 1988 | A |
4761253 | Antes | Aug 1988 | A |
4763975 | Scifres et al. | Aug 1988 | A |
4772094 | Sheiman | Sep 1988 | A |
4797694 | Agostinelli et al. | Jan 1989 | A |
4797918 | Lee et al. | Jan 1989 | A |
4801194 | Agostinelli et al. | Jan 1989 | A |
4803560 | Matsunaga et al. | Feb 1989 | A |
4804641 | Arlt et al. | Feb 1989 | A |
4807021 | Okumura | Feb 1989 | A |
4807965 | Garakani | Feb 1989 | A |
4809078 | Yabe et al. | Feb 1989 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4811210 | McAulay | Mar 1989 | A |
4814759 | Gombrich et al. | Mar 1989 | A |
4817850 | Wiener-Avnear et al. | Apr 1989 | A |
4824200 | Isono et al. | Apr 1989 | A |
4827391 | Sills | May 1989 | A |
4829365 | Eichenlaub | May 1989 | A |
4836649 | Ledebuhr et al. | Jun 1989 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4856869 | Sakata et al. | Aug 1989 | A |
4859012 | Cohn | Aug 1989 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4866488 | Frensley | Sep 1989 | A |
4882683 | Rupp et al. | Nov 1989 | A |
4896325 | Coldren | Jan 1990 | A |
4896948 | Dono et al. | Jan 1990 | A |
4897708 | Clements | Jan 1990 | A |
4902083 | Wells | Feb 1990 | A |
4915463 | Barbee, Jr. | Apr 1990 | A |
4915479 | Clarke | Apr 1990 | A |
4924413 | Suwannukul | May 1990 | A |
4926241 | Carey | May 1990 | A |
4934773 | Becker | Jun 1990 | A |
4940309 | Baum | Jul 1990 | A |
4943815 | Aldrich et al. | Jul 1990 | A |
4949148 | Bartelink | Aug 1990 | A |
4950890 | Gelbart | Aug 1990 | A |
4952925 | Haastert | Aug 1990 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4961633 | Ibrahim et al. | Oct 1990 | A |
4970575 | Soga et al. | Nov 1990 | A |
4978202 | Yang | Dec 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4984824 | Antes et al. | Jan 1991 | A |
4999308 | Nishiura et al. | Mar 1991 | A |
5003300 | Wells | Mar 1991 | A |
5009473 | Hunter et al. | Apr 1991 | A |
5013141 | Sakata | May 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5022750 | Flasck | Jun 1991 | A |
5023905 | Wells et al. | Jun 1991 | A |
5024494 | Williams et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5031144 | Persky | Jul 1991 | A |
5035473 | Kuwayama et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5039628 | Carey | Aug 1991 | A |
5040052 | McDavid | Aug 1991 | A |
5041395 | Steffen | Aug 1991 | A |
5041851 | Nelson | Aug 1991 | A |
5043917 | Okamoto | Aug 1991 | A |
5048077 | Wells et al. | Sep 1991 | A |
5049901 | Gelbart | Sep 1991 | A |
5058992 | Takahashi | Oct 1991 | A |
5060058 | Goldenberg et al. | Oct 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5066614 | Dunaway et al. | Nov 1991 | A |
5068205 | Baxter et al. | Nov 1991 | A |
5072239 | Mitcham et al. | Dec 1991 | A |
5072418 | Boutaud et al. | Dec 1991 | A |
5074947 | Estes et al. | Dec 1991 | A |
5075940 | Kuriyama et al. | Dec 1991 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5081617 | Gelbart | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5085497 | Um et al. | Feb 1992 | A |
5089903 | Kuwayama et al. | Feb 1992 | A |
5093281 | Eshima | Mar 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5101184 | Antes | Mar 1992 | A |
5101236 | Nelson et al. | Mar 1992 | A |
5103334 | Swanberg | Apr 1992 | A |
5105207 | Nelson | Apr 1992 | A |
5105299 | Anderson et al. | Apr 1992 | A |
5105369 | Nelson | Apr 1992 | A |
5107372 | Gelbart et al. | Apr 1992 | A |
5113272 | Reamey | May 1992 | A |
5113285 | Franklin et al. | May 1992 | A |
5115344 | Jaskie | May 1992 | A |
5119204 | Hashimoto et al. | Jun 1992 | A |
5121343 | Faris | Jun 1992 | A |
5126826 | Kauchi et al. | Jun 1992 | A |
5126836 | Um | Jun 1992 | A |
5128660 | DeMond et al. | Jul 1992 | A |
5129716 | Holakovszky et al. | Jul 1992 | A |
5132723 | Gelbart | Jul 1992 | A |
5132812 | Takahashi et al. | Jul 1992 | A |
5136695 | Goldshlag et al. | Aug 1992 | A |
5137836 | Lam | Aug 1992 | A |
5142303 | Nelson | Aug 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142677 | Ehlig et al. | Aug 1992 | A |
5144472 | Sang, Jr. et al. | Sep 1992 | A |
5147815 | Casto | Sep 1992 | A |
5148157 | Florence | Sep 1992 | A |
5148506 | McDonald | Sep 1992 | A |
5149405 | Bruns et al. | Sep 1992 | A |
5150205 | Um et al. | Sep 1992 | A |
5151718 | Nelson | Sep 1992 | A |
5151724 | Kikinis | Sep 1992 | A |
5153770 | Harris | Oct 1992 | A |
5155604 | Miekka et al. | Oct 1992 | A |
5155615 | Tagawa | Oct 1992 | A |
5155778 | Magel et al. | Oct 1992 | A |
5155812 | Ehlig et al. | Oct 1992 | A |
5157304 | Kane et al. | Oct 1992 | A |
5159485 | Nelson | Oct 1992 | A |
5161042 | Hamada | Nov 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5164019 | Sinton | Nov 1992 | A |
5165013 | Faris | Nov 1992 | A |
5168401 | Endriz | Dec 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5170269 | Lin et al. | Dec 1992 | A |
5170283 | O'Brien et al. | Dec 1992 | A |
5172161 | Nelson | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5177724 | Gelbart | Jan 1993 | A |
5178728 | Boysel et al. | Jan 1993 | A |
5179274 | Sampsell | Jan 1993 | A |
5179367 | Shimizu | Jan 1993 | A |
5181231 | Parikh et al. | Jan 1993 | A |
5182665 | O'Callaghan et al. | Jan 1993 | A |
5185660 | Um | Feb 1993 | A |
5185823 | Kaku et al. | Feb 1993 | A |
5188280 | Nakao et al. | Feb 1993 | A |
5189404 | Masimo et al. | Feb 1993 | A |
5189505 | Bartelink | Feb 1993 | A |
5191405 | Tomita et al. | Mar 1993 | A |
5192864 | McEwen et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5198895 | Vick | Mar 1993 | A |
5202785 | Nelson | Apr 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5206829 | Thakoor et al. | Apr 1993 | A |
5208818 | Gelbart et al. | May 1993 | A |
5208891 | Prysner | May 1993 | A |
5210637 | Puzey | May 1993 | A |
5212115 | Cho et al. | May 1993 | A |
5212555 | Stoltz | May 1993 | A |
5212582 | Nelson | May 1993 | A |
5214308 | Nishiguchi et al. | May 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5216544 | Horikawa et al. | Jun 1993 | A |
5219794 | Satoh et al. | Jun 1993 | A |
5220200 | Blanton | Jun 1993 | A |
5221982 | Faris | Jun 1993 | A |
5224088 | Atiya | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5229597 | Fukatsu | Jul 1993 | A |
5230005 | Rubino et al. | Jul 1993 | A |
5231363 | Sano et al. | Jul 1993 | A |
5231388 | Stoltz | Jul 1993 | A |
5231432 | Glenn | Jul 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233460 | Partlo et al. | Aug 1993 | A |
5237340 | Nelson | Aug 1993 | A |
5237435 | Kurematsu et al. | Aug 1993 | A |
5239448 | Perkins et al. | Aug 1993 | A |
5240818 | Mignardi et al. | Aug 1993 | A |
5245686 | Faris et al. | Sep 1993 | A |
5247180 | Mitcham et al. | Sep 1993 | A |
5247593 | Lin et al. | Sep 1993 | A |
5249245 | Lebby et al. | Sep 1993 | A |
5251057 | Guerin et al. | Oct 1993 | A |
5251058 | MacArthur | Oct 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5255100 | Urbanus | Oct 1993 | A |
5256869 | Lin et al. | Oct 1993 | A |
5258325 | Spitzer et al. | Nov 1993 | A |
5260718 | Rommelmann et al. | Nov 1993 | A |
5260798 | Um et al. | Nov 1993 | A |
5262000 | Welbourn et al. | Nov 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5278925 | Boysel et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5281887 | Engle | Jan 1994 | A |
5281957 | Schoolman | Jan 1994 | A |
5285105 | Cain | Feb 1994 | A |
5285196 | Gale, Jr. | Feb 1994 | A |
5285407 | Gale et al. | Feb 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5287215 | Warde et al. | Feb 1994 | A |
5289172 | Gale, Jr. et al. | Feb 1994 | A |
5291317 | Newswanger | Mar 1994 | A |
5291473 | Pauli | Mar 1994 | A |
5293511 | Poradish et al. | Mar 1994 | A |
5296891 | Vogt et al. | Mar 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5298460 | Nishiguchi et al. | Mar 1994 | A |
5299037 | Sakata | Mar 1994 | A |
5299289 | Omae et al. | Mar 1994 | A |
5300813 | Joshi et al. | Apr 1994 | A |
5301062 | Takahashi et al. | Apr 1994 | A |
5303043 | Glenn | Apr 1994 | A |
5303055 | Hendrix et al. | Apr 1994 | A |
5307056 | Urbanus | Apr 1994 | A |
5307185 | Jones et al. | Apr 1994 | A |
5311349 | Anderson et al. | May 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5313479 | Florence | May 1994 | A |
5313648 | Ehlig et al. | May 1994 | A |
5315418 | Sprague et al. | May 1994 | A |
5315423 | Hong | May 1994 | A |
5315429 | Abramov | May 1994 | A |
5319214 | Gregory et al. | Jun 1994 | A |
5319668 | Luecke | Jun 1994 | A |
5319789 | Ehlig et al. | Jun 1994 | A |
5319792 | Ehlig et al. | Jun 1994 | A |
5320709 | Bowden et al. | Jun 1994 | A |
5321416 | Bassett et al. | Jun 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5323051 | Adams et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5329289 | Sakamoto et al. | Jul 1994 | A |
5330878 | Nelson | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5334991 | Wells et al. | Aug 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5339177 | Jenkins et al. | Aug 1994 | A |
5340772 | Rosotker | Aug 1994 | A |
5345521 | McDonald et al. | Sep 1994 | A |
5347321 | Gove | Sep 1994 | A |
5347378 | Handschy et al. | Sep 1994 | A |
5347433 | Sedlmayr | Sep 1994 | A |
5348619 | Bohannon et al. | Sep 1994 | A |
5349687 | Ehlig et al. | Sep 1994 | A |
5351052 | D'Hont et al. | Sep 1994 | A |
5352926 | Andrews | Oct 1994 | A |
5357369 | Pilling et al. | Oct 1994 | A |
5359349 | Jambor et al. | Oct 1994 | A |
5359451 | Gelbart et al. | Oct 1994 | A |
5361131 | Tekemori et al. | Nov 1994 | A |
5363220 | Kuwayama et al. | Nov 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5367585 | Ghezzo et al. | Nov 1994 | A |
5371543 | Anderson | Dec 1994 | A |
5371618 | Tai et al. | Dec 1994 | A |
5382961 | Gale, Jr. | Jan 1995 | A |
5387924 | Gale, Jr. et al. | Feb 1995 | A |
5389182 | Mignardi | Feb 1995 | A |
5391881 | Jeuch et al. | Feb 1995 | A |
5392140 | Ezra et al. | Feb 1995 | A |
5392151 | Nelson | Feb 1995 | A |
5394303 | Yamaji | Feb 1995 | A |
5398071 | Gove et al. | Mar 1995 | A |
5399898 | Rostoker | Mar 1995 | A |
5404365 | Hiiro | Apr 1995 | A |
5404485 | Ban | Apr 1995 | A |
5408123 | Murai | Apr 1995 | A |
5410315 | Huber | Apr 1995 | A |
5411769 | Hornbeck | May 1995 | A |
5412186 | Gale | May 1995 | A |
5412501 | Fisli | May 1995 | A |
5418584 | Larson | May 1995 | A |
5420655 | Shimizu | May 1995 | A |
5420722 | Bielak | May 1995 | A |
5426072 | Finnila | Jun 1995 | A |
5427975 | Sparks et al. | Jun 1995 | A |
5430524 | Nelson | Jul 1995 | A |
5435876 | Alfaro et al. | Jul 1995 | A |
5438477 | Pasch | Aug 1995 | A |
5439731 | Li et al. | Aug 1995 | A |
5442411 | Urbanus et al. | Aug 1995 | A |
5442414 | Janssen et al. | Aug 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5445559 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5447600 | Webb | Sep 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5448546 | Pauli | Sep 1995 | A |
5450088 | Meier et al. | Sep 1995 | A |
5450219 | Gold et al. | Sep 1995 | A |
5451103 | Hatanaka et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5452138 | Mignardi et al. | Sep 1995 | A |
5453747 | D'Hont et al. | Sep 1995 | A |
5453778 | Venkateswar et al. | Sep 1995 | A |
5453803 | Shapiro et al. | Sep 1995 | A |
5454160 | Nickel | Oct 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5455445 | Kurtz et al. | Oct 1995 | A |
5455455 | Badehi | Oct 1995 | A |
5455602 | Tew | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5457567 | Shinohara | Oct 1995 | A |
5458716 | Alfaro et al. | Oct 1995 | A |
5459492 | Venkateswar | Oct 1995 | A |
5459528 | Pettitt | Oct 1995 | A |
5459592 | Shibatani et al. | Oct 1995 | A |
5459610 | Bloom et al. | Oct 1995 | A |
5461197 | Hiruta et al. | Oct 1995 | A |
5461410 | Venkateswar et al. | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5461547 | Ciupke et al. | Oct 1995 | A |
5463347 | Jones et al. | Oct 1995 | A |
5463497 | Muraki et al. | Oct 1995 | A |
5465175 | Woodgate et al. | Nov 1995 | A |
5467106 | Salomon | Nov 1995 | A |
5467138 | Gove | Nov 1995 | A |
5467146 | Huang et al. | Nov 1995 | A |
5469302 | Lim | Nov 1995 | A |
5471341 | Warde et al. | Nov 1995 | A |
5473512 | Degani et al. | Dec 1995 | A |
5475236 | Yoshizaki | Dec 1995 | A |
5480839 | Ezawa et al. | Jan 1996 | A |
5481118 | Tew | Jan 1996 | A |
5481133 | Hsu | Jan 1996 | A |
5482564 | Douglas et al. | Jan 1996 | A |
5482818 | Nelson | Jan 1996 | A |
5483307 | Anderson | Jan 1996 | A |
5485172 | Sawachika et al. | Jan 1996 | A |
5485304 | Kaeriyama | Jan 1996 | A |
5485354 | Ciupke et al. | Jan 1996 | A |
5486698 | Hanson et al. | Jan 1996 | A |
5486841 | Hara et al. | Jan 1996 | A |
5486946 | Jachimowicz et al. | Jan 1996 | A |
5488431 | Gove et al. | Jan 1996 | A |
5489952 | Gove et al. | Feb 1996 | A |
5490009 | Venkateswar et al. | Feb 1996 | A |
5491510 | Gove | Feb 1996 | A |
5491612 | Nicewarner, Jr. | Feb 1996 | A |
5491715 | Flaxl | Feb 1996 | A |
5493177 | Muller et al. | Feb 1996 | A |
5493439 | Engle | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5497262 | Kaeriyama | Mar 1996 | A |
5499060 | Gove et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5500761 | Goossen et al. | Mar 1996 | A |
5502481 | Dentinger et al. | Mar 1996 | A |
5504504 | Markandey et al. | Apr 1996 | A |
5504514 | Nelson | Apr 1996 | A |
5504575 | Stafford | Apr 1996 | A |
5504614 | Webb et al. | Apr 1996 | A |
5506171 | Leonard et al. | Apr 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5506720 | Yoon | Apr 1996 | A |
5508558 | Robinette, Jr. et al. | Apr 1996 | A |
5508561 | Tago et al. | Apr 1996 | A |
5508565 | Hatakeyama et al. | Apr 1996 | A |
5508750 | Hewlett et al. | Apr 1996 | A |
5508840 | Vogel et al. | Apr 1996 | A |
5508841 | Lin et al. | Apr 1996 | A |
5510758 | Fujita et al. | Apr 1996 | A |
5510824 | Nelson | Apr 1996 | A |
5512374 | Wallace et al. | Apr 1996 | A |
5512748 | Hanson | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5516125 | McKenna | May 1996 | A |
5517340 | Doany et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5517357 | Shibayama | May 1996 | A |
5517359 | Gelbart | May 1996 | A |
5519251 | Sato et al. | May 1996 | A |
5519450 | Urbanus et al. | May 1996 | A |
5521748 | Sarraf | May 1996 | A |
5523619 | McAllister et al. | Jun 1996 | A |
5523628 | Williams et al. | Jun 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5523878 | Wallace et al. | Jun 1996 | A |
5523881 | Florence et al. | Jun 1996 | A |
5523920 | Machuga et al. | Jun 1996 | A |
5524155 | Weaver | Jun 1996 | A |
5534883 | Koh | Jul 1996 | A |
5539422 | Heacock et al. | Jul 1996 | A |
5544306 | Deering et al. | Aug 1996 | A |
5554304 | Suzuki | Sep 1996 | A |
5576878 | Henck | Nov 1996 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606181 | Sakuma et al. | Feb 1997 | A |
5606447 | Asada et al. | Feb 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5623361 | Engle | Apr 1997 | A |
5629566 | Doi et al. | May 1997 | A |
5629801 | Staker et al. | May 1997 | A |
5640216 | Hasegawa et al. | Jun 1997 | A |
5658698 | Yagi et al. | Aug 1997 | A |
5661592 | Bornstein et al. | Aug 1997 | A |
5661593 | Engle | Aug 1997 | A |
5663817 | Frapin et al. | Sep 1997 | A |
5668611 | Ernstoff et al. | Sep 1997 | A |
5673139 | Johnson | Sep 1997 | A |
5677783 | Bloom et al. | Oct 1997 | A |
5689361 | Damen et al. | Nov 1997 | A |
5691836 | Clark | Nov 1997 | A |
5696560 | Songer | Dec 1997 | A |
5699740 | Gelbart | Dec 1997 | A |
5704700 | Kappel et al. | Jan 1998 | A |
5707160 | Bowen | Jan 1998 | A |
5712649 | Tosaki | Jan 1998 | A |
5713652 | Zavracky et al. | Feb 1998 | A |
5731802 | Aras et al. | Mar 1998 | A |
5734224 | Tagawa et al. | Mar 1998 | A |
5742373 | Alvelda | Apr 1998 | A |
5744752 | McHerron et al. | Apr 1998 | A |
5745271 | Ford et al. | Apr 1998 | A |
5757354 | Kawamura | May 1998 | A |
5757536 | Ricco et al. | May 1998 | A |
5764280 | Bloom et al. | Jun 1998 | A |
5768009 | Little | Jun 1998 | A |
5793519 | Furlani et al. | Aug 1998 | A |
5798743 | Bloom | Aug 1998 | A |
5798805 | Ooi et al. | Aug 1998 | A |
5802222 | Rasch et al. | Sep 1998 | A |
5808323 | Spaeth et al. | Sep 1998 | A |
5808797 | Bloom et al. | Sep 1998 | A |
5815126 | Fan et al. | Sep 1998 | A |
5825443 | Kawasaki et al. | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5835256 | Huibers | Nov 1998 | A |
5837562 | Cho | Nov 1998 | A |
5841579 | Bloom et al. | Nov 1998 | A |
5844711 | Long, Jr. | Dec 1998 | A |
5847859 | Murata | Dec 1998 | A |
5862164 | Hill | Jan 1999 | A |
5886675 | Aye et al. | Mar 1999 | A |
5892505 | Tropper | Apr 1999 | A |
5895233 | Higashi et al. | Apr 1999 | A |
5898515 | Furlani et al. | Apr 1999 | A |
5903243 | Jones | May 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5910856 | Ghosh et al. | Jun 1999 | A |
5912608 | Asada | Jun 1999 | A |
5914801 | Dhuler et al. | Jun 1999 | A |
5915168 | Salatino et al. | Jun 1999 | A |
5919548 | Barron et al. | Jul 1999 | A |
5920411 | Duck et al. | Jul 1999 | A |
5920418 | Shiono et al. | Jul 1999 | A |
5923475 | Kurtz et al. | Jul 1999 | A |
5926309 | Little | Jul 1999 | A |
5926318 | Hebert | Jul 1999 | A |
5949390 | Nomura et al. | Sep 1999 | A |
5949570 | Shiono et al. | Sep 1999 | A |
5953161 | Troxell et al. | Sep 1999 | A |
5963788 | Barron et al. | Oct 1999 | A |
5978127 | Berg | Nov 1999 | A |
5982553 | Bloom et al. | Nov 1999 | A |
5986634 | Alioshin | Nov 1999 | A |
5986796 | Miles | Nov 1999 | A |
5995303 | Honguh et al. | Nov 1999 | A |
5999319 | Castracane | Dec 1999 | A |
6004912 | Gudeman | Dec 1999 | A |
6016222 | Setani et al. | Jan 2000 | A |
6025859 | Ide et al. | Feb 2000 | A |
6038057 | Brazas, Jr. et al. | Mar 2000 | A |
6055090 | Miles | Apr 2000 | A |
6061166 | Furlani et al. | May 2000 | A |
6061489 | Ezra | May 2000 | A |
6062461 | Sparks et al. | May 2000 | A |
6064404 | Aras et al. | May 2000 | A |
6069392 | Tai et al. | May 2000 | A |
6071652 | Feldman et al. | Jun 2000 | A |
6075632 | Braun | Jun 2000 | A |
6084626 | Ramanujan et al. | Jul 2000 | A |
6088102 | Manhart | Jul 2000 | A |
6091521 | Popovich | Jul 2000 | A |
6096576 | Corbin et al. | Aug 2000 | A |
6096656 | Matzke et al. | Aug 2000 | A |
6097352 | Zavracky et al. | Aug 2000 | A |
6101036 | Bloom | Aug 2000 | A |
6115168 | Zhao et al. | Sep 2000 | A |
6122299 | DeMars et al. | Sep 2000 | A |
6123985 | Robinson et al. | Sep 2000 | A |
6124145 | Stemme et al. | Sep 2000 | A |
6130770 | Bloom | Oct 2000 | A |
6144481 | Kowarz et al. | Nov 2000 | A |
6147789 | Gelbart | Nov 2000 | A |
6154259 | Hargis et al. | Nov 2000 | A |
6154305 | Dickensheets et al. | Nov 2000 | A |
6163026 | Bawolek et al. | Dec 2000 | A |
6163402 | Chou et al. | Dec 2000 | A |
6169624 | Godil et al. | Jan 2001 | B1 |
6172796 | Kowarz et al. | Jan 2001 | B1 |
6177980 | Johnson | Jan 2001 | B1 |
6181458 | Brazas, Jr. et al. | Jan 2001 | B1 |
6188519 | Johnson | Feb 2001 | B1 |
6195196 | Kimura et al. | Feb 2001 | B1 |
6210988 | Howe et al. | Apr 2001 | B1 |
6215579 | Bloom et al. | Apr 2001 | B1 |
6219015 | Bloom et al. | Apr 2001 | B1 |
6222954 | Riza | Apr 2001 | B1 |
6229650 | Reznichenko et al. | May 2001 | B1 |
6249381 | Suganuma | Jun 2001 | B1 |
6251842 | Gudeman | Jun 2001 | B1 |
6252697 | Hawkins et al. | Jun 2001 | B1 |
6268952 | Godil et al. | Jul 2001 | B1 |
6271808 | Corbin | Aug 2001 | B1 |
6282213 | Gutin et al. | Aug 2001 | B1 |
6290859 | Fleming et al. | Sep 2001 | B1 |
6290864 | Patel et al. | Sep 2001 | B1 |
6303986 | Shook | Oct 2001 | B1 |
6310018 | Behr et al. | Oct 2001 | B1 |
6313901 | Cacharelis | Nov 2001 | B1 |
6323984 | Trisnadi | Nov 2001 | B1 |
6342960 | McCullough | Jan 2002 | B1 |
6346430 | Raj et al. | Feb 2002 | B1 |
6356577 | Miller | Mar 2002 | B1 |
6356689 | Greywall | Mar 2002 | B1 |
6384959 | Furlani et al. | May 2002 | B1 |
6387723 | Payne et al. | May 2002 | B1 |
6396789 | Guerra et al. | May 2002 | B1 |
6409876 | McQuarrie et al. | Jun 2002 | B1 |
6418152 | Davis | Jul 2002 | B1 |
6421179 | Gutin et al. | Jul 2002 | B1 |
6438954 | Goetz et al. | Aug 2002 | B1 |
6445502 | Islam et al. | Sep 2002 | B1 |
6452260 | Corbin et al. | Sep 2002 | B1 |
6479811 | Kruschwitz et al. | Nov 2002 | B1 |
6480634 | Corrigan | Nov 2002 | B1 |
6497490 | Miller et al. | Dec 2002 | B1 |
6525863 | Riza | Feb 2003 | B1 |
6563974 | Agha Riza | May 2003 | B2 |
6569717 | Murade | May 2003 | B1 |
6736987 | Cho | May 2004 | B1 |
20010019454 | Tadic-Galeb et al. | Sep 2001 | A1 |
20020015230 | Pilossof et al. | Feb 2002 | A1 |
20020021485 | Pilossof | Feb 2002 | A1 |
20020079432 | Lee et al. | Jun 2002 | A1 |
20020105725 | Sweatt et al. | Aug 2002 | A1 |
20020112746 | DeYoung et al. | Aug 2002 | A1 |
20020121502 | Paterl et al. | Sep 2002 | A1 |
20020131228 | Potter | Sep 2002 | A1 |
20020131230 | Potter | Sep 2002 | A1 |
20020135708 | Murden et al. | Sep 2002 | A1 |
20020176151 | Moon et al. | Nov 2002 | A1 |
20030056078 | Johansson et al. | Mar 2003 | A1 |
20040069747 | Patel et al. | Apr 2004 | A1 |
20040191946 | Patel et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
0 878 824 | Nov 1998 | EP |
2391384 | Aug 2004 | GB |
10-209088 | Aug 1998 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 09952626 | Sep 2001 | US |
Child | 10112962 | US |