Microelectronic mechanical system and methods

Information

  • Patent Grant
  • 6991953
  • Patent Number
    6,991,953
  • Date Filed
    Thursday, March 28, 2002
    22 years ago
  • Date Issued
    Tuesday, January 31, 2006
    18 years ago
Abstract
The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. A multi-layer structure has a capping layer, that preferably comprises silicon oxide and/or silicon nitride, and which is formed over an etch resistant substrate. A patterned device layer, preferably comprising silicon nitride, is embedded in a sacrificial material, preferably comprising poly-silicon, and is disposed between the etch resistant substrate and the capping layer. Access trenches or holes are formed in to capping layer and the sacrificial material is selectively etched through the access trenches, such that portions of the device layer are release from sacrificial material. The etchant preferably comprises a noble gas fluoride NGF2x, (wherein NG=Xe, Kr or Ar: and where x=1, 2 or 3). After etching that sacrificial material, the access trenches are sealed to encapsulate released portions the device layer between the etch resistant substrate and the capping layer. The current invention is particularly useful for fabricating MEMS devices, multiple cavity devices and devices with multiple release features.
Description
FIELD OF THE INVENTION

The present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.


BACKGROUND OF INVENTION

The combination microelectronic mechanical systems (MEMS) and integrated circuits (ICs) allows for the possibility to make any number of micro-sensors, transducers and actuators. Unfortunately, typical methods for making MEMS are incompatible methods used to fabricate ICs. Hence, MEMS and ICs are usually fabricated separately and laboriously combined in subsequent and separate steps.


In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment. One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS. Alternatively, the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS to seal the MEMS within the suitable storage environment. For example, Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. patent application Ser. No. 09/124,710, and U.S. patent application Ser. No. 08/744,372, filed Jul. 29, 1998 and both entitled METHOD OF AND APPARATUS FOR SEALING A HERMETIC LID TO A SEMICONDUCTOR DIE, the contents of both of which are hereby incorporated by reference.


A grating light valve™ light modulator is one type of optical MEMS that is used to modulate one or more wavelengths of light. A grating light valve™ light modulator comprises a plurality of reflective ribbons which move relative to a second set of ribbon and/or a reference surface to modulate a incident light source. Grating light valve™ light modulators have applications in display, print, optical and electrical device technologies. Examples of a grating light valve™ light modulators and their uses are disclosed in the U.S. Pat. No. 5,311,360, issued to Bloom et al., which is hereby incorporated by reference. More advanced designs and techniques for making grating light valve™ light modulators, also referred to as flat light valves, are described in the U.S. Pat. No. 5,841,579 and the U.S. Pat. No. 5,808,797, both issued to Bloom et al., the contents of which are also both hereby incorporated by reference.


Many of the current processing technologies that are available for the fabrication of MEMS do not provide sufficient throughput, selectively or are incompatible with standard CMOS materials. Further in the case of grating light values current processing often leads to stiction of the movable ribbon structures (a condition whereby the ribbons stick to the substrate) and/or results in the degradation of the reflective coating on the ribbons.


What is needed is a method to make MEMS and other micro-structures utilizing processes that are compatible with standard CMOS material and/or IC wafer processing, and preferably whereby MEMS and ICs are capable of being fabricated on the same wafer chip. Further, what is needed is a method to fabricate MEMS, wherein the active portions of the MEMS are readily encapsulated within a variety of suitable storage environments.


SUMMARY OF THE INVENTION

The current invention provides a method of making an encapsulated release structure. Preferably, the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure. In an embodiment of the instant invention, the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation). In other embodiments, the device comprises a grating light valve™ light modulator for generation and/or transmission of optical information. In yet other embodiments, the device comprises a radio frequency (RF) generator for wireless transmission of information.


The release structure is formed between layers of a multi-layer structure. The multi-layer structure preferably comprises a first and a second etch-stop layer, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer. Preferably, the multi-layer structure is formed on a silicon wafer substrate. The silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.


Preferably, the multi-layer structure is formed with a first etch-stop layer that is deposited on, or over, a selected region of the silicon wafer substrate. The first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof. On top of, or over, the first etch-stop layer the first sacrificial layer is formed. The first sacrificial layer preferably comprises a poly-silicon material though other materials can also be used. The second etch-stop layer is formed on, or over, the first sacrificial layer with a pattern corresponding to release features of the release structure.


The second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist can be formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch-stop layer having gaps therein and between portions of the second etch-stop layer under the patterned photo-resist. Alternatively, the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer. Regardless, of the method used to form the second etch-stop layer, a second sacrificial layer is formed over the second etch-stop layer sandwiching or embedding the second etch-stop layer having the release structure features between the first and the second sacrificial layers. The second sacrificial layer preferably comprises poly-silicon. On top of the second sacrificial layer a sealant layer or capping layer is formed. The capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.


The etch-stop layers are formed by any number of methods. An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s). In the instant invention the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved. Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.


In an embodiment of the instant invention, one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide. Preferably the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated. Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer. Alternatively, the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen. Likewise, the silicon nitride layers can be formed by thermal growth or chemical deposition processes. The poly-silicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECVD). At any time before the formation of a subsequent layer, the deposition surface can be cleaned or treated. After the step of patterning the release structure, for example, the deposition surface can be treated or cleaned with a solvent such as N-methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer and/or treated with solution of ethylene glycol and ammonium fluoride (NOE) which is believed to remove surface oxides. Further, at any time before the formation of a subsequent layer, the deposition surface can be mechanically planarized.


After the multi-layer structure is formed with the release structure (e.g. patterned from the second etch-stop) sandwiched between the first and the second sacrificial layers, access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow. Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which allows the sacrificial layer etchant to etch the material in the sacrificial layer therebelow. For simplicity, the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.


In accordance with the instant invention, access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles. The access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used. The exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer. Preferably, the etching processes results in an over-etch of 50% of greater for the sacrificial layers.


The preferred etchant comprises a noble gas fluoride, such as xenon difluoride. The exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride (NOE) prior to selectively etching the first and second sacrificial layers. The pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides. Surface can also be cleaned with a solvent such as N-methyl-2-pyrolipone (NMP) to remove residues, as explained above.


The etching step is preferably performed in a chamber, wherein the etchant is a gas. However, suitable liquid etchants are considered to be within the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent. Etching can be performed in a commercially available cluster tool equipped with a load lock for transporting a wafer comprising the multi-layer structure in an out of the process chamber and coupled to a suitable etchant, as described in detail below.


In the preferred method of the instant invention the multi-layer structure is placed under vacuum with a pressure of approximately 10−5 Torr. It is important that the structure is placed under vacuum with a partial pressure of water that is 5×10−4 Torr or less to maintain the selectivity of the etching process. A container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve). The crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr. The pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. More preferably the pressure controller is adjusted such that the pressure within the chamber is raised to be in a range of 60 to 80 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes. During the etching processes, it is further preferred that the multi-layer structure is resting on or is coupled to a heat sink that is maintained at or cooled to a temperature of approximately 20 degrees Celsius or below.


After the etching step, the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer. The sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within a chamber apparatus. The access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), or spin on glass methods. The access trenches can be sealed with any number of materials including metals, polymers and ceramics. Preferably, the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.


In accordance with alternative embodiments of the invention, before depositing the second sacrificial layer on the patterned second etch-stop layer, the second etch-stop layer may have a reflective material deposited thereon. The reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.


In yet other embodiments of the invention, a gettering material, such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches. The gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time. The release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.


The invention provides a sealed MEMS device (which can be formed on an IC chip) intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing and IC processing materials. For example, the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius.


The current invention further provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of storage environments. The current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred. Also, as will be clear from the ensuing discussion that the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can also be formed using the method of the instant invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustrating a MEMS oscillator.



FIGS. 2
a–h illustrate top views and cross-sectional views of a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.



FIGS. 3
a–f show cross-sectional views of release features being formed from a multi-layer structure, in accordance with a preferred method of the current invention.



FIG. 4 is a block diagram outlining steps for forming a multi-layer structure illustrated in FIG. 3a.



FIG. 5 is a block-diagram outlining the method of forming the release structure from the multi-layered structure, such as shown in FIG. 2a.



FIG. 6 is a block-diagram outlining the method of etching sacrificial layers of the multi-layer structure, such as illustrated in FIG. 2b.



FIG. 7 is a schematic diagram of a chamber apparatus or processing station configured to etch a multi-layered structure, formed in accordance with the method of instant invention.





DETAILED DESCRIPTION OF THE INVENTION

In general, the present invention provides a method to make devices with encapsulated release structures. The current invention is particularly useful for fabricating MEMS oscillators, optical display devices (such as grating light valve™ light modulators and flat light valves), optical transmission devices, RF devices and related devices. MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit. Referring to FIG. 1, a resonator structure 102 has a set of movable comb features 101 and 101′ that vibrate between a set of matched transducer combs 105 and 105′. The resonator structure 102, like a pendulum, has a fundamental resonance frequency. The comb features 101 and 101′ are secured to a ground plate 109 through anchor features 103 and 103′. In operation, a dc-bias is applied between the resonator 102 and a ground plate 109. An ac -excitation frequency is applied to the comb transducers 105 and 105′ causing the movable comb features 101 and 101′ to vibrate and generate a motional output current. The motional output current is amplified by the current to voltage amplifier 107 and fed back to the resonator structure 102. This positive feed-back loop destabilizes the oscillator 100 and leads to sustained oscillations of the resonator structure 102. A second motional output current is generated to the connection 108, which is coupled to a circuit (not shown) for receiving a timing signal generated by the oscillator 100.


Referring now to FIG. 2a showing a plan view of a wafer, a wafer structure. The wafer structure 200 preferably comprises a silicon substrate 201 and a first etch-stop layer 203. The first etch-stop layer 203 may not be required to perform the methods of the instant invention, especially when the silicon substrate 201 is sufficiently thick to allow sacrificial layers to be etched without completely etching away the silicon substrate 201. Also, the substrate 201 itself can be formed from or doped with a material that renders the substrate 201 substantially resistant to the etchant that is used, such that the formation of the first-etch-stop layer 203 is not required. However, in an alternative embodiments, a material that can be selectively etched relative to a silicon substrate can be selected or used as the sacrificial layer. In embodiments where a first etch-stop layer is present, the first etch-stop layer 203 preferably comprises silicon oxide, silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used to etch the first sacrificial layer.


Still referring to FIG. 2a, a region 251 of the wafer structure 200 is used to form the release structure. Other portions of the wafer structure 200 can be reserved for forming an integrated circuit that can be electrically coupled to and that can control operation of the release structure formed in the region 251. In addition, any number of release structures and release structure regions 251 can be formed on the same wafer structure 200.


Now referring to FIG. 2b, in the region 251, a first sacrificial layer 205 is formed over the first etch-stop layer 203 using any conventional technique. The first sacrificial layer 205 is formed from any suitable material that can be selectively etched relative to the underlying first etch-stop layer(s) or substrate 201, but preferably comprises poly-silicon.


Referring now to FIG. 2c, a second etch-stop layer 207 is formed over the first sacrificial layer 205. The second etch-stop layer 207 can be formed of the same or different material as the first etch-stop layer 203. The second etch-stop layer 207 preferably comprises silicon oxide, a silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used. In an embodiment of the invention, the first sacrificial layer 205 is etched prior to depositing the second etch-stop layer 207 to provide raised support features 215 and 215′ which support the subsequently formed release structures. Alternatively, or in addition to forming the raised support features 215 and 215′, support posts may be formed 216, 216′ and 216″ in positions to provide support for the release structures formed in subsequent steps. Preferably, the support posts 216, 216′ and 216″ are formed from an etch resistant material(s) that are the same or different than material(s) used to form the etch-stop layer 203 and/or etch-stop layer 207 and capping layer 211, as described in detail below.


Alternatively to forming support features 215 and 215′ and/or support posts 216, 216′ and 216″, or in addition to forming the support features 215 and 215′ and/or support posts 216, 216′ and 216″, the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in FIG. 2d. After the second etch-stop layer 207 is patterned and the sacrificial layer 205 is etched, portions of the second etch-stop layer 207 deposited directly on the first etch-stop layer 203 provide structural supports for the release structures formed. There are any number of mechanisms to provide physical support for the release structures formed from the second etch-stop layer 207 that are considered to be within the scope of the instant invention.


Now referring to FIG. 2e, in accordance with a preferred embodiment of the instant invention, a reflective layer 233 is deposited over the second etch-stop layer 207 and/or the support features 215 and 215′ and/or support posts 216, 216′ and 216″. The reflective layer 233 preferably comprises aluminum or other suitable reflective material. The reflective layer 233 is preferably resistant to the enchant being used in removing the sacrificial layers, but which is capable of being etched using other suitable techniques including photo-lithography and plasma etch, wherein the patterned release structures formed in subsequent steps have reflective surfaces suitable for optical applications. Preferably, a set of bond pad 226, 227 and 228, such as shown in FIG. 2f, are also formed on the wafer structure 200 for electrically coupling the release structure(s) to a circuit external to the integrated circuit containing/comprising the release structure(s). It will be readily understood by those of ordinary skill in the art that the reflective layer 233 can alternatively be deposited on the release features 204 and 206 after they are formed.


Now referring to FIG. 2f, the reflective layer 233 and the second etch-stop layer 207 is patterned to form the release structures/features 204 and 206. The reflective layer 233 and the second etch-stop layer 207 are preferably patterned using conventional photo-lithography techniques and/or steps. For example, a photo-resist layer is formed on the reflective layer 233. The photo-resist is patterned and developed to form a patterned photo-resist mask (not shown). Portions of the reflective layer 233 and the second etch-stop layer 207 are then removed using conventional techniques leaving the patterned features 204 and 206 with a reflective layer 233 under the patterned photo-resist mask. The patterned photo-resist mask can then be removed from the patterned features 204 and 206 and the patterned features 204 and 206 can be encapsulated as described in detail below.


Alternatively, the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown). The positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206. The first sacrificial layer 205 and/or the second etch-stop layer 207 can be cleaned or planarized prior to depositing the subsequent layers.


While the release features 204 and 206 are shown in FIG. 2f as comb structures, it is clear that the release features can be comb structures, ribbon structures, cantilevers or any number of other structures including, but not limited to, domain separators, support structures and/or cavity walls, such as described in detail below. Further, while providing a reflective layer 233 is preferred, the additional step of forming a reflective layer 233 is not required when the patterned features 204 and 206 are not used to reflect light, such as in the case for micro-fluidic devices. The line 270 shows an x-axis of the wafer structure 200 and the line 271 shows the y-axis of the wafer structure. The z-axis 272 of the wafer structure 272 in FIG. 2f is normal to the view shown.



FIG. 2
g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233. In the FIG. 2g, the y-axis 271 is now normal to the view shown and the z-axis 272 in now in the plane of the view shown. The release features 204 and 206 are embedded between the sacrificial layers 205 and 209 and the sacrificial layers 205 and 209 are preferably in contact through gap regions between the release features 204 and 206. The second sacrificial layer 209 is formed of any suitable material that is selectively etched relative to the etch-stop layer(s) used to form the release structure device, but preferably comprises poly-silicon.


Now referring to FIG. 2h, after the second sacrificial layer 209 is deposited over the release features 204 and 206, a capping layer or capping structure 211 is deposited or formed over the second sacrificial layer 209. The capping layer 211 preferably comprises silicon oxide, silicon nitride any combination thereof or any other suitable material(s) which exhibit(s) sufficient resistance to the etchant used. The capping layer 211 can be formed of the same or different material as the first etch-stop layer 203 and/or the second etch-stop layer 207. FIGS. 3a3f will now be used to illustrate the preferred method of forming an encapsulated release structure from a portion 250 of the structure 200 as shown in FIG. 2h.


Referring now to FIG. 3a, a device with a release structure, such as the MEMS resonators structure 102 shown in FIG. 1, or grating light valve™ light modulator structures, such as described above, are preferably made from a multi-layer structure 250. The multi-layer structure 250 has a first etch-stop layer 203 that is preferably formed on the region 251 of the silicon wafer substrate 201, such as previously described. The first etch-stop layer 203 may comprise any material or materials that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, as when the first sacrificial layer comprises poly-silicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions that are described below for etching poly-silicon with XeF2. The first etch-stop layer 203 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 500 to 5000 Angstroms.


On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205. The first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present). However, when the first etch-stop layer 203 comprises silicon oxide or silicon nitride, the first sacrificial layer 205 preferably comprises a poly-silicon. Alternatively, the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched at an etch rate of 50:1 or greater over the substrate 201 or etch-stop layers 203 and 207 the substrate 201 and capping layer 211, described in detail below. The first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns and is preferably etched under conditions to produce a 50 percent over-etch or greater for the sacrificial layers 205 and 207.


On top of the first sacrificial layer 205 is formed a second etch-stop layer 207. The second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure. The first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, when the first sacrificial layer 205 comprises poly-silicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions are described below for etching poly-silicon with XeF2. The second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.


On the second etch-stop layer 207 is formed a second sacrificial layer 209. The second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present). However, when the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride, the second sacrificial 209 layer preferably comprises a poly-silicon. Alternatively, second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched at an etch rate of 50:1 or greater over the etch-stop layers 203 and 207, the substrate 201 and the capping layer 211, described below. The second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.


A capping or sealant layer 211 is deposited over second sacrificial layer 209. The capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium). The capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns. It will be apparent to one of ordinary skill in the art that though the layers referred to above are preferably recited as being single layer structures, each can be formed of a sandwich of known layers to achieve the same result. Furthermore, though the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.


Now referring to FIG. 3b, access trenches 213 and 219 are formed in the capping layer 211 thereby exposing regions 215 and 217 of the second sacrificial layer 209. The access trenches 213 and 219 are preferably anisotropically etched, although the access trenches 213 and 219 may be formed by any number of methods including wet and/or dry etching processes. For example, a photo-resist is provided on the capping layer and is then exposed and developed to provide a pattern for anisotropically etching the access trenches 213 and 219. Alternatively, an etchant may be selectively applied to a portion of the etch-stop layer 211 corresponding to the access trenches 213 and 219. For example micro-droplets or thin streams of a suitable etchant can be controllably applied to the surface of the capping or sealant layer 211 using a micro-syringe technique, such as described by Dongsung Hong, in U.S. Patent Application No. 60/141,444, filed Jun. 29, 1999, the contents of which are hereby incorporated by reference.


After the access trenches 213 and 219 are formed in the capping layer 211, the capping layer can be treated or cleaned with a solvent such as N-methyl-2-pyrolidone (NMP) in order to remove residual photo-resist polymer. Also, when the second sacrificial layer comprises poly-silicon, the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride. A suitable pre-mixed solution of ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I™ manufactured by ACSI, Inc., Milpitas, Calif. 95035. Oxides can form on the surfaces of exposed poly-silicon regions, such as 215 and 217. Such oxides can interfere with poly-silicon etching and result in an incomplete etch. The pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.


Now referring to FIG. 3c, after the access trenches 213 and 219 are formed in the capping layer 211, the sacrificial layers 205 and 209 are selectively etched to release the features 204 and 206. The features 204 and 206 can have any number of different geometries. For example, in the fabrication of a MEMS device the release features are comb or ribbon structures. In the fabrication of a micro-fluidic device the release features provide pathways which interconnect cavities 221 and 223. In the fabrication of electronic levels or electronic accelerometers the release features can be cantilevers. After the features 204 and 206 are released, then the access trenches 213 and 219 in the layer 211′ are sealed to encapsulate the features 204 and 206 between the layers 203 and 211′.


Now referring to FIG. 3d, in further embodiments of the instant invention, prior to sealing the access trenches 213 and 219 in the layer 211′, a gettering material 231 such as titanium or a titanium-based alloy can be deposited within at least one of structure cavities 221 and 223 through the access trenches 213 and 219. Alternatively, gettering material/agent 231 can be deposited at the time that the reflective layer 233 is formed. In yet further embodiments, a gettering material 231 is a dopant within one or more of the sacrificial layers 205 and 209 that is released during the etching of the sacrificial layers 205 and 209.


Now referring to FIG. 3e, after surfaces of the cavities 221 and 223 and/or the features 204 and 206 are treated and provided with a suitable environment, as described in detail below, the access trenches 213 and 219 are preferably sealed. The release features 204 and 206 are preferably sealed under a vacuum, but can be sealed within a predetermined or controlled gas and/or liquid environments for some applications. The access trenches 213 and 219 are sealed by any of a number of methods and using any of a number of materials including metals, polymers and/or resins. Preferably, the access trenches 213 and 219 are sealed by sputtering a conventionally sputtered metal or metals over the access trenches 213 and 219 and the capping layer 211 and more preferably by sputtering aluminum over the access trenches 213 and 219 and capping layer to form a layer 242.


Now referring to FIG. 3f, for optical applications, a portions of the layer 242 can be removed such that corking structures 240 and 241 remain in the access trenches 213 and 219. The capping layer or structure 211 may provide an optical window through which light can pass to the layer 233 on the release features 204 and 206. Portions of the layer 242 are preferably removed by micro-polishing techniques. Alternatively, conventional photo-lithography techniques can be used to etch away a portion of layer 242.


In an embodiment of the invention, portions of the layer 242 of the layer can be selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.



FIG. 4 is a block diagram flow chart 300 outlining steps for forming a multi-layer structure, such as shown in FIG. 3a and in accordance with a preferred method of the instant invention. For example, the multi-layer structure shown in FIG. 3a can be made by sequential deposition processes, such as described above, wherein the uniformity and thicknesses of each of the structure layers are readily controlled.


Still referring to FIG. 4, in the step 301, a silicon dioxide layer is formed by steam or dry thermal growth on a silicon substrate or by deposition on a selected region of the silicon wafer or other suitable substrate. Preferably, the silicon dioxide layer is thermally grown to a thickness in a range of 250 to 5000 Angstroms and more preferably in a range of 250 to 750 Angstroms. The thermal oxidation occurs by placing the wafer substrate at a temperature in a range of 600 to 800 degrees Celsius in a controlled oxygen environment. In the step 303, a poly-silicon layer is preferably deposited by Low Pressure Chemical Vapor Deposition (LPCVD) on the first etch stop layer to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. Low Pressure Chemical Vapor Deposition of the amorphous poly-silicon is preferably carried out at temperatures in a range of 450 to 550 degrees Celsius.


After the first poly-silicon layer is deposited in the step 303, then in the step 305 a silicon nitride device layer is formed on the first poly silicon sacrificial layer. Preferably, the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms. The silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.


In accordance with alternative embodiment of the current invention, the silicon nitride layer is patterned with structure features after depositing a photo-resist layer, the photo-resist is the exposed and developed (thereby forming an etch mask). Alternatively, a pattern is selectively etched into the first poly-silicon layer formed in the step 303 to initiate rapid growth of the subsequently deposited silicon nitride layer in the etched areas of the poly-silicon layer. Preferably, however, the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask, as described above.


After forming the patterned silicon nitride layer in the step 305, then in the step 307 a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching or embedding the patterned layer between the first and the second sacrificial layers. The second sacrificial layer is preferably also a poly-silicon layer that is preferably deposited by LPCVD to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. The second sacrificial layer is preferably formed by thermal decomposition of an silicon containing reagent, such as previously described. Preferably, the first and the second poly-silicon layers have contact points whereby an etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second poly-silicon sacrificial layers. Preferably, in the step 311, and prior to the step 305 of forming the second poly-silicon layer, the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface and remove residual residue or polymer formed during the masking steps. In accordance with the method of the current invention, surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.


After the second poly-silicon layer is formed in the step 307, then in the step 309, a capping layer is formed over the second poly-silicon layer. The capping layer is preferably a silicon dioxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECVD) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns. In the PECVD process, an organosilicon compound, such as a tetraethyl orthosilicate (TEOS), is decomposed in the presence of an oxygen source, such as molecular oxygen, to form the silicon oxide capping layer. In the step 310, and prior to the step 309, the second poly-silicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.



FIG. 5 is a block diagram flow chart 400 outlining the preferred method of forming a device from a multi-layered structure, such as shown in FIG. 3a. In the step 401, access trenches are formed in the capping layer. The access trenches are formed with diameters in a range of 0.4 to 1.5 microns and more preferably in a range of 0.6 to 0.8 microns. The access trenches are preferably formed in the silicon oxide capping layer using a reactive ion etch process. The reactive ion etch process can, under known or empirically determined conditions, etch trenches with sloped or straight walls which can be sealed in a subsequent step or steps. The access trenches are preferably formed through the capping layer to exposed regions of the sacrificial material therebelow. Preferably, in step 402, and prior to the step 403, the exposed regions of the sacrificial layer are treated with a pre-etch cleaning solution of ethylene glycol and ammonium fluoride, that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol. After the exposed regions of the sacrificial layer are treated with the pre-etch solution in the step 402, then in the step 403 the poly-silicon layers are selectively etched with an etchant comprising a noble gas fluoride NgF2x, (wherein Ng=Xe, Kr or Ar, and where x=1, 2 or 3). More preferably, the etchant comprises xenon difluoride. Further advantages of using xenon difluoride etchant are described by Pister in U.S. Pat. No. 5,726,480, the contents of which are hereby incorporated by reference.


After the etching step 403 is complete, then in the step 404 a gettering material can be deposited through one or more of the access trenches into the device cavity formed during the etching step 403. In the step 405, the access trenches are preferably sealed by sputtering aluminum onto the capping layer in a sufficient quantity to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or phot-lithography.



FIG. 6 is a block diagram outlining the preferred method of etching the poly-silicon sacrificial layers in the step 403 shown in FIG. 5. After the access trenches are formed in the step 401, and the exposed regions of the poly-silicon layer are treated in the step 402, as described above, then in the step 501, the structure is place under a vacuum, wherein the partial pressure of water that is preferably 5×10−4 Torr or less. In the step 503, xenon difluoride crystals are preferably sublimed at a pressure in a range of 0.1 to 100 Torr, more preferably in a range of 0.5 to 20 Torr and most preferably at approximately 4.0 Torr. In the step 505, a controlled stream of xenon difluoride is provided to the chamber, which is preferably a chamber of a cluster tool equipped with a load lock for transferring the device in and out of the chamber and/or between processing chamber within the cluster tool. The chamber is preferably maintained at a pressure lower than the sublimation pressure of the xenon difluoride crystals to ensures a positive flow of the xenon difluoride to the chamber. The pressure in the chamber is preferably maintained in a range of 0.1 milliTorr to 10.0 Torr, more preferably in a range of 1.0 milliTorr to 100 milliTorr and most preferably at approximately in a range of 60 to 80 milliTorr (0.06–0.08 Torr) during the etching steps.



FIG. 7 illustrates a schematic representation of an etching station 600 in cluster tool for carrying out the etching step described above. The etching station 600 is preferably couple to a load lock 645 for transferring the device 620 in and out of the chamber environment 605′ and/or between processing stations within the cluster tool. The etching station 600 is preferably coupled with a vacuum source 607 that is capable of drawing a vacuum in the chamber environment 605′. The etching station 600 preferably includes a pressure measuring device 609 that allows a user to monitor the pressure within the chamber 610. A container 608 containing an etchant source (e.g. crystals of xenon difluoride) is coupled to the chamber 610 through a pressure or flow controller 613. The container 608 can have a pressure measuring device 611 coupled to the container 608 to allow the user to monitor the pressure within the container 608.


In operation, a multi-layer structure 620, similar to those described previously, is placed in the chamber 610. The vacuum control valve 640 is opened and the vacuum source 607 draws a vacuum reducing the pressure the partial pressure of water within the chamber 610 to 5.0×10−4 Torr or less. It is important that the partial pressure of water within the chamber 610 remains at 5.0×10−4 Torr or less during the etching steps in order to maintain a high degree of selectively during the etching step(s). Under known conditions, the xenon difluoride crystals at room temperature form a vapor pressure of XeF2 of approximately 4.0 Torr, as determined by the pressure measuring device 611. The pressure controller 613 is adjusted to change the pressure of the chamber environment 6051 to be in a range or 60 to 80×10−3 Torr. The structure 620 is etched for a time sufficient it form the release within the cavity 621 of the structure 620. The etching process can take place over a period of approximately 20–30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber 610.


During the etching step, the device 621 is preferably cooled or maintained at a temperature of approximately 20 degrees Celsius, through heat sink 627. The heat sink 627 is preferably coupled to a cooling means 629, such as a refrigeration unit for controlling the temperature of the heat sink 627 at or below 20 degrees Celsius. The heat sink 627, is preferably formed from metal or another material suitable for absorbing heat from the device 621, while the device 621 is couple to the heat sink 627.


After the etching step is complete, a suitable sealing environment may then be provided. Accordingly, in one embodiment of the invention the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607. The trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.


Alternatively, after reestablishing a low pressure vacuum, the chamber may be backfilled with a noble gas. Accordingly, a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612. The chamber environment 605′ is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620. The trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605′ within the cavity 621 of the device 620.


The above examples have been described in detail to illustrate the preferred embodiments of the instant invention. It will be clear to one of ordinary skilled in the art that there are many variations to the invention that are within the scope of the invention. For example, a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi-layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and uncoupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.

Claims
  • 1. A method of making a spatial light modulator comprising: a. embedding a device layer comprising ribbon features in a sacrificial material;b. forming a capping structure with at least one access trench;c. etching the sacrificial material using an etchant comprising a noble gas fluoride through the at least one access trench to release the ribbon features from the sacrificial material, wherein a partial pressure of water is maintained at 5×10−4 Torr or less during the etching of the sacrificial material and the device layer is cooled during the etching of the sacrificial material; andd. sealing the at least one access trench with a sealing material thereby encapsulating the ribbon features within a sealed cavity comprising a predetermined environment.
  • 2. The method of claim 1, wherein embedding the device layer comprises: a. depositing a first layer of the sacrificial material on a substrate surface;b. forming the device layer over the first layer of sacrificial material; andc. depositing a second layer of the sacrificial material over the device layer.
  • 3. The method of claim 2, wherein the substrate surface comprises a material selected from the group consisting of an oxide, an oxynitride, and a nitride of silicon.
  • 4. The method of claim 1, wherein the device layer comprises a material selected from the group consisting of oxides, oxynitrides and nitrides of silicon.
  • 5. The method of claim 1, wherein the capping structure comprises a material selected from the group consisting of oxides, oxynitrides, and nitrides of silicon.
  • 6. The method of claim 1, wherein the sacrificial material comprises poly-silicon.
  • 7. The method of claim 1, wherein forming the capping structure comprises: a. depositing a layer of capping material; andb. anisotropically etching the capping material to form the at least one access trench.
  • 8. The method of claim 1, wherein the noble gas fluoride comprises xenon difluoride.
  • 9. The method of claim 1, wherein the sacrificial material is selectively etched relative to the capping structure by a rate (mass/time) of greater than 50:1.
  • 10. The method of claim 1, wherein the sealing material comprises a material selected from the group consisting of polymers, metals and ceramics.
  • 11. The method of claim 1, further comprising treating the sacrificial material with ethylene glycol and ammonium fluoride through the at least one access trench prior to etching.
  • 12. The method of claim 2, wherein forming the device layer comprises: a. depositing a silicon nitride-based layer on the first layer of the sacrificial material; andb. patterning the ribbon features into the silicon nitride-based layer.
  • 13. The method of claim 12, wherein patterning the ribbon features into the silicon nitride-based layer comprises: a. forming a mask on the silicon nitride-based layer; andb. etching the ribbon features into the silicon nitride-based layer through the mask.
  • 14. The method of claim 13, wherein the mask is formed of a photo-resist, the method further comprising cleaning the device layer with a solvent after etching the ribbon features into the silicon nitride-based layer.
  • 15. The method of claim 14, wherein the solvent comprises N-methyl-2-pyrolipone.
RELATED APPLICATION(S)

This patent application is a continuation-in-part of the co-pending U.S. patent application Ser. No. 09/952,626, filed Sep. 13, 2001, and entitled “MICROELECTRONIC MECHANICAL SYSTEM AND METHODS”. The co-pending U.S. patent application Ser. No. 09/952,626, filed Sep. 13, 2001, and entitled “MICROELECTRONIC MECHANICAL SYSTEM AND METHODS” is hereby incorporated by reference.

US Referenced Citations (722)
Number Name Date Kind
1525550 Jenkins Feb 1925 A
1548262 Freedman Aug 1925 A
1814701 Ives Jul 1931 A
2415226 Szikiai Feb 1947 A
2783406 Vanderhooft Feb 1957 A
2920529 Blythe Jan 1960 A
2991690 Grey et al. Jul 1961 A
3256465 Weissenstern et al. Jun 1966 A
3388301 James Jun 1968 A
3443871 Chitayat May 1969 A
3553364 Lee Jan 1971 A
3576394 Lee Apr 1971 A
3600798 Lee Aug 1971 A
3656837 Sandbank Apr 1972 A
3657610 Yamamoto et al. Apr 1972 A
3693239 Dix Sep 1972 A
3743507 Ih et al. Jul 1973 A
3752563 Torok et al. Aug 1973 A
3781465 Ernstoff et al. Dec 1973 A
3783184 Ernstoff et al. Jan 1974 A
3792916 Sarna Feb 1974 A
3802769 Rotz et al. Apr 1974 A
3811186 Larnerd et al. May 1974 A
3861784 Torok Jan 1975 A
3862360 Dill et al. Jan 1975 A
3871014 King et al. Mar 1975 A
3886310 Guldberg et al. May 1975 A
3896338 Nathanson et al. Jul 1975 A
3915548 Opittek Oct 1975 A
3935499 Oess Jan 1976 A
3935500 Oess et al. Jan 1976 A
3938881 Biegelsen et al. Feb 1976 A
3941456 Schilz et al. Mar 1976 A
3942245 Jackson et al. Mar 1976 A
3943281 Keller et al. Mar 1976 A
3947105 Smith Mar 1976 A
3969611 Fonteneau Jul 1976 A
3980476 Wysocki Sep 1976 A
3991416 Byles et al. Nov 1976 A
4001663 Bray Jan 1977 A
4004849 Shattuck Jan 1977 A
4006968 Ernstoff et al. Feb 1977 A
4009939 Okano Mar 1977 A
4011009 Lama et al. Mar 1977 A
4012116 Yevick Mar 1977 A
4012835 Wallick Mar 1977 A
4017158 Booth Apr 1977 A
4020381 Oess et al. Apr 1977 A
4021766 Aine May 1977 A
4034211 Horst et al. Jul 1977 A
4034399 Drukier et al. Jul 1977 A
4035068 Rawson Jul 1977 A
4067129 Abramson et al. Jan 1978 A
4084437 Finnegan Apr 1978 A
4090219 Ernstoff et al. May 1978 A
4093346 Nishino et al. Jun 1978 A
4093921 Buss Jun 1978 A
4093922 Buss Jun 1978 A
4100579 Ernstoff Jul 1978 A
4103273 Keller Jul 1978 A
4126380 Borm Nov 1978 A
4127322 Jacobson et al. Nov 1978 A
4135502 Peck Jan 1979 A
4139257 Matsumoto Feb 1979 A
4143943 Rawson Mar 1979 A
4163570 Greenaway Aug 1979 A
4184700 Greenaway Jan 1980 A
4185891 Kaestner Jan 1980 A
4190855 Inoue Feb 1980 A
4195915 Lichty et al. Apr 1980 A
4205428 Ernstoff et al. Jun 1980 A
4211918 Nyfeler et al. Jul 1980 A
4223050 Nyfeler et al. Sep 1980 A
4225913 Bray Sep 1980 A
4249796 Sincerbox et al. Feb 1981 A
4250217 Greenaway Feb 1981 A
4250393 Greenaway Feb 1981 A
4256787 Shaver et al. Mar 1981 A
4257016 Kramer, Jr. et al. Mar 1981 A
4290672 Whitefield Sep 1981 A
4295145 Latta Oct 1981 A
4311999 Upton et al. Jan 1982 A
4327411 Turner Apr 1982 A
4327966 Bloom May 1982 A
4331972 Rajchman May 1982 A
4336982 Rector, Jr. Jun 1982 A
4338660 Kelley et al. Jul 1982 A
4343535 Bleha, Jr. Aug 1982 A
4346965 Sprague et al. Aug 1982 A
4348079 Johnson Sep 1982 A
4355463 Burns Oct 1982 A
4361384 Bosserman Nov 1982 A
4369524 Rawson et al. Jan 1983 A
4374397 Mir Feb 1983 A
4389096 Hori et al. Jun 1983 A
4391490 Hartke Jul 1983 A
4396246 Holman Aug 1983 A
4398798 Krawczak et al. Aug 1983 A
4400740 Traino et al. Aug 1983 A
4408884 Kleinknecht et al. Oct 1983 A
4414583 Hooker, III Nov 1983 A
4417386 Exner Nov 1983 A
4418397 Brantingham et al. Nov 1983 A
4420717 Wallace et al. Dec 1983 A
4422099 Wolfe Dec 1983 A
4426768 Black et al. Jan 1984 A
4430584 Someshwar et al. Feb 1984 A
4435041 Torok et al. Mar 1984 A
4440839 Mottier Apr 1984 A
4443819 Funada et al. Apr 1984 A
4443845 Hamilton et al. Apr 1984 A
4447881 Brantingham et al. May 1984 A
4454591 Lou Jun 1984 A
4456338 Gelbart Jun 1984 A
4460907 Nelson Jul 1984 A
4462046 Spight Jul 1984 A
4467342 Tower Aug 1984 A
4468725 Venturini Aug 1984 A
4483596 Marshall Nov 1984 A
4484188 Ott Nov 1984 A
4492435 Banton et al. Jan 1985 A
4503494 Hamilton et al. Mar 1985 A
4511220 Scully Apr 1985 A
4538883 Sprague et al. Sep 1985 A
4545610 Lakritz et al. Oct 1985 A
4556378 Nyfeler et al. Dec 1985 A
4558171 Gantley et al. Dec 1985 A
4561044 Ogura et al. Dec 1985 A
4566935 Hornbeck Jan 1986 A
4567585 Gelbart Jan 1986 A
4571041 Gaudyn Feb 1986 A
4571603 Hornbeck et al. Feb 1986 A
4577932 Gelbart Mar 1986 A
4577933 Yip et al. Mar 1986 A
4588957 Balant et al. May 1986 A
4590548 Maytum May 1986 A
4594501 Culley et al. Jun 1986 A
4596992 Hornbeck Jun 1986 A
4615595 Hornbeck Oct 1986 A
4623219 Trias Nov 1986 A
4636039 Turner Jan 1987 A
4636866 Hattori Jan 1987 A
4641193 Glenn Feb 1987 A
4645881 LeToumelin et al. Feb 1987 A
4646158 Ohno et al. Feb 1987 A
4649085 Landram Mar 1987 A
4649432 Watanabe Mar 1987 A
4652932 Miyajima et al. Mar 1987 A
4655539 Caulfield et al. Apr 1987 A
4660938 Kazan Apr 1987 A
4661828 Miller, Jr. et al. Apr 1987 A
4662746 Hornbeck May 1987 A
4663670 Ito et al. May 1987 A
4687326 Corby, Jr. Aug 1987 A
4698602 Armitage Oct 1987 A
4700276 Freyman et al. Oct 1987 A
4707064 Dobrowolski et al. Nov 1987 A
4709995 Kuribayashi et al. Dec 1987 A
4710732 Hornbeck Dec 1987 A
4711526 Hennings et al. Dec 1987 A
4714326 Usui et al. Dec 1987 A
4717066 Goldenberg et al. Jan 1988 A
4719507 Bos Jan 1988 A
4721629 Sakai et al. Jan 1988 A
4722593 Shimazaki Feb 1988 A
4724467 Yip et al. Feb 1988 A
4728185 Thomas Mar 1988 A
4743091 Gelbart May 1988 A
4744633 Sheiman May 1988 A
4747671 Takahashi et al. May 1988 A
4751509 Kubota et al. Jun 1988 A
4761253 Antes Aug 1988 A
4763975 Scifres et al. Aug 1988 A
4772094 Sheiman Sep 1988 A
4797694 Agostinelli et al. Jan 1989 A
4797918 Lee et al. Jan 1989 A
4801194 Agostinelli et al. Jan 1989 A
4803560 Matsunaga et al. Feb 1989 A
4804641 Arlt et al. Feb 1989 A
4807021 Okumura Feb 1989 A
4807965 Garakani Feb 1989 A
4809078 Yabe et al. Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4811210 McAulay Mar 1989 A
4814759 Gombrich et al. Mar 1989 A
4817850 Wiener-Avnear et al. Apr 1989 A
4824200 Isono et al. Apr 1989 A
4827391 Sills May 1989 A
4829365 Eichenlaub May 1989 A
4836649 Ledebuhr et al. Jun 1989 A
4856863 Sampsell et al. Aug 1989 A
4856869 Sakata et al. Aug 1989 A
4859012 Cohn Aug 1989 A
4859060 Katagiri et al. Aug 1989 A
4866488 Frensley Sep 1989 A
4882683 Rupp et al. Nov 1989 A
4896325 Coldren Jan 1990 A
4896948 Dono et al. Jan 1990 A
4897708 Clements Jan 1990 A
4902083 Wells Feb 1990 A
4915463 Barbee, Jr. Apr 1990 A
4915479 Clarke Apr 1990 A
4924413 Suwannukul May 1990 A
4926241 Carey May 1990 A
4934773 Becker Jun 1990 A
4940309 Baum Jul 1990 A
4943815 Aldrich et al. Jul 1990 A
4949148 Bartelink Aug 1990 A
4950890 Gelbart Aug 1990 A
4952925 Haastert Aug 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4961633 Ibrahim et al. Oct 1990 A
4970575 Soga et al. Nov 1990 A
4978202 Yang Dec 1990 A
4982184 Kirkwood Jan 1991 A
4982265 Watanabe et al. Jan 1991 A
4984824 Antes et al. Jan 1991 A
4999308 Nishiura et al. Mar 1991 A
5003300 Wells Mar 1991 A
5009473 Hunter et al. Apr 1991 A
5013141 Sakata May 1991 A
5018256 Hornbeck May 1991 A
5022750 Flasck Jun 1991 A
5023905 Wells et al. Jun 1991 A
5024494 Williams et al. Jun 1991 A
5028939 Hornbeck et al. Jul 1991 A
5031144 Persky Jul 1991 A
5035473 Kuwayama et al. Jul 1991 A
5037173 Sampsell et al. Aug 1991 A
5039628 Carey Aug 1991 A
5040052 McDavid Aug 1991 A
5041395 Steffen Aug 1991 A
5041851 Nelson Aug 1991 A
5043917 Okamoto Aug 1991 A
5048077 Wells et al. Sep 1991 A
5049901 Gelbart Sep 1991 A
5058992 Takahashi Oct 1991 A
5060058 Goldenberg et al. Oct 1991 A
5061049 Hornbeck Oct 1991 A
5066614 Dunaway et al. Nov 1991 A
5068205 Baxter et al. Nov 1991 A
5072239 Mitcham et al. Dec 1991 A
5072418 Boutaud et al. Dec 1991 A
5074947 Estes et al. Dec 1991 A
5075940 Kuriyama et al. Dec 1991 A
5079544 DeMond et al. Jan 1992 A
5081617 Gelbart Jan 1992 A
5083857 Hornbeck Jan 1992 A
5085497 Um et al. Feb 1992 A
5089903 Kuwayama et al. Feb 1992 A
5093281 Eshima Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5099353 Hornbeck Mar 1992 A
5101184 Antes Mar 1992 A
5101236 Nelson et al. Mar 1992 A
5103334 Swanberg Apr 1992 A
5105207 Nelson Apr 1992 A
5105299 Anderson et al. Apr 1992 A
5105369 Nelson Apr 1992 A
5107372 Gelbart et al. Apr 1992 A
5113272 Reamey May 1992 A
5113285 Franklin et al. May 1992 A
5115344 Jaskie May 1992 A
5119204 Hashimoto et al. Jun 1992 A
5121343 Faris Jun 1992 A
5126826 Kauchi et al. Jun 1992 A
5126836 Um Jun 1992 A
5128660 DeMond et al. Jul 1992 A
5129716 Holakovszky et al. Jul 1992 A
5132723 Gelbart Jul 1992 A
5132812 Takahashi et al. Jul 1992 A
5136695 Goldshlag et al. Aug 1992 A
5137836 Lam Aug 1992 A
5142303 Nelson Aug 1992 A
5142405 Hornbeck Aug 1992 A
5142677 Ehlig et al. Aug 1992 A
5144472 Sang, Jr. et al. Sep 1992 A
5147815 Casto Sep 1992 A
5148157 Florence Sep 1992 A
5148506 McDonald Sep 1992 A
5149405 Bruns et al. Sep 1992 A
5150205 Um et al. Sep 1992 A
5151718 Nelson Sep 1992 A
5151724 Kikinis Sep 1992 A
5153770 Harris Oct 1992 A
5155604 Miekka et al. Oct 1992 A
5155615 Tagawa Oct 1992 A
5155778 Magel et al. Oct 1992 A
5155812 Ehlig et al. Oct 1992 A
5157304 Kane et al. Oct 1992 A
5159485 Nelson Oct 1992 A
5161042 Hamada Nov 1992 A
5162787 Thompson et al. Nov 1992 A
5164019 Sinton Nov 1992 A
5165013 Faris Nov 1992 A
5168401 Endriz Dec 1992 A
5168406 Nelson Dec 1992 A
5170156 DeMond et al. Dec 1992 A
5170269 Lin et al. Dec 1992 A
5170283 O'Brien et al. Dec 1992 A
5172161 Nelson Dec 1992 A
5172262 Hornbeck Dec 1992 A
5177724 Gelbart Jan 1993 A
5178728 Boysel et al. Jan 1993 A
5179274 Sampsell Jan 1993 A
5179367 Shimizu Jan 1993 A
5181231 Parikh et al. Jan 1993 A
5182665 O'Callaghan et al. Jan 1993 A
5185660 Um Feb 1993 A
5185823 Kaku et al. Feb 1993 A
5188280 Nakao et al. Feb 1993 A
5189404 Masimo et al. Feb 1993 A
5189505 Bartelink Feb 1993 A
5191405 Tomita et al. Mar 1993 A
5192864 McEwen et al. Mar 1993 A
5192946 Thompson et al. Mar 1993 A
5198895 Vick Mar 1993 A
5202785 Nelson Apr 1993 A
5206629 DeMond et al. Apr 1993 A
5206829 Thakoor et al. Apr 1993 A
5208818 Gelbart et al. May 1993 A
5208891 Prysner May 1993 A
5210637 Puzey May 1993 A
5212115 Cho et al. May 1993 A
5212555 Stoltz May 1993 A
5212582 Nelson May 1993 A
5214308 Nishiguchi et al. May 1993 A
5214419 DeMond et al. May 1993 A
5214420 Thompson et al. May 1993 A
5216537 Hornbeck Jun 1993 A
5216544 Horikawa et al. Jun 1993 A
5219794 Satoh et al. Jun 1993 A
5220200 Blanton Jun 1993 A
5221982 Faris Jun 1993 A
5224088 Atiya Jun 1993 A
5226099 Mignardi et al. Jul 1993 A
5229597 Fukatsu Jul 1993 A
5230005 Rubino et al. Jul 1993 A
5231363 Sano et al. Jul 1993 A
5231388 Stoltz Jul 1993 A
5231432 Glenn Jul 1993 A
5233456 Nelson Aug 1993 A
5233460 Partlo et al. Aug 1993 A
5237340 Nelson Aug 1993 A
5237435 Kurematsu et al. Aug 1993 A
5239448 Perkins et al. Aug 1993 A
5240818 Mignardi et al. Aug 1993 A
5245686 Faris et al. Sep 1993 A
5247180 Mitcham et al. Sep 1993 A
5247593 Lin et al. Sep 1993 A
5249245 Lebby et al. Sep 1993 A
5251057 Guerin et al. Oct 1993 A
5251058 MacArthur Oct 1993 A
5254980 Hendrix et al. Oct 1993 A
5255100 Urbanus Oct 1993 A
5256869 Lin et al. Oct 1993 A
5258325 Spitzer et al. Nov 1993 A
5260718 Rommelmann et al. Nov 1993 A
5260798 Um et al. Nov 1993 A
5262000 Welbourn et al. Nov 1993 A
5272473 Thompson et al. Dec 1993 A
5278652 Urbanus et al. Jan 1994 A
5278925 Boysel et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5281887 Engle Jan 1994 A
5281957 Schoolman Jan 1994 A
5285105 Cain Feb 1994 A
5285196 Gale, Jr. Feb 1994 A
5285407 Gale et al. Feb 1994 A
5287096 Thompson et al. Feb 1994 A
5287215 Warde et al. Feb 1994 A
5289172 Gale, Jr. et al. Feb 1994 A
5291317 Newswanger Mar 1994 A
5291473 Pauli Mar 1994 A
5293511 Poradish et al. Mar 1994 A
5296891 Vogt et al. Mar 1994 A
5296950 Lin et al. Mar 1994 A
5298460 Nishiguchi et al. Mar 1994 A
5299037 Sakata Mar 1994 A
5299289 Omae et al. Mar 1994 A
5300813 Joshi et al. Apr 1994 A
5301062 Takahashi et al. Apr 1994 A
5303043 Glenn Apr 1994 A
5303055 Hendrix et al. Apr 1994 A
5307056 Urbanus Apr 1994 A
5307185 Jones et al. Apr 1994 A
5311349 Anderson et al. May 1994 A
5311360 Bloom et al. May 1994 A
5312513 Florence et al. May 1994 A
5313479 Florence May 1994 A
5313648 Ehlig et al. May 1994 A
5315418 Sprague et al. May 1994 A
5315423 Hong May 1994 A
5315429 Abramov May 1994 A
5319214 Gregory et al. Jun 1994 A
5319668 Luecke Jun 1994 A
5319789 Ehlig et al. Jun 1994 A
5319792 Ehlig et al. Jun 1994 A
5320709 Bowden et al. Jun 1994 A
5321416 Bassett et al. Jun 1994 A
5323002 Sampsell et al. Jun 1994 A
5323051 Adams et al. Jun 1994 A
5325116 Sampsell Jun 1994 A
5327286 Sampsell et al. Jul 1994 A
5329289 Sakamoto et al. Jul 1994 A
5330878 Nelson Jul 1994 A
5331454 Hornbeck Jul 1994 A
5334991 Wells et al. Aug 1994 A
5339116 Urbanus et al. Aug 1994 A
5339177 Jenkins et al. Aug 1994 A
5340772 Rosotker Aug 1994 A
5345521 McDonald et al. Sep 1994 A
5347321 Gove Sep 1994 A
5347378 Handschy et al. Sep 1994 A
5347433 Sedlmayr Sep 1994 A
5348619 Bohannon et al. Sep 1994 A
5349687 Ehlig et al. Sep 1994 A
5351052 D'Hont et al. Sep 1994 A
5352926 Andrews Oct 1994 A
5357369 Pilling et al. Oct 1994 A
5359349 Jambor et al. Oct 1994 A
5359451 Gelbart et al. Oct 1994 A
5361131 Tekemori et al. Nov 1994 A
5363220 Kuwayama et al. Nov 1994 A
5365283 Doherty et al. Nov 1994 A
5367585 Ghezzo et al. Nov 1994 A
5371543 Anderson Dec 1994 A
5371618 Tai et al. Dec 1994 A
5382961 Gale, Jr. Jan 1995 A
5387924 Gale, Jr. et al. Feb 1995 A
5389182 Mignardi Feb 1995 A
5391881 Jeuch et al. Feb 1995 A
5392140 Ezra et al. Feb 1995 A
5392151 Nelson Feb 1995 A
5394303 Yamaji Feb 1995 A
5398071 Gove et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404365 Hiiro Apr 1995 A
5404485 Ban Apr 1995 A
5408123 Murai Apr 1995 A
5410315 Huber Apr 1995 A
5411769 Hornbeck May 1995 A
5412186 Gale May 1995 A
5412501 Fisli May 1995 A
5418584 Larson May 1995 A
5420655 Shimizu May 1995 A
5420722 Bielak May 1995 A
5426072 Finnila Jun 1995 A
5427975 Sparks et al. Jun 1995 A
5430524 Nelson Jul 1995 A
5435876 Alfaro et al. Jul 1995 A
5438477 Pasch Aug 1995 A
5439731 Li et al. Aug 1995 A
5442411 Urbanus et al. Aug 1995 A
5442414 Janssen et al. Aug 1995 A
5444566 Gale et al. Aug 1995 A
5445559 Gale et al. Aug 1995 A
5446479 Thompson et al. Aug 1995 A
5447600 Webb Sep 1995 A
5448314 Heimbuch et al. Sep 1995 A
5448546 Pauli Sep 1995 A
5450088 Meier et al. Sep 1995 A
5450219 Gold et al. Sep 1995 A
5451103 Hatanaka et al. Sep 1995 A
5452024 Sampsell Sep 1995 A
5452138 Mignardi et al. Sep 1995 A
5453747 D'Hont et al. Sep 1995 A
5453778 Venkateswar et al. Sep 1995 A
5453803 Shapiro et al. Sep 1995 A
5454160 Nickel Oct 1995 A
5454906 Baker et al. Oct 1995 A
5455445 Kurtz et al. Oct 1995 A
5455455 Badehi Oct 1995 A
5455602 Tew Oct 1995 A
5457493 Leddy et al. Oct 1995 A
5457566 Sampsell et al. Oct 1995 A
5457567 Shinohara Oct 1995 A
5458716 Alfaro et al. Oct 1995 A
5459492 Venkateswar Oct 1995 A
5459528 Pettitt Oct 1995 A
5459592 Shibatani et al. Oct 1995 A
5459610 Bloom et al. Oct 1995 A
5461197 Hiruta et al. Oct 1995 A
5461410 Venkateswar et al. Oct 1995 A
5461411 Florence et al. Oct 1995 A
5461547 Ciupke et al. Oct 1995 A
5463347 Jones et al. Oct 1995 A
5463497 Muraki et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467106 Salomon Nov 1995 A
5467138 Gove Nov 1995 A
5467146 Huang et al. Nov 1995 A
5469302 Lim Nov 1995 A
5471341 Warde et al. Nov 1995 A
5473512 Degani et al. Dec 1995 A
5475236 Yoshizaki Dec 1995 A
5480839 Ezawa et al. Jan 1996 A
5481118 Tew Jan 1996 A
5481133 Hsu Jan 1996 A
5482564 Douglas et al. Jan 1996 A
5482818 Nelson Jan 1996 A
5483307 Anderson Jan 1996 A
5485172 Sawachika et al. Jan 1996 A
5485304 Kaeriyama Jan 1996 A
5485354 Ciupke et al. Jan 1996 A
5486698 Hanson et al. Jan 1996 A
5486841 Hara et al. Jan 1996 A
5486946 Jachimowicz et al. Jan 1996 A
5488431 Gove et al. Jan 1996 A
5489952 Gove et al. Feb 1996 A
5490009 Venkateswar et al. Feb 1996 A
5491510 Gove Feb 1996 A
5491612 Nicewarner, Jr. Feb 1996 A
5491715 Flaxl Feb 1996 A
5493177 Muller et al. Feb 1996 A
5493439 Engle Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497197 Gove et al. Mar 1996 A
5497262 Kaeriyama Mar 1996 A
5499060 Gove et al. Mar 1996 A
5499062 Urbanus Mar 1996 A
5500761 Goossen et al. Mar 1996 A
5502481 Dentinger et al. Mar 1996 A
5504504 Markandey et al. Apr 1996 A
5504514 Nelson Apr 1996 A
5504575 Stafford Apr 1996 A
5504614 Webb et al. Apr 1996 A
5506171 Leonard et al. Apr 1996 A
5506597 Thompson et al. Apr 1996 A
5506720 Yoon Apr 1996 A
5508558 Robinette, Jr. et al. Apr 1996 A
5508561 Tago et al. Apr 1996 A
5508565 Hatakeyama et al. Apr 1996 A
5508750 Hewlett et al. Apr 1996 A
5508840 Vogel et al. Apr 1996 A
5508841 Lin et al. Apr 1996 A
5510758 Fujita et al. Apr 1996 A
5510824 Nelson Apr 1996 A
5512374 Wallace et al. Apr 1996 A
5512748 Hanson Apr 1996 A
5515076 Thompson et al. May 1996 A
5516125 McKenna May 1996 A
5517340 Doany et al. May 1996 A
5517347 Sampsell May 1996 A
5517357 Shibayama May 1996 A
5517359 Gelbart May 1996 A
5519251 Sato et al. May 1996 A
5519450 Urbanus et al. May 1996 A
5521748 Sarraf May 1996 A
5523619 McAllister et al. Jun 1996 A
5523628 Williams et al. Jun 1996 A
5523803 Urbanus et al. Jun 1996 A
5523878 Wallace et al. Jun 1996 A
5523881 Florence et al. Jun 1996 A
5523920 Machuga et al. Jun 1996 A
5524155 Weaver Jun 1996 A
5534883 Koh Jul 1996 A
5539422 Heacock et al. Jul 1996 A
5544306 Deering et al. Aug 1996 A
5554304 Suzuki Sep 1996 A
5576878 Henck Nov 1996 A
5602671 Hornbeck Feb 1997 A
5606181 Sakuma et al. Feb 1997 A
5606447 Asada et al. Feb 1997 A
5610438 Wallace et al. Mar 1997 A
5623361 Engle Apr 1997 A
5629566 Doi et al. May 1997 A
5629801 Staker et al. May 1997 A
5640216 Hasegawa et al. Jun 1997 A
5658698 Yagi et al. Aug 1997 A
5661592 Bornstein et al. Aug 1997 A
5661593 Engle Aug 1997 A
5663817 Frapin et al. Sep 1997 A
5668611 Ernstoff et al. Sep 1997 A
5673139 Johnson Sep 1997 A
5677783 Bloom et al. Oct 1997 A
5689361 Damen et al. Nov 1997 A
5691836 Clark Nov 1997 A
5696560 Songer Dec 1997 A
5699740 Gelbart Dec 1997 A
5704700 Kappel et al. Jan 1998 A
5707160 Bowen Jan 1998 A
5712649 Tosaki Jan 1998 A
5713652 Zavracky et al. Feb 1998 A
5731802 Aras et al. Mar 1998 A
5734224 Tagawa et al. Mar 1998 A
5742373 Alvelda Apr 1998 A
5744752 McHerron et al. Apr 1998 A
5745271 Ford et al. Apr 1998 A
5757354 Kawamura May 1998 A
5757536 Ricco et al. May 1998 A
5764280 Bloom et al. Jun 1998 A
5768009 Little Jun 1998 A
5793519 Furlani et al. Aug 1998 A
5798743 Bloom Aug 1998 A
5798805 Ooi et al. Aug 1998 A
5802222 Rasch et al. Sep 1998 A
5808323 Spaeth et al. Sep 1998 A
5808797 Bloom et al. Sep 1998 A
5815126 Fan et al. Sep 1998 A
5825443 Kawasaki et al. Oct 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5837562 Cho Nov 1998 A
5841579 Bloom et al. Nov 1998 A
5844711 Long, Jr. Dec 1998 A
5847859 Murata Dec 1998 A
5862164 Hill Jan 1999 A
5886675 Aye et al. Mar 1999 A
5892505 Tropper Apr 1999 A
5895233 Higashi et al. Apr 1999 A
5898515 Furlani et al. Apr 1999 A
5903243 Jones May 1999 A
5903395 Rallison et al. May 1999 A
5910856 Ghosh et al. Jun 1999 A
5912608 Asada Jun 1999 A
5914801 Dhuler et al. Jun 1999 A
5915168 Salatino et al. Jun 1999 A
5919548 Barron et al. Jul 1999 A
5920411 Duck et al. Jul 1999 A
5920418 Shiono et al. Jul 1999 A
5923475 Kurtz et al. Jul 1999 A
5926309 Little Jul 1999 A
5926318 Hebert Jul 1999 A
5949390 Nomura et al. Sep 1999 A
5949570 Shiono et al. Sep 1999 A
5953161 Troxell et al. Sep 1999 A
5963788 Barron et al. Oct 1999 A
5978127 Berg Nov 1999 A
5982553 Bloom et al. Nov 1999 A
5986634 Alioshin Nov 1999 A
5986796 Miles Nov 1999 A
5995303 Honguh et al. Nov 1999 A
5999319 Castracane Dec 1999 A
6004912 Gudeman Dec 1999 A
6016222 Setani et al. Jan 2000 A
6025859 Ide et al. Feb 2000 A
6038057 Brazas, Jr. et al. Mar 2000 A
6055090 Miles Apr 2000 A
6061166 Furlani et al. May 2000 A
6061489 Ezra May 2000 A
6062461 Sparks et al. May 2000 A
6064404 Aras et al. May 2000 A
6069392 Tai et al. May 2000 A
6071652 Feldman et al. Jun 2000 A
6075632 Braun Jun 2000 A
6084626 Ramanujan et al. Jul 2000 A
6088102 Manhart Jul 2000 A
6091521 Popovich Jul 2000 A
6096576 Corbin et al. Aug 2000 A
6096656 Matzke et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6101036 Bloom Aug 2000 A
6115168 Zhao et al. Sep 2000 A
6122299 DeMars et al. Sep 2000 A
6123985 Robinson et al. Sep 2000 A
6124145 Stemme et al. Sep 2000 A
6130770 Bloom Oct 2000 A
6144481 Kowarz et al. Nov 2000 A
6147789 Gelbart Nov 2000 A
6154259 Hargis et al. Nov 2000 A
6154305 Dickensheets et al. Nov 2000 A
6163026 Bawolek et al. Dec 2000 A
6163402 Chou et al. Dec 2000 A
6169624 Godil et al. Jan 2001 B1
6172796 Kowarz et al. Jan 2001 B1
6177980 Johnson Jan 2001 B1
6181458 Brazas, Jr. et al. Jan 2001 B1
6188519 Johnson Feb 2001 B1
6195196 Kimura et al. Feb 2001 B1
6210988 Howe et al. Apr 2001 B1
6215579 Bloom et al. Apr 2001 B1
6219015 Bloom et al. Apr 2001 B1
6222954 Riza Apr 2001 B1
6229650 Reznichenko et al. May 2001 B1
6249381 Suganuma Jun 2001 B1
6251842 Gudeman Jun 2001 B1
6252697 Hawkins et al. Jun 2001 B1
6268952 Godil et al. Jul 2001 B1
6271808 Corbin Aug 2001 B1
6282213 Gutin et al. Aug 2001 B1
6290859 Fleming et al. Sep 2001 B1
6290864 Patel et al. Sep 2001 B1
6303986 Shook Oct 2001 B1
6310018 Behr et al. Oct 2001 B1
6313901 Cacharelis Nov 2001 B1
6323984 Trisnadi Nov 2001 B1
6342960 McCullough Jan 2002 B1
6346430 Raj et al. Feb 2002 B1
6356577 Miller Mar 2002 B1
6356689 Greywall Mar 2002 B1
6384959 Furlani et al. May 2002 B1
6387723 Payne et al. May 2002 B1
6396789 Guerra et al. May 2002 B1
6409876 McQuarrie et al. Jun 2002 B1
6418152 Davis Jul 2002 B1
6421179 Gutin et al. Jul 2002 B1
6438954 Goetz et al. Aug 2002 B1
6445502 Islam et al. Sep 2002 B1
6452260 Corbin et al. Sep 2002 B1
6479811 Kruschwitz et al. Nov 2002 B1
6480634 Corrigan Nov 2002 B1
6497490 Miller et al. Dec 2002 B1
6525863 Riza Feb 2003 B1
6563974 Agha Riza May 2003 B2
6569717 Murade May 2003 B1
6736987 Cho May 2004 B1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020015230 Pilossof et al. Feb 2002 A1
20020021485 Pilossof Feb 2002 A1
20020079432 Lee et al. Jun 2002 A1
20020105725 Sweatt et al. Aug 2002 A1
20020112746 DeYoung et al. Aug 2002 A1
20020121502 Paterl et al. Sep 2002 A1
20020131228 Potter Sep 2002 A1
20020131230 Potter Sep 2002 A1
20020135708 Murden et al. Sep 2002 A1
20020176151 Moon et al. Nov 2002 A1
20030056078 Johansson et al. Mar 2003 A1
20040069747 Patel et al. Apr 2004 A1
20040191946 Patel et al. Sep 2004 A1
Foreign Referenced Citations (3)
Number Date Country
0 878 824 Nov 1998 EP
2391384 Aug 2004 GB
10-209088 Aug 1998 JP
Continuation in Parts (1)
Number Date Country
Parent 09952626 Sep 2001 US
Child 10112962 US